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7 ABSTRACT: We present a comparative study of the spatial distribution of
8 the spin density of the ground state of CuCl2 using Density Functional Theory
9 (DFT), quantum Monte Carlo (QMC), and post-Hartree−Fock wave
10 function theory (WFT). A number of studies have shown that an accurate
11 description of the electronic structure of the lowest-lying states of this
12 molecule is particularly challenging due to the interplay between the strong
13 dynamical correlation effects in the 3d shell and the delocalization of the 3d
14 hole over the chlorine atoms. More generally, this problem is representative of
15 the difficulties encountered when studying open-shell metal-containing
16 molecular systems. Here, it is shown that qualitatively different results for
17 the spin density distribution are obtained from the various quantum-
18 mechanical approaches. At the DFT level, the spin density distribution is
19 found to be very dependent on the functional employed. At the QMC level,
20 Fixed-Node Diffusion Monte Carlo (FN-DMC) results are strongly dependent on the nodal structure of the trial wave function.
21 Regarding wave function methods, most approaches not including a very high amount of dynamic correlation effects lead to a
22 much too high localization of the spin density on the copper atom, in sharp contrast with DFT. To shed some light on these
23 conflicting results Full CI-type (FCI) calculations using the 6-31G basis set and based on a selection process of the most
24 important determinants, the so-called CIPSI approach (Configuration Interaction with Perturbative Selection done Iteratively)
25 are performed. Quite remarkably, it is found that for this 63-electron molecule and a full CI space including about 1018

26 determinants, the FCI limit can almost be reached. Putting all results together, a natural and coherent picture for the spin
27 distribution is proposed.

1. INTRODUCTION

28 In spite of much effort in the last 50 years, to devise a general
29 electronic structure approach that is both computationally
30 practical and accurate enough for all types of molecular systems
31 is still a challenging task. Indeed, to provide a truly accurate
32 account of the electronic structure of a molecule one must take
33 into account in a balanced way several effects of different
34 physical/chemical nature, (a) electron−electron correlation
35 effects (resulting from the 1/r12 interaction), (b) exchange
36 effects (Pauli principle), (c) delocalization (kinetic effects) and,
37 in some cases, (d) quasi-degeneracy effects (quantum
38 entanglement of almost degenerate low-energy wave function
39 components). All the present-day methods deal with these
40 aspects in different ways, sometimes with not so-clear
41 distinctions between them (e.g., the mixture of exchange and
42 nondynamical correlation effects within Kohn−Sham formula-
43 tion of Density Functional theory). Here, we shall consider the
44 two most widely used electronic structure methods, namely,
45 Density Functional Theory (DFT) and molecular orbital-based
46 or wave function theories (WFT) (post-Hartree−Fock
47 approaches). We shall also consider quantum Monte Carlo
48 (QMC) methods that are potentially very accurate but are still
49 methods of limited use in quantum chemistry due to a number

50of practical/theoretical limitations. Each type of method treats
51the various effects cited above in different ways with particular
52strengths and weaknesses.
53Density functional theory (DFT) is nowadays the most
54popular and widely used theory for the description of electronic
55structure of atoms, molecules, and condensed phases (solids
56and liquids). Its success stems mainly from the fact that it
57provides reasonable energetic and structural properties at a
58moderate computational cost. However, as well-known, many
59questions remain open in the DFT realm, mostly due to the
60necessity of approximating in a coherent way the unknown
61universal exact exchange-correlation functional.
62In the case of WFT, the quantum chemical description passes
63through the construction of an explicit wave function with the
64need of accurately introducing static and dynamic electronic
65correlation effects. Ideally, this can be achieved through the
66construction of the Full Configuration Interaction (FCI) wave
67function. However, since for most molecules the FCI solution is
68readily out of reach even with moderate basis sets, approximate
69solutions are needed and are achieved in practice by building
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70 increasingly complex wave functions following one of several
71 approximations using either perturbation, truncated CI (CIS,
72 CISD, CISDQ, CISDTQ, ...) or coupled cluster (CCSD,
73 CCSD(T), ...) techniques. Note that, within the WFT
74 framework, the question of whether or not the electronic
75 state in question can be correctly described using single-
76 reference methods also appears. In the negative case, the
77 application of the Complete Active Space SCF (CASSCF)
78 method has become customary and the ensuing CASSCF wave
79 function is used as zeroth-order reference for further treatment
80 of the dynamic correlation effects, for instance, through the
81 CASPT2 method.
82 The third type of methods considered here are the so-called
83 quantum Monte Carlo (QMC) approaches. QMC are statistical
84 methods for solving the Schrödinger equation. They are very
85 attractive since they are potentially exact methods (up to the
86 statistical errors inherent to any Monte Carlo approach).
87 Unfortunately, in practice, we have to cope with the
88 pathological fluctuations of the wave function sign and a so-
89 called fixed-node approximation has been introduced to fix this
90 problem. This approximation can be viewed as solving the
91 electronic Schrödinger equation but with a new additional
92 constraint, namely, imposing the solution to vanish wherever a
93 known trial wave function given as input vanishes. In other
94 words, the nodal hypersurface of the fixed-node wave function
95 (nodes = 3N-dimensional hypersurface where the wave
96 function vanishes) are imposed to be identical to those of the
97 approximate trial wave function. Numerical experience has
98 shown that the fixed-node error is small according to the
99 quantum chemistry standards (typically, a small percentage of
100 the correlation energy for total energies) but, unfortunately, still
101 large enough to lead to potential difficulties when computing
102 the small energy differences involved in quantitative chemistry.
103 Stated differently, suitable cancellation of fixed-node errors are
104 needed. In practice, it has been observed that the nodal quality
105 is directly related to the physical/chemical content of the trial
106 wave function. In short, the better the trial wave function is, the
107 smaller the fixed-node error is. Let us emphasize that the need
108 of having a trial wave function with good nodes to start a QMC
109 calculation brings back some heuristics into the approach, a
110 crucial point one has to be aware of. This aspect will be
111 exemplified here for the CuCl2 molecule. Note that in the case
112 of the transition-metal oxides a number of works investigating
113 nodal properties of such systems have been published by Mitas
114 et al.1−4

115 As seen, for different reasons none of these state-of-the-art
116 approaches are fully satisfactory to deal with all types of
117 molecular problems. Here, we propose to shed some light on
118 their theoretical and practical relationships on a small molecule,
119 which is representative of a difficult molecular problem, namely,
120 the ground state properties of the CuCl2 molecule. As shown in
121 previous studies, even the determination of the nature of the
122 ground state and the proper energetic ordering of the low-lying
123 states of this molecule turns out to be particularly difficult. This
124 is mainly due to a subtle interplay between the delocalization of
125 the Cu(3d) hole on the molecular axis and the dynamic
126 correlation effects. Here, in order to investigate such relation-
127 ships, we focus on the spatial distribution of the spin-density of
128 the ground-state along the molecular axis, which is the main
129 physical quantity associated with the relative stability of the
130 lowest electronic states in CuCl2. More precisely, we consider
131 the difference of α and β spin densities integrated within the

132plane perpendicular to the molecular axis (actually, a
133parallelepiped of small thickness). Our working definition is

∫ ∫ ∫ρ ρ ρΔ = −α β−ϵ

+ϵ
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z
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135where z is the coordinate along the molecular axis of the linear
136centro-symmetric molecule, the copper atom being at the
137origin, and ϵ is a small positive parameter (here, chosen equal
138to 0.1 au) corresponding to the thickness of the parallelepiped.
139For simplicity this partially integrated difference of α and β
140densities will be shortly referred to in the present work as the
141spin density distribution. Although the DFT approaches lead to
142a slightly different optimized geometry (ca. 3.92−3.97 au), in
143what follows we shall use the equilibrium centro-symmetric
144geometry fixed at a Cu−Cl distance of 3.9 au, closer to the
145experimental value of 3.85 au for the ground state.
146The contents of the paper are as follows. In Section 2, we
147summarize what is known about the nature of the low-lying
148electronic states of CuCl2. Sections 3,4,5, and 6 present the
149results obtained for the spatial distribution of the spin density
150using DFT, WFT, QMC, and near-Full CI, respectively. Finally,
151in Section 7, a detailed summary and discussion of the results
152obtained is presented.

2. WHAT IS KNOWN ABOUT CUCL2
153The quantitative description of the electronic structure of
154metal-containing systems is known to be a rather delicate
155problem. The spectroscopy of CuCl2 is a particularly difficult
156case for ab initio and DFT methods, since important
157correlation effects in the 3d shell of copper are strongly
158coupled to charge transfer effects via the 3p orbitals of the Cl
159ligands. Fortunately, the low-lying transitions are experimen-
160tally quite well-known5−9 and two benchmark variational
161multireference Averaged Coupled Pair Functional studies on
162the spectroscopy of CuCl2 exist; there the attention was
163focused on the nature of the three lowest electronic states10,11

164that give rise to the four observed transitions.
165The first three ligand field (LF) states are thought to arise
166from d-d transitions on the copper ion, and they can be
167described by a different orientation (σ, π, or δ) of the singly
168occupied HOMO, in principle, the localized Cu(3d) hole. So,
169at this point one might ask why is this such a complicated
170problem? In order to understand the complexity in the
171spectroscopic description involving the five lowest ligand-field
172(LF) and charge-transfer (CT) states note that, at the doubly
173ionic limit, CuCl2 is described by the Cl−Cu2+(3d9)Cl−

174structure, while in the covalent ClCuCl description, the copper
175atom, which is promoted to the 3d94s2 excited state undergoes
1764s-4p hybridization and can establish covalent bonds with both
177Cl atoms. An intermediate situation arises when one considers
178the resonant Cl−Cu+(3d94s1)Cl and ClCu+(3d94s1)Cl− ionic
179structures. Near the equilibrium geometry, the exact electronic
180structure for all states is a mixture of these three valence
181situations. The first three LF states (2Σg

+, 2Πg,
2Δg) correspond

182to d-d transitions on the copper ion, and it is generally thought
183that they can be described by the σ, π or δ orientations of the
184singly occupied Cu(3d) orbital. It is known that a correct
185description of electronic structures, and even more with such
186close lying states, must include a correct description of
187correlation effects especially important for the d shell, but
188also must allow for large repolarization differential effects
189between localized d-d states and charge transfer states. We
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190 stress that single-reference methods such as Coupled Pair
191 Functional(CPF) and CCSD(T) can be used here, since the
192 HF wave functions are excellent zeroth-order approximations
193 for the lowest electronic states of CuCl2.

12 From the DFT
194 perspective, this feature is also very convenient, since standard
195 Kohn−Sham based methods are well adapted to describe
196 transitions where only a change in the orientation of the 3d-
197 hole in the central metal atom is involved. We stress that the
198

2Πg → 2 Σg
+ transition in CuCl2 represents a most difficult

199 problem from the quantum theoretical point of view, since it
200 has been predicted to range from −2495 to 6930 cm−1.13

t1 201 Table 1 presents some selected DFT (LDA, GGA, hybrid.
202 and meta) and the ab initio 2Πg →

2 Σg
+ transition energies

203 along with the corresponding spin densities on the central Cu
204 atom. Basis sets used for such calculations are those reported in
205 the previous work RPVD-JCP05, namely, extended valence
206 basis sets of (9s11p8d6f4g)/[8s9p6d2f1g] quality for Cu and of
207 (6s6p5d4f)/[5s5p2d1f] type for Cl coupled to the Stuttgart-
208 Köln RECP. Previous results from nonrelativistic calculations
209 are also reported using large ANO-type basis sets for both
210 atoms.
211 Note that, within the ab initio framework, the dynamic
212 correlation effects that control the nature of the Cu 3d-hole in
213 the ground state are extremely difficult to obtain correctly since
214 the SCF, the SDCI, and even the usually very accurate SDCI
215 +Q (with Davidson’s approximate size-consistent correction)
216 schemes, all wrongly lead to a 2Σg

+ ground state. Only more
217 sophisticated size-consistent ab initio methods such as CPF,
218 CCSD(T), or CASSCF+ACPF are able to correctly predict a
219

2Πg ground state, lying 659, 859, and 232 cm−1 (respectively)
220 below the 2Σg

+ one without spin−orbit (SO) effects. Note that,
221 at the purely electronic level, transition energies must be
222 compared with the theoretical SO-deperturbed value, estimated

223to be 900 cm−1.10 We also stress that Bauschlicher and Roos12

224showed that the Darwin and mass-velocity relativistic effects
225cancel out nicely for the spectroscopy of this molecule and were
226thus able to use all-electron nonrelativistic (NR) calculations.
227From the DFT perspective, most functionals (GGA, hybrid and
228even meta-ones) such as HCTH407, BLYP, PBE96, OptX-LYP,
229TPSS, and M06-2X largely overestimate this transition, all
230yielding values above 3200 cm−1. Note that up to date, it is
231impossible to decide a priori which functional is to be used and
232which one can be trusted to yield reliable transition energies for
233an arbitrary metallic molecule. The delicate issue of the
234parametrization of most exchange-correlation functionals with-
235out the inclusion of transition metal containing systems has
236been discussed13 in this context. It is somewhat ironic that
237much less expensive and sophisticated descriptions such as
238those given by the PBE0 (750 cm−1) and the B97-2 (1400
239cm−1) functionals yield better approximations to this transition
240energy than the very computational demanding benchmark
241CASSCF+ACPF one at 232 cm−1. So, the natural question
242arises: Are these hybrid PBE0 and B97-2 densities correctly
243describing each electronic state, therefore providing truly
244accurate total energies, or is this energy difference hiding
245some cancellation of errors associated with physically relevant
246quantities, such as the spatial distribution of charge and spin
247densities?
248Although the various results presented in Table 1 may appear
249rather diverse, one might observe a correlation of the amount of
250HFX with the energy difference between the lowest states,
251although this is not strictly satisfied in all cases due to the
252coupling of the exchange and correlation functionals in each
253case. In the extreme case of SCF-HF, we find the largest
254(negative) transition energy with 2Σg

+ state as the ground-state.
255In the opposite case where no HF exchange is included (BLYP,
256for instance), the 2Πg

+ state becomes the ground state with a
257large (positive) transition energy. In between, one can see that
258for functionals having a fraction of HF exchange, this transition
259energy is still positive but smaller. To illustrate quantitatively
260 f1this idea we present in Figure 1, for the B3LYP functional with
261variable HF exchange, the evolution of the transition energy vs
262the HF exchange percentage.
263This figure illustrates in a particularly striking way the high
264level of arbitrariness present when using hybrid functionals,
265such as B3LYP, for this system. Clearly, there is no rational way
266to decide which is the “right” amount of HF nonlocal exchange
267to be used.

Table 1. DFT, Ab Initio, and Experimental Transition
Energies in Wavenumbers, Mulliken Spin Densities (SD) on
the Cu Atom Where Available

method 2Πg →
2Σg

+ 2Πg SD
2Σg

+ SD

LDA(S+VWN5) 6539 0.316
BLYP 4802 0.429 1.04
PBE96 4699 0.43 1.03
HCTH407 4345 0.420
OPTX-LYP 3963
TPSS 4065 0.406
M06-2X 3251 0.648
B3LYP 1703 0.57 1.07
B97-2 1465 0.54 1.03
PBE0 756 0.64 1.08
NR-SCFa −2495 0.962
CASSCF(21,14) 6930 0.94 1.00
CASSCF+ACPF 232
CASPT2 3861
NR-SDCIa −2116
NR-SDCI+Qa −1856
CCSD(T) 859
NR-Coupled Pair Functionala 659
theor.b 900
expt.c 253, 303, 475

aNonrelativistic all-electron calculations from ref 12. bTheoretical
spin−orbit deconvoluted value from ref 10. cExperimental fine-
structure transition energies; see corresponding references in ref 13.

Figure 1. 2Πg →
2 Σg

+ transition energy (wavenumbers) with B3LYP as
a function of the HF exchange percentage employed; positive values
correspond to a 2Πg ground state, in agreement with experiment.
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268 Another quantity related to this aspect (via the localization of
269 the 3d hole) is the spin-density on the central copper atom. In
270 Table 1, we present the values of several LDA, GGA, and
271 hybrid DFT-derived Mulliken spin-densities (SD) on the
272 central Cu atom and the ab initio CASSCF values for both
273 states, each at its equilibrium geometry. Note that both
274 CASSCF wave functions were optimized considering 21 active
275 electrons (11 from Cu and 5 from each Cl atom) in 14 active
276 orbitals (3p of Cl and 3d,4s,4p of Cu, and one active orbital
277 removed; see ref 14) leading to large expansions with about 23
278 000 CSF. Clearly, a rather different picture of the spin-density
279 distribution is obtained with the DFT-derived methods vs the
280 corresponding ab initio ones, especially for the 2Πg ground-
281 state. It is quite remarkable that the quality of the excitation
282 spectrum obtained with these functionals can be related to the
283 magnitude of the spin-density on the central metal atom, since
284 although all the functionals yield SD(Cu) values close to 1.0 for
285 the 2Σg

+ state, the corresponding value for the 2Πg ground state
286 shows large variations between the good and bad-performing
287 functionals. The PBE0 SD(Cu) value is 0.64, while the BLYP
288 and PBE96 spin-densities on copper are only 0.43. An
289 intermediate situation arises for the next two best performing
290 functionals, B3LYP and B97-2, with larger values of 0.57 and
291 0.54. The CASSCF(21,14) spin-densities are both very close to
292 1 for both electronic states, and this is precisely why it is
293 generally thought that these ligand states actually present a
294 much more localized hole on the central copper atom than any
295 of the DFT descriptions provide. We shall address this
296 important point in more detail in what follows.

3. GROUND-STATE SPIN DENSITY WITH DFT
297 Having in mind the previous results, we start our analysis of the
298 ground state spin density along the molecular axis with the
299 DFT approaches. Note that the singly occupied molecular
300 orbital (SOMO) plays a central role for many of the chemical/
301 physical properties of the molecule. It is so since in the spin-
302 restricted Kohn−Sham formalism the contribution to the spin
303 density resulting from all lower-lying orbitals cancels out and
304 the local spin density is directly written as the square of the
305 singly occupied orbital (other orbitals also contribute but in an
306 indirect way through the Kohn−Sham optimization). The σ or
307 π symmetry of the SOMO defines the overall symmetry of the

f2 308 ground state. In Figure 2, the SOMO orbitals obtained with
309 B3LYP for the 2Πg ground state as a function of the
310 internuclear axis z for different values of HF exchange
311 percentage are shown, along with the ROHF orbital. The
312 atomic basis sets used here and in the following section are
313 extended all electron basis sets of (21s,15p,10d,6f,4g)/
314 [8s,7p,5d,3f,2g] quality for Cu15 and of (17s,12p,5d,4f)/
315 [6s,5p,3d,2f] quality for Cl from ref 16. Since these orbitals
316 are centro-antisymmetric with respect to the Cu atom, only the
317 z > 0-region is shown. In this figure, the y coordinate is fixed to
318 zero and x to 0.15, a value close to the maximum of the highest

f3 319 peak of the orbital. Figure 3 gives the B3LYP spin-densities
320 obtained as a function of the HF exchange percentage together
321 with the HF spin density.
322 The two-peak structure of the SOMO (Figure 2) and Δρ(z)
323 in Figure 3 is clearly seen, one peak localized very close to the
324 central Cu atom and the other on the chlorine atom. The
325 relative height between the two maxima is strongly dependent
326 on the percentage of HF exchange considered. In the case of
327 HF, the main peak is the highest one while the secondary peak
328 on Cl is 20 times smaller. This indicates a highly localized

329character for the 3d hole at the HF level. When decreasing the
330percentage of HF exchange in B3LYP, the level of localization is
331found to decrease uniformly. Note also that the location of the
332zero (node) of the SOMO in the middle of the bond (blow-up
333in Figure 2) is very dependent on the amount of HF exchange.
334This result will be discussed in the context of the FN-DMC
335results (see Section 5). As in the case of the 2∑g-

2Πg transition
336energy presented above, there is no physically meaningful
337reason to decide which amount of nonlocal HF exchange
338should be used in B3LYP for this metallic system.

4. GROUND-STATE SPIN DENSITY WITH WFT: HF
339AND BEYOND
340Let us now turn our attention to the spin densities obtained
341from wave function approaches (WFT) at different levels of
342 f4theory. Figure 4 shows Δρ(z) obtained for the 2Πg ground-state
343using both ROHF and CASSCF calculations. In the later case,
344the active space chosen includes 14 orbitals (3p shell of both
345Cl, 4s, 4p, and 3d shells for Cu, one active orbital removed14)
346and 21 valence electrons (5 from each Cl and 11 from Cu) are
347distributed among them. In the resulting CASSCF(21,14)
348expansion the HF coefficient is found to be rather large (0.95),
349thus indicating a strong single-reference character of the
350ground-state wave function. Therefore, dynamic correlation

Figure 2. Plot of the singly occupied molecular orbital along the
nuclear axis z > 0 (copper at origin and chlorine at z = 3.9 au) for the
2Πg ground-state using B3LYP as a function of the HF exchange
percentage used in the hybrid functional. The values of x and y are
fixed to 0. and 0.15, respectively. The inset is a blow-up of the region
in the middle of the bond where the SOMO vanishes. See discussion
in Section 5.

Figure 3. Ground-state spin density with B3LYP as a function of the
HF exchange percentage. Cu at the origin and Cl atoms located at z =
± 3.9 au; only the positive z axis is shown.
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351 effects largely dominate this problem. Note that the CASSCF
352 spin-density distribution presented has been obtained by
353 considering only the first one hundred determinants corre-
354 sponding to the largest coefficients in the expansion. As seen in
355 Figure 4 and expected from the single-reference nature of the
356 wave function, HF and CASSCF spin-densities are almost
357 identical. In both cases, the 3d hole is found to be strongly
358 localized on the copper atom and almost no spin density is
359 present on the chlorine atoms.
360 As shown in Table 1, only the use of highly correlated
361 methods (CCSD(T), CPF, or ACPF) can recover the correct
362 energetic ordering of the two lowest electronic states.
363 Unfortunately, given the huge number of CSF (ca. 7 × 109)
364 considered in these approaches, the spin density distributions at
365 these levels of theory are not available.

5. GROUND-STATE SPIN DENSITY WITH QUANTUM
366 MONTE CARLO
367 In this section, we report all-electron quantum Monte Carlo
368 (QMC) calculations of spin-densities. Several versions of QMC
369 have been introduced in the literature; however, they all rely on
370 the same ideas and differ only by technicalities. Here, we
371 employ a variant of the Fixed-Node Diffusion Monte Carlo
372 (FN-DMC) method defined with a constant number of
373 walkers. For details, the interested reader is referred to the
374 original work.17 In FN-DMC we are faced with two main
375 sources of error: the statistical error inherent to any Monte
376 Carlo approach and the fixed-node error. Other sources of
377 errors are also present, but they can be easily controlled and
378 made negligible (see, ref 18). By increasing the number N of
379 Monte Carlo steps the 1/√N-statistical error can be decreased
380 as much as desired, at least in principle. In each application
381 presented below, this error has been reduced to a level
382 sufficient for our purposes. In contrast, the fixed-node
383 approximation is much more challenging and its control is a
384 crucial issue of present-day QMC approaches. It is known that
385 the magnitude of the fixed-node error is directly related to the
386 quality of the nodal structure of the approximate trial wave
387 function used in the simulation [the nodes are the (3N − 1)-
388 dimensional zeroes of the 3N-dimensional wave function, N
389 being the number of electrons]. Exact total energies can be
390 obtained only when using trial wave functions having the nodes
391 of the exact (unknown) wave function. It should be emphasized
392 that, in contrast with the statistical error which can be reduced
393 as desired by increasing Monte Carlo statistics, the fixed-node
394 error is a systematic error (i.e., a bias) that survives even for

395infinite statistics. Numerical experience has shown that,
396although fixed-node energies are very accurate, non-negligible
397errors on energy differences may still occur due to improper
398cancellation of fixed-node errors. Unfortunately, in some cases
399this error can be large enough to lead to qualitative wrong
400conclusions. When considering closed-shell systems with a
401strong single-reference nature, nodal hypersurfaces resulting
402from single-determinant representations (e.g., Hartree−Fock or
403Kohn−Sham type) are expected to be of sufficient quality. As
404we shall see, in the CuCl2 case considered here, the situation is
405different. Although the exact wave function has a strong single-
406reference character, the presence of an open-shell makes the
407nodal structure of the wave function more difficult to describe.
408In this case, the nodes of the 3N-dimensional wave function
409turn out to be very sensitive to the 3-dimensional nodal pattern
410chosen for the singly occupied molecular orbital (SOMO).
411Note that it is an interesting case where the highly complicated
4123N-dimensional nodes usually so difficult to visualize can be
413reduced, in a good first approximation, to a much simpler 3D-
414pattern.
415A last point to specify is the way spin-densities are computed
416here. In the case of total energies, it is known that the only
417systematic error is the fixed-node one, despite the fact that the
418stationary diffusion Monte Carlo distribution is not exact.
419DMC actually samples the so-called mixed distribution given by
420the product of the trial wave function and the exact wave
421function; see ref 18. In the case of properties other than
422energies, this is no longer true and some additional error
423related to the trial wave function contribution in the mixed
424distribution is present. This error can be removed in different
425(costly) ways; see for example refs 19 and 20. However, such a
426possibility was not considered here since, as we shall see later,
427the dominant source of error is the fixed-node approximation.
428Spin-densities are thus calculated in a standard way using a
429hybrid second-order estimate. Precisely, the average value of a
430general observable O is evaluated as21

⟨ ⟩ ∼ ⟨ ⟩ − ⟨ ⟩O O O2 DMC VMC 431(2)

432where averages are taken either over the mixed distribution
433sampled in DMC or over the squared trial wave function
434density sampled in a variational Monte Carlo (VMC)
435simulation. Here, the properties to be computed are the α
436and β spin densities and the quantities to average are merely
437the number of α or β electrons falling within histogram bins.
438The all-electron Fixed-Node DMC spin-density for the 2Πg
439ground-state using a Hartree−Fock wave function as trial wave
440function (complemented with a standard Jastrow factor to
441reduce statistical fluctuations for the energy) is presented in
442 f5Figure 5. The basis set used is that presented in previous
443section 3. For comparison, the Hartree−Fock spin density is
444also given. Although some differences between the two curves
445exist, they should essentially be considered as the same when
446compared to the typical differences present in the DFT-spin
447density curves; see Figure 2. The small differences include a
448slight increase of the main DMC peak and a small “spin-density
449wave” around Cl atoms. In this calculation, the total energies
450obtained at the SCF and FN-DMC levels are −2558.1050 au
451and −2560.719(2) au, respectively. To get an assessment of the
452accuracy reached here with QMC a rough estimate of the exact
453total energy of the molecule can be done. For that, we add to
454the sum of atomic energies the atomization energy calculated at
455the SCF level. Taking for Cl the value from Davidson et al.,22

456for Cu the HF energy of Bunge,23 plus the correlation energy

Figure 4. 2Πg state spin density along the molecular axis (in au) at the
HF-SCF and CASSCF levels.
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457 estimate of Clementi et al.,24 the exact energy of separate atoms
458 is found to be about −2560.868 au. Adding the SCF
459 atomization energy, we get a total ground-state energy for
460 CuCl2 of about −2561.045 au. The percentage of correlation
461 energy recovered by FN-DMC with HF nodes is thus quite
462 large, roughly ∼89%. Thus, with this highly correlated
463 description of the wave function but imposing HF nodes, it
464 is found that the shape of the spin density distribution is not
465 quantitatively changed with respect to that obtained at the SCF
466 level.
467 Let us now consider the FN-DMC spin-densities obtained
468 when using KS determinants instead of the Hartree−Fock one
469 as trial wave functions. The KS determinants were obtained
470 with standard B3LYP and with B3LYP with a variable amount

f6 471 of HF exchange. In Figure 6, the corresponding FN-DMC spin-
472 densities are presented.

473 As clearly seen, the overall shapes of FN-DMC spin-densities
474 are tightly correlated with those obtained at the corresponding
475 DFT level; see Figure 3. The results are thus similar to what has
476 just been obtained for the SCF case: No qualitative change of
477 the spin densities is obtained when passing from the variational
478 to the FN-DMC level. These results strongly suggest that the
479 key factor determining the spin density profile is the nodal
480 structure of the trial wave function used. The situation can thus
481 be summarized as follows: (i) the amount of Hartree−Fock
482 exchange in B3LYP determines the relative weight of 3pCl and
483 3dCu atomic contributions to the SOMO (ii) the nodes of the
484 SOMO are directly related to this relative weight, and (iii) the

485nodal pattern of the whole trial wave function is dominated by
486the SOMO nodes. In the inset of Figure 2, a blow-up of the
487SOMO in the region around its node located at the middle of
488the Cu−Cl bound is presented; the two other nodes close to
489the secondary peak are weakly dependent on the level of
490exchange and will not be discussed here. The position of the
491central node is seen to be very sensitive to the percentage of
492HF exchange. Its location ranges from Rnode = 2.5 for the
493Hartree−Fock wave function to about 2.05 for the KS
494determinant corresponding to the lowest HF percentage of
49510%. In short, the nodes of the trial wave function are very
496sensitive and directly related the amount of HF exchange
497chosen. At this point, the situation is clearly not satisfactory,
498since the overall shape of spin distributions is determined by
499the specific choice of nodes of the SOMO. Said differently, FN-
500DMC is not able to change qualitatively the global features of
501the spin-density associated with the approximate trial wave
502function given in input for the diffusion Monte Carlo process.
503We thus need to resort to alternative approaches capable of
504changing the nodes when electronic correlation effects are
505included. This will be the subject of the following section.
506Before that, let us nevertheless note that there exists in FN-
507DMC an internal criterion for estimating the nodal quality. It is
508based on the variational principle stating that the “better” the
509nodes are, the lower the fixed-node energies are expected to
510 f7be.21 Figure 7 presents the variation of the total FN-DMC

511ground-state energy as a function of the amount of exchange
512considered. Note that the use of such a criterium has already
513been employed by Kolorenc ̌ and coll.4 The basis set employed
514in these calculations is that of Weigend and Ahlrichs,25 which
515leads to significantly lower fixed-node energies than those
516obtained with the basis set used in refs 10 and 11. Quite
517remarkably, a minimum is observed for a HF exchange
518percentage around 45%. This result is interesting and may be
519understood as a first indication of the typical amount of HF
520exchange that should be employed. However, let us stress that
521this result must be considered with lot of caution since the
522sensitivity of the FN-DMC results on nodal choice is high and
523optimizing only the one-dimensional nodes of the SOMO
524could be insufficient. Furthermore, optimizing nodes via
525minimization of the total energy is not a guarantee of
526improvement for other properties such as spin density
527distributions.

Figure 5. 2Πg state spin density along the molecular axis (in au) at the
FN-DMC level with a HF trial wave function.

Figure 6. 2Πg state FN-DMC spin densities along the molecular axis
(in au) using as trial wave function B3LYP-KS determinants obtained
with different amounts of HF exchange.

Figure 7. Total FN-DMC 2Πg ground state energy obtained with a
B3LYP determinant as a function of the HF exchange percentage for
CuCl2.
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6. GROUND-STATE SPIN DENSITY WITH NEAR-FCI

528 In this section, we report near-Full Configuration Interaction
529 (FCI) calculations for total energies and spin-densities. To
530 achieve converged results on this system including 63 electrons,
531 a small 6-31G basis set is employed for both atoms, leading to a
532 molecular basis of 55 orbitals. Clearly, the quantitative accuracy
533 reached with such a modest basis set can be questioned.
534 However, it will allow us to calculate the spin densities, the
535 energy gap, and their evolution upon the number of
536 determinants considered, in a case where the wave function
537 includes most electronic correlation effects (although semi-
538 quantitatively), either static or dynamical. As we shall see,
539 despite their semiquantitative nature, FCI/6-31G results will
540 indeed provide us with important information about the origin
541 of the conflicting results obtained with the previous approaches.
542 To realize FCI-type calculations for this system, we use the
543 CIPSI approach (Configuration Interaction with Perturbative
544 Selection done Iteratively), a method proposed more than four
545 decades ago (see, refs 26 and 27, and references in28) and very
546 recently introduced in the context of QMC approaches.28 For a
547 detailed presentation of this approach, the reader is referred to
548 the original works. In short, CIPSI is a variational and
549 multireference perturbational configuration interaction ap-
550 proach in which determinants that are to be included in the
551 variational space are selected iteratively according to an energy
552 criterion. Determinants perturbationally generated are added to
553 the variational wave function when their perturbative
554 contribution to the total energy is greater than a given
555 threshold. In contrast with standard CI approaches where a
556 whole set of particle-hole excitations are considered (single-
557 excitations, single- and double-excitations, etc.), only excitations
558 having a significant impact on the wave function expansion are
559 selected as variational contributions. The relevance of a
560 particular excitation is decided by comparing its energy
561 contribution with the prefixed threshold. This procedure is
562 applied iteratively until a given target number of determinants
563 is reached. In practice, this leads to rather compact variational
564 expansions consisting of a limited number of determinants in
565 each type of excitations. Furthermore, higher-degree excitations
566 not usually present in standard CI expansions may also be
567 naturally introduced in the variational space with the CIPSI
568 approach. Finally, let us note that several applications for a
569 variety of metal-containing molecules have been realized during
570 the 90s; see for example refs 29−35. The major difference
571 between these applications and the present study is the size of
572 the variational space that is taken much larger here (up to a
573 million of determinants). The second-order perturbational
574 correction is thus much reduced and an accuracy close to the
575 FCI limit can be reached in the present application.

f8 576 In Figure 8, the convergence of the ground-state energy as a
577 function of the number of determinants kept in the variational
578 space is presented. To reduce the size of the CI calculation,
579 molecular orbitals of the neon and argon cores for the chlorine
580 and copper atoms, respectively, have been kept frozen (a total
581 of 19 orbitals and 38 core electrons). Calculations have been
582 performed using as active molecular orbitals the 36 remaining
583 orbitals (all valence and virtual molecular orbitals) and the
584 remaining 25 valence electrons. We stress that the size of the
585 full CI space is about 1018 determinants. With the present basis
586 set the maximum number of determinants in the variational
587 space considered here is 106. The three upper curves of Figure
588 8 are the variational energy curves corresponding to the

589multideterminantal expansion, |Ψ0⟩ built using either SCF,
590DFT-B3LYP, or natural molecular orbitals. The latter were
591constructed from the variational CIPSI wave function obtained
592with 106 determinants. As seen on the figure, all curves are
593found to converge almost to the same value, as it should be
594when approaching the full CI limit. The lower curve shows the
595so-called CIPSI energy obtained by adding to the variational
596energy E0 the second-order perturbative contribution defined as

∑= −
⟨Ψ | | ⟩

⟨ | | ⟩ −∈

H D
D H D E
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i P

i

i i
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0 597(3)

598where P denotes the set of all determinants not present in the
599multideterminantal expansion |Ψ0⟩ but connected to it by the
600Hamiltonian H (single- and double-excitations). For clarity
601only the CIPSI curve obtained with HF orbitals is shown, the
602other CIPSI curves having a similar behavior. EPT2 can be
603considered as a measure of the energy difference between the
604variational energy and FCI limit. As seen on the figure, the
605convergence of CIPSI energy is particularly rapid, we consider
606the limit has been attained with about 50 000 determinants in
607the variational space. For a large enough number of
608determinants, the perturbative correction EPT2 becomes quite
609small, this being a reliable indicator of the convergence to the
610FCI limit.
611 f9In Figure 9 the energy difference between the 2∑g and

2Πg
612states as a function of the number of determinants is presented

Figure 8. Total variational (three upper curves) and variational +
perturbational (lower curve) ground-state energy as a function of the
number of determinants kept in the CIPSI selection process. SCF,
B3LYP, and natural orbitals are used.

Figure 9. 2∑g−2Πg energy gap as a function of the number of
determinants in the variational space. The horizontal line at 900 cm−1

is the correct spin−orbit deperturbed gap value as estimated in ref 10.
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613 (note the logarithmic scale for the number of determinants).
614 The evolution of the energy difference is shown both for the
615 variational energies and the CIPSI energies (variational + EPT2).
616 At the purely variational level the 2∑g−2Πg gap starts with a
617 negative value (as it should be for one-determinant SCF wave
618 functions; see Table 1) and then changes sign when about 6000
619 determinants are included. At small number of determinants
620 the change in variational energy difference is important
621 (transient regime) but at larger numbers (say, beyond 104

622 determinants) an onset of convergence is observed. For 105 and
623 2 × 105 determinants the variational value for the energy
624 difference is close to 430 cm−1. At the CIPSI level, the curve is
625 much better behaved and the convergence is clearly reached
626 beyond 104 determinants; a value of about 690 cm−1 is
627 obtained. The fact that both variational and CIPSI limits are
628 close to each other (the difference of 260 cm−1 is small with
629 respect to the large variations observed in energy differences
630 calculated from various theoretical approaches) is a good
631 indication that the variational curve has also entered a quasi-
632 convergence regime. Note that for a small number of
633 determinants the second-order energy correction is large and
634 unphysical. CIPSI results are only meaningful in the large
635 number of determinants regime, where the second-order
636 contribution is indeed a correction.
637 Results obtained for the energy are very satisfactory; they
638 demonstrate that nearly-FCI calculations are able to describe
639 the transition between the two lowest electronic states despite
640 the smallness of the basis set, since the converged value
641 obtained for the energy difference is close to the estimated SO-
642 deperturbed value of about 900 cm−1.
643 For a deeper analysis, we have also calculated the spin-
644 density obtained from the CIPSI variational wave function. Its
645 evolution as a function of the number of selected determinants

f10 646 is plotted in Figure 10. As usual, a two-peak structure is

647 observed. In the figure, only data for the secondary peak on the
648 chlorine atoms are shown. For comparison, the spin density
649 distribution obtained at the SCF (nearly vanishing small peak)
650 and B3LYP levels (the highest peak) are also plotted. Remark
651 that the maximum of the B3LYP peak is about 0.087, to be
652 compared with the value of 0.15 for the very same quantity
653 presented in Figure 3 (ordinary B3LYP with 20% of HF
654 exchange). This difference is due to the smallness of the 6-31G
655 basis set. Using much larger basis sets, as the one used for
656 Figure 3, we have verified that the maximum value indeed
657 converges to 0.15. The CIPSI spin densities lie between both

658extreme curves and the height of the spin density peak is found
659to increase continuously with the number of determinants in
660the variational space. For the largest number of determinants in
661the variational space (106), the height of the peak is not yet
662fully converged but is large and represents about 40% of the
663B3LYP peak.
664 f11In Figure 11, we present a more complete view of the
665convergence of the secondary peak as a function of the number

666of determinants selected and with various types of molecular
667orbitals used in CIPSI. When using HF molecular orbitals, the
668spin density at z = 3.9 au, Δρ(3.9), is found to remain close to
669zero up to a thousand of determinants, and then, it begins to
670increase uniformly until it attains its maximum value. With
671B3LYP molecular orbitals, the situation is qualitatively different.
672Starting from one determinant from a high value of the peak (as
673shown above with the B3LYP KS determinant), it decreases
674rapidly to a value close to zero. This phenomenon can easily be
675explained by noting that in a CI calculation the role of the first
676determinants consists essentially in lowering the energy via
677single-excitations whose effect is to optimize in an effective way
678the (natural) one-body orbitals (here, going from pure KS to
679SCF-type orbitals). Because of that, Δρ(z = 3.9) is first found
680to almost vanish as in a SCF calculation. Next, when more
681determinants are added to the variational wave function,
682dynamical correlation contributions begin to appear (typically,
683through two-particle excitations) and then Δρ(z = 3.9) starts to
684increase. Directly using natural orbitals, a similar phenomenon
685occurs but in a less pronounced way, since the initial value is
686smaller than in the DFT case.
687To support the previous scenario regarding the role of single-
688 f12excitations, we present in Figure 12 the shape of the secondary
689peak for a small number of determinants (about 50
690determinants) using natural orbitals and including or excluding
691the SOMO-LUMO single-excitation that enters first in the
692variational space. Using only one determinant built with natural
693orbitals the maximum found for the peak is about 0.035, the
694largest value of the figure. Now, a small CIPSI calculation
695including only 50 determinants in the variational space is
696performed. Two situations are considered depending on the
697fact that the determinant representing the SOMO-LUMO
698single-excitation is removed or not from the variational
699expansion. In the first case, the peak is essentially unchanged.
700In sharp contrast, in the second case the peak of the spin
701distribution is significantly reduced and many additional

Figure 10. 2Πg state. Spin density around the chlorine atom with HF,
B3LYP, and CIPSI with varying number of determinants. The basis set
employed is 6-31G.

Figure 11. 2Πg state. Convergence of the maximum of the secondary
peak of the spin distribution as a function of the number of
determinants in the variational space. Different types of molecular
orbitals were used.
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702 determinants are needed to recover its original shape. These
703 results nicely illustrate the role of single-excitations recovering
704 the Hartree−Fock nature of the orbitals when a small number
705 of determinants is considered in the reference space.

7. SUMMARY
706 In this work, calculations of the total energy and spin-density
707 for the 2Πg ground state of the CuCl2 molecule have been
708 presented using various quantum-mechanical methods. De-
709 pending on the approach employed different qualitative and
710 quantitative descriptions of the spatial distribution of the spin
711 density along the molecular axis have been found. At the root of
712 such discrepancies lie the different ways the electronic structure
713 is described and approximated.
714 At the DFT level, the description of the low-lying states of
715 the molecule is very dependent on the type of exchange-
716 correlation functional chosen. Recalling that hybrid functionals
717 had been shown to provide the best agreement with
718 experimental data, the transition energy between the two
719 lowest states, 2Πg and

2∑g, is found to be very sensitive on the
720 fraction of HF exchange used in the functional. For B3LYP, the
721 gap is roughly linearly dependent on this fraction, starting from
722 a 2∑g ground-state with 100% HF exchange to a 2Πg ground
723 state with a sufficiently low percentage (about 40% and less).
724 Regarding the spatial distribution of the spin density, a strong
725 dependence on the fraction of HF exchange used in the hybrid
726 functional is found. In the case of the CuCl2 molecule having a
727 single unpaired electron, the DFT spin density is entirely
728 determined by the square of the SOMO orbital. By varying the
729 HF exchange percentage, the shape of this orbital may be
730 continuously varied and so is the spin density. With the full HF
731 exchange, the DFT spin-density is almost entirely localized on
732 copper, while lower levels of HF exchange lead to increasingly
733 delocalized spin densities on both Cl ligands. Such results are
734 clearly disturbing, since there exists no internal criterion within
735 hybrid DFT schemes to decide which amount of HF exchange
736 should be used, and thus, a meaningful chemical picture of the
737 electronic distribution is difficult to obtain. We recall that in the
738 DFT framework the self-interaction error (SIE) is known to be
739 directly related to the exchange part of the functional; in the
740 case of the metal-containing molecules with a high electronic
741 density in the d shell, this error may be particularly important
742 and not easy to control, thus leading to a potentially incorrect
743 description of the delocalization of electronic distributions.

744A common way of shedding light on a situation where DFT
745leads to unpredictable results is to resort to highly correlated
746post-Hartree−Fock methods where the construction of
747accurate 3N-dimensional wave functions allows, in principle, a
748better control of the details of the electronic structure. At the
749HF level, and in agreement with hybrid DFT results with full
750HF exchange, the spin density is found to be completely
751localized on the central copper atom. At the CASSCF level
752including all Cl(3p) and Cu(3d,4s,4p) orbitals as active orbitals,
753the wave function is not significantly changed and is largely
754dominated by the HF determinant. In other words, the
755dynamical correlation effects dominate here and the spin
756density calculated with CASSCF is practically identical to that
757of the HF description. Unfortunately, as illustrated by a number
758of works, it is very difficult to reproduce with sufficient accuracy
759the dynamical correlation effects and thus to give a quantitative
760description of the low-lying states; in particular, to obtain the
761correct energy difference between the two lower states requires
762very high level calculations [e.g., CCSD(T) or ACPF] with
763large optimized basis sets. Unfortunately, these methods do not
764provide the final electronic density that would allow us to
765conclude on the true chemical picture concerning the spin
766density.
767To escape from such limitations, we have utilized QMC
768calculations that are known to be particularly accurate. Using
769different types of trial wave functions fixed-node DMC
770calculations of both ground-state total energies and spatial
771distributions of the spin density have been thus obtained.
772Unfortunately, although we get state-of-the-art total energies
773(with around 90% of the total correlation energy), spin
774densities calculated within the fixed-node approximation are
775found to be too dependent on the nodal structure of the trial
776wave function employed. In the present case with a singly
777occupied molecular orbital, the complex 3N-dimensional nodal
778hypersurface of the full trial wave function is dominated by the
7793-dimensional nodes of the SOMO and that the shape of the
780FN-DMC spin densities calculated is directly related to the
781shape of this orbital. Thus, qualitatively different spin density
782distributions can be obtained even at the supposedly very
783accurate FN-DMC level, depending on the choice of the singly
784occupied orbital used in the trial wave function. Using a HF-
785type wave function, the FN-DMC spin density closely
786resembles that obtained at the variational HF level. Similarly,
787when using various SOMO KS orbitals obtained with a variable
788exchange hybrid (B3LYP) DFT method, FN-DMC spin
789densities resembling their KS counterparts are obtained. As a
790consequence, it becomes impossible to decide on such grounds
791what is the correct chemical picture for the spin distribution.
792Nevertheless, we have noted that, within the framework of FN-
793DMC approaches there exists an internal criterion allowing to
794estimate the nodal quality: The lower the fixed-node energy is,
795the “better” the nodes are expected to be (variational property
796of the fixed-node energy; see ref 21). We recall that this
797criterion should be taken with lot of caution for a property
798other than the energy; however, it is worth noting that the
799nodes of the SOMO minimizing the fixed-node energy are
800those corresponding to a contribution of HF exchange of about
80140−45%, considerably larger than ordinary B3LYP but much
802smaller than pure HF.
803In order to elucidate these various contradictory results, we
804have performed near-Full Configuration Interaction calcula-
805tions. Only such calculations can indeed yield a reliable balance
806between electron correlation and exchange effects. In the

Figure 12. Comparison of the secondary peak of the spin density
Δρ(z = 3.9) obtained with a small number of determinants, including
or excluding the SOMO-LUMO single-excitation.
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807 present case where the molecule contains 63 electrons, ordinary
808 FCI calculations using standard basis sets are just unfeasible. To
809 circumvent this difficulty we have proposed (i) to employ the
810 small 6-31G basis set and (ii) to make use of a perturbatively
811 selected CI (CIPSI) approach to avoid the huge intractable FCI
812 expansions, even for this small basis set (about 1018

813 determinants in the FCI space). Clearly, by using a small
814 basis set only semiquantitative results can be obtained.
815 However, since all types of electronic excitations are
816 considered,36 it can be expected that such calculations can
817 give some useful information on the origin of the conflicting
818 results among various approaches. Quite remarkably, it turns
819 out that the FCI/6-31G results are in this respect particularly
820 illuminating (see in Section 6, the dependence of the energy
821 gap and of the spin density as a function of the number of
822 determinants and on the nature of the orbitals). It is unlikely
823 that such important aspects will be qualitatively changed when
824 using larger basis sets in the FCI calculation.
825 From the set of data obtained for total energies, energy gap,
826 spin densities, and the dependence of the various results on the
827 number of determinants and types of molecular orbitals used, a
828 rather coherent chemical picture emerges. At the uncorrelated
829 (SCF) level, the lowest state is of 2∑g

+ symmetry and the
830 Cu(3d) hole is completely localized on the copper atom. When
831 dynamical correlation effects are added the ordering between
832 the 2∑g and

2Πg states is reversed and the hole is found to
833 partly delocalize over the Cl ligands. At the ordinary DFT-
834 B3LYP level, the Cu(3d) hole is too much delocalized over the
835 chlorine atoms due to an improper balance between the self-
836 interaction and exchange effects. To get a chemically
837 meaningful description of electronic distributions using
838 B3LYP-DFT, the percentage of HF exchange used must be
839 increased up to about 40%. At the fixed-node DMC level, spin
840 densities are found to be intimately related to the shape of the
841 singly occupied molecular orbital, an orbital whose nodes are in
842 turn directly related to the level of HF exchange used to derive
843 it. Using as criterion the minimization of the FN-DMC ground-
844 state energy, the optimal nodes for the SOMO are obtained for
845 a HF exchange weight of about 40%, a result coherent with
846 what has been obtained with near-FCI. Finally, let us note that
847 the fact that DFT overestimates delocalization effects of
848 magnetic holes in molecular systems has already been noticed
849 in the literature by other authors (see, e.g., ref 37).
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