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Several aspects of the recently proposed DMC-CIPSI approach
consisting in using selected Configuration Interaction (SCI)
approaches such as CIPSI (Configuration Interaction using a
Perturbative Selection done Iteratively) to build accurate nodes
for diffusion Monte Carlo (DMC) calculations are presented
and discussed. The main ideas are illustrated with a number of
calculations for diatomic molecules and for the benchmark G1
set.

Introduction

In recent years the present authors have reported a number of fixed-node
DMC studies using trial wavefunctions whose determinantal part is built with
the CIPSI approach (1–5). The purpose of this paper is to review the present
situation, to clarify some important aspects of DMC-CIPSI, and to present some
new illustrative results.

In Selected Configuration Interaction section we briefly recall what
Configuration Interaction (CI) methods are about and present the basic ideas of
(perturbatively) selected Configuration Interaction approaches. We emphasize
on the very high efficiency of SCI in approaching the exact Full CI limit using
only a tiny fraction of the full Hilbert space of determinants. Selecting important
determinants being a natural idea, it is no surprise that it has been introduced a
long time ago and has been rediscovered many times under various forms since
then. To the best of our knowledge selected CI appeared for the first time in
1969 in two independent works by Bender and Davidson (6) and Whitten and
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Hackmeyer (7). In practice, the flavor of SCI we employ is the CIPSI approach
introduced by Malrieu and collaborators in 1973 (8). CIPSI being our working
algorithm for generating CI expansions, a brief description is given here. It is
noted that the recent FCI-QMC method of Alavi et al. (9, 10) is essentially
a SCI approach, except that selection of determinants in FCI-QMC is done
stochastically instead of deterministically.

In Applications of CIPSI section the performance of CIPSI is illustrated for
the case of the water molecule at equilibrium geometry using the cc-pCVnZ family
of basis sets, with n= 2 to 5 and for the whole set of 55 molecules and 9 atoms of
the benchmark G1 set (11, 12). It is shown that in all cases the FCI limit is closely
approached.

In Using CIPSI nodes in DMC section the use of CIPSI nodes in DMC
is discussed. We first present our motivations and then comment on the key
result observed, namely that in all applications realized so far the fixed-node
error associated with the approximate nodes of the CIPSI expansion is found to
systematically decrease both as a function of the number of selected determinants
and as the size of the basis set. This remarkable property provides a convenient
way of controlling the fixed-node error. Let us emphasize that in contrast
with common practice in QMC the molecular orbitals are not stochastically
re-optimized here. An illustrative application to the water molecule is presented
(5). Of course, the main price to pay is the need of using much larger CI
expansions than usual. The main ideas of our recently proposed approach (13)
to handle very large number of determinants in QMC are presented. In practice,
converged DMC calculations using trial wavefunctions including up to a few
millions of determinants are feasible. The computational increase with respect to

single-determinant calculations is roughly proportional to with a small
prefactor.

In Pseudopotentials for DMC using CIPSI section the implementation of
Effective Core Potentials (ECP) in DMC using CIPSI trial wavefunctions is
presented. As already proposed some time ago (14, 15), CI expansions allow
to calculate analytically the action of the nonlinear pseudo-potential operator
on the trial wavefunction. In this way, the use of quadrature points to integrate
the wavefunction over the sphere as usually done (16) is avoided and a gain
in computational effort essentially proportional to the number of grid points
is achieved. The effectiveness of the approach is illustrated in the case of the
atomization energy of the C2 molecule.

Finally, Summary and some Perspectives section presents a detailed summary
of the main features of the DMC-CIPSI approach and some lines of research
presently under investigation are mentioned.

Selected Configuration Interaction

Configuration Interaction Methods

In Configuration Interaction the wavefunction is written as a sum of Slater
determinants
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where determinants are built over spin-orbitals. Let {φk}be the set of NMO
orthononormal molecular orbitals used, the size of the full Hilbert space is given
by the number of ways of distributing the electrons among the orbitals times

the corresponding number for the electrons. The total size of the full CI space
is then (no symmetries are considered)

The CI eigenspectrum is obtained by diagonalizing the Hamiltonian matrix,
Hij = áDi|H|Djñ, within the orthonormal basis of determinants. In practice, the
exponential increase of the FCI space restricts the use of FCI to small systems
including a small number of electrons andmolecular orbitals (NFCL not greater than
about 109). To go beyond, the FCI expansion has to be truncated. Themost popular
strategy consists in defining a subspace of determinants chosen a priori. Typically,
the Hartree-Fock determinant (or a few determinants) is chosen as reference and
all possible determinants built by promoting a given number of electrons from the
HF occupied orbitals to the virtual ones are considered. In the CIS approach only
single excitations are considered, in CISD all single and double excitations, etc.

Figure 1. N2 in the cc-pVTZ basis set (RN-N =1.0977 Å). Variation of the number
of determinants with n-excitations with respect to the Hartree-Fock determinant
in the CIPSI expansion as a function of the number of selected determinants

up to 5 106.
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Now, numerical experience shows that among all possible determinants
corresponding to a given number of excitations, only a tiny fraction plays
a significant role in constructing the properties of the low-lying eigenstates.
Furthermore, the weight of a determinant in the CI expansion is not directly
related to its degree of excitation. For example, quadruply-excited determinants
may play a more important role than some doubly- or singly-excited determinants.
However, in practice, limiting the maximum number of excitations to about
six is usually sufficient to get chemical accuracy. To give some quantitative
illustration of these statements, Figure 1 presents the number of determinants per
class of excitations n as a function of the number of determinants in the CIPSI
wavefunction for the N2 molecule at equilibrium geometry (cc-pVTZ basis set).
Without entering now into the details of CIPSI presented below, let us just note
that for 5 106 determinants the CIPSI expansion has almost converged to the
FCI solution. Accordingly, results presented in the figure for the distribution of
excitations is essentially that of the FCI wavefunction.

As a consequence of the preceding remarks, it is clear that it is desirable to
find a way of selecting only the most important determinants of the FCI expansion
without considering all those of negligible weight (the vast majority). This is the
purpose of selected configuration interaction approaches.

Selected CI and CIPSI Algorithm

To the best of our knowledge Bender and Davidson (6) and Whitten and
Hackmeyer (7) were the first in 1969 to introduce and exploit the idea of selecting
determinants in CI approaches. In their work Bender and Davison proposed to
select space configuration using an energy contribution criterion. Denoting

the restricted HF CSF-configuration, all possible spin configurations issued
from the space configuration, and

the «average» perturbative energy contribution, the space configurations were
ordered according to this contribution and those determinants contributing the
most selected. The CI wavefunction was then constructed by using the selected
configurations, , and all single excitations. A few months later, a similar
idea using the very same perturbative criterion was introduced independently by
Whitten and Hackmeyer (7). In addition, they proposed to improve step-by-step
the CI expansion by iterating the selection step to reach the most important
determinants beyond double-excitations.

In 1973 Malrieu and collaborators (8) presented the CIPSI method (and
later on an improved version of it (17)). In CIPSI the construction of the
multirefence variational space is essentially identical to that of Whiten and
Hackmeyer. However, in order to better describe the dynamical correlation effects
poorly reproduced by the multireference space, a perturbational calculation
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of the remaining correlation contributions was proposed. In applications the
perturbational part is usually important from both a qualitative and quantitative
point of view.

The CIPSI algorithm being our practical scheme for generating selected CI
expansions, let us now present its main steps.

• Step 0: Start from a given determinant (e.g. the Hartree-Fock
determinant) or a set of determinants, thus defining an initial reference
subspace: . Diagonalize H within S0 and get

the ground-state energy and eigenvector:

Here and in what follows, a superscript on various quantities is used to
indicate the iteration number n
Then, do iteratively (n = 0, ...):

• Step 1: Collect all different determinants |Dkñ connected byH to ,
that is

and not belonging to the reference space .
• Step 2: Compute the small energy change of the total energy due to each

connected determinant as evaluated at second-order perturbation theory

• Step 3: Add the determinant |Dk*ñ associated with the largest |δe| to the
reference subspace:

Of course, instead of adding only one determinant a group of
determinants can be selected using a threshold. This is what is actually
done in practice.

• Step 4: Diagonalize H within Sn+1 to get:
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Go to step 1 or stop if the target size for the reference subspace has been
reached.

Denoting Ndets the final number of determinants, the resulting ground-state
|Ψ0(Ndets)ñ is the variational CIPSI solution. It is the expansion used in DMC to
construct the determinantal part of the trial wavefunction.

A second step in CIPSI is the calculation of a perturbational estimate of the
correlation energy left between the variational CIPSI energy and the exact FCI
one. At second order, this contribution writes

where denotes the set of all determinants not belonging to the reference
space and connected to the CIPSI expansion |Ψ0(Ndets)ñ by H (single and double
excitations only) and E0(Ndets) the variational CIPSI energy. In practice, this
contribution allows to recover a major part of the remaining correlation energy.

At this point a number of remarks are in order:

i.) Although the selection scheme is presented here for computing the
ground-state eigen-vector only, no special difficulties arise when
generalizing the scheme to a finite number of states (see, e.g. (17))

ii.) The decomposition of the Hamiltonian H underlying the perturbative
second-order expression introduced in step 2 is known as the
Epstein-Nesbet partition (18, 19). This decomposition is not unique,
other possible choices are the Møller-Plesset partition (20) or the
barycentric one (8), see discussion in (17).

iii.) Instead of calculating the energetic change perturbatively, expression (6),
it can be preferable to employ the non-perturbative expression resulting
from the diagonalization of H into the two-dimensional basis consisting

of the vectors and |Dkñ. Simple algebra shows that the energetic
change is given by

In the limit of small transition matrix elements, , both
expressions (6) and (10) coincide. The non-perturbative formula is used
in our applications.
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iv.) The implementation of this algorithm can be performed using limited
amount of central memory. On the other hand, the CPU time required

is essentially proportional to where Nocc is the
number of occupied molecular orbitals and Nvirt the number of virtual
orbitals.

Selected CI Variants

As already pointed out selecting the most important determinants of the
FCI expansion is a so natural idea that, since the pioneering work of Bender
and Davidson (6) and Whitten and Hackmeyer (7), several variants of SCI
approaches have been proposed. In practice, the actual differences between
approaches are usually rather minor and most ideas and technical aspects seem
to have been re-discovered several times by independent groups. To give a fair
account of the subject and an exhaustive list of references is thus difficult. Here,
we limit ourselves to the references we are aware of, namely (6–8, 17, 21–41).
Regarding more specifically CIPSI, there has been a sustained research activity
conducted during the 80’s and 90’s by research groups in Toulouse (Malrieu and
coll.), Pisa (Angeli, Persico, Cimiraglia and coll.), and then Ferrara (Angeli,
Cimiraglia) including the development at Pisa of a very efficient CIPSI code
using diagrammatic techniques (28, 31, 42). Thanks to all this, CIPSI has been
extensively applied for years by several groups to a variety of accurate studies of
ground and excited states and potential energy surfaces (see, for example (43–58))
Finally, note that in the last years our group has developed its own CIPSI code,
Quantum Package. This code has been designed to be particularly easy to install,
run and modify; it can be freely downloaded (59).

FCI-QMC as a Stochastic Selected CI Approach

Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a method
for solving stochastically the FCI equations (9, 10). Introducing as in DMC an
imaginary time t the coefficients ci of the CI expansion, Eq.(1), are evolved in
time using the operator [1 − τ(H − E)] as small-time propagator

c(t) being the vector of coefficients at time t, E some reference energy, and τ the
time step. Starting from some initial conditions c(0), the coefficients after n steps
are given by

In the long-time limit large) the vector c(t) converges to the exact CI
vector c (independently on initial conditions c(0) provided that
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and for a sufficiently small time step). As in all QMC methods, a set of walkers
is introduced for sampling coefficients and a few simple stochastic rules realizing
in average the action of H according to Eq.(11) are introduced (spawning, death/
cloning and annihilation). Note that equations of evolution (12) are similar to
those of continuous DMC (electrons moving in ordinary space) where a small-time
expression of operator is used, and are essentially identical to the
equations of lattice DMC (see e.g. (60),) The two main differences of FCIQMC
with other QMC approaches are the fact that no trial vector is introduced (thus,
avoiding the fixed-node error) and that the stochastic rules used are particularly
efficient in attenuating the sign instability inherent to all stochastic simulations of
fermionic systems (annihilation at each MC step of walkers of opposite sign on
occupied determinants and use of the initiator approximation).

At a given time t the CI expansion is stochastically realized by the distribution
of walkers as

where is the sum of the signed weight of walkers on Slater determinant |Diñ
( total number of walkers). This wavefunction is the counterpart
of the CIPSI expansion at iteration n, Eq.(8). As in CIPSI at the next step t + τ
(next iteration n + 1 ) new determinants will appear. In FCI-QMC it is realized
through spawning. Some determinants may also disappear through the action of
the diagonal part of the Hamiltonian [1 − τ(Hii − E)] (death/cloning step). These
two steps are designed to reproduce in average the action of the propagator on
determinant Di

In CIPSI a given determinant |Diñ is selected only once during iterations
via Eq.(6). In latter iterations it is included in the reference space and does not
participate anymore to the selection. Starting from some initial determinant
(usually the HF determinant) the probability of selecting |Diñ at some given
iteration n is related to the existence of a series of (n − 1) intermediate determinants

different from |Diñ and connecting it to the
initial determinant so that the product

is large compared to products corresponding to other series of intermediate
determinants. In FCIQMC determinant |Diñ is spawned (selected) from |Djñ
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according to the magnitude of Hij and -in contrast with CIPSI- with no direct
dependence on the inverse of (Hii − E0). However, during MC iterations the
number of walkers on a given determinant evolves in time according to the
death/cloning step and leads to a weighted contribution of determinants to
spawning. After integration in time the weight of the determinant |Diñ can be

estimated to be about that is, or large enough
time. As seen FCI-QMC and CIPSI are in close connection.

Applications of CIPSI

The Water Molecule

To exemplify CIPSI all-electron calculations for the water molecule using
basis sets of various sizes are presented. In our first example we propose to
reproduce the Density Matrix Renormalization Group (DMRG) calculation of
Chan and Head-Gordon (61) at geometry (ROH = 1 Å; ΘOH = 104°5) and using
the «Roos Augmented Double Zeta ANO» basis set consisting of 41 orbitals
(62, 63). The full CI Hilbert space contains about 5.6 1011 determinants (no spin
or space symmetries taken into account). Calculations have been carried out
using our perturbatively selected CI program Quantum Package (59). The energy
convergence as a function of the number of selected determinants in different
situations is presented in Figure 2. Four different curves are shown together with
the DMRG energy value of -76.31471(1) of Chan and Head-Gordon (61) (solid
horizontal line). The two upper curves represent the CIPSI variational energy
as a function of the number of selected determinants up to 750 000 using either
canonical or natural molecular orbitals. Natural orbitals have been obtained
by diagonalizing the first-order density matrix built with the largest expansion
obtained using canonical orbitals. As seen the convergence of both variational
energies is very rapid. Using canonical orbitals an energy of -76.31239 a.u. is
obtained with 750 000 determinants, a value differing from the FCI one by only
2.3 millihartree (about 1.4 kcal/mol). As known the accuracy of CI calculations
is significantly enhanced when using natural orbitals (64). Here, it is clearly
the case and the lowest energy reached is now -76.31436 a.u. with an error of
0.35 millihartree (about 0.2 kcal/mol). When adding the second-order energy
correction EPT2, Eq.(9), the energy convergence is much improved (two lower
curves of Figure 2)

The kcal/mol (chemical) accuracy is reached with only 1000 and 4000
determinants using canonical and natural orbitals, respectively. The best CIPSI
energy including second-order correction and obtained with canonical orbitals is
-76.31452 a.u. When using natural orbitals the energy is found to converge with
five decimal places to the value of -76.31471 a.u., in perfect agreement with the
DMRG result of Chan and Head-Gordon, -76.31471(1) a.u. Let us emphasize that
approaching the FCI limit with such a level of accuracy and so few determinants
(compared to the total number of 5.6 1011) is particularly striking and is one of
the most remarkable features of SCI approaches.
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To illustrate the possibility of making calculations with much larger basis
sets, results obtained with the correlation-consistent polarized core-valence
basis sets, cc-pCVnZ, with n going from 2 to 5 are presented. The geometry
chosen is now the experimental equilibrium geometry, ROH = 0.9572 Å and
ΘOH = 104°52. The number of basis set functions are 28, 71, 174 and 255
for cc-pCVDZ, cc-pCVTZ,cc-pCVQZ, and cc-pCV5Z, respectively. The total
number of determinants of the FCI Hilbert space with such basis sets are about
1010, 1.7 1014, 1.6 1018, and 7.5 1019, respectively. On the left part of Figure 3 the
convergence of the ground-state variational energy obtained for each basis set is
shown. As seen, the convergence is still possible with such larger basis sets. On
the right part, the full CIPSI energy curves (Evar + EPT2) are presented; each curve
is found to converge with a good accuracy to the full CI limit.

Figure 2. Energy convergence of the variational and full CIPSI energies as a
function of the number of selected determinants using canonical and natural

orbitals. Energy in a.u.

Generalization: The G1 Set

In contrast with the exact Full-CI approach which takes into account the
entire set of determinants and is thus rapidly unfeasible, CIPSI can be used for
much larger systems. The exact limits depend of course on the size of the basis
set used, the number of electrons, and also on the level of convergence asked for
when approaching the full CI limit. To illustrate the feasibility of CIPSI for larger
systems we present systematic all-electron calculations for the G1 benchmark
set of Pople and collaborators (65). The set is composed of 55 molecules and 9
different atoms. The cc-pVDZ and cc-pVTZ basis sets have been used. For all
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systems and both basis sets a quasi-FCI convergence has been reached. In Figure
4 the number of selected determinants needed to recover 99% of the correlation
energy at CIPSI variational level (cc-pVDZ basis set) is plotted for each molecule
or atom. For each system results are given either for canonical or natural orbitals.
Depending on the importance of the multiconfigurational character of the system,
this number may vary considerably (from a few tens to about 107). As expected,
the number of determinants needed using natural orbitals is most of the times
smaller and sometimes comparable. Figure 5 is similar to the preceding figure,
except that numbers are given now for a full CIPSI calculation including the
second-order energy correction and that a much greater accuracy corresponding
to 99.9% of the correlation energy is targeted. As seen, it is remarkable that such
a high precision can be reached for all systems with a number of determinants
not exceeding 107. In contrast with variational calculations, it should be noted
that the use of natural orbitals does not systematically improve the convergence.
Finally, some comparison with accurate CCSD(T) calculations performed using
the same basis sets and geometries are presented. In Figure 6 the distribution of
errors in atomization energies calculated with both CCSD(T) and CIPSI methods
are plotted. For the cc-pVDZ basis set, CCSD(T) and CIPSI curves are very
similar, indicating that CCSD(T) calculations have also reached the quasi full CI
limit. For the larger cc-pVTZ basis set, the two curves remain similar but some
significant differences show up with CIPSI results more distributed toward small
errors due to a better description of multireference systems.

Figure 3. Convergence of the energy with the number of selected determinants
(logarithmic scale). The graph on the left displays the variational energy, and the
graph on the right shows the energy with the perturbative correction, Eq.(9).

25

D
ow

nl
oa

de
d 

by
 M

ic
he

l C
A

FF
A

R
E

L
 o

n 
Ja

nu
ar

y 
31

, 2
01

7 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 D

ec
em

be
r 

1,
 2

01
6 

| d
oi

: 1
0.

10
21

/b
k-

20
16

-1
23

4.
ch

00
2

 Tanaka et al.; Recent Progress in Quantum Monte Carlo 
ACS Symposium Series; American Chemical Society: Washington, DC, 2016. 



Figure 4. Number of selected determinants required to recover 99% of the total correlation energy at CIPSI/cc-pVDZ variational level.
Results for canonical and natural orbitals are given.
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Figure 5. Number of selected determinants required to recover 99.9% of the total correlation energy at full CIPSI/cc-pVDZ level, that is
(Evar+EPT2) Results for canonical and natural orbitals are given.
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Figure 6. Distribution of errors in atomization energies for the whole G1 set of
atomic and molecular systems calculated with CIPSI and CCSD(T). Results

shown for cc-pVDZ and cc-pVTZ basis sets.

Using CIPSI Nodes in DMC

Motivations

In DMC the standard practice is to introduce compact trial wavefunctions
reproducing as much as possible the mathematical and physical properties of the
exact wave function. Next, the «best» nodes are determined through optimization
of the parameters of the trial wavefunction in a preliminary variational Monte
Carlo (VMC) run. The objective function to minimize is either the variational
energy associated with the trial wavefunction or the variance of the Hamiltonian
(or a combination of both). A number of algorithms have been elaborated to
perform this important practical step as efficiently as possible (66–71). No
limitations existing in QMC for the choice of the functional form of the trial
wavefunction, many different expressions have been introduced (see, e.g.
(72–79)). However, the most popular one is certainly the Jastrow-Slater trial
wavefunction expressed as a short expansion over a set of Slater determinants
multiplied by a global Jastrow factor describing explicitly the electron-electron
and electron-electron-nucleus interactions and, in particular, imposing the
electron-electron cusp conditions associated with the zero-interelectronic distance
limit of the true wavefunction.

In the DMC-CIPSI approach the determinantal part of the trial wavefunction
is built using systematic CIPSI expansions. The main motivation is that CI
approaches provide a simple, deterministic, and systematic way of constructing
wavefunctions of controllable quality. In a given one-particle basis set, the
wavefunction is improved by increasing the number of determinants, up to the Full
CI (FCI) limit. Then, by increasing the basis set, the wavefunction can be further
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improved, up to the complete basis set (CBS) limit where the exact solution of
the continuous electronic Schrdinger equation is reached. The CI nodes, which
are defined as the zeroes of the expansion, are also expected to follow such a
systematic improvement, thus facilitating the control of the fixed-node error. A
second important motivation is that the stochastic optimization step can be avoided
since a systematic way of improving the wavefunction is now at our disposal.
The optimal CI coefficients are obtained by the (deterministic) diagonalization of
the Hamiltonian matrix in the basis set of Slater determinants. It is a simple and
robust step which leads to a unique set of coefficients. Furthermore, it can be made
automatic, an important feature in the perspective of designing a fully black-box
QMC code. Finally, using deterministically constructed nodal structures greatly
facilitates the use of nodes evolving smoothly as a function of any parameter of
the Hamiltonian. It is important when calculating potential energy surfaces (see,
our application to the F2 molecule (4),) or response properties under external
fields.

The main price to pay for such advantages is of course the need of considering
much larger multideterminant expansions (from tens of thousands up to a few
millions) than in standard DMC implementations where compactness of the trial
wavefunction is searched for. However, efficient algorithms have been proposed
to perform such calculations (80–82). Very recently, we have also presented an
efficient algorithm for computing very large CI expansions (13). Its main ideas
are briefly summarized in Evaluating very large number of determinants in QMC
subsection below.

Toward a Better Control of the Fixed-Node Approximation

A remarkable property systematically observed so far in our DMC
applications using large CIPSI expansions (1–5) is that, except for a possible
transient regime at small number of determinants (83), the fixed-node error
resulting from the use of CIPSI nodes is found to decrease monotonically, both
as a function of the number of selected determinants, Ndets, and of the basis set
size, NMO. This result is illustrated here in the case of the water molecule at
equilibrium geometry. Results shown here complement our recent benchmark
study on water (5). In Figure 7 all-electron fixed-node energies obtained with
DMC-CIPSI as a function of the number of selected determinants for the first
four cc-pCVnZ basis set (n=2-5) are reported. Calculations have been performed
using the variational CIPSI expansions of the preceding subsection. In practice,
DMC simulations have been realized using our general-purpose QMC program
QMC=Chem (downloadable at (84)). A minimal Jastrow prefactor taking care
of the electron-electron cusp condition is employed and molecular orbitals
are slightly modified at very short electron-nucleus distances to impose exact
electron-nucleus cusp conditions. The time step used, τ = 2 10-4 a.u., has been
chosen small enough to make the finite time step error not observable with
statistical fluctuations. As seen on the figure the convergence of DMC energies
both as a function of the number of determinants and of the basis set are almost
reached. The value of -76.43744(18) a.u. obtained with the largest basis set and
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1 423 377 determinants is, to the best of our knowledge, the lowest upper bound
reported so far, the experimentally derived estimate of the exact nonrelativistic
energy being -76.4389(1) a.u. (85) Thanks to our recent algorithm for calculating
very large number of determinants in DMC (13) (see, section below), the increase
of CPU time for the largest calculation including more than 1.4 million of
determinants compared to the same calculation limited to the single Hartree-Fock
determinant is only about 235.

In practice, the possibility of calculating fixed-node energies displaying such a
regular behavior as a function of the number of determinants andmolecular orbitals
is clearly attractive in terms of control of the fixed-node error. For example, in
our benchmark study of the water molecule (5) it was possible to extrapolate the
DMC energies obtained with each cc-pCVnZ basis set as a function of the cardinal

number n, as routinely done in deterministic CI calculations. Using a standard
law a very accurate DMC-CIPSI energy value of -76.43894(12) a.u. was obtained,
in full agreement with the estimate exact value of -76.4389(1) a.u. (5).

At this point, we emphasize that the observed property of systematic decrease
of the energy as a function of the number of determinants is known not to
be systematically true for a general CI expansion (see, e.g. (86)). Here, its
validity may probably be attributed to the fact that determinants are selected
in a hierarchical way (the most important ones first), so that the wavefunction
quality increases step by step, and so the quality of nodes. However, from a
mathematical point of view, such a property is far from being trivial. There
is no simple argument why the FCI nodes obtained from minimization of the
variational energy with respect to the multideterminant coefficients would lead to
the best nodal structure (minimum of the fixed-node energy with respect to such
coefficients). In a general space (not necessarily a Hilbert space of determinants)
it is easy to construct a wavefunction of poor quality having a high variational
energy but exact nodes and, then, to exhibit a wavefunction with a much lower
energy but wrong nodes. To demonstrate the validity or not of the observed
property in a finite space of determinants built with molecular orbitals expanded
in a finite basis set remains to be done.

Evaluating Very Large Number of Determinants in QMC

The algorithm we use to run DMC calculations with a very large number of
determinants (presently up to a few millions) has been presented in detail in ref.
(13). Its efficiency is sufficiently high to perform converged DMC calculations
with a number of determinants up to a few millions of determinants. In the case
of the chlorine atom discussed in (13) a trial wavefunction including about 750
000 determinants has been used with a computational increase of only about 400
compared to a single-determinant calculation. As already mentioned above, in the
benchmark calculation of the water molecule (5) up to 1 423 377 determinants
have been used for a computational increase of only 235.
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Figure 7. DMC energy of the water molecule as a function of the number of
determinants in the trial wave function (logarithmic scale). The horizontal solid
line indicates the experimentally derived estimate of the exact nonrelativistic

energy (85).

The main ideas of the algorithm are as follows.

• -scaling. A first observation is that the determinantal part
of trial wave functions built with Ndets determinants can be rewritten as
a function of a set of different spin-specific determinants
( ) as follows

where C is a matrix of coefficients of size , R =
(r1,...,rN) denotes the full set of electron space coordinates, and and

the two subsets of coordinates associated with and electrons.
In standard CI expansions the number of unique spin-specific

determinants is much smaller than Ndets and typically scales as
It is true for FCI expansions where all possible determinants are

considered. Indeed, attains its maximal value of

and since Ndets is given as , the number of unique
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spin-specific determinants Dσ(R) is of order . However, it is
in general also true for the usual truncated expansions (CASSCF, CISD,
etc.) essentially because the numerous excitations implying multiple
excitations of spin-like electrons plays a marginal role and have a weak
contribution to the expansion.

• Optimized Sherman-Morrison updates. As proposed in a number of
works (80–82), we calculate the determinants and their derivatives
using the Sherman-Morrison (SM) formula for updating the inverse
Slater matrices. However, in contrast with other implementations,
we have found more efficient not to compare the Slater matrix to a
common reference (typically, the Hartree-Fock determinant) but instead
to perform the Sherman-Morrison updates with respect to the previously
computed determinant . To reduce the prefactor associated with
this step the list of determinants is sorted with a suitably chosen order so
that with high probability successive determinants in the list differ only
by one- or two-column substitution, thus decreasing the average number
of substitution performed.

• Exploiting high-performance capabilities of present-day processors.
This very practical aspect - which is in general too much underestimated
- is far from being anecdotal since it allows us to gain important
computational savings. A number of important features include the
use of vector fused-multiply add (FMA) instructions (that is, the
calculation of a=a+b*c in one CPU cycle) for the innermost loops.
It is extremely efficient and should be systematically searched for.
Using such instructions (present in general-purpose processors), up
to eight FMA per CPU cycle can be performed in double precision.
While computing loops, overheads are also very costly and should be
reduced/eliminated. By taking care separately of the various parts of
the loop (peeling loop, scalar loop, vector loop, and tail loop) through
size-specific and/or hard-coded subroutines, a level of 100% vectorized
loops is reached in our code. Another crucial point is to properly
manage the data flow arriving to the processing unit. As known, to
be able to move data from the memory to the CPU with a sufficiently
high data transfer to keep the CPU busy is a major concern of modern
calculations. Then, it is not only important to make maximum use of
the low-latency cache memories to store intermediate data but also to
maximize prefetching allowing the processor to anticipate the use of
the right data and instructions in advance. To enhance prefetching the
algorithm should allow the predictability of the data arrival in the CPU
(that is, avoid random access as much as possible). It is this important
aspect that has motivated us to use Sherman-Morrison updates, despite
the fact that a method like the Table method (81) has formally a better
scaling. Indeed, massive calculations of scalar products at the heart
of repeated uses of SM updates are so ideally adapted to present-day
processors that very high performances can be obtained.
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• Improved truncation scheme. Instead of truncating the CI expansion
according to the magnitude of the multideterminant coefficients as usual
done, we propose instead to remove spin-specific determinants according
to their total contribution to the norm of the expansion. In this way,
more determinants can be handled for a price corresponding to shorter
expansions.

To be more precise, we first observe that truncating the wavefunction
according to the magnitude of coefficients has the effect of removing elements of
the sparse matrix C of Eq.(16). A reduction of the computational cost occurs only
when a full line ( ) or a full column ( ) of C contains only zeroes, in that case
the determinant Dσ can be removed from the calculation. Now, by expressing the
norm of the wave function as

it is possible to assign a contribution to the norm to each determinant. Then,
all determinants whose contribution to the norm is below some threshold will
be removed from the expansion. This truncation scheme allows to eliminate
the smallest number of coefficients needed to obtain some computational gain.
Moreover, the size-consistence property of the wave function is expected to be
approximately preserved by such a truncation: When a σ-determinant is removed,
it is equivalent to removing the product of Dσ with all the σ - determinants of the
wave function.

Pseudopotentials for DMC Using CIPSI

When using pseudopotentials a valence Hamiltonian is defined

where Hloc is the local part describing the kinetic energy, the Coulombic repulsion
and the local part of the effective core potentials (ECP)

and VECP the non-local part written as

where is a radial pseudopotential, Ylm is the spherical harmonic, α labels pseudo-
ions. The action of a non-local operator being difficult to sample in DMC, VECP is
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«localized» by projecting it on the trial wavefunction. The localized form of the
pseudo-potential is thus defined as

and we are led back to standard DMC simulations using only local operators at
the price of introducing a new «localization approximation». This error is usually
minimized by optimization of the trial wavefunction, see ref (87). In practice, the
necessity of numerically evaluating the localized potential is the main difference
with standard DMC calculations.

For each nucleus α and electron i the two-dimensional angular integrals of the
product of each Ylm and the trial wavefunction (all electrons fixed except the i-th
electron moved over the sphere centered on nucleus α and of radius riα) must be
performed. By choosing the axes oriented such that the i-th electron is on the z
axis, the contribution coming from the pair (i, α) is given

where Pl denotes a Legendre polynomial. Because of the Jastrow factor, the
integrals involved cannot be computed analytically. The standard solution is to
evaluate them numerically using some quadrature for the sphere. Here, the CI
form allows to perform the integration exactly, as already proposed some time
ago (14, 15). Note that although no Jastrow prefactor is used here when localizing
the pseudo-potential operator, such a prefactor can still be used for the DMC
simulation itself. A first advantage is that the calculation is significantly faster:
In practice, the computational cost is the same as evaluating the Laplacian of
the wave function and a gain proportional to the number of quadrature points
is obtained. A second advantage is the possibility of a better control of the
localization error by increasing the number of determinants.

To illustrate these statements, we have chosen to calculate the atomization
energy of the C2molecule at the Hartree-Fock, CIPSI, DMC-HF and DMC-CIPSI
levels with and without pseudopotentials. All-electron HF or CIPSI calculations
have been performed with the cc-pVTZ basis set. To allow meaningful
comparisons, 1s molecular orbitals have been kept frozen in all-electron CIPSI
calculations. Pseudopotential calculationswere done using the pseudopotentials of
Burkatzki et al. (88) with the corresponding VTZ basis set. The electron-nucleus
cusps of all the wave functions were imposed (89–91). and no Jastrow factor was
used. For the sake of comparison, the same time step (5 10-4 a.u.) was used for
all-electron and pseudopotential calculations, although a much larger time step
could have been taken with pseudopotentials.
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Table 1. Comparison of All-Electron (cc-pVTZ) and Pseudopotential
(BFD-VTZ) Calculations of the Atomization Energy of C2 with CIPSI Wave
Functions. A Threshold Equal to 10-6 Was Applied to the CIPSI Wave

Functions as Explained in Text.

Energy Number of determinants

C (a.u.) C2 (a.u.) AE (kcal/
mol)

C C2

Hartree-
Fock

all-electron -37.6867 -75.4015 17.6 1 1

pseudo- -5.3290 -10.6880 18.8 1 1

CIPSI

all-electron -37.7810 -75.7852 140.1 3796 106

pseudo- -5.4280 -11.0800 140.6 3882 106

DMC-HF

all-electron -
37.8293(1)

-75.8597(3) 126.3(2) 1 1

pseudo- -5.4167(1) -11.0362(3) 127.2(2) 1 1

DMC-
CIPSI, 106
dets

all-electron -
37.8431(2)

-75.9166(2) 144.6(2) 3497 173553

pseudo- -5.4334(1) -11.0969(3) 144.3(2) 3532 231991

Estimated exact AE
(92, 93)

147±2

The results presented in Table 1 show that all the atomization energies
obtained using pseudopotentials are in very good agreement with those obtained
with all-electron calculations at the same level of theory. The DMC energies
obtained with CIPSI trial wave functions are always below those obtained with
Hartree-Fock trial wave functions, and the error in the atomization energy is
reduced from 20 kcal/mol with HF nodes down to 3 kcal/mol with CIPSI nodes.
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Table 2. CPU Time for One Complete Monte Carlo Step (One Walker, All Electrons Moved), CPU Time Needed to Reach an Error
on 1 kcal/mol, and Variances Associated with the HF and CIPSI Trial Wave Functions (Electron-Nucleus Cusp Corrected).

CPU time per DMC step CPU time to get a 1 kcal/mol Variance

(milliseconds) error (hours) (a.u.)

all-electron pseudo- all-electron pseudo- all-electron pseudo-

DMC-HF

C 0.0076 0.0078 1.54 1.18 7.858(3) 0.3471(2)

C2 0.0286 0.0186 14.95 10.35 16.208(7) 1.1372(6)

DMC-CIPSI

C 0.193 0.201 5.61 0.70 7.620(8) 0.1084(4)

C2 10.1 8.12 91.05 12.72 15.61(3) 0.460(1)
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Calculations were performed on Intel Xeon E5-2680v3 processors. Timings
are given in Table 2. For the carbon atom the computational time needed for one
walker to perform one complete Monte Carlo step (all electrons moved) is the
same with or without pseudopotentials. For the C2 molecule, the calculation is
even faster with pseudopotentials: A factor of about 1.5 is gained with respect
to the all-electron calculation. This can be explained by the computational effort
saved due to the reduced size of Slater matrices in the pseudopotential case (from 6
× 6 to 4 × 4) but, more importantly, by the fact that the additional cost related to the
calculation of the contributions due to the pseudopotential is not enough important
to reverse the situation. In all-electron calculations, the variance is only slightly
reduced when going from the Hartree-Fock trial wave function to the CIPSI wave
function (with frozen core). Indeed, the largest part of the fluctuations comes
from the lack of correlation of the core electrons. In the calculations involving
pseudopotentials, the decrease of the variance is significant: A reduction by a
factor of 2.4 and 3.2 is observed.

From a more general perspective, comparisons between all-electron and
pseudopotential calculations must take into account both the computational effort
required in each case and the level of fluctuations resulting from the quality
of the trial wavefunction. To quantify this, we have reported in the table the
number of CPU hours required to obtain an error bar of 1 kcal/mol. Using
pseudopotentials for the C2molecule, it is found that the reduction of the variance
due to the improvement of the wave function with the multideterminant expansion
almost compensates the cost of the computation due to the additional 230 000
determinants: The CPU time needed to obtain a desired accuracy is only 1.2 more
than the single determinant calculation.

Summary and Some Perspectives

Let us first summarize the most important ideas and results presented in this
work.

i.) Selected Configuration Interaction approaches such as CIPSI are very
efficient methods for approaching the full CI limit with a number of
determinants representing only a tiny fraction of the full determinantal
space. This is so because only the most important determinants of the
FCI expansion are perturbatively selected at each step of the iterative
process. We note that the recent FCI-QMC method of Alavi et al. (9,
10) uses essentially the same idea, except that in CIPSI the selection is
done deterministically instead of stochastically.

ii.) In constrast with exact FCI which becomes rapidly prohibitively
expensive, CIPSI allows to treat larger systems, while maintaining
results of near-Full CI quality. The exact practical limits depend of
course on the size of the basis set used, the number of active electrons,
and also on the level of convergence asked for when approaching the
full CI limit. In this work, the CIPSI approach has been exemplified
with near-FCI quality all-electron calculations for the water molecule
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using a series of basis sets of increasing size up to the cc-pCV5Z basis
set and for the whole set of 55 molecules and 9 atoms of the benchmark
G1 set (cc-pVDZ basis set). In each case, the huge size of the FCI space
forbids exact FCI calculations. CIPSI has been applied to larger systems,
for example for calculating accurate total energies for the atoms of the
3d series (3), and for obtaining near-FCI quality results for the CuCl2
molecule (calculations including 63 electrons and 25 active valence
electrons) (94). Note that by using Effective Core Potentials as described
in Pseudopotentials for DMC using CIPSI section even larger systems
can be treated.

iii.) We emphasize that the idea of selecting determinants is not limited to
the entire space of determinants but can be used to make CI expansion
to converge in a subset of determinants chosen a priori. For example,
efficient and accurate selected CASCI, CISD, or even MRCC (95)
calculations can be performed. Note that going beyond CASCI and
implementing a selected CASSCF approach (CASCI with optimization
of molecular orbitals) is also possible; this is let for further work.
However, note that a stochastic version of CASSCF within FCI-QMC
framework has already been implemented by Alavi et al. (96)

iv.) CIPSI expansions can be used as determinantal part of the trial
wavefunctions employed in DMC calculations. In others words, we
propose to use selected CI nodes as approximation of the unknown exact
nodes. The basic motivation is that CI approaches provide a simple,
deterministic, and systematic way to build wavefunctions of controllable
quality. In a given one-particle basis set, the wavefunction is improved
by increasing the number of determinants, up to the FCI limit. Then, by
increasing the basis set, the wavefunction can be further improved, up
to the CBS limit where the exact solution of the continuous electronic
Schrödinger equation is reached. CI nodes, defined as the zeroes of
the CI expansions, are also expected to display such a systematic
improvement.

v.) The main result giving substance to the use of selected CIPSI nodes is
that in all applications realized so far the fixed-node error is found to
decrease both as a function of the number of selected determinants and
of the size of the basis set. Mathematically speaking, such a result is far
from being trivial. In practice, such a property is particularly useful in
terms of control of the fixed-node error.

vi.) From a practical point of view, the price to pay is the need of considering
much larger multideterminant expansions (from tens of thousands up to
a few millions) than in standard DMC where compactness of the trial
wavefunction is usually searched for. Indeed, computing at each of
Monte Carlo step the first and second derivatives of the trial wavefunction
(drift vector and local energy) is the hot spot of DMC. However, efficient
algorithms have been proposed to perform such calculations (80–82).
Here, we have briefly summarized our recently introduced algorithm
(13) allowing to compute Ndets -determinant expansions issued from
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selected CI calculations with a computational cost roughly proportional

to (with a small prefactor).
vii.) One key advantage of using CIPSI nodes is that their construction can

be made fully automatic. Coefficients of the CI expansion are obtained
in a simple and deterministic way by diagonalizing the Hamiltonian
matrix and the solution is unique. Furthermore, when approaching the
FCI limit the resulting expansion becomes independent on the type of
molecular orbitals used (canonical, natural, Kohn-Sham, see Figure
8 of ref (94).). Another attractive feature is that the nodes built are
reproducible and thus « DMC models » can be defined in the spirit of
WFT or DFT ab initio approaches (HF/cc-pVnZ, MP2/6-31G, CCSD(T),
DFT/B3LYP etc.) Indeed, once the basis set has been specified, the
nodes are unambiguously defined at convergence of the DMC energy
as a function of the number of selected determinants. Furthermore,
in this limit the nodal surfaces vary continuously as a function of the
parameters of the Hamiltonian. A particularly important example is the
possibility of obtaining regular potential energy surface (PES). This idea
has been illustrated in a previous work on the potential energy curve
of the F2 molecule (4). Furthermore, it is also possible to reduce the «
non-parallelism » error resulting from the use of a trial wavefunction
of non-uniform quality across the PES. This can be done for example
by using a variable number of selected determinants depending on the
geometry and chosen to lead to a constant second-order estimate of the
remaining correlation energy (constant-PT2 approach, see (4)).

viii.)As in standard DMC approaches a Jastrow prefactor can be used to
reduce statistical fluctuations. However, in contrast with what is usually
done, we do not propose to re-optimize the determinantal CIPSI part in
presence of this Jastrow term. The main reason for that is not to lose
the advantages of using deterministically constructed nodal structures:
Systematic improvement of nodes as a function of the number of
determinants and of the size of the basis set, simplicity of construction of
nodes and reproducibility, possibility of optimizing a very large number
of small coefficients in the CI expansion (no noise limiting in practice
the magnitude of optimizable coefficients), smooth evolution of nodes
under variation of an external parameter (geometry, external field), etc.

ix.) The price to pay for not re-optimizing the determinantal part in the
presence of a Jastrow is that for small basis sets larger fixed-node errors
are usually obtained. However, when increasing sufficiently the quality
of basis set, it is no longer true as illustrated for example in the case of
the oxygen atom (1), the water molecule (5), and the 3d-transition metal
atoms (3) for which benchmark total energies have been obtained.

x.) CIPSI wavefunctions are particularly attractive when using non-local
Effective Core Potentials (ECP). Indeed, as already proposed some
time ago (14, 15), CI expansions allow the analytical calculation of
the action of the non-linear part of the pseudo-potential operator on
the trial wavefunction. In this way, the use of a numerical grid defined
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over the sphere is avoided and a gain in computational effort essentially
proportional to the number of grid points is obtained. Here, this idea has
been illustrated in the case of the C2 molecule.
Finally, let us briefly mention a number of topics presently under
investigation.

xi.) The slow part of the CI convergence is known to result from the
absence of electron-electron cusp. In standard QMC approaches, the
short distance electron-electron behavior is introduced into the Jastrow
prefactor and its impact on nodes is taken into account by optimization
of the full trial wavefunction. Under re-optimization, molecular orbitals
are changed and the distribution of multideterminant coefficients
is modified with a re-inforcement of coefficients associated with
chemically meaningful determinants and a reduction of the numerous
small coefficients associated with the absence of cusp. To keep the CIPSI
expansion as compact as possible and to eliminate this unphysical and
uncoherent background of small coefficients a R12/F12 version of CIPSI
is called for. We emphasize that such an analytical and deterministic
construction of the R12/F12 expansion is necessary if we want to keep
the advantages related to the deterministic construction of nodes.

xii.) To treat even larger systems, the increase of the number of determinants
in the CIPSI expansion must be kept under control. Instead of targeting
the near full CI limit, simpler models can be used in the spirit of what is
done in MRCC approaches (95) or by defining effective Hamiltonians in
the reference space modelling the effect of the external space (so-called
internally decontracted approaches).

xiii.)Finally, it is clear that systematic studies on difficult systems of various
types are needed to explore the potential and limits of the DMC-CIPSI
approach.
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