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ABSTRACT: To assist understanding of combustion processes, we have investigated
reactions of methylidyne (CH) with acrolein (CH2CHCHO) using the quantum
Monte Carlo (QMC) and other computational methods. We present a theoretical
study of the major reactions reported in a recent experiment on the subject system.
Both DFT and MP2 computations are carried out, and the former approach is used to
form the independent-particle part of the QMC trial wave function used in the diffusion
Monte Carlo (DMC) variant of the QMC method. In agreement with experiment, we
find that the dominant product channel leads to formation of C4H4O systems + H with
leading products of furan + H and 1,3-butadienal + H. Equilibrium geometries,
atomization energies, reaction barriers, transition states, and heats of reaction are
computed using the DFT, MP2, and DMC approaches and compared to experiment.
We find that DMC results are in close agreement with experiment. The kinetics of the
subject reactions are determined by solving master equations with the MultiWell
software suite.

1. INTRODUCTION

Acrolein (CH2CHCHO) is the simplest β-unsaturated
aldehyde present in the atmosphere and is one of the major
pollutants produced during biodiesel combustion. It plays an
important role in combustion chemistry, including the
oxidation of dienes,1−6 and in atmospheric chemistry. In the
latter case, anthropogenic emission of the pollutant butadiene
has been found to lead to significant detrimental consequences
for human health. Acrolein is also directly connected to
biological oxidation processes due to its electrophilicity and
reactivity and is a strong irritant for the skin, eyes, and nasal
passages.7 The presence of acrolein in the atmosphere is due to
incomplete combustion of petroleum, plastics, and biomass,8−13

together with increased use of biodiesel and ethanol−gasoline
blends.14 It is important to assess how the increased oxygen
content of such fuels affects the absolute and relative
concentrations of aldehydes emitted due to the use of
biodiesels.14 The high reactivity of CH leads to its significant
role in various fields of science including interstellar chemistry,
combustion chemistry, and planetary atmospheres15−19 with
report of detection in the interstellar medium,20−22 comets,23

stellar atmospheres,24,25 and flames.26

Recently, Lockyear et al.27 measured product formation in
the CH + acrolein reaction using tunable vacuum-ultraviolet
(VUV) synchrotron radiation and multiplexed photoionization
mass spectrometry. They computed the structures, vibrational
modes, and transition intensities of the molecules of interest at

the B3LYP28−31/6-311++G(2d,p) level of theory and the CBS-
QBS32,33 composite method. Rate coefficients and branching
fractions were computed using RRKM34−37 theory. Previously,
Leone and collaborators carried out a series of product
detection studies of reactions of CH with small, unsaturated
hydrocarbons38,39 (acetylene (C2H2), ethylene (C2H4), allene
(C3H4), propyne (C3H4), and propene (C3H6)), carbonyl-
containing species acetaldehyde40 and acetone,41 as well as the
cyclic nitrogen-containing pyrrole.42

Accurately modeling these systems requires precise chemical
data in the form of reaction rate coefficients and product
branching fractions. The goal of the present effort is to assess
the validity of previous theoretical findings with more extensive
computations using alternative methods. We are particularly
interested in ascertaining whether the quantum Monte Carlo
(QMC) method can add to understanding of the reaction
mechanisms for this system.43−46

The QMC method is a stochastic approach for solving the
Schrodinger equation.47,48 It has been shown to produce highly
accurate total energies of the ground state of many-electron
systems in the diffusion MC (DMC) variant of the method.
The DMC approach has been shown to scale better with
system size than other ab initio methods of comparable
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accuracy, in particular, CCSD(T). In the approach, the trial
wave function, which governs the accuracy of the method, is
typically chosen as a product of a determinantal expansion and
a correlation function, the latter containing explicit interparticle
distances.
Here, the structures, transition states, reaction pathways,

relative energies, atomization energies, heats of reaction, and
heats of formation are computed using the DMC, B3LYP,28−31

M06-2X,49 and MP250 methods. We consider the reaction
paths that lead to the two main product channels as reported by
Lockyear et al.27 The dominant product channel is the
formation of C4H4O systems + H with leading products of
furan + H and 1,3-butadienal + H. We have used the
aforementioned methods to compute critical points and stable
intermediates of the reaction pathways. In addition, we have
calculated heats of reaction and atomization energies of the
stable molecular systems.

2. COMPUTATIONAL DETAILS
2.1. Electronic Structure Calculations. The geometries

of reactants and products, and relevant stationary points,

including local minima and first-order saddle points, were
obtained with the B3LYP,28−31 M06-2X,49 and MP250 methods
with the 6-311++G(d,p)51 basis set. Harmonic vibrational
frequencies at the optimized geometries and saddle points were
analyzed at the respective levels of theory to reveal the nature
of the stationary points. Intrinsic reaction coordinate (IRC)
calculations52,53 were carried out to confirm transition state
structures. The DFT method was used for geometry
optimization because densities and energies obtained with the
method are less affected by spin contamination than other
approaches.54−60 These calculations were performed with the
general purpose electronic structure quantum chemistry
program GAMESS.61,62

2.2. QMC Computations and Trial Wave Functions.
The DMC calculations were carried out with the Zori63 code.
The B3LYP method was used to construct the independent-
particle part of the DMC trial wave functions, and these in turn
were multiplied by a 15-parameter Schmidt−Moskowitz−
Boys−Handy64,65 (SMBH) correlation function. The SMBH
function contains two- and three-body terms involving explicit
electron−electron, electron−nucleus, and electron−other−

Figure 1. Optimized geometries with geometrical parameters calculated at MP2/6-311++G(d,p) level of theory for the species (first row, (A)
reactants R, (B) first adduct A1; second row, (C) second adduct A2, (D) first intermediate I1; third row, (E) second intermediate I2, (F) first
product P1, (G) second product P2) involved in the subject reaction.
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nucleus distances and serves to reduce the variance in the local
energy and to improve stability of the computations. The DMC
calculations were performed at three time steps: 0.004, 0.002,
and 0.001 hartree−1. For each run, a population of 24 000
walkers was used. Extrapolation66 to zero time step was carried
out to minimize time step bias, which, given the nature of the
Umrigar et al. algorithm,67 is small at the time steps chosen.
Weighted quadratic least-squares fits were used for the
extrapolation.
2.3. Thermochemistry. Heats of formation at 0 K (ΔfH0

o)
and 298 K (ΔfH298

o ) for the systems involved in the subject
reaction were calculated following Nicoleides et al.68 with the
B3LYP, M06-2X, MP2, and DMC methods. For this purpose,
we used literature values of ΔfH0

o for H (51.63 kcal/mol), C
(169.98 kcal/mol), and O (58.99 kcal/mol).69,70 The atom-
ization energies, heats of formation, and heats of reaction at 0

and 298 K were computed in the usual way; see, for example,
Kollias et al.71

2.4. MultiWell Simulation. Reaction rate coefficients of
the CH/acrolein reaction system were computed using the
latest release (v.2014.1) of the MultiWell software suite.72−74

MultiWell solves the one-dimensional time-dependent energy-
transfer master equations for a multiwell or multichannel
unimolecular reaction system using a Monte Carlo stochastic
method.75,76 MultiWell simulations yield time-dependent
concentrations, vibrational distributions, and rate constants as
functions of temperature and pressure for unimolecular
reaction systems that consist of multiple stable species, multiple
reaction channels that interconnect, and multiple dissociation
channels from each stable species. Centrifugal force corrections
can be added and tunneling effects can be included to simulate
slow intramolecular vibrational energy redistribution. In

Figure 2. Optimized geometries with geometrical parameters calculated at MP2/6-311++G(d,p) level of theory for all of the transition states (TS)
(first row, (A) transition state TSA1−I1, (B) transition state TSA2−I1; second row, (C) transition state TSI1−I2, (D) transition state TSI1−P2; third row,
(E) transition state TSI2−P1) involved in the subject reaction.
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addition, Densum of the MultiWell’s software suite72−74

provides sums and densities of states via the Stein−Rabinovitch
extension of the Beyer−Swinehart algorithm. In the MultiWell
simulation, harmonic and anharmonic vibrations and classical
and quantized free rotations are taken into account.

3. RESULTS AND DISCUSSION

Optimized geometries of the molecules and transition states
involved in the subject reaction were determined using the
B3LYP, M06-2X, and MP2 methods with the 6-311++G(d,p)
basis set. The MP2/6-311++G(d,p) optimized structures and
associated geometrical parameters are shown in Figure 1A−G,

and the transition states computed with the same approach are
depicted in Figure 2A−E.
Table 1 presents the relative energies of all minima,

intermediates, transition states, and products involved in the
subject reaction obtained with the B3LYP, M06-2X, MP2, and
DMC methods and includes the findings of Lockyear et al.27

Note that the values associated with these systems are relative
to the total energy of reactants CH + CH2CHCHO, here
designated R, at each level of theory. The DMC reaction
pathways are depicted in Figure 3, and the Lockyear et al.
reaction pathways are shown in Figure 4. We have considered
the two entrance pathways that form the cyclo-adducts (A1 and
A2). In cyclo-addition to an unsaturated hydrocarbon bond, it

Table 1. Relative Energies of Molecular Systems Arising in the Subject Reactions Computed by Selected Methods (kcal/mol)

methods

species B3LYP M06-2X MP2 DMC othersa

CH+CH2CHCHO (R) 0 0 0 0 0
CC cyclo-adduct (A1) −80.16 −89.06 −86.49 −81.32 ± 0.94 −82.89
CO cyclo-adduct (A2) −66.47 −73.53 −67.21 −67.42 ± 0.97 −70.48
TSA1−I1 −67.31 −84.67 −64.84 −70.72 ± 0.84 −69.22
TSA2−I1 −61.96 −66.18 −58.39 −66.33 ± 1.02 −60.59
but-3-enal-2-yl (I1) −116.71 −117.88 −105.12 −117.37 ± 0.81 −117.14
furan-H adduct (I2) −108.08 −114.63 −104.42 −111.53 ± 1.10 −113.17
TSI1−I2 −103.48 −105.88 −98.32 −100.78 ± 0.89 −91.09
TSI1−P2 −65.87 −66.20 −60.19 −67.72 ± 0.88 −63.96
TSI2−P1 −75.16 −82.64 −74.43 −76.36 ± 1.08 −79.61
furan + H (P1) −74.64 −84.64 −89.98 −77.62 ± 0.83 −81.88
1,3-butadienal + H (P2) −66.74 −70.99 −76.20 −71.11 ± 0.78 −67.71

aReference 27.

Figure 3. Reaction pathways calculated at DMC level of theory for the subject reaction.
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is well accepted that the cyclo-addition is followed by ring
opening and the cyclic intermediate is extremely short-
lived.38,39 Acrolein with both CO and CC bonds presents
an interesting case because of the competition between cyclo-
addition of CH at the CO and CC bonds.
The highly reactive CH interacts with acrolein in two ways.

In one case, CH breaks a CC bond and forms a CC cyclo-
adduct (A1). In the other case, CH breaks the CO bond and
forms the CO cyclo-adduct (A2). The relative energy of the
two cyclo-adducts computed by DMC is in reasonable accord
with Lockyear et al.27 Formation of the cyclo-adducts proceeds
through but-3-enal-2-yl (I1, C4H5O) as an intermediate. The
DMC relative energies of the transition structures TSA1−I1 and
TSA2−I1 that connect A1 and A2 with but-3-enal-2-yl (I1) are in
reasonable accord with Lockyear et al.27 The molecule but-3-
enal-2-yl (I1) reacts in two ways and produces two H
elimination channels. In one case, but-3-enal-2-yl (I1) produces
the furan-H adduct (I2, C4H5O), which is followed by H
elimination yielding furan (C4H4O) as the product. In this case,

we found two transition states (TS), TSI1−I2 and TSI2−P1, which
connect but-3-enal-2-yl (I1) and the furan-H adduct (I2), and
the furan-H adduct (I2) and furan + H (P1), respectively. In
the other case, I1 eliminates H directly leading to TSI1−P2 and
forms 1,3-butadienal + H (P2) as product. The DMC relative
energies for all transition states, products, and intermediates are
also in accord with Lockyear et al.27 These two reaction
pathways are the main competing paths found experimentally
by Lockyear et al. The latter also calculated specific rate
coefficients for these products, P1 and P2, by RRKM
theory.34−37 The DMC and other-method results show that
the dominant products formed in this reaction are furan + H
(P1) and 1,3-butadienal + H (P2).
The atomization energy (Ea) of the stable species involved in

this reaction has been computed with the aforementioned
methods. These values are listed in Table 2 along with earlier
experimental and theoretical results. For CH, the DMC Ea and
values from other methods lie within 0.4 kcal/mol of Huber

Figure 4. Lockyear et al.27 reaction pathways calculated at CBS-QB3 level of theory for the subject reaction.

Table 2. Atomization Energies of Molecular Systems Arising in the Subject Reactions Computed by Selected Methods (kcal/
mol)

methods others

species B3LYP M06-2X MP2 DMC expt. theor.

CH radical 79.82 78.67 79.71 79.54 ± 0.11 79.9a 80,b,c,d 83.3−83.8e

CH2CHCHO 788.40 787.85 789.91 789.31 ± 0.34
CC cyclo-adduct 942.98 949.28 946.65 942.94 ± 0.42
CO cyclo-adduct 929.13 933.48 927.59 933.42 ± 0.53
but-3-enal-2-yl 978.72 977.84 972.35 976.78 ± 0.23
furan-H adduct 968.98 973.52 970.21 971.22 ± 0.52
furan 948.73 949.28 948.90 950.46 ± 0.38 950.6 ± 0.2f 915.5−1012.5,g 950.0 ± 0.5g

1,3-butadienal 930.17 930.79 937.09 929.60 ± 0.37
aReference 77. bReference 78. cReference 79. dReference 80. eReference 81. fReference 82. gReference 87.
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and Herzberg.77 The latter include computations of Pople et
al.,78 Curtiss et al.,79 Grossman,80 and Feller and Peterson.81

The DMC Ea of acrolein as well as both cyclo-adducts (A1
and A2), but-3-enal-2-yl (I1), furan-H adduct (I2), furan, and
1,3-butadienal are also consistent with the B3LYP and MP2
results; see Table 2. The furan Ea values from B3LYP and MP2
are close to each other but differ notably from the M06-2X and
DMC values that are in turn close to each other. The DMC Ea
is in excellent agreement with experiment.82 The DMC Ea for
1,3-butadienal and the DFT results are in good agreement; the
MP2 result is notably higher.
Heats of formation at 0 K (ΔfH0

o) for the systems being
discussed are reported in Table 3, and heats of formation at 298
K (ΔfH298

o ) are given in Table 4. The CH ΔfH0
o from DMC and

other approaches reproduce the experiments of Pedley82 at
both 0 and 298 K, and for Ruscic et al.83 No experimental value
of ΔfH0

o for acrolein is available. The DMC calculated ΔfH0
o of

acrolein is close to the values of Asatryan et al.84 and of Li and
Baer,85 while the MP2 result agrees well with the previously
computed values of Rodriquez et al.86 There are no
experimental or theoretical values of heats of formation for
the cyclo-adducts. Computed values for these systems are
contained in the respective tables.
The heats of reaction (ΔHrxn

o ) of both of the products
formed in the subject reactions are given in Table 5. It is clear
from the table that the reaction between the CH and acrolein

molecule is exothermic. There are no experimental or
theoretical results for comparison. The DFT (B3LYP and
M06-2X) ΔHrxn

o values are in good agreement with the DMC
value. The ΔHrxn

o of the first product, furan + H (P1),
calculated at the MP2 level of theory is about 3 kcal/mol lower
than the DMC result. The ΔHrxn

o of the second product 1,3-
butadienal + H (P2) calculated at the MP2 level is about 6.72
kcal/mol lower than the DMC calculated value. The ΔHrxn

o

calculated at the DMC level of theory of furan + H (P1) is
about 22 kcal/mol lower than the 1,3-butadienal + H (P2)
product.
The predicted branching fractions of two products (P1 and

P2) formed in this reaction were determined from the ratios of
species fractions computed with the MultiWell code.72−74 The
species fractions were level at a time scale of 10−5 s. The key
inputs to the MultiWell simulations are reaction barriers,
frequencies, and moments of inertia. The parameters for each
simulation are chosen to emulate the conditions of the
experiments performed by Lockyear et al.27 The pressure is
set to 4 Torr at a temperature of 298 K, using a He collider with
empirical Lennard-Jones parameters. Approximately 1000
simulations were carried out following Gillespie’s stochastic
simulation algorithm.75,76 An energy grain of 5 cm−1 was
utilized in each simulation. Energy grain size, simulation time,
and the Lennard-Jones parameters for wells and colliders were
varied to check the sensitivity of the simulation to these

Table 3. Heats of Formation (ΔfH0
o) at 0 K of Molecular Systems Arising in the Subject Reactions Computed by Selected

Methods (kcal/mol)

methods others

species B3LYP M06-2X MP2 DMC expt. theor.

CH radical 141.77 142.94 141.90 142.06 ± 0.12 141.6 ± 14,a 141.7b 141.1b

CH2CHCHO −12.95 −12.40 −14.46 −13.86 ± 0.37 −14.25,c −13.9 ± 2.42d

CC cyclo-adduct 54.08 47.78 50.31 54.12 ± 0.58
CO cyclo-adduct 67.93 63.58 69.47 63.64 ± 0.63
but-3-enal-2-yl 18.34 19.22 24.71 20.28 ± 0.36
furan-H adduct 28.08 23.54 26.85 25.84 ± 0.37
furan −3.30 −3.85 −3.47 −5.03 ± 0.40 −5.2 ± 0.2a −4.6 ± 0.5e

1,3-butadienal 15.26 14.64 8.34 15.83 ± 0.39
aReference 82. bReference 83. cReference 84. dReference 85. eReference 87.

Table 4. Heats of Formation (ΔfH298
o ) at 298 K of Molecular Systems Arising in the Subject Reactions Computed by Selected

Methods (kcal/mol)

methods others

species B3LYP M06-2X MP2 DMC expt. theor.

CH radical 142.57 143.72 142.68 142.85 ± 0.12 142.5 ± 0.3a 141.9,b 142.4−143.1c

CH2CHCHO −15.43 −14.88 −16.94 −16.34 ± 0.37 −15.6,d −16.70 ± 1.0,d −16.5 ± 2.4e

CC cyclo-adduct 50.66 44.37 48.89 50.70 ± 0.58
CO cyclo-adduct 64.53 60.18 66.07 60.24 ± 0.63
but-3-enal-2-yl 15.08 15.96 21.54 17.02 ± 0.36
furan-H adduct 24.21 19.67 26.85 21.96 ± 0.37
furan −6.55 −7.1 −6.72 −8.28 ± 0.40 −8.3 ± 0.2f −7.7 ± 0.5c

1,3-butadienal 13.00 12.38 6.08 13.57 ± 0.39
aReference 83. bReference 88. cReference 86. dReference 84. eReference 85. fReference 82.

Table 5. Heats of Reaction (ΔHrxn
o ) Formed in the Subject Reaction Computed by Selected Methods (kcal/mol)

methods

species B3LYP M06-2X MP2 DMC

furan + H (P1) −82.06 −84.31 −80.23 −83.16 ± 0.56
1,3-butadienal + H (P2) −62.51 −64.83 −68.03 −61.31 ± 0.55
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parameters; product branching fractions deviated at most by
0.5%, giving confidence that the parameters are chosen
correctly. The collisional energy transfer is described by the
exponential-down model with ⟨ΔEdown⟩ = 250 cm−1. The
quantity ⟨ΔEdown⟩ was varied across a wide range of values,
100−1000, to test if its value affected the results. The test
showed rather small deviations, about 0.025 in the product
fractions.
The simulations are initiated by assuming a barrierless

reaction starting from the reactant (R) to the adducts (A1, A2)
initiated by a nascent chemical activation energy distribution.
For these two forward reactions, no centrifugal force is
assumed. For all other forward reactions, a quasi-diatomic
centrifugal correction with two adiabatic external rotations was
utilized as suggested by the MultiWell algorithm. Quantum
rotors are used when the rotational constants are higher than 1
cm−1, and the classical rotor approximation when constants are
below this value.
For the DMC simulations, scaled MP2 frequencies and

rotational constants were utilized. A summary of results from
the MultiWell chemical-activation runs and the branching
fraction ratios are shown in Figure 5. For all simulations, the
second product (P2) dominates the product branching
fractions; all lie within the range 75−91% of product formation.
Because the branching reported by Lockyear et al.27 is for the
overall reaction pathway, it is not directly comparable to the
present findings that address only the two main reactions.
Nevertheless, product ratios can provide a qualitative measure
of the fit. With this assumption, the experimental product ratio
lies in the range of (0.545, 6.685), and hence within a range of
acceptable values. Because of the large P2 product fraction,
small deviations in the branching fraction of the first product
P1 can significantly alter the product ratio. Nevertheless, most
simulations lie within the experimental range of values. The
branching ratios computed with the MP2 method and the
DMC method (DMC/B3LYP) using the B3LYP optimized
geometry are in good agreement with Lockyear et al.27 The
B3LYP method gives, however, branching ratios that lie outside
the experimental range. This is due to poor estimates of
molecular frequencies from B3LYP.

A final remark concerns the accuracy of the DMC approach.
As is well known,43 the fundamental error present in DMC is
the fixed-node error resulting from the approximate nodes of
the trial wave function. Other errors including those arising
from the time step choice or the use of a finite population may
also be present, but are readily estimated and removed using
extrapolation techniques.
In this study, B3LYP nodes of single determinant trial

functions were used, and DMC results in close agreement with
experiment were found. It is likely, however, that DMC results
could be further improved by employing nodes of multi-
determinant trial wave functions. However, in view of the great
sensitivity observed for the DMC P2/P1 ratio on the optimized
geometry used (either B3LYP or MP2, see Figure 5), such a
study would require recomputing each reaction path at the
multideterminant level. Such a major study is left for future
work.

4. CONCLUSIONS

Motivated by the recent VUV synchrotron light and multi-
plexed photoionization mass spectrometry experiment, we have
explored computationally the reaction between CH and
acrolein. Reaction pathways, relative energies, atomization
energies, heats of formation, and heats of reaction were
computed using the B3LYP, M06-2X, MP2, and DMC
methods. The DMC atomization energy, heats of formation
at 0 and 298 K of the CH and of furan are found to be in
excellent agreement with experiment. The main products, furan
+ H (P1) and 1,3-butadienal + H (P2), found in the present
study agree with the experiments of Lockyear et al. The present
study firmly establishes that the hydrogen-loss (C4H4O + H)
pathway with leading products of furan + H (P1) and 1,3-
butadienal + H (P2) pathway is the main product channel
formed.
A MultiWell simulation and branching ratio analysis have

also clarified the dominance of product P2 over product P1.
The present findings are in accord with the experiment of
Lockyear et al. It is confirmed that the predicted H-loss
pathway is the major product channel of the reaction to
produce the main products P1 and P2.

Figure 5. Computed branching fractions for products of the main reaction channels are compared at various levels of theory. At the top of the figure,
the product branching ratio is given for each of the theoretical methods. This is the preferred quantity to compare with experiment. It is shown that
the product branching ratios computed at the DMC level with B3LYP frequencies (DMC/B3LYP), MP2, and M06-2X levels of theory all lie within
experimental error. The remaining methods, B3LYP and DMC with MP2 frequencies (DMC/MP2), lie outside of experimental uncertainty.
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