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An algorithm to compute efficiently the first two derivatives of

(very) large multideterminant wavefunctions for quantum

Monte Carlo calculations is presented. The calculation of deter-

minants and their derivatives is performed using the Sherman–

Morrison formula for updating the inverse Slater matrix. An

improved implementation based on the reduction of the num-

ber of column substitutions and on a very efficient implementa-

tion of the calculation of the scalar products involved is

presented. It is emphasized that multideterminant expansions

contain in general a large number of identical spin-specific

determinants: for typical configuration interaction-type wave-

functions the number of unique spin-specific determinants Nr
det

(r5 "; #) with a non-negligible weight in the expansion is of

order Oð
ffiffiffiffiffiffiffiffi
Ndet

p
Þ. We show that a careful implementation of the

calculation of the Ndet -dependent contributions can make this

step negligible enough so that in practice the algorithm scales

as the total number of unique spin-specific determinants,

N"det1N#det, over a wide range of total number of determinants

(here, Ndet up to about one million), thus greatly reducing the

total computational cost. Finally, a new truncation scheme for

the multideterminant expansion is proposed so that larger

expansions can be considered without increasing the computa-

tional time. The algorithm is illustrated with all-electron fixed-

node diffusion Monte Carlo calculations of the total energy of

the chlorine atom. Calculations using a trial wavefunction

including about 750,000 determinants with a computational

increase of �400 compared to a single-determinant calculation

are shown to be feasible. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24382

Introduction

In a series of recent works, we have proposed to use very

large configuration interaction (CI) trial wave functions in

fixed-node diffusion Monte Carlo (FN-DMC).[1–4] The main bot-

tleneck of such calculations is the price to pay for computing

the first two derivatives of the trial wavefunction at each

Monte Carlo step. In the present article, we describe in detail

the various strategies we have devised to make such calcula-

tions feasible. To illustrate quantitatively the performance of

our algorithm, let us mention that in a first application to the

oxygen atom,[3] converged all-electron fixed-node DMC calcu-

lations have been possible with a trial wavefunction including

up to 100,000 Slater determinants. In another application to

the metal atoms of the 3d series,[1] up to about 48,000 deter-

minants for all-electron FN-DMC simulations have been used.

In the illustrating case of the chlorine atom used here, a con-

verged all-electron fixed-node DMC calculation including up to

750,000 Slater determinants is presented. The trial wavefunc-

tion and its derivatives being expressed as a sum of determi-

nants, the computational time needed at each Monte Carlo

step is expected to scale linearly in the number of determi-

nants, a situation which can rapidly become intractable if large

expansions are desired (say, greater than a few thousands).

To tackle this difficulty, a number of methods have been

recently proposed. Nukala and Kent[5] have introduced a recur-

sive algorithm for updating the Slater determinants reducing

significantly the computational complexity. In 2011, Clark et al.

have proposed the Table method[6] which leads to a total cost

per step scaling as OðN2
elecÞ1OðNsNelecÞ1OðNdetÞ; Nelec being

the number of electrons, Ns the number of single excitations,

and Ndet, the number of determinants. In the case of the water

molecule a speedup of about 50 has been obtained. More

recently, Weerasinghe et al. proposed a compression algo-

rithm[7] based on the idea of reducing the number of determi-

nants of the expansion by combining repeatedly determinants

differing by one single orbital. The total cost per step is then

reduced by about the compression factor that is the ratio of

the initial to the final number of determinants. When applied

to the first-row atoms, a reduction of the number of determi-

nants by a factor of up to about 27 has been obtained (how-

ever, for the sake of comparison this factor should be reduced

here to about 11, see footnote*).

Here, we present our approach to reduce the computational

cost of large multideterminant expansions, as it is
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*The best gain in computational savings given in Ref. [7] is 26.57 (for B in

Table 1). However, it includes a factor of about 2.5 associated with the

decompression of the wavefunction written in terms of CSF’s and the

regrouping of identical determinants. For the sake of comparison, this lat-

ter factor should not be taken into account since the starting multideter-

minant wavefunction used here is supposed to be expanded over a set of

different determinants.
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implemented in the QMC 5 Chem program developed in our

group.[8] Before describing our algorithm it is important to

emphasize on a fundamental and general aspect regarding

efficient calculations of large multideterminant expansions.

Chemical systems studied in quantum chemistry are in general

compact (not extended over large portion of space like, e.g.,

in solid-state applications) and include a fixed and moderate

number of electrons (say, up to a thousand of active elec-

trons). It is, thus, important to be very cautious with the

notion of scaling law of the computational effort as a function

of the various critical parameters: Number of electrons, orbi-

tals, and determinants. Indeed, the asymptotic regime where

such scaling laws are valid is not necessarily reached in prac-

tice and the prefactors generally play a crucial role. In particu-

lar, the algorithm leading to the best theoretical scaling law is

not necessarily in practice the most optimal one, as will be the

case here. Following this idea, our algorithm has been

designed to be a good compromise between good scaling

laws and efficient practical implementation on modern pro-

cessors. A detailed discussion of this important aspect is pre-

sented in some remarks about comparisons with other

methods section.

The standard approach in QMC is to use a Slater–Jastrow

trial wavefunction consisting of a determinantal CI-type expan-

sion and a Jastrow prefactor to describe the explicit electron–

electron and electron–electron–nucleus interactions (dynamical

correlation effects). The Jastrow factor can be treated individu-

ally using standard techniques with a computational cost of

about OðN2
elecÞ or even less if unphysical long-range interac-

tions are cut off. In what follows, the Jastrow prefactor will

thus be omitted for simplicity.

A general N-electron and Ndet -determinant CI wave function

W can be expressed in the spin-free formalism used in QMC as,

WðRÞ5
XNdet

k51

ck DetS"kðR"Þ DetS#kðR#Þ (1)

where R5ðr1; . . . ; rNÞ denotes the full set of electron space

coordinates, and R" and R# the two subsets of coordinates

associated with " and # electrons.

In this formula, the matrix elements of the Nr3Nr Slater

matrices Sr
k (r5 "; #) are defined as ½Sr

k �ij5/jðriÞ where /j are

single-particle molecular orbitals (for simplicity, a common set

of orbitals for "- and #- electrons is used here, the generaliza-

tion to two different sets being straightforward). The Slater

matrices are labelled by an integer k defining which specific

subset of Nr molecular orbitals is used to build it, the molecu-

lar orbitals being chosen among a set of NMO active orbitals

[
NMO

Nr

 !
such possibilities]. It must be emphasized that

expansion (1) contains in general a large number of identical

spin-specific determinants (in the case of the chlorine atom

treated here, only 35,584 spin-determinants are different out

of the 1,000,000 determinants of the expansion, see Table 3).

In practice, it is then important to calculate only once these

unique determinants. A convenient form for the CI wavefunc-

tion taking account of this aspect is the following bilinear

form

WðRÞ5
XN"det

i51

XN#det

j51

CijD
"
i ðR"ÞD

#
j ðR#Þ5D"

†

CD#: (2)

where Dr are column vectors containing the values at the r2

electron positions of the Nr
det different determinants appearing

in the Ndet2 expansion, eq. (1), and C is the matrix of coeffi-

cients of size N"det3N#det.

In practical applications, the wavefunction (2) is rarely the full

CI expansion (except for small systems or very small basis sets)

but some approximate form resulting usually from the trunca-

tion of a limited configuration interaction (typically, CISD) or

CASSCF calculation using a threshold for determinantal coeffi-

cients. In the case of the full configuration interaction (FCI)

where all possible determinants are considered, Nr
det attains its

maximal value of
NMO

Nr

 !
. In that case, Ndet5N"det3N#det and the

number of unique spin-specific determinants DrðRÞ is of orderffiffiffiffiffiffiffiffiffi
Ndet

p
. In practice, using truncated forms the number of unique

determinants of non-negligible weight also follows a similar rule,

essentially because the most numerous excitations implying

multiple excitations of electrons of same spin play physically a

marginal role (see footnote† for a more quantitative discussion).

As a consequence, we note that the constant coefficient matrix

C is usually (very) sparse since it contains Ndet nonzero entries

where Ndet � N"det3N#det.

In algorithm and implementation section, all theoretical and

practical details of our algorithm are presented. In improved

truncation scheme section, a new truncation scheme for the

CI expansion motivated by the structure of the bilinear form is

proposed. This truncation scheme allows to compute less "-
and #- determinants than in the standard procedure where a

threshold is applied on the coefficients jckj of eq. (1) (see e.g.,

Ref. [9]). In results section, numerical results for the chlorine

atom are presented to illustrate the various aspects of the

algorithm using CI wave functions containing up to one mil-

lion of Slater determinants. In this example, it is shown that

the FN-DMC energy can be obtained with a trial wavefunction

including about 750,000 determinants with a computational

increase of only �400 compared to the same calculation using

†This general result can be illustrated in the particular case of the chlorine

atom considered here. Using our perturbatively selected CI wavefunction

including up to one-million of determinants (cc-pVDZ basis set), the num-

ber of unique spin-specific determinants Nr
det (see, Table 2) is observed to

scale roughly as the square root of the total number of determinants for

both spins. Indeed, a least-square fit of the data using a law of the form c

Nc
det leads to about c50:6 for both spin sectors. Let us now consider a

CISD calculation in the same basis set. Using a value of 1029 as threshold

for the coefficients, the total contribution corresponding to the HF,

single-, and double-excitations are found to be about 0.936, 0.002, and

0.062, respectively. Among all double excitations present in the expan-

sion, those involving two electrons of opposite spins contribute for a total

of about 0.050, while spin-like excitations contribute only for 0.008 and

0.004 for the " and # sector, respectively.
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a single determinant. In some remarks about comparisons

with other methods section, a number of important remarks

we believe to be important to take into account when com-

paring and implementing different algorithms are made. As an

illustration, a comparison of the performance of our algorithm

compared to that of the Table method of Clark et al., [6] is

presented. Finally, a summary of our main results is presented

in summary section.

Algorithm and Implementation

At every Monte Carlo step, the values of all the NMO molecu-

lar orbitals (MOs) are computed (or a subset if some orbitals

are never used in W) at all electron positions and stored in

an ðN"elec1N#elecÞ3NMO array U. Similarly, the derivatives of the

MOs with respect to the electron coordinates (gradients

rx;i; ry;i; rz;i , and Laplacian Di) are stored in four arrays

rxU; ryU, rzU, and DU. Our implementation has already

been detailed in Ref. [10], but let us recall that this step can

be computed very efficiently on modern x86 central process-

ing units (CPUs) as it makes an intensive use of vector fused

multiply-add (FMA) instructions and has a very low memory

footprint. In this section, we describe how the multidetermi-

nant wave function is evaluated, as well as its derivatives (gra-

dients and Laplacian).

Preprocessing. To take full advantage of the bilinear form, eq.

(2), a preliminary step to be done only once before the QMC

run is performed. The purpose is twofold. First, to define a

convenient encoding of the determinants making their manip-

ulation easy and very rapid, and their storage requirements

very low. Second, to introduce a comparison function allowing

to sort the determinants so that contiguous determinants in

the sorted list are likely to have a small number of differences

in terms of multiple-particle excitations. This step will be

important to minimize the number of Sherman–Morrison

updates of the Slater matrices as discussed in the next section.

Encoding. Determinants are initially encoded using 64-bit

integers as described in Ref. [11]: When the number of MOs is

less or equal to 64, one integer encodes the occupation of the

orbitals by the " electrons and another one encodes the occu-

pation of the orbitals by the # electrons, by setting to one the

bits corresponding to the positions of occupied MOs. For

instance, the Hartree–Fock determinant for the chlorine atom

(9 "-electrons and 8 #-electrons) is encoded as (511,255),

which is in binary representation (111111111, 11111111), and

the doubly excited determinant resulting from an excitation

from the MO #7 to #12 for a " and # electron is (2495,2239) or

(100110111111, 100010111111). When the system contains

more than 64 MOs, several Nint 64-bit integers are used for

each spin-specific determinant. The initial storage requirement

is therefore Ndet3ðbNMOs=64c11Þ316 bytes.

The " and # determinants are treated in two distinct lists.

Each spin-specific list is then treated independently as

follows.

Sorting of determinants. The list of determinants is sorted

with respect to some comparison function. We recall that in a

sort algorithm a key is associated with each element of the list

and that the choice of the comparison function is not unique.

Furthermore, an exact mapping between the elements of the

list and the values of the key is not necessary (several determi-

nants can have a common key). We have tested a variety of

keys with the objective of having both a simple and efficient

encoding and an ordered list of determinants where contigu-

ous determinants have a minimal number of differences in

terms of particle-excitations with high probability.

The key x used here is the numerical value of the 64-bit

integer obtained by accumulating an xor operation (�) on all

the Nint 64-bit integers in constituting the determinant

x5i1� . . . �iNint
2263 (3)

As Fortran does not handle unsigned integers, we shift the

value by 2263 to get an ordering consistent with the unsigned

representation. Table 1 gives an example of the ordering with

four electrons in eight orbitals. One can remark that the prob-

ability of using a single excitation to go from one determinant

to the next one in the list is very high. The sort is performed

in a linear time with respect to N"det and N#det thanks to the

radix sort algorithm.[12] Then, duplicate determinants are fil-

tered out by searching for duplicates among determinants giv-

ing the same key x. At this point, we have two spin-specific

lists of sorted determinants containing, respectively, N"det and

N#det unique determinants.

Sparse representation of Cij. We now want to express the

matrix of coefficients C in a sparse coordinate format made of

an array of values, an array of column indices, and an array of

row indices. Note that the dimension of such arrays is exactly

Ndet. For each determinant product in eq. (2), we compute the

key x corresponding to the " determinant. As the list of

unique determinants is sorted, we can use a binary search to

find its position i in the list in logarithmic time. This position is

appended to the list of row indices. Similarly, the list of col-

umn indices is updated by finding the position j of the #
determinant. To improve the memory access patterns in the

next steps, the value N"det3ðj21Þ1i is appended to an addi-

tional temporary array. Finally, the additional temporary array

is sorted (in linear time with the radix sort), and we apply the

corresponding ordering to the three arrays containing the

sparse representation of the C matrix. Now, the elements of

the C matrix are ordered such that reading the arrays sequen-

tially corresponds to reading the matrix column by column.

Let us emphasize that this preprocessing step is not a bot-

tleneck as it scales linearly with the number of determinant

products and has to be done only once. For instance, this pre-

processing step takes roughly 3 s on a single core for a wave

function with one million of Slater determinants. In sharp con-

trast, the computations described in the next paragraphs that

need to be performed at every Monte Carlo step are critical.

Calculation of the Vectors D" and D#. The list of integers cor-

responding to the indices of the molecular orbitals occupied

FULL PAPER WWW.C-CHEM.ORG

1868 Journal of Computational Chemistry 2016, 37, 1866–1875 WWW.CHEMISTRYVIEWS.COM



in the first determinant D"1 is decoded from its compressed 64-

bit integer representation. This list is used to build the Slater

matrix S"1 corresponding to D"1 by copying the appropriate N"
columns of U. We then evaluate the determinant and the

inverse Slater matrix in the usual way: we perform the LU fac-

torization of S"1 using partial pivoting (using the dgetrf lapack

routine,[13] OðN"elec
3Þ). It is now straightforward to obtain the

determinant D"1ðR"Þ, and the inverse Slater matrix S"1

� �21
is

obtained using the dgetri lapack routine in OðN"elec
3Þ. If the

dimension of the Slater matrix is smaller than 6 3 6, one can

remark that this cubic algorithm will cost more than the na€ıve

OðN"elec!Þ algorithm. Moreover, linear algebra packages are

optimized for large matrices and usually do not perform well

on such small matrices. Therefore, we used a script to gener-

ate hard-coded subroutines implementing the na€ıve algorithm

for the calculation of the determinant and the inversion of 1

3 1 to 5 3 5 matrices.

For all the remaining determinants fD"i>1g, the Sherman–

Morrison (SM) formula is used to update the inverse Slater

matrix in place in OðN"elec
2Þ. The column updates are executed

sequentially by substituting one column at a time. In the case

of a double excitation for instance, a sequence of two updates

will be performed. The substitution taking place at kth col-

umn, the SM formula is given by

½ðS1uv
†

kÞ
21

5S212
S21uv

†

kS21

11v
†

kS21u
(4)

where u is the column vector associated with the substitution of

molecular orbital j by molecular orbital j0; ui5/j0 ðriÞ2/jðriÞ and

v
†

k5ð0; . . . ; 1; . . . ; 0Þ, the value 1 being at position k. Other

implementations[6] compare the Slater matrix to a common ref-

erence, but here we perform the SM updates with respect to

the previously computed determinant D"i21. To avoid the propa-

gation of numerical errors, we do the following for each D"i . If

the absolute value of the ratio of the determinant with the sub-

stituted column over the previous determinant is below 1023,

the current column substitution is not realized and stored in a

list of failed updates. When all updates have been tried, the list

of updates to do is overwritten by the list of failed updates and

all the remaining updates are tried again, until the list of failed

updates becomes empty. If at one iteration the length of the list

of failed updates has the same nonzero length as in the previ-

ous iteration of the sequence, the SM updates are canceled and

the determinant is recomputed with the OðN"elec
3Þ algorithm.

The SM updates are hot spots in large multideterminant calcu-

lations, so some particular effort was invested in their computa-

tional efficiency. One can first remark that it is more efficient to

use the hard-coded na€ıve algorithm to compute fully the inverse

matrix from scratch than to do the SM update for Slater matrices

with dimensions 2 3 2 and 333 (the cost of the SM update is

quadratic with the size of the matrix). Therefore, the SM updates

are used for sizes greater than 3 3 3. Second, if N"elec is small (typ-

ically less than 50), a general routine is very likely to be ineffi-

cient: for example, in double loops over i and j running from 1 to

n the compiler is not aware of the number of loop cycles n at

compile time, so it will generate code to try to vectorize the

loops (peeling loop, scalar loop, vector loop, and tail loop) and

test which branch to choose at execution time. If the loop count

is low, the overhead dramatically affects the performance. For all

matrix sizes in the ½434 : 50350� range, we have generated size-

specific subroutines from a template were the loop counts and

matrix dimensions are hard-coded, in such a way to force the

compiler to generate 100% vectorized loops. When needed, the

tail loops are written explicitly. The binary code produced by the

compiler was validated with the maqao[14] static analysis tool by

checking that vector fused-multiply-add (FMA) instructions were

produced extensively in the innermost loops of the Sherman–

Morrison updates. For larger matrix sizes, a general subroutine is

used. In all the different versions, we use padding in the matrices

to enforce the proper memory alignment of all the columns of

the matrices to enable the vectorization of the inner-most loops

without the peeling loop.

The scaling of this step is OðN"elec
23N"detÞ.

Calculation of the Gradients and Laplacian. The bilinear

expression of the wave function in eq. (2) yields the following

expressions for the derivatives:

rx;iW5ðrx;iD"Þ
†

CD#1D"
†

Cðrx;iD#Þ (5)

DiW5ðDiD"Þ
†

CD#1D"
†
CðDiD#Þ12

½ðrx;iD"Þ
†

Cðrx;iD#Þ1

ðry;iD"Þ
†

Cðry;iD#Þ1

ðrz;iD"Þ
†

Cðrz;iD#Þ�

(6)

In the expression of the Laplacian of the wave function [eq.

(6)], the gradient terms riD" vanish when i is a # electron.

Similarly, the terms riD# vanish when i is an " electron. As a

consequence, the cross-terms involving both the gradients ri

D" and riD# are always zero, and the 3Nelec components of

the gradient and Laplacian can be computed using the same

instructions with different input data. Hence we define ~r i as a

four-element vector ½rx ;ry ;rz;D�, and one only needs to

implement

Table 1. Ordering of determinants given by eq. (3).

List index Decimal Binary Determinant

1 15 00001111 j1234i
2 23 00010111 j1235i
3 27 00011011 j1245i
4 29 00011101 j1345i
5 30 00011110 j2345i
6 39 00100111 j1236i
7 43 00101011 j1246i
8 45 00101101 j1346i
� � � � � � � � � � � �
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~r iW5ð ~r iD"Þ
†

CD#1D"
†

Cð ~r iD#Þ (7)

The gradients and the Laplacian of the wave function are com-

puted together using eq. (7) in an array of dimension 43Nelec,

using the arrays ~rD" and ~rD#, dimensioned respectively as 4

3N"elec3N"det and 43N#elec3N#det. The computation of all the

four components of ~rW can be performed simultaneously

using single instruction multiple data (SIMD) vector instruc-

tions. Indeed, modern x86 CPUs can use vector operations on

256- or 512 bit-wide vectors, which correspond to 4 or 8 dou-

ble precision elements, if the arrays are properly aligned in

memory. Hence we aligned the arrays on 512-bit boundaries

using compiler directives.

The ~rD"j are computed using the array ~rU and the inverse

Slater matrix:

~r iD
"
j 5
X

k

½S"21�ik ~rU"kj (8)

The innermost loop is the loop over the four components

(gradients and Laplacian) of ~r, so we unroll twice the loop

over k to enable vector instructions also on the AVX-512

microarchitecture which requires eight double precision

elements.

As in the case of the calculation of the determinants, the

scaling of this step is O N"elec
23N"det

� �
.

The calculation of the derivatives of the total wave function

is then performed using two dense matrix-vector products:

ðrD"Þ
†

� ðCD#Þ and ðD"
†
CÞ � ðrD#Þ, as detailed in the next

subsection.

Computation of the Intermediate Vectors

and W. An important point is that the two matrix-vector

products D"
†
C and CD# need to be performed only once, and

the resulting vectors are used for the computation of W and
~rW. As this step consists in two sparse matrix/dense vector

product, it has inevitably a low arithmetic intensity (small

number of floating point operations per data loaded or stored)

and the execution speed is limited by data access. It is there-

fore critical to optimize for this step the data movement from

the main memory to the CPU cores. As the same matrix C is

used in both products, the two products can be computed

simultaneously:

do k = 1,det_num

i = C_rows(k)

j = C_columns(k)

Da_C(j) = Da_C(j) + C(k)*Da(i)

C_Db(i) = C_Db(i) + C(k)*Db(j)

enddo

In this way, the three arrays corresponding to the C matrix

are streamed from the main memory through the CPU regis-

ters only once. The data relative to the matrix C can be moved

from the main memory with a very low latency as the hard-

ware prefetchers of x86 CPUs are very efficient on unit stride

access patterns. Also, the ordering of the arrays of the C matrix

in the preprocessing phase (see subsection about preprocess-

ing) maximizes the probability of Da_C(j) and Db(j) to be

already in the CPU registers as the column index j is very likely

to be constant from one iteration to the next. Da(i) and

C_Db(i) are likely to be in a low-level cache (L1 or L2) as the

arrays are always small, dimensioned by N"det and N#det (typically

25 KiB for a wave function with one million of Slater

determinants).

The asymptotic computational cost of this step is OðNdetÞ. It

is the only place in our approach where the cost is propor-

tional to the full number of determinants. However, thanks to

the implementation just presented, the prefactor is so small

that we have never observed that it is a time-limiting step: in

the regime where W has one million of determinant products,

this step takes only 10% of the total computational time.

We chose the convention that the number of " electrons is

greater or equal to the number of # electrons. As a conse-

quence the general case is that N"det � N#det so we choose to

compute the value of W using the dot product ðD"
†
CÞ � D# as

it involves only N#det operations.

Improved Truncation Scheme

In practice, to avoid to handle too many products of determi-

nants in the CI wavefunction, eq. (1), some sort of truncation

scheme is to be introduced. In standard QMC implementations,

it is usually done either by introducing a threshold parameter

for the absolute value of the coefficients ck or by taking the

smallest number of products of determinants contributing to a

given percentage of the norm of the wavefunction. Note that

truncating coefficients of configuration state functions (CSFs)

can also be considered as an improvement as it does not break

the property of the wave function to be an eigenstate of S2.

In the preceding section, it has been shown how to com-

pute as efficiently as possible the derivatives of the trial wave-

function for a given number of products of spin-specific

determinants, Ndet. A remarkable result is that the bulk of the

computational effort may be reduced to the calculation of "-
and #-determinants. Accordingly, to remove a product of

determinants whose spin-specific determinants are already

present in other products will not change the computational

cost. A natural idea is thus to truncate the wavefunction by

removing independently "- and #- determinants.

To do this, we decompose the norm of the wave function

as

N5
XN"det

i51

XN#det

j51

C2
ij 5
XN"det

i51

N"i 5
XN#det

j51

N#j (9)

where N"i 5
XN#det

j51

C2
ij and N#j 5

XN"det

i51

C2
ij are the contributions to

the norm of determinants D"i and D#j . We approximate the

wave function by removing spin-specific determinants whose

contribution to the norm are less than a r-dependent thresh-

old �r chosen by the user (remove Dr
k such N r

k � �r).
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As we shall see in the next section, this alternative truncated

scheme allows to keep more determinants in the CI expansion

at the same computational cost.

Results

The chlorine atom (17 electrons) was chosen as a benchmark.

The cc-pVDZ and cc-pVTZ basis sets[15] expressed in Cartesian

coordinates (respectively 19 and 39 molecular orbitals) have

been used. The trial wavefunction is of the form (2) combined

with a minimal Jastrow prefactor taking care of the electron–

electron CUSP condition. Molecular orbitals are modified at short

electron–nucleus distances to impose the electron–nucleus

CUSP condition. Timings were measured as the total CPU time

needed for one walker to realize one Monte Carlo step (all elec-

trons moved). It includes the calculation of the wave function,

the drift vector and the local energy. The benchmarks were run

on a single-socket desktop computer, with an IntelV
R

XeonVR E3-

1271 v3 quad-core processor at 3.60 GHz with the Turbo feature

disabled. QMC 5 Chem was compiled with the IntelV
R

Fortran

Compiler version 15.0.2 with options to generate code opti-

mized for the AVX2 microarchitecture, and linked with the IntelV
R

Math Kernel Library (MKL). The calculation of the FN-DMC ener-

gies were performed using 800 cores on the Curie machine

(TGCC/CEA/Genci). The total computational time we used to

generate Figure 2 was 182,500 CPU hours.

Perturbatively selected configuration interaction wave func-

tions of CIPSI type (configuration interaction using a perturba-

tive selection done iteratively, see Ref. [3]) in the full-CI space

were prepared with our code (Quantum Package[16]) from one

to one million determinants.

The timings are given in Table 2, together with the number

of " and # unique determinants, the number of occupied

molecular orbitals, and the amount of RAM needed per CPU

core. The computational cost compared to a single-

determinant calculation is given in Figure 1. Here, all the

determinants are computed with the cubic algorithm (no Sher-

man–Morrison updates). However, results obtained with SM

updates show exactly the same behavior.

From the data of Table 2 one can observe a CPU time scal-

ing almost perfectly linearly with N"det1N#det. Indeed, fitting the

data with a law of the form cðN"det1N#detÞ
c, the value of c

obtained is 1.02. Now, regarding the scaling obtained with

respect to the total number of determinant products cNc
det, we

found in all cases (Tables 2 and 3 and for the two spin sectors)

an exponent c around 0.6. This value is slightly higher than

the expected c50:5 due to the sparsity of the C matrix:

among all possible determinant products, many have a zero

coefficient and those are not counted in Ndet.

Speedup Due to Sherman–Morrison Updates. Now, including

the Sherman–Morrison updates, a speedup of 6273 is

obtained. According to the documentation of the MKL library,

the full matrix inversion (dgetrf followed by dgetri) uses approxi-

mately 2n3 floating-point (FP) operations for an n 3 n matrix,

whereas one Sherman–Morrison column substitution in our

implementation uses 5n212n13 FP operations. From the data

of Table 3, the average number of Sherman–Morrison updates

per determinant ranges between 1.7 and 2.5. From these results,

one can conclude that our implementation of column substitu-

tions has an efficiency higher than the efficiency of the matrix

inversion using the MKL library for such small matrices: for an 9

3 9 matrix, two column substitution involve 1.71 times less FP

operations than the full matrix inversion, which is four times less

than the speedup we measure.

The average number of substitutions is lower than what

one would have obtained with a fixed reference determinant.

For instance, if the Hartree–Fock " and # determinants had

been taken as a fixed reference and assuming all substitutions

were successful (with a determinant ratio greater than 1023 in

absolute value), the average number of Sherman–Morrison

substitutions would have been equal to 3.46 according to the

data of Table 4 where we have measured an average of 1.78

for the same wave function with our implementation.

The average number of matrix inversions per step is at least

two since one determinant has to be computed for each spin.

Then, the probability of using the OðN3Þ algorithm instead of

the Sherman–Morrison updates to reduce the propagation of

numerical errors stays very low below 0.17%. We have checked

that for a given set of electron coordinates the local energies

computed with and without the Sherman–Morrison updates

differ by no more than 2 1025 atomic units on all the wave

functions. These data confirm that the numerical stability of

Figure 1. Computational cost with respect to the number of determinants,

normalized to the cost of a single-determinant calculation. Results are

given with and without Sherman–Morrison updates. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 2. Number of determinants (Ndet; N"det, and N#det), number of occu-

pied molecular orbitals (NMOs), amount of memory per core and CPU

time per per core per Monte Carlo step (all electrons moved) (without

Sherman–Morrison updates).

Ndet N"det N#det NMOs RAM (MiB) CPU time (ms)

1 1 1 9 6.12 0.0179

10 7 7 16 6.20 0.0470

100 40 32 18 6.24 0.1765

1000 250 186 19 6.42 0.9932

10,000 1143 748 19 7.35 4.5962

100,000 5441 3756 19 13.20 20.5972

1,000,000 21,068 14,516 19 45.84 83.1611

The cc-pVDZ basis set is used.
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the Sherman–Morrison updates can be controlled without

affecting significantly the computational time.

Use of the Improved Truncation Scheme. We have generated

a wave function for the chlorine atom using the cc-pVTZ basis

set with one million determinants. The determinants are gen-

erated with the CIPSI algorithm in the FCI space with two fro-

zen electrons in the 1s orbital (2 MOs always doubly occupied,

and 15 active electrons in 37 MOs). This wavefunction has

been truncated using a standard truncation scheme based on

the absolute value of the CI coefficients [products of determi-

nants in eq. (1) with jck j � � are removed] and using the con-

tribution of spin-specific determinants to the norm of the

wavefunction as proposed in the preceding section. The wave

functions obtained after truncation as well as the computa-

tional time in milliseconds per Monte Carlo step (all electrons

moved) are detailed in Table 5.

As it should be the timings in the case of one single or all

determinants are identical in both cases. Choosing � large

enough, only one determinant is kept. By decreasing the

threshold the number of determinants increases, but with a

marked difference between the two truncation schemes. For a

given total number of determinants Ndet, the proposed

scheme contains much less spin-specific determinants than in

the standard case. For example, for Ndet � 100 there are about

two times less r-determinants. For Ndet � 2 000 the factor is

about 5 and close to Ndet � 10 000 a factor 7 is observed. Fur-

thermore, the gains in CPU times evolve with the same factor

since the computational time is proportional to the number of

spin-specific determinants (not Ndet).

On Figure 2, we can see that the FN-DMC energy is con-

verged within the error bars with a threshold of 1026 on the

contributions N"i and N#j to the norm of the wave function.

Table 6 gives the energies of the truncated wave functions,

and the CPU time needed to run the calculations.

Figure 3 compares the computational cost obtained with

the two truncation approaches. For a fixed computational

cost, our truncation strategy keeps a much larger number of

determinant products than the standard truncation scheme.

Removing spin-specific determinants which contribute to less

than 1025 of the norm can make the calculation of a wave

function with 9485 determinants cost only 7.6 more than a

single determinant calculation. Note that with such a number

the FN-DMC energy is converged as a function of the number

of Slater determinants (see, Fig. 2).

Finally, in the case of the DMC calculation performed with

the largest number of determinants, Ndet � 750; 000 and

�51029, the ratio of timings for one Monte Carlo step (all elec-

trons moved) is found to be (see, Table 5) 9:724=0:02450

� 400 with respect to the single-determinant calculation.

Some Remarks about Comparisons with Other
Methods

Comparing the practical performance of various methods is

not easy. A first important aspect to consider is the formal

scaling of the computational cost (both in terms of CPU and

memory) as a function of the critical parameters: Number of

electrons, molecular orbitals, and determinants. However,

some caution is required since the asymptotic regime where

such scaling laws are valid is not necessarily reached for the

range of values considered. Here, we are in such a situation

since a square-root law for the computational cost as a func-

tion of the number of determinants is approximately observed

up to about one million of determinants, despite the fact that

the theoretical dependence is linear.

A second important aspect—which is in general underesti-

mated—is the importance of optimally exploiting the high-

performance capabilities of present-day processors. Such an

aspect must be taken into consideration not only when imple-

menting a given algorithm but also, and much more impor-

tantly, at the moment of deciding what type of algorithm

should be used to achieve the desired calculations (algorithm

design step). While describing our algorithm we have mentioned

several important features. The use of vector fused-multiply add

(FMA) instructions (i.e., the calculation of a 5 a 1 b*c in one CPU

cycle) for the innermost loops is extremely efficient and should

be searched for. Using such instructions (present in general-

purpose processors), up to eight FMA per CPU cycle can be per-

formed. While computing loops, overheads are also very costly

and should be reduced/eliminated. By taking care separately of

the various parts of the loop (peeling loop, scalar loop, vector

loop, and tail loop) through size-specific and/or hard-coded sub-

routines, a level of 100% vectorized loops can be reached.

Another crucial point is to properly manage the data flow arriv-

ing to the processing unit. As known, to be able to move data

Table 4. In the 1,000,000-determinant wave function, the number of

determinants resulting from excitation operators of degree 0 to 8 applied

on the Hartree–Fock reference (D"1D#1, D"1, or D#1).

Excitation D"D# D" D#

0 1 1 1

1 38 90 88

2 2177 1603 1520

3 43,729 7811 6507

4 308,045 8581 5071

5 351,182 2090 579

6 291,481 77 0

7 3067 0 0

8 280 0 0

Table 3. Number of determinants (Ndet; N"det, and N#det), average number

of matrix inversions in OðN3Þ (Ninv), average number of Sherman–Morri-

son column substitutions (Nsubst) and CPU time per core per Monte Carlo

step (all electrons moved).

Ndet N"det N#det Ninv Nsubst CPU time (ms)

1 1 1 2.0 0 0.0179

10 7 7 2.0 29 0.0237

100 40 32 2.1 130 0.0428

1000 250 186 2.6 925 0.1643

10,000 1143 748 5.1 4283 0.6808

100,000 5441 3756 17.7 19,049 3.2794

1,000,000 21,068 14,516 54.7 63,325 12.8688
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from the memory to the CPU with a sufficiently high data trans-

fer to keep the CPU busy is a major concern of modern calcula-

tions. Then, it is not only important to make maximum use of

the low-latency cache memories to store intermediate data but

also to maximize prefetching allowing the processor to antici-

pate the use of the right data and instructions in advance. To

enhance prefetching the algorithm should allow the predictabil-

ity of the data arrival in the CPU (that is, avoid random access as

much as possible). All these various practical aspects are far

from being anecdotal since they may allow orders of magnitude

in computational savings. We emphasize that in this work we

have chosen to make use of Sherman–Morrison (SM) updates,

despite the fact that it is not the best approach in terms of for-

mal scaling (e.g., the Table method discussed below has a better

scaling). However, the massive calculations of scalar products at

the heart of repeated uses of SM updates are so ideally adapted

to the features of present-day processors just described above,

that very high performances can be obtained.

To give a quantitative illustration of such ideas we present now

some comparisons between the timings obtained with our algo-

rithm and those obtained with the Table method of Clark et al., [6]

one of the most efficient approach proposed so far. It is clear that

making fair comparisons between algorithms implemented within

different contexts by different people is particularly difficult.

Accordingly, the timings given below must be taken with lot of

caution and should just be understood as an illustration of the

main issues. Ultimately, it is preferable to compare the actual tim-

ings obtained for a given application, with a given code, and a

given processor. In this spirit, we present in Tables 2 and 3 our tim-

ings (in ms) for an elementary Monte Carlo step (all electrons

moved once) in the case of the Cl atom.

We have coded the Table method in the QMC 5 Chem

code. In brief, the approach consists in computing the Nr
det

determinants, Det Sr
k , and their derivatives, from the evalua-

tion of the series of ratios Det Sr
k /Det Sr

0, where Sr
0 is the ref-

erence Slater matrix. Denoting s the number of particle-hole

excitations connecting Sr
0 and Sr

k the ratio of determinants

Table 5. Number of determinants, number of spin-specific determinants

and computational cost as a function of the truncation threshold with

two different truncation approaches.

Threshold � Ndet N"det N#det CPU time (ms)

jck j > �

0.96 1 1 1 0.02450

0.0404 10 8 8 0.03080

0.0202 100 53 35 0.05888

0.0103 110 54 37 0.06004

1022 1000 254 168 0.1745

2.53 1023 2003 496 335 0.3364

1023 10,000 1700 994 0.9732

1024 30,198 3668 1853 1.920

3.55 1025 100,000 9256 4524 4.912

1025 348,718 24,758 12,511 14.20

1026 993,811 52,291 26,775 31.11

0.0 1,000,000 52,433 26,833 31.92

Threshold �"5�#5� Ndet N"det N#det CPU time (ms)

N"i > � ; N#j > �

1022 1 1 1 0.02450

5:1023 3 3 2 0.02688

1023 86 21 17 0.03899

5:1024 214 29 28 0.04636

1024 1361 93 74 0.08808

5:1025 2424 120 89 0.1054

1025 9485 234 166 0.1855

1026 54,016 772 523 0.5960

1027 207,995 2279 1389 1.740

1028 459,069 5797 3291 4.196

1029 748,835 14,456 8054 9.724

10210 926,299 30,320 16,571 19.18

0 1,000,000 52,433 26,833 31.92

The cc-pVTZ basis sets is used.

Figure 2. Total FN-DMC energy of the chlorine atom with truncated near-

Full-CI/cc-pVTZ wave functions. Spin-specific determinants with a contribu-

tion to the norm less than the threshold are removed. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 6. All-electron fixed-node DMC energies.

Threshold Energy (a.u.) CPU time (hours)

1022 2460.0776(08) 15,820

5 1023 2460.0800(10) 14,521

1023 2460.0937(11) 14,522

1024 2460.1045(12) 19,109

1025 2460.1092(14) 22,344

1026 2460.1067(17) 47,679

1029 2460.1113(60) 48,530

The threshold is applied to the contribution of the spin-specific deter-

minants to the norm of the wavefunction.

Figure 3. Computational cost with respect to the number of determinants,

normalized to the cost of a single-determinant calculation. The truncation

is applied to the absolute value of the CI coefficients or to the contribution

to the norm of the spin-specific determinants. The value of the truncation

threshold is given on the figure next to the corresponding points. [Color

figure can be viewed in the online issue, which is available at wileyonline

library.com.]
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can be expressed as the determinant of a small sxs matrix

whose matrix elements are taken from a larger table of size

Nr xM computed in a preliminary step (M5 number of vir-

tual orbitals used in the expansion). The main computational

costs are the reading of the s2 elements in the precomputed

table and the computation of the determinants of size s with

a s3 cost, the two steps being performed for each elemen-

tary determinant. In theory, the algorithm is attractive since

it avoids the repeated computation of SM updates whose

cost increases as the square of the number of r-electrons.

However, in practice this advantage can be counterbalanced

by the cost of making expensive (partially) random access to

the table. It is particularly true in the case where large num-

bers of electrons and/or basis set are used, a situation where

the entire table cannot be stored in the lowest-level cache.

To quantify such aspects, we present now some measure-

ments of the cost of the main steps of both algorithms

expressed in number of CPU cycles. The task considered is the

calculation of a wavefunction consisting of a total of

Ndet 5 926,299 determinants and involving 30,320 different "-
determinants and 16,571 #-determinants (this is the wavefunc-

tion corresponding to the threshold �"5�#510210 in Table 5).

Note that time measurements are accurate with a precision of

about 620 cycles. For the processor used here, a CPU cycle

time is equal to tCPU5 0.28 ns.

Using our optimized SM algorithm, the time spent to the

computation of the initial reference inverse matrix and deter-

minant for the 9 "-electrons and 8 # electrons is measured to

be 8368 and 7730 cycles, respectively. In average (over the all

set of different determinants), the cost of updating the inverse

Slater matrix and computing the determinant is found to be

about 544 and 359 cycles, respectively. The average number of

substitutions (and, thus, number of elementary SM step

corresponding to one-column substitution) being about

Nsubst � 1:8, a rough estimate of the total cost is then

TSM5½8368177301ð544N"det1359N#detÞNsubst�tCPU � 11:3 ms

in good qualitative agreement with the total timing of 19.2 ms

obtained by direct measurement and reported in Table 5.

In the case of the Table method the initial step consisting in

evaluating the inverse of Sr
0 and its determinant on one hand

and constructing the table on the other hand, have been

measured to take 16,140 and 14,574 cycles, respectively (sum

of " and # contributions). For each ratio to evaluate, reading

the table and calculating the determinant of the s 3 s matrix

using the LAPACK routine dgetrf, are found to take in average

2430 and 2187 cycles, for each spin respectively. An estimate

of the cost is thus

TTab5½16; 140114; 5741ð2430N"det12187N#detÞ�tCPU � 30:8 ms

In this case, it is seen that the optimized SM algorithm is

approximately three times faster than the Table method.

Although this schematic comparison should be taken with lot

of caution, it nevertheless illustrates that our optimized SM

algorithm is a competitive algorithm. It should also be noted

that in the present case, the table of the Table method is suffi-

ciently small (518 matrix elements) to be entirely stored in the

low-latency L1 cache. For larger numbers of electrons and

basis sets, it will be no longer true and important additional

times should be lost because of the numerous (partially) ran-

dom access to higher-level memories.

Summary

The objective of this work was to present in detail our algorithm

for computing very efficiently large multideterminant expan-

sions. As illustrated here for the chlorine atom and elsewhere in

other applications,[1–4] this algorithm allows to realize con-

verged FN-DMC simulations using a number of determinants

superior to what has been presented so far in the literature. For

the chlorine atom presented here, FN-DMC calculations using

about 750,000 determinants with a computational increase of

only �400 compared to a single-determinant calculation have

been shown feasible. Several aspects make this algorithm partic-

ularly efficient. They include not only algorithmic improvements

but also very practical considerations about the way the calcula-

tions are implemented on present-day processors. We strongly

emphasize that this last aspect is by no way anecdotal and must

absolutely be taken into account when an efficient algorithm

has to be devised and implemented. Our experience shows that

orders of magnitude in efficiency can be gained by taking this

aspect into consideration. Here, the choice of using SM updates

instead of a more elegant scheme (such as, e.g., the Table

method of Clark et al.[6] that has a better formal scaling) has

been driven by the fact that massive computations of scalar

products are ideally suited to modern processors and can be

performed extremely efficiently.

As just said, we calculate the determinants and their deriva-

tives using the Sherman–Morrison formula for updating the

inverse Slater matrices, as proposed in a number of previous

works. In contrast with other implementations, we have found

more efficient not to compare the Slater matrix to a common

reference (typically, the Hartree–Fock determinant) but instead

to perform the Sherman–Morrison updates with respect to the

previously computed determinant Dr
i21. To reduce the prefac-

tor associated with this step we have sorted the list of deter-

minants with a suitably chosen order so that with high

probability successive determinants in the list differ only by

one- or two-column substitution, thus decreasing the average

number of substitution performed.

In this work, we have emphasized that multideterminant expan-

sions contain in general a large number of identical spin-specific

determinants [for typical configuration interaction-type wavefunc-

tions the number of unique spin-specific determinants Nr
det

(r5 "; #), having a non-negligible weight in the wavefunction is of

order Oð
ffiffiffiffiffiffiffiffi
Ndet

p
Þ]. To have the full benefit of this remark, that is, to

get in practice a square-root law over a wide range of numbers of

determinants, it is essential to be able to keep negligible the con-

tributions whose cost scales with the total number of determi-

nants. As described in the two sections devoted to the

computation of the intermediate vectors and the gradients and

Laplacian, the computationally intensive parts of such contribu-

tions can be mainly restricted to the calculation of two matrix-

FULL PAPER WWW.C-CHEM.ORG

1874 Journal of Computational Chemistry 2016, 37, 1866–1875 WWW.CHEMISTRYVIEWS.COM



vector products, performed only once for the wavefunction and all

its derivatives. A number of technical details related to the way

such a calculation should be efficiently implemented on a modern

processor have been given.

Finally, by taking advantage of the bilinear form for the mul-

tideterminant expansion, eq. (2), a new truncation scheme has

been proposed. Instead of truncating the expansion according

to the magnitude of the coefficients of the expansion as usual,

we propose to remove spin-specific determinants instead

according to their total contribution to the norm of the expan-

sion. In this way, more determinants can be handled for a

price corresponding to shorter expansions.
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