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Selected configuration interaction (sCI) methods including second-order perturbative corrections pro-
vide near full CI (FCI) quality energies with only a small fraction of the determinants of the FCI space.
Here, we introduce both a state-specific and a multi-state sCI method based on the configuration inter-
action using a perturbative selection made iteratively (CIPSI) algorithm. The present method revises
the reference (internal) space under the effect of its interaction with the outer space via the construc-
tion of an effective Hamiltonian, following the shifted-Bk philosophy of Davidson and co-workers. In
particular, the multi-state algorithm removes the storage bottleneck of the effective Hamiltonian via a
low-rank factorization of the dressing matrix. Illustrative examples are reported for the state-specific
and multi-state versions. Published by AIP Publishing. https://doi.org/10.1063/1.5044503

I. INTRODUCTION

Recently, selected configuration interaction (sCI) meth-
ods have demonstrated their ability to reach, for moderate
size basis sets, near full CI (FCI) quality energies for small
organic and transition metal-containing molecules.1–13 Select-
ing iteratively the most relevant determinants of the FCI
space is an old idea that, to the best of our knowledge, dates
back to the pioneering studies of Bender and Davidson14

and Whitten and Hackmeyer15 in 1969. A few years later,
Huron et al.16 proposed the so-called CIPSI (Configuration
Interaction using a Perturbative Selection made Iteratively)
approach to complement the variational sCI energy with a
second-order Epstein-Nesbet perturbative correction. This has
demonstrated to be a particularly efficient way of approaching
the FCI limit.8,11–13,17,18 Over these last few years, we have
witnessed a resurgence of sCI methods under various vari-
ants and acronyms. In short, their main differences lie in the
way (i) the determinant selection is done and (ii) the second-
order contribution is computed. The selection can be done
purely stochastically as in FCIQMC19 or deterministically as
in CIPSI or other variants, such as heat-bath CI,7–10 adaptive
sampling CI (ASCI),20–22 or iterative CI (ICI).23 Similarly, the
second-order correction can be computed either purely deter-
ministically or semi-stochastically by a Monte Carlo (MC)
sampling.4,8,18 Here, we shall use the CIPSI method16 to gen-
erate the model space, but any other sCI variants could be
employed.

For a given electronic state k, the ensemble of determi-
nants |I〉, which constitutes the zeroth-order (normalized) wave
function

|Ψ
(0)
k 〉 =

Ndet∑
I=1

c(0)
Ik |I〉 (1)

a)Author to whom correspondence should be addressed: loos@irsamc.ups-
tlse.fr

of (variational) zeroth-order energy

E(0)
k = 〈Ψ

(0)
k |Ĥ |Ψ

(0)
k 〉 =

†c(0)
k H(0)c(0)

k (2)

(where †c(0)
k are the transposed coefficients), defines the

(zeroth-order) reference model space or internal space. The
remaining determinants of the FCI space belong to the exter-
nal space or outer space. In particular, the ensemble of
determinants |α〉 connected to Ψ(0)

k , i.e., 〈α |Ĥ |Ψ(0)
k 〉 , 0

and 〈α |Ψ(0)
k 〉 = 0—the so-called “perturbers”—defines the

(first-order) perturbative space, such as

|Ψ
(1)
k 〉 =

∑
α

c(1)
αk |α〉, c(1)

k = (E(0)
k 1 − D(1))−1hc(0)

k , (3)

where 1 is the identity matrix and D(1) is a diagonal matrix with
elements D(1)

αα = 〈α |Ĥ |α〉 and hαI = 〈α|Ĥ |I〉. Within CIPSI, the
“distance” to the FCI solution is estimated via a second-order
Epstein-Nesbet perturbative energy correction

E(2)
k = 〈Ψ

(0)
k |Ĥ |Ψ

(1)
k 〉 =

†c(0)
k
†h c(1)

k . (4)

The second-order correction (4) has obvious advantages
and can be computed efficiently using diagrammatic24 or
hybrid stochastic-deterministic approaches.8,17,18 However, it
has also an obvious disadvantage: the internal space is not
revised under the effect of its interaction with the outer space.
Here, thanks to intermediate effective Hamiltonian theory,25

we propose to build and diagonalize an effective Hamiltonian
taking into account the effect of the perturbative space.26,27

This idea is based on the so-called Bk method, originally
proposed by Gershgorn and Shavitt28 and later refined and
rebranded shifted-Bk (sBk) by Davidson and co-workers.29–38

(See also Refs. 39–42.) All these studies lie on the semi-
nal idea of Löwdin on the partition of the FCI Hamiltonian
matrix.43 Initially, Gershgorn and Shavitt28 introduced sev-
eral approximations, two of them being denoted as Ak and
Bk. Both use a partitioning of the CI matrix based on the
selection of a dominant subset of (primary) configurations.
The Ak method, which is related to earlier work by Claverie,
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Diner, and Malrieu,44 estimates the contribution of the config-
urations left out of the CI expansion, an idea very similar to the
computation of the second-order correction [see Eq. (4)].14,45

Compared to the Ak method, the coefficients of the primary
configurations are allowed to relax in the Bk method. The
different flavours of Bk methods are usually due to the dis-
tinct partition of the Hamiltonian matrix and the reference
energy used to define the perturbers [see Eq. (3) and discussion
below].26,27,29–42

To the best of our knowledge, the shifted-Bk method
has never been coupled with CIPSI-like sCI methods. More-
over, in addition to its convergence acceleration to the FCI
limit, one of the interesting advantages of shifted-Bk is to
provide an explicit revised wave function that one can use,
for example, as a trial wave function within quantum Monte
Carlo.1,2,5,6,11,13 In the present manuscript, we propose both a
state-specific and a multi-state formulation which remove the
storage bottleneck of the effective Hamiltonian. Furthermore,
the present computations are performed semi-stochastically as
in our recently proposed hybrid stochastic-deterministic algo-
rithm for the computation of E(2).17 Unless otherwise stated,
atomic units are used throughout (see Sec. III).

II. SHIFTED-Bk
A. State-specific shifted-Bk

For a given electronic state k, in order to solve the
Schrödinger equation Hck = Ekck in the FCI space, the
eigenvalue problem may be partitioned as

*....
,

H(0) †h 0

h H(1) †g

0 g H(2)

+////
-

*....
,

c(0)
k

c(1)
k

c(2)
k

+////
-

− Ek

*....
,

c(0)
k

c(1)
k

c(2)
k

+////
-

=

*....
,

0

0

0

+////
-

, (5)

where H(2) is the second-order Hamiltonian corresponding to
the external configurations excluding the perturbers and g is the
coupling matrix between first- and second-order spaces. Equa-
tion (5) can be recast as an “effective” Schrödinger equation
Heff

k c(0)
k = Ekc(0)

k with the effective Hamiltonian

Heff
k = H(0) + ∆k , (6)

and dressing matrix

∆k =
†h

[
(Ek1 −H(1)) − †g(Ek1 −H(2))−1g

]−1
h. (7)

Within the state-specific version of the Bk method introduced
by Gershgorn and Shavitt,28 for each target electronic state k,
we (i) approximate H(1) by its (diagonal) zeroth-order approx-
imation D(1) and (ii) neglect the influence of the second-order
space H(2). Hence, the state-specific Bk dressing matrix is
defined as

∆Bk
k =

†h(Ek1 − D(1))−1h, (8)

which naturally yields to a Brillouin-Wigner perturbation
approximation.28

The shifted-Bk method of Davidson and co-workers29–33

still approximates H(1) by its diagonal D(1), but “shifts” (hence
the name) the energy at the denominator of Eq. (7) to take

into account the influence of the second-order term †g(Ek1 −
H(2))−1g; in other words,

Ek1 − †g(Ek1 −H(2))−1g ≈ E(0)
k 1. (9)

Therefore, the state-specific shifted-Bk dressing matrix is

∆sBk
k = †h(E(0)

k 1 − D(1))−1h, (10)

which leads to the Epstein-Nesbet variant of Rayleigh-
Schrödinger perturbation theory.31,32 Compared to the Bk
method, its shifted variant has the indisputable advantage
of correcting some of the size-consistency error.31 However,
as expected, the present methodology is only nearly size-
consistent. Note that the shifted-Bk method is an iterative
method as, thanks to the influence of the entire external space,
both the zeroth-order coefficients c(0)

k and energy E(0)
k [given

by Eq. (2)] are revised at each iteration.
For small CI expansions, it is possible to store the entire

dressed Hamiltonian matrix Heff
k of size Ndet ×Ndet. However,

when the CI expansion gets large, Heff
k becomes too large to be

stored in memory. Thankfully, it is not necessary to explicitly
build Heff

k . Indeed, for large CI expansions, we switch to a
Davidson diagonalization procedure46 which only requires the
computation of the vectors H(0)c(0)

k and ∆sBk
k c(0)

k of size Ndet.

B. Multi-state shifted-Bk

In a multi-state calculation, one has to adopt a different
strategy in order to dress the Hamiltonian for all the target
states simultaneously. This is particularly important in prac-
tice, for instance, to determine accurate vertical transition
energies. An unbalanced treatment of the ground and excited
states, even for states with different spatial or spin symmetries,
could have significant effects on the accuracy of these energy
differences.12

For the sake of simplicity, let us assume that our aim is
to calculate the dressed energy of the N st lowest electronic
states. For 1 ≤ k ≤ N st, we wish to find a multi-state effective
Hamiltonian Heff and a dressing matrix ∆sBk, with Heff = H(0)

+ ∆sBk, such that, when applied to the kth state coefficient
vector c(0)

k , one recovers the kth state-specific dressing matrix

∆sBk
k times the same vector c(0)

k , i.e.,

∆sBk c(0)
k = ∆

sBk
k c(0)

k . (11)

A solution obeying Eq. (11) is

∆sBk =
∑

kl

∆sBk
k c(0)

k (S−1)kl
†c(0)

l , (12)

where (S−1)kl = 〈c
(0)
k |c

(0)
l 〉. In contrast to the state-specific

case, Heff is non-Hermitian as a consequence of the non-
orthogonality of the exact state projections on the model
space.25 In practice, we have found that a robust algorithm can
be defined by symmetrizing the multi-state dressing matrix as

∆̃
sBk
=

(
†∆sBk + ∆sBk

)
/2. (13)

The eigenstates being now orthonormal, the dressing matrix
reduces to

∆sBk = δsBk †c(0), (14)
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which is reminiscent of a low-rank factorization. Here,

c(0) =
[
c(0)

1 , . . . , c(0)
Nst

]
, (15a)

δsBk =
[
∆sBk

1 c(0)
1 , . . . ,∆sBk

Nst
c(0)

Nst

]
(15b)

are both of size Ndet × N st.
Two key remarks are in order here: (i) at first order,

the symmetrization error is strictly zero, i.e., †c(0)
k (∆sBk −

∆̃
sBk

)c(0)
k = 0, and (ii) the symmetrization error becomes

vanishingly small for large CI expansions. Consequently, the
symmetrization error can be safely neglected in practice. Our
preliminary tests have corroborated these theoretical justifi-
cations. Also, it can be further estimated via second-order
perturbation theory. However, it requires the energies and coef-
ficients of the entire internal space which is only possible for
relatively small CI expansions.

The energies of the first N st states, E =
(
E1, . . . , ENst

)
,

are obtained by a Davidson diagonalization of the multi-state

effective Hamiltonian Heff = H(0) + ∆̃
sBk

. Similar to the state-
specific case, technically, one is able to store the vectors δsBk

and c(0), but ∆̃
sBk

(or ∆sBk) is potentially too large to be stored
in memory. Luckily, compared to a standard CI calculation,
the Davidson diagonalization procedure only requires, at each
iteration, the extra knowledge of

∆̃
sBk

U =
(
c(0) †δsBk U + δsBk †c(0)U

)
/2, (16)

where U is a Ndet ×Ndav matrix gathering the Ndav vectors con-
sidered in the Davidson diagonalization algorithm at a given
iteration (with N st ≤ Ndav � Ndet). Thanks to Eq. (14), this
term can be efficiently evaluated in a O(Ndet) computational
cost and storage via two successive matrix multiplications, for
instance,

c(0) †δsBk U =
[
c(0) ×

(
†δsBk × U

)]
.

A pseudo-code of our iterative multi-state dressing algorithm
is presented in the supplementary material. For N st = 1,
the present multi-state algorithm reduces to the state-specific
version.

III. HYBRID STOCHASTIC/DETERMINISTIC
DRESSINGS

In Ref. 17, we proposed to express

E(2) =

Ndet∑
I=1

E(2)
[I] (17)

as a sum of Ndet contributions E(2)
[I] , each of them associated

with a determinant of the model space, and to compute it
efficiently via a Monte Carlo (MC) algorithm. Thanks to the
relatively small size of the MC space (Ndet), one is able to
store each single contribution. Hence, during the MC simula-
tion, if the contribution of a determinant is required and has
never been computed previously, it is computed and stored.
Otherwise, the value is retrieved from memory. This tech-
nique, known as memoization, drastically accelerates the MC
calculation as each contribution needs to be computed only
once. Moreover, we decompose the energy into a determin-
istic part and a stochastic part, making the deterministic part

grow along the calculation until one reaches the desired accu-
racy. If desired, the calculation can be carried on until the
stochastic part entirely vanishes. In that case, the exact result
is obtained with no error bar and no noticeable computa-
tional overhead compared to the fully deterministic calcula-
tion. To summarize, this algorithm allows us to compute a
truncated sum with no bias, but with a statistical error bar
instead.

This algorithm is very general and is not limited to the
calculation of E(2). Similar to Eq. (17), we express the dressing
matrix (14) as the sum of dressing matrices

∆sBk =

Ndet∑
I=1

∆sBk
[I] . (18)

Because the matrices ∆sBk
[I] are too large to fit in memory, we

sample the vectors δsBk
[I] [see Eq. (15b)], which are required for

the Davidson diagonalization. During the sampling, one can
monitor the “dressed” energy as

Ek = 〈Ψ
(0)
k |H

eff
k |Ψ

(0)
k 〉 = E(0)

k + †c(0)〈δsBk〉, (19)

as well as its accuracy by computing the corresponding statis-
tical error. In Sec. IV, all sBk calculations have been carried
on until the statistical error is below 10−5 a.u. Let us empha-
size once again that the primary purpose of the present MC
algorithm is to accelerate the computation of the dressing
matrix. The same results would have been obtained via its
deterministic version.

IV. ILLUSTRATIVE CALCULATIONS

Unless otherwise stated, all the calculations presented
here have been performed with the electronic structure soft-
ware quantum package,47 developed in our group and freely
available. The sCI wave functions are generated with the
CIPSI algorithm, as described in Refs. 1 and 3 in the frozen-
core approximation. The extrapolated FCI results, labeled as
exFCI, have been obtained via the method recently proposed
by Holmes, Umrigar, and Sharma9 in the context of the heat-
bath method.7–9 This method has been shown to be robust
even for challenging chemical situations,10–13 and we refer
the interested readers to Ref. 11 for additional details.

A. State-specific example

To illustrate the improvement brought by the shifted-Bk
approach in its state-specific version (see Sec. II A), we have
computed the total electronic energy of the 2Πg ground state
of CuCl2 with the 6-31G basis set. The geometry has been
taken from Ref. 2 where additional information can be found
on this system. For this particular example, we have chosen a
small basis set in order to be able to easily reach the FCI limit.
A larger basis set will be considered in the next (multi-state)
example (see Sec. IV B). The molecular orbitals have been
obtained at the restricted open-shell Hartree-Fock (ROHF)
level, and the 15 lowest doubly occupied orbitals have been
frozen. This corresponds to a sCI calculation of 33 electrons
in 38 orbitals. sCI-PT2 stands for a sCI calculation where we
have added to the (zeroth-order) variational energy E(0) defined
in Eq. (2) the value of the second-order correction E(2) given

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012831
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FIG. 1. Deviation from the extrapolated FCI energy EexFCI of the total energy
E of CuCl2 (in hartree) as a function of the number of determinants Ndet in
the sCI wave function for various methods.

by Eq. (4). The one-shot non-iterative shifted-Bk procedure
will be labeled as sCI-sBk0, while its self-consistent version
is simply labeled as sCI-sBk.

Figure 1 shows the convergence of the total energy of
CuCl2 as a function of the number of determinants Ndet

in the sCI wave function for the variational sCI results, as

well as sCI-PT2, sCI-sBk0, and sCI-sBk. The corresponding
numerical values are reported in Table I. As expected, the
sCI-PT2, sCI-sBk0, and sCI-sBk energies are not variational
as perturbative energies and energies obtained by projection
are not guaranteed to be an upper bound of the FCI energy.
Nonetheless, all of these corrections drastically improve the
rate of convergence compared to the variational sCI results
(note the logarithmic scale in Fig. 1). As shown in the bottom
graph of Fig. 1, for small values of Ndet, the three methods
yield very similar total energies. However, for Ndet & 103,
results start to deviate due to the inclusion of an important con-
figuration corresponding to a ligand-to-metal charge transfer
(LMCT) state.48 This LMCT configuration induces a strong
revision of the model space wave function Ψ(0). Because the
LMCT configuration corresponds to a singly excited determi-
nant with respect to the ROHF determinant, it is not included
in the CIPSI expansion for small Ndet values as it does not
directly interact with the ROHF reference (a2b→ ab2 excita-
tion for which Brillouin’s theorem does apply49). Therefore,
the double excitations which are strongly coupled with the
ROHF configuration are first selected by the CIPSI algorithm.
Then, the LMCT configuration is included via its connec-
tion with the doubles. In particular, the double excitations
corresponding to a single excitation on top of the LMCT con-
figuration have been found to strongly interact with it. The
key observation here is that the sCI-sBk energy converges
much faster to the FCI limit than the sCI-PT2 energy. More-
over, the significant difference between sCI-sBk and sCI-sBk0

highlights the importance of the revision of the internal wave
function brought by the self-consistent nature of the shifted-Bk
method.

Table I also reports the overlap of the sCI and sCI-sBk
wave functions with respect to the largest sCI wave function
obtained for Ndet = 26 493 179. These results also highlight the
faster convergence of sCI-sBk and illustrate that the shifted-Bk

TABLE I. Deviation (in millihartree) from the extrapolated FCI energy (EexFCI = �2558.006 880 a.u.) for various
methods as a function of the number of determinants Ndet in the CIPSI expansion for the CuCl2 molecule and the
6-31G basis set. The second-order correction E(2) is also reported. The error bar corresponding to one standard
deviation is reported in parentheses. The exFCI energy has been obtained via a linear extrapolation using the
energies of the two largest wave functions (see the supplementary material). The two rightmost columns report
the overlap with respect to the largest sCI wave function.

∆E Overlap

Ndet E(2) sCI-PT2 sCI-sBk0 sCI-sBk sCI sCI-sBk

97 �213.039(0) �1.778(0) �1.93(0) �2.25(0) 0.9275 0.9275
138 �191.914(0) +1.698(0) +1.68(0) +1.65(0) 0.9295 0.9295
309 �157.491(0) +7.799(0) +7.74(0) +7.59(0) 0.9345 0.9345
789 �116.025(0) +12.654(0) +12.45(0) +11.81(0) 0.9438 0.9447
1 708 �86.208(2) +10.807(2) +9.89(0) +5.83(0) 0.9579 0.9671
2 167 �76.249(8) +10.232(8) +9.23(1) +5.15(1) 0.9610 0.9700
5 428 �45.49(3) +6.19(3) +4.90(3) +0.72(3) 0.9777 0.9854
13 803 �30.87(9) +4.00(9) +2.83(9) �0.97(9) 0.9853 0.9912
46 327 �24.48(9) +2.98(9) +2.02(9) �0.68(9) 0.9913 0.9952
223 089 �18.13(9) +2.31(9) +1.76(9) +0.03(9) 0.9956 0.9975
1 125 547 �11.18(9) +1.46(9) +1.12(9) +0.36(9) 0.9984 0.9990
5 615 264 �5.84(2) +0.79(2) +0.61(2) +0.26(2) 0.9996 0.9997
26 493 179 �3.34(2) +0.45(2) . . . . . . 1.0000 . . .

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-012831
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method could potentially provide better quality trial wave
functions for quantum Monte Carlo.1,2,5,6,11,13

Although Ψ(0)
k may be an eigenfunction of Ŝ2, the way

Ψ
(1)
k is built does not enforce this property. The expectation

value of Ŝ2 can be monitored by

〈Ψ
(0)
k |Ŝ

2 |Ψ
(1)
k 〉 =

†c(0)
k
†(s2) c(1)

k . (20)

As expected, the deviation from the eigenvalue is always small,
with a maximum deviation of the order of 10−4 a.u. in the case
of CuCl2.

B. Multi-state example

We have chosen to illustrate the multi-state shifted-
Bk algorithm presented in Sec. II B by computing the
first singlet transition energy of two cyanine dyes: CN3
(H2N−−CH==NH+

2) and CN5 (H2N−−CH==CH−−CH==NH+
2).

These types of dyes are known to be particularly challeng-
ing for electronic structure methods and especially time-
dependent density-functional theory.50–53 The geometry of
CN5 has been extracted from Ref. 51 and we have opti-
mized CN3 at the same level of theory (PBE0/cc-pVQZ).
Here, we use Dunning’s aug-cc-pVDZ basis set which has
been shown to be flexible enough to quantitatively model
such transitions thanks to the weak basis dependency of this
valence π→ π? transition.12,50 In order to treat the two singlet
electronic states on equal footing, a common set of deter-
minants is used for both states. In addition, state-averaged
complete active space self-consistent field [CASSCF(2,2)]
molecular orbitals, obtained with the GAMESS package,54 are
employed.

The difficulty of accurately modeling this vertical transi-
tion lies in the strong coupling between the σ and π spaces.
To assess this peculiar effect, we have performed several
calculations and our results are gathered in Table II. (The
corresponding total energies can be found in the supplemen-
tary material.) For comparison purposes, Table II also reports
reference calculations extracted from Ref. 50. First, we have
performed CAS-CI calculations taking into account only the
set of molecular orbitals with π symmetry. We refer to these
calculations as CAS(π). For CN3 and CN5, there are, respec-
tively, 4 and 6 electrons as well as 32 and 50 orbitals in the
CAS(π) space. This results in multideterminant wave functions
containing 11 296 and 670 630 determinants, respectively. To
quantify the strong coupling between the σ and π space, we
have also computed full-valence exFCI energies [denoted as
exFCI(σ + π)].11,12 These values fit nicely with the exCC3(σ
+ π) benchmark values reported by Send et al.,50 in agree-
ment with our previous study which shows that, at least for
compact compounds, CC3 and exFCI yield similar excitation
energies.12

The difference between CAS(π) and exFCI(σ + π) is of
the order of half an eV (slightly less for CN5), showing that
the relaxation of the σ orbitals plays a central role here, this
effect becoming less pronounced when the number of carbon
atoms increases. Note that our CAS(π) excitation energies are
extremely close to the CASSCF results reported in Table II.
The diffusion Monte Carlo (DMC) estimates of Send et al.50

are probably off by 0.2 eV due to the lack of direct σ − π

TABLE II. Vertical excitation energy (in eV) of cyanines for various meth-
ods. The error bar corresponding to one standard deviation is reported in
parentheses.

Method CN3 CN5 References

CAS(π)a 7.62 5.27 This work
CAS(π) + PT2 7.43 5.02 This work
CAS(π) + sBk0 7.40 4.98 This work
CAS(π) + sBk 7.17 4.77 This work
exFCI(σ + π)b 7.17 4.89 This work

CASSCF(π)c 7.59 5.25 50
CASPT2(π)d 7.26 4.74 50
CC3(σ + π)e 7.27 4.89 50

DMCf 7.38(2) 5.03(2) 50
exCC3(σ + π)g 7.16 4.84 50

aCAS-CI/aug-cc-pVDZ calculations: CAS(4,32) and CAS(6,50) for CN3 and CN5,
respectively.
bExtrapolated CIPSI/aug-cc-pVDZ calculations (see the supplementary material).
cCASSCF/ANO-L-VDZP calculations with optimal active spaces: CAS(4,6) and
CAS(6,10) for CN3 and CN5, respectively.
dCASPT2/ANO-L-VDZP calculations with the standard IPEA Hamiltonian and optimal
active spaces: CAS(4,6) and CAS(6,10) for CN3 and CN5, respectively.
eCC3/ANO-L-VDZP excitation energies.
fDiffusion Monte Carlo results based on optimal active space CASSCF trial wave func-
tions obtained using the T′+ basis set and a Jastrow factor including electron-nuclear and
electron-electron terms.
gExtrapolated CC3 excitation energies obtained by adding the difference between the
CC3/ANO-L-VDZP and CC2/ANO-L-VDZP values to the CC2/ANO-L-VTZP results.

coupling in the active space, which is only partially recovered
by the Jastrow factor and the orbital optimization.

In CAS(π) + PT2, the second-order correction E(2), com-
puted by taking into account all the determinants from the FCI
space connected to the CAS(π) reference space, is added to
the CAS(π) result. This correction goes in the right direction
and recovers 0.19 and 0.25 eV for CN3 and CN5, respectively,
bringing the excitation energies within 0.25 and 0.13 eV to the
exFCI(σ + π) values.

Similarly, CAS(π) + sBk0 and CAS(π) + sBk correspond
to sBk and sBk0 calculations where the CAS(π) model space
is renormalized by the effect of the perturbers. Like in the
case of CuCl2, CAS(π) + sBk0 recovers slightly more than
CAS(π) + PT2, while CAS(π) + sBk is spot on for CN3 and
overshoots slightly the exFCI(σ + π) values for CN5 with
an error of 0.12 eV. These results show that the shifted-Bk
method associated with a CIPSI-like sCI algorithm is able to
recover a large fraction of the missing correlation energy, even
with relatively small model spaces.

SUPPLEMENTARY MATERIAL

See supplementary material for the pseudo-code of the
multi-state algorithm, total energies associated with Table II,
and exFCI extrapolations.
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