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We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d
series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal
expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made
Iteratively) method and including the most prominent determinants of the full configuration inter-
action expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands
determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some
atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the
FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies
reported so far. They differ from the recently recommended non-variational values of McCarthy and
Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy.
Thanks to the variational property of FN-DMC total energies, our results provide exact lower
bounds for the absolute value of all-electron correlation energies, |Ec |. C 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4903985]

I. INTRODUCTION

An accurate knowledge of nonrelativistic ground-state
energies of atoms is known to be of great interest for
computational chemistry. Atomic total energies are indeed
routinely used to calibrate theoretical studies in electronic
structure theory. For example, let us cite the search
for more accurate exchange-correlation energy functionals
in Density Functional Theory (DFT), the calibration of
various approximations in wavefunction-based approaches
(finite basis set effects, truncation at a given order in
multi-particle excitations, etc.), the study of the fixed-node
approximation in quantum Monte Carlo (QMC), the definition
of alternative/exotic electronic approaches, etc. Furthermore,
by combining experimental results and accurate nonrelativistic
values, some valuable information about relativistic effects can
also be obtained.

Here, accurate nonrelativistic, clamped nucleus, all-
electron ground-state energies for the metal atoms of the 3d
series (from Sc to Zn) are reported. Calculations are performed
using the Fixed-Node Diffusion Monte Carlo (FN-DMC)
approach, a QMC method known to be particularly powerful
for computing ground-state energies.1,2 An overwhelming
number of works have been devoted to the calculation of
accurate atomic ground-state energies using various highly
correlated approaches; here, we shall only restrict ourselves
to give the typical accuracies presently achievable. For small
atoms (say, less than 10 electrons, that is, from H to Ne
for neutral atoms), very accurate values with errors smaller
than 10−4–10−5 a.u. (or much smaller for the lightest atoms)
can be obtained. For heavier atoms up to Ar (18 electrons),
the accuracy reduces to the millihartree level (∼chemical
accuracy). For even bigger atoms to obtain a precision close
to the millihartree is problematic and only a small number of

results have been published. Regarding quantum Monte Carlo
studies using FN-DMC or a closely related QMC variant,
most of the works have been concerned with atoms from
Li to Ne; for the most recent ones, see, e.g., Refs. 3–6.
For heavier atoms, most calculations have been performed
using pseudo-potentials to remove core electrons (see, e.g.,
Refs. 7–9). At the all-electron level, very little has been done.
We can essentially cite the FN-DMC calculations by Ma
et al.10 for the Ar, Kr, and Xe atoms; calculations for the
Cu atom and its cation;11,12 and two studies by Buendia and
collaborators for 3d transition metal atoms.4,6

It is fair to say that FN-DMC is presently the most
accurate method for computing total ground state energies for
large enough electronic systems. Potentially, diffusion Monte
Carlo allows an exact stochastic solution of the Schrödinger
equation. Several sources of error make, in practice, FN-DMC
simulations non-exact. However, most of the errors are not
of a fundamental nature and can be easily kept under control
(mainly, the statistical, finite time-step, and population control
errors). In contrast, the fixed-node error resulting from the use
of trial wavefunctions with approximate nodes is much more
problematic since, up to now, no simple and systematic scheme
to control this error has been devised. Note that the fixed-node
approximation is variational, EFN ≥ E0, a convenient property
to get upper and lower bounds for total energies and absolute
values of correlation energies, respectively [in contrast,
e.g., with the non-variational character of the commonly
used Coupled Cluster with Singles, Doubles and Triples
perturbatively (CCSD(T)) or Møller-Plesset approaches].

To decrease the fixed-node error, the common strategy
is to use high-quality trial wavefunctions and to resort to
multi-parameter stochastic optimization techniques to get the
best parameters (usually via minimization of the total energy
and/or its variance). A great variety of functional forms

0021-9606/2014/141(24)/244110/5/$30.00 141, 244110-1 © 2014 AIP Publishing LLC
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have thus been introduced for the wavefunction (see, e.g.,
Refs. 12–22), and various optimization techniques designed
to be efficient in a Monte Carlo context have been developed
(e.g., Ref. 23).

In this work, we shall employ a different strategy based
on the use of a new class of trial wavefunctions very
recently introduced in QMC simulations.24 The key ideas
are (i) to avoid the use of a Jastrow factor, (ii) to rely
on standard multi-determinant configuration interaction (CI)
expansions, and (iii) to avoid any stochastic optimization of
the wavefunction. To build CI expansions compact enough
to make QMC feasible in practice, we employ a selected CI
method (CIPSI (Configuration Interaction using a Perturbative
Selection made Iteratively) algorithm, see Refs. 26 and 32)
allowing to extract the most prominent determinants of the
Full Configuration Interaction (FCI) expansion. Using an
efficient implementation of the calculation of the multi-
determinant part34,35 expansions containing a large number of
determinants can be used in QMC. In the present application
to 3d atoms, expansions up to a few tens of thousands of
determinants have been employed. A nice feature of using
CIPSI wavefunctions is that simulations can be performed
in a fully black-box way: The CI program is first run, then
the QMC code is started using as input the CI wavefunction
directly as it comes from the output of the CI program.
In particular, the preliminary multi-parameter Monte Carlo
optimization of the trial wavefunction done in standard FN-
DMC approaches (see, e.g., Ref. 36) is avoided. A number
of recent applications24,37,38 have illustrated that CIPSI trial
wavefunctions are effective in improving nodes. Furthermore,
the fixed-node energy is found to decrease monotonically as
a function of the number of determinants or the size of the
basis set. This remarkable property allows to define a simple
control of the fixed-node error. The price to pay for such
attractive properties is that Jastrow-free CI expansions have
(much) larger variances and thus require longer simulation
times. However, this aspect is in practice not as critical as
it may appear. By using our efficient implementation of the
calculation of the multi-determinant part and by running our
QMC code on medium size computational platforms with a
few thousands of compute cores, it has been possible to realize
the entire set of calculations presented here for the 3d series
in less than two days. From a more general perspective, we
would like to emphasize that the possibility of having a simple,
automatic, and systematic way of decreasing and controlling
the fixed-node bias is of utmost practical importance. It clearly
remains true even at the price of more central processing
unit-intensive simulations that will anyway become more and
more easy to perform in view of the embarrassingly parallel
property of QMC and the rapid development of ever more
powerful parallel machines.

The FN-DMC/(CIPSI nodes) total ground-state energies
of metal atoms of the 3d series obtained here are compared
to the very recent results of Buendia et al.6 using a FN-DMC-
type approach with a single-determinant trial wavefunction.
A systematic improvement in FN total energies is obtained
for all atoms, except for Zn for which similar results are
found. For the lightest 3d atoms, the total energy values are
much improved (a gain up to about 4.5×10−2 a.u. for Sc).

To the best of our knowledge, the data presented here are
the lowest variational total ground-state energies reported so
far for the 3d transition metal atoms. They differ from the
recently recommended non-variational values of McCarthy
and Thakkar39 (denoted as McCT in what follows) obtained
by an hybrid approach combining MP2 results at complete-
basis-set (CBS) limit and accurate CCSD(T) values, only by a
few percents of the correlation energy, namely, between 5.6%
and 8% while these authors estimate their errors to be about
±3%. Thanks to the variational property of FN-DMC total
energies, our results also provide exact lower bounds for the
absolute value of all-electron correlation energies, |Ec |.

II. METHODS AND COMPUTATIONAL DETAILS

A. CIPSI

The CIPSI method, and similar approaches closely
related, have been introduced and developed a long time
ago by a number of authors (see Refs. 25–33). In a few words,
the approach consists in building the multi-determinantal
expansion iteratively by selecting at each step one determinant
(or a group of determinants) according to a perturbative
criterion. A determinant Di (or a group of determinants)
is added to the current wavefunction if its (their) energetic
contribution(s) calculated by second-order perturbation theory
is (are) sufficiently large. In this way, the wavefunction is built
hierarchically, the most important determinants of the FCI
solution entering first in the expansion. Such a construction
must be contrasted with standard approaches (configuration
interaction with singles, configuration interaction with singles
and doubles, etc.), where the contributions at a given
order are calculated by considering all possible particle-
excitations with respect to some reference wavefunction
(usually, the Hartree-Fock (HF) solution). The CIPSI multi-
determinantal expansion is thus much more compact than
standard expansions, an important practical point for FN-
DMC where the trial wavefunction and its derivatives must be
computed a very large number of times during the simulations.
Let us now briefly summarize the algorithm. More details can
be found in Ref. 24 and references therein.

In multi-determinantal expansions, the ground-state
wavefunction |Ψ0⟩ is written as a linear combination of
Slater determinants {|Di⟩}, each determinant corresponding
to a given occupation by the Nα and Nβ electrons of
N = Nα + Nβ electrons among a set of M spin-orbitals
{φ1,. . .,φM} (restricted case). The best representation of the
exact wavefunction in the entire determinantal basis is the FCI
wavefunction written as

|Ψ0⟩=

i

ci |Di⟩, (1)

where ci are the ground-state coefficients obtained by
diagonalizing the Hamiltonian matrix, Hi j = ⟨Di |H |D j⟩,
within the orthonormalized set, ⟨Di |D j⟩= δi j, of determinants
|Di⟩.

In its simplest form, the multi-determinant wavefunction
is iteratively built as follows. Let us call |Ψ(n)

0 ⟩=i∈Snc(n)i |Di⟩
the current wavefunction at iteration n, where Sn is the set
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of selected determinants at iteration n. Typically, at the initial
step n= 0, a mono-determinantal HF-type or a short complete-
active-space-self-consistent-field-type wavefunction is used.
The first step consists in collecting all different determinants
|Dic⟩ connected by H to |Ψ(n)

0 ⟩, that is, ⟨Ψ(n)
0 |H |Dic⟩ , 0.

Then, the second-order correction to the total energy resulting
from each connected determinant is computed,

δe(|Dic⟩)=−
⟨Ψ(n)

0 |H |Dic⟩2

⟨Dic |H |Dic⟩−E(n)
0

(2)

and the determinant (or group of determinants) |Di∗c⟩
associated with the largest |δe| (or greater than a given
threshold) is (are) added to the reference subspace

Sn→ Sn+1= Sn∪ {|Di∗c⟩}.
Finally, the Hamiltonian matrix is then diagonalized within
Sn+1 to obtain the new wavefunction at iteration n+1 and the
process is iterated until a target size Ndets for the reference
subspace is reached. The CIPSI wavefunction issued from
this selection process is the trial wavefunction used here for
FN-DMC.

B. FN-DMC

For a detailed presentation of the theoretical and practical
aspects of FN-DMC, the reader is referred to the literature, e.g.,
Ref. 40. Here, let us just emphasize that the central quantity of
such approaches is the trial wavefunctionΨT determining both
the magnitude of the fixed-node error through its approximate
nodes and the quality of the statistical convergence (good
trial wavefunctions imply small statistical fluctuations). The
computational cost of FN-DMC is almost entirely determined
by the evaluation at each Monte Carlo step of the value of ΨT

and its first (drift vector) and second derivatives (Laplacian
needed for the local energy). In view of the very large
number of MC steps usually required (typically at least
billions and often much more), it is essential to compute
such quantities very rapidly. In the present work, the typical
size of the expansion considered is a few tens of thousands
of determinants. Some care is thus required when computing
such expansions to keep the computational cost reasonable.
The various aspects regarding this problem are presented in
Ref. 35.

C. Computational details

The atomic basis sets used for the calculations are
the Slater-type orbitals of Bunge41 supplemented with four
additional 4 f and three 5g functions (a total of 112 atomic
basis functions). All the CIPSI calculations have been
performed using Hartree-Fock molecular orbitals using the
code developed in our group (quantum package), and all
the FN-DMC calculations have been performed using QMC
= Chem.42

For each atom, the CIPSI calculation was stopped when
more than 106 determinants were selected in the variational
wave function. This wave function was then truncated such
that the least significant determinants contributing to 0.5% of

the norm of the wave function were discarded: 104–5×104

determinants were kept. This wave function was used without
any modification as the trial wave function for the FN-DMC
calculations (no Jastrow factor).

For the FN-DMC calculations, we have employed the
algorithm described in Ref. 43 allowing us to use a small
constant number of walkers. A block consisted of 30 walkers
performing 5000 steps with a time step of 10−5 a.u., a
value chosen such that the time-step error was smaller
than the statistical error. Long enough simulations have been
performed to make the statistical error negligible with respect
to the fixed-node one: depending on the atom, a number
of blocks between 7× 104 and 1.5× 105 were calculated
(∼1010 MC steps).

III. RESULTS

In Table I, the variational energy, the number of
determinants in the CIPSI expansion, an estimate of the
percentage of the total CE recovered, and the average value
of the S2 total spin operator for each trial wavefunction ΨT

used in FN-DMC are given. The CE’s reported are calculated
from the recommended values of McCarthy and Thakkar.39

We emphasize that, in contrast with the present work, these
values have not been computed directly from a unique (very)
accurate energy calculation but have been obtained indirectly
by combining Møller-Plesset (MP2) correlation energies
extrapolated at the CBS limit and CCSD(T) calculations
using Dunning’s basis sets of various sizes. The percentages
of correlation energies retrieved at the CIPSI variational level
are found to be around 60%. It is important to note that
the correlation effects recovered in such CI calculations
are mostly valence correlation effects (valence basis set)
and non-dynamical correlation effects resulting from the
use of multi-determinant expansions including the most
prominent determinants. In particular, most of the energetic
core contributions are not taken into account in these
valence CI calculations. Some caution is thus needed when
comparing the total energies obtained with the Slater-Jastrow
wavefunctions usually employed in FN-DMC and the valence
CI wavefunctions proposed here. Finally, note that the total

TABLE I. Number of determinants, Ndets, of the CIPSI expansion used
as FN-DMC trial wavefunction. Variational energy, Evar (CIPSI), estimated
percentages of the correlation energy (CE) recovered, and eigenvalue of the
S2 spin operator. Energy in hartree.

Atom Ndets Evar (CIPSI) (CE in %) S2

Sc 2D(d1s2) 11 389 −760.32556 (66.5) 0.75
Ti 3F(d2s2) 14 054 −849.02624 (66.9) 1.99
V 4F(d3s2) 12 441 −943.53667 (64.9) 3.74
Cr 7S(d5s1) 10 630 −1044.03692 (63.6) 11.97
Mn 6S(d5s2) 11 688 −1150.57902 (63.0) 8.73
Fe 5D(d6s2) 13 171 −1263.21805 (62.5) 5.99
Co 4F(d7s2) 15 949 −1382.24964 (62.8) 3.74
Ni 3F(d8s2) 15 710 −1507.74694 (62.3) 1.99
Cu 2S(d10s1) 48 347 −1639.96605 (63.3) 0.75
Zn 1S(d10s2) 44 206 −1778.82784 (60.5) 0.00
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TABLE II. FN-DMC total energies for the 3d series of transition metal atoms together with the percentage of correlation energy recovered for different nodal
structures. Energy in hartree.

Atom HF nodes (CE in %) OEP nodesa (CE in %) CIPSI nodes (CE in %)
FN energy gain with

CIPSI nodesb

Sc −760.5265(13) [89.2(2)] −760.5288(6) [89.50(7)] −760.5718(16) [94.4(2)] −0.0453(21)
Ti −849.2405(14) [89.6(2)] −849.2492(7) [90.55(7)] −849.2841(19) [94.2(2)] −0.0436(24)
V −943.7843(13) [89.6(1)] −943.7882(6) [89.95(6)] −943.8234(16) [93.4(2)] −0.0391(21)
Cr −1044.3292(16) [91.0(2)] −1044.3289(6) [90.93(6)] −1044.3603(17) [93.9(2)] −0.0311(23)
Mn −1150.8880(17) [90.4(2)] −1150.8897(7) [90.54(6)] −1150.9158(20) [92.9(2)] −0.0278(26)
Fe −1263.5589(19) [90.1(2)] −1263.5607(6) [90.26(5)] −1263.5868(21) [92.4(2)] −0.0279(28)
Co −1382.6177(21) [90.5(2)] −1382.6216(8) [90.85(6)] −1382.6377(24) [92.1(2)] −0.0200(32)
Ni −1508.1645(23) [91.6(2)] −1508.1743(7) [92.27(5)] −1508.1901(25) [93.4(2)] −0.0256(34)
Cu −1640.4271(26) [92.4(2)] −1640.4266(7) [92.34(4)] −1640.4328(29) [92.7(2)] −0.0057(39)
Zn −1779.3371(26) [91.9(2)] −1779.3425(8) [92.24(5)] −1779.3386(31) [92.0(2)] −0.0015(40)

aReference 6.
bDifference between FN-DMC energies obtained with HF nodes (column 1) and newly proposed CIPSI nodes (column 5).

spin values S2 obtained from the truncated CIPSI expansions
show that the trial wavefunctions built are almost pure spin-
eigenstates.

In Table II, the fixed-node DMC total energies obtained
using standard Hartree-Fock nodes and newly proposed CIPSI
nodes are reported. For the sake of comparison, we also give
the very recent results of Buendia et al.6 that were up to now
the lowest variational fixed-node energies reported for these
atoms. In their study, the trial wavefunctions employed are
written as the product of a nodeless correlation factor and a
so-called model function obtained within the parametrized
Optimized Effective Potential (OEP) approximation. The
model function determining the nodal structure is written as
a linear combination of a few Configuration State Functions
(CSFs), mainly to take into account 4s–4p near-degeneracy
effects. For the Cr and Cu atoms with a singly occupied 4s
shell, the model function is represented by a single CSF,
while for the other atoms 4s23dn and 4p23dn configurations
are mixed. For each type of nodes used, an estimate of the
percentage of the correlation energy is also reported. The
percentages retrieved by all FN-DMC calculations presented
are important and range between 89% and 94%. A first
observation is that energies resulting from HF and OEP nodes
are of comparable quality, while CIPSI nodes may lead to
significantly lower fixed-node energies. The gain in energy
with the new nodes is found to decrease almost uniformly with
Z . For the lightest elements (Sc, V, and Ti), a maximum gain
of about 0.045 a.u. is achieved; for the intermediate atoms
(Cr–Ni), about 0.02-0.03 a.u. is obtained, while for the two
heaviest elements (Cu and Zn), no gain is observed within
statistical fluctuations. The fact that CIPSI performs better
for lightest elements is not surprising since Hartree-Fock
nodes are known to be well-adapted to atoms with spherical
symmetry. In the extreme case of the Cu and Zn atoms having
a totally filled and spherically symmetric 3d shell, HF and
CIPSI nodes give similar results. In the opposite case of
light atoms, the CIPSI wavefunctions, that have many more
degrees of freedom than the single-configuration HF solution
to describe non-symmetrical electronic configurations, lead to
much improved results. In Table III, the correlation energies
resulting from our FN-DMC simulations are reported and

compared to the recommended values of McCT. As already
noted, these latter results have been obtained with a mixed
approach including MP2-CBS and CCSD(T) calculations.
According to the authors, the errors in these values are
estimated to be ±3%. The relative differences between FN-
DMC/[HF nodes] or FN-DMC/[OEP nodes] and the McCT
values go from 8% to 11%. Using CIPSI nodes, the differences
are reduced and range between 6% and 8%. Note that the
typical statistical error on these percentages is small and
about 0.2%. Although our final values for correlation energies
are slightly less accurate than the estimates made by McCT,
we would like to emphasize and conclude on three important
points: (i) In contrast with what has been done by McCT,
our correlation energies have been directly computed with
a unique highly correlated electronic structure method. No
hybrid scheme mixing results of two different approaches
has been employed. To the best of our knowledge, the FN-
DMC values presented here are the most accurate (lowest)
nonrelativistic total energies ever reported for the 3d transition
metal atoms. (ii) As a consequence of the variational property
of FN-DMC total energies and also in contrast with McCT’s
results, the absolute values of our correlation energies are
exact lower bounds of the unknown CE’s. (iii) Finally, in view

TABLE III. Fixed-node DMC correlation energies, −Ec, in hartree using HF
and CIPSI nodes. Comparison with the recommended values of McCarthy
and Thakkar (McCT).39

Atom HF nodes OEP nodesa CIPSI nodes McCTb

Sc 0.7900(13) 0.7923(6) 0.8353(16) 0.8853
Ti 0.8454(14) 0.8541(7) 0.8890(19) 0.9433
V 0.9000(13) 0.9039(6) 0.9390(16) 1.0049
Cr 0.9728(16) 0.9725(6) 1.0039(17) 1.0695
Mn 1.0218(17) 1.0235(7) 1.0495(20) 1.1304
Fe 1.1122(19) 1.1140(6) 1.1401(21) 1.2343
Co 1.2016(21) 1.2055(8) 1.2216(24) 1.3270
Ni 1.3043(23) 1.3141(7) 1.3299(25) 1.4242
Cu 1.4634(26) 1.4629(7) 1.4691(29) 1.5842
Zn 1.4890(26) 1.4944(8) 1.4905(31) 1.6202

aReference 6.
bReference 39.
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of the great versatility of FN-DMC/CIPSI, there is no reason
why improved lower bounds would not be achieved in the
near future.
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