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Abstract

We describe a method for imposing the correct electron-nucleus (e-n) cusp in
molecular orbitals expanded as a linear combination of (cuspless) Gaussian
basis functions. Enforcing the e-n cusp in trial wave functions is an important
asset in quantum Monte Carlo calculations as it significantly reduces the
variance of the local energy during the Monte Carlo sampling. In the method
presented here, the Gaussian basis set is augmented with a small number of
Slater basis functions. Note that, unlike other e-n cusp correction schemes,
the presence of the Slater function is not limited to the vicinity of the nuclei.
Both the coefficients of these cuspless Gaussian and cusp-correcting Slater
basis functions may be self-consistently optimized by diagonalization of an
orbital-dependent effective Fock operator. Illustrative examples are reported
for atoms (H, He and Ne) as well as for a small molecular system (BeH2). For
the simple case of the He atom, we observe that, with respect to the cuspless
version, the variance is reduced by one order of magnitude by applying our
cusp-corrected scheme.

Keywords: electron-nucleus cusp, Slater function, quantum Monte Carlo
method, effective Hamiltonian theory

1. Introduction

In the last decade, the advent of massively parallel computational platforms
and their ever-growing number of computing nodes has unveiled new horizons
for studying quantum systems. It is now widely recognized that there is

Email address: loos@irsamc.ups-tlse.fr (Pierre-François Loos)

Preprint submitted to Advances in Quantum Chemistry March 14, 2019

ar
X

iv
:1

90
2.

03
40

6v
2 

 [
ph

ys
ic

s.
ch

em
-p

h]
  1

2 
M

ar
 2

01
9



an imperative need to develop methods that take full advantages of these
new supercomputer architectures and scale up to an arbitrary number of
cores. A class of methods known to scale up nicely are stochastic approaches,
and especially quantum Monte Carlo (QMC) methods which are steadily
becoming the go-to computational tool for reaching high accuracy in large-
scale problems (see, for example [1, 2, 3, 4, 5]). In practice, to make QMC
feasible for large systems, it is essential to resort to accurate trial wave
functions leading both to an efficient sampling of the configuration space and
to low energy fluctuations. A precious guide to build up such functions is to
take into account the universal features known about the exact many-electron
wave function [6, 7, 8, 9, 10, 11, 12, 13].

In standard QMC implementations, the trial wave functions are usually
defined as [14, 15, 16]

ΨT(R) = eJ(R)
∑
I

cID
↑
I (R

↑)D↓I (R
↓), (1)

where Dσ
I and Rσ are determinants and coordinates of the spin-σ electrons,

respectively. The fermionic nature of the wave function is imposed using a
single- or multi-determinant expansion of Slater determinants [17, 18, 19, 20,
21, 22] made of Hartree-Fock (HF) or Kohn-Sham (KS) molecular orbitals
(MOs)

φi(r) =
N∑
µ

cµi χµ(r) (2)

built as a linear combination of N Gaussian basis functions χµ(r). J(R) is
called the Jastrow factor and its main purpose is to catch the bulk of the
dynamic electron correlation.

At short interparticle distances, the Coulombic singularity dominates all
other terms and, near the two-particle coalescence point, the behaviour of the
exact wave function Ψ becomes independent of other details of the system
[13]. In particular, early work by Kato [23, 24], and elaborations by Pack and
Byers Brown [25], showed that, as one electron at ri approaches a nucleus of
charge ZA at rA, we have

∂ 〈Ψ(R)〉
∂ri

∣∣∣∣
ri=rA

= −ZA 〈Ψ(R)〉|ri=rA , (3)

where 〈Ψ(R)〉|ri=rA is the spherical average of Ψ(R) about ri = rA.
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To remove divergences in the local energy at the electron-nucleus (e-n)
coalescence points, cusp conditions such as (3) must be satisfied. (Note that
the use of pseudopotentials would also remove the divergence at the e-n
coalescence points as routinely done in QMC calculations, but at the price
of introducing systematic errors such as the pseudopotential approximate
representation and the localization error.) These divergences are especially
harmful in DMC calculations, where they can lead to a large increase of the
statistical variance, population-control problems and significant biases [15].

There are two possible ways to enforce the correct e-n cusp. One way to
do it is to enforce the e-n cusp within the Jastrow factor in Eq. (1). This
has the disadvantage of increasing the number of parameters in J(R), and
their interdependence can be tricky as one must optimise the large number of
linear and non-linear parameters contained in J(R) via a stochastic (noisy)
optimization of the energy and/or its variance. However, it is frequently done
in the literature thanks to some recent progress [26, 27, 28]. Another way is
to enforce the cusp within the multideterminant expansion of Eq. (1).

However, because one usually employs Gaussian basis functions [29] (as
in standard quantum chemistry packages), the MOs φi(r) are cuspless, i.e.

∂ 〈φi(r)〉
∂r

∣∣∣∣
r=rA

= 0. (4)

One solution would be to use a different set of basis functions [30] as, for
instance, Slater basis functions [31, 32, 33]. However, they are known to
be troublesome, mainly due to the difficulty of calculating multicentric two-
electron integrals which require expensive numerical expansions or quadratures.
Nevertheless, some authors [34] have explored using wave functions built with
Slater basis functions [35] while imposing the right e-n cusp afterwards.
(Note that it is also possible to enforce the correct e-n cusp during the SCF
process although it is rarely done [36].) These types of calculations can be
performed with an electronic structure package such as ADF [37]. However,
as far as we know, it is hard to perform large-scale calculations with Slater
basis functions and the virtual space is usually poorly described. Moreover,
Gaussian bases are usually of better quality than Slater-based ones due to the
extensive knowledge and experience gathered by quantum chemists over the
last fifty years while building robust, compact and effective Gaussian basis
sets [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].

Conventional cusp correction methods usually replace the part of χµ(r) or
φi(r) close to the nuclei within a cusp-correction radius by a polynomial or a
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spline function which fulfils Kato cusp conditions and ensures a well-behaved
local energy [52, 53, 54, 55]. For atoms, one can also substitute Gaussian
core orbitals by tabulated Slater-based ones [56, 57, 58]. In the same vein,
Toulouse and Umrigar have fitted Slater basis functions with a large number
of Gaussian functions and replaced them within the QMC calculation [28].
However, it is hardly scalable for large systems due to its lack of transferability
and the ever-growing number of primitive two-electron integrals to compute.

Here, we propose to follow a different, alternative route by augmenting
conventional Gaussian basis sets with cusp-correcting Slater basis functions.
Mixed Gaussian-Slater basis sets have been already considered in the past
with limited success due to the difficultly of computing efficiently mixed
electron repulsion integrals [59, 60, 61, 62, 63, 64, 65, 66]. However, we will
show that, because of the way we introduce the cusp correction, the integrals
required here are not that scary. For the sake of simplicity, we will focus
on the HF formalism in the present study, although our scheme can also be
applied in the KS framework.

2. Cusp-corrected orbitals

A sufficient condition to ensure that Φ fulfills the e-n cusp (3) is that
each (occupied and virtual) MO φ̃i(r) satisfies the e-n cusp at each nuclear
position rA:

∂ 〈φ̃i(r)〉
∂r

∣∣∣∣∣
r=rA

= −ZA 〈φ̃i(r)〉
∣∣
r=rA

. (5)

Note that this is true only if no linear term in r is introduced within the
Jastrow factor. Without loss of generality, we also assume that the basis
functions have been already orthogonalized via the standard procedure [67],
i.e. 〈χµ|χν〉 = δµν , where δµν is the Kronecker delta [68].

Here, we enforce the correct e-n cusp by adding a cusp-correcting orbital
to each MO:

φ̃i(r) = φi(r) + P̂ϕi(r), (6)

with

ϕi(r) =
M∑
A

c̃Ai χ̃
i
A(r), (7)

where M is the number of nuclear centers and

χ̃iA(r) =

√
α̃3
i

π
exp[−α̃i|r − rA|] (8)
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is a s-type Slater function centered on nucleus A with an orbital-dependent
exponent α̃i. In Eq. (6), the projector

P̂ = Î −
∑
µ

|χµ〉〈χµ| (9)

(where Î is the identity operator) ensures orthogonality between φi(r) and
the cusp-correcting orbital ϕi(r).

It is easy to show that ensuring the right e-n cusp yields the following
linear system of equations for the coefficients cAi:

∑
B

[
− δAB
ZA

∂rχ̃
i
A(rA)− χ̃iB(rA) +

∑
µ

S̃iBµχµ(rA)

]
c̃Bi = φi(rA), (10)

where

δAB =

{
1, A = B,

0, A 6= B
(11)

is the Kronecker delta [68] and the explicit expression of the matrix elements
S̃iµA = 〈χµ|χ̃iA〉 is given in Appendix and

∂rχ̃
i
A(rA) ≡ ∂χ̃iA(r)

∂r

∣∣∣∣
r=rA

. (12)

Equation (10) can be easily solved using standard linear algebra packages,
and provides a way to obtain a cusp-corrected orbital φ̃i(r) from a given
MO φi(r). For reasons that will later become apparent, we will refer to this
procedure as a one-step (OS) calculation. In the next section, we are going
to explain how one can optimize self-consistently the coefficients c̃Ai.

3. Self-consistent dressing of the Fock matrix

So far, the coefficient c̃Ai have been set via Eq. (10). Therefore, they have
not been obtained via a variational procedure as their only purpose is to
enforce the e-n cusp. However, they do depend on φi(rA), hence on the MO
coefficients cµi. We will show below that one can optimize simultaneously the
coefficients c̃Ai and cµi by constructing an orbital-dependent effective Fock
matrix.
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As it is ultimately what we wish for, the key point is to assume that φ̃i(r)
is an eigenfunction of the Fock operator f̂ , i.e.

f̂ |φ̃i〉 = ε̃i |φ̃i〉 . (13)

Note that, even at convergence of a conventional HF or KS calculation, the
equality (13) is never fulfilled (unless the basis happens to span the exact
orbital). This under-appreciated fact has been used by Deng et al. to design
a measure of the quality of a MO [69].

Next, we project out Eq. (13) over 〈χµ| yielding∑
ν

Fµνcνi +
∑
A

c̃Ai

(
F̃ i
µA −

∑
λ

FµλS̃
i
λA

)
= ε̃icµi, (14)

where

Fµν = 〈χµ|f̂ |χν〉 , F̃ i
µA =

〈
χµ
∣∣f̂ ∣∣χ̃iA〉 . (15)

In the general case, because we must use basis functions with non-zero
derivatives at the nucleus, finding the matrix elements F̃ i

µA is challenging and
costly. However, because we are interested in the e-n cusp, we have found
that a satisfactory approximation is

F̃ i
µA −

∑
λ

FµλS̃
i
λA ≈ h̃iµA −

∑
λ

Hc
µλS̃

i
λA (16)

where

Hc
µν = 〈χµ|ĥ|χν〉 , h̃iµA =

〈
χµ
∣∣ĥ∣∣χ̃iA〉 , (17)

and ĥ is the core Hamiltonian. (The expression of the matrix elements h̃iµA
are given in Appendix.) Note that, in Eq. (16), it is important to use the
same approximation for both terms (F̃ i

µA ≈ h̃iµA and Fµν ≈ Hc
µν) in order to

preserve the subtle balance between the two terms.
The eigenvalue problem given by Eq. (14) can be recast as∑

ν

F̃ i
µνcνi = ε̃icµi, (18)

where we have “dressed” the diagonal of the Fock matrix

F̃ i
µν =

{
Fµµ + D̃i

µ, if µ = ν,

Fµν , otherwise,
(19)
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with

D̃i
µ = c−1µi

∑
A

c̃Ai

(
h̃iµA −

∑
λ

Hc
µλS̃

i
λA

)
. (20)

The process is repeated until our convergence criterion is met, i.e. the largest
absolute value of the elements of the commutator F̃ iP − PF̃ i is lower than
a given threshold, where F̃ i is the dressed Fock matrix [Eq. (19)] and P is
the density matrix with

Pµν =
occ∑
i

cµicνi. (21)

In the remainder of this paper, we will refer to this procedure as self-consistent
dressing (SCD).

Similar to the Perdew-Zunger self-interaction correction [70], the orbitals
φ̃i(r) are eigenfunctions of different Fock operators and therefore no longer
necessarily orthogonal. Practically, we have found that the e-n cusp correction
makes the cusp-corrected MOs φ̃i slightly non-orthogonal. However, this is
not an issue as, within QMC, one evaluates the energy via MC sampling
which only requires the evaluation of the MOs and their first and second
derivatives.

Obviously, as evidenced by Eq. (19), when cµi is small, the dressing of the
Fock matrix is numerically unstable. Therefore, we have chosen not to dress
the Fock matrix if cµi is smaller than a user-defined threshold τ . We have
found that a value of 10−5 is suitable for our purposes, and we use the same
value for the convergence threshold. Moreover, we have found that setting
[53]

α̃i =
φi(rA)

φ̊i(rA)
ZA (22)

(where φ̊i(r) corresponds to the s-type components of φi(r) centered at rA)
yields satisfactory results. In the case where φ̊i(rA) = 0, the MO is effectively
zero at r = rA and, therefore, does not need to be cusp corrected. As in
conventional self-consistent calculations, it is sometimes useful to switch on
the convergence accelerator DIIS [71, 72], and we have done so in some cases.
The general skeleton of the algorithm is given in Algorithm 1.
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Algorithm 1 Skeleton of the e-n cusp correction algorithm. c and c̃ gather
the coefficients cµi and c̃Ai respectively. τ is a user-defined threshold.

1: procedure enCuspCorrection
2: Do a standard HF or KS calculation
3: to obtain MO coefficients c and density matrix P
4: . Main loop over MOs
5: for MO i = 1, . . . , N do
6: for nuclear center A = 1, . . . ,M do
7: Compute φi(rA) and φ̊i(rA)
8: and determine α̃i via Eq. (22)
9: Evaluate ∂rχ̃

i
A(rA)

10: for nuclear center B = 1, . . . ,M do
11: Evaluate χ̃iB(rA)
12: end for
13: end for
14: Compute dressing integrals S̃i and h̃i (if required)
15: (see Appendix)
16: Compute c̃Ai via Eq. (10)
17: if one-step calculation go to 34
18: . Start SCF loop for ith MO
19: while max |F̃ iP − PF̃ i| > τ do
20: Compute Fock matrix F
21: for basis function µ = 1, . . . N do
22: if |cµi| > τ then
23: Dress the diagonal of the Fock matrix:
24: F̃ i

µµ = Fµµ + D̃i
µ (see Eq. (20))

25: end if
26: end for
27: Diagonalize F̃ i to obtain c
28: Compute new density matrix P
29: for nuclear center A = 1, . . . ,M do
30: Update the value of φi(rA)
31: end for
32: Update c̃Ai by solving Eq. (10)
33: end while
34: Store Gaussian coefficients cµi and
35: Slater coefficients c̃Ai of ith MO
36: end for
37: . Return useful quantities for QMC calculation
38: return c and c̃
39: end procedure
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Figure 1: Local energy EL(r) for various wave functions of the H atom. The cuspless
wave function is obtained with the decontracted STO-3G Gaussian basis set (red curve),
and the OS and SCD cusp-corrected wave functions (blue and orange curves respectively)
are obtained using α̃H = 1.

Table 1: Variational energy and its variance for various wave functions of the H atom.
The energy is obtained with the decontraced STO-3G Gaussian basis set. The OS and SCD
cusp-corrected energies are obtained by adding a Slater basis function of unit exponent
(α̃H = 1) to the Gaussian basis set. The energy and variance at each iteration of the SCD
process is also reported. max |c| is the maximum absolute value of the Gaussian basis
coefficients and c̃ is the value of the coefficient of the Slater function.

Basis Cusp correction Iteration Energy Variance max |c| c̃
Gaussian — −0.495741 2.23× 10−1 0.66158 0

Mixed OS −0.499270 4.49× 10−2 0.07486 1.95629
Mixed SCD #1 −0.499270 4.49× 10−2 0.07486 1.95629

#2 −0.499970 3.07× 10−6 0.00254 2.00225
#3 −0.500000 4.88× 10−9 0.00006 1.99691
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Figure 2: Cuspless and cusp-corrected HF 1s core orbitals φ1s(r) of the He (left) and Ne
(right) atoms obtained with various schemes. The Gaussian basis set is Pople’s 6-31G basis
and the Slater basis functions have α̃He = 2 and α̃Ne = 10. For the Ne atom, the OS and
SCD cusp-correction schemes yield indistinguishable curves.

4. Illustrative examples

4.1. Atoms

Let us illustrate the present method with a simple example. For peda-
gogical purposes, we have computed the wave function of the hydrogen atom
within a small Gaussian basis (decontracted STO-3G basis). In Fig. 1, we
have plotted the local energy associated with this wave function as well as
its OS and SCD cusp-corrected versions. The numerical results are reported
in Table 1. As expected, the “cuspless” local energy (red curve) diverges for
small r with a variational energy off by 4.3 millihartree compared to the exact
value of −1/2. The OS cusp-correcting procedure which introduces a Slater
basis function of unit exponent (but does not re-optimise any coefficients)
cures the divergence at r = 0 and significantly improves (by roughly one
order of magnitude) both the variational energy and the variance. Moreover,
we observe that the long-range part of the wave function is also improved
compared to the Gaussian basis set due to the presence of the Slater basis
function which has the correct asymptotic decay. The SCD cusp-correcting
procedure further improve upon the OS scheme, and we reach a variance
lower than 10−8 after only 3 iterations. The values of the coefficients of
the Gaussian and Slater functions reported in Table 1 clearly show that,
as expected, the Gaussian functions are getting quickly washed away and
replaced by the Slater function.

In Fig. 2, we have plotted the cuspless HF 1s core orbitals of the helium
(left) and neon (right) atoms, and their cusp-corrected versions obtained

10
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Figure 3: Local energy EL(r) of the cuspless and cusp-corrected HF wave functions as
an electron is moved through the nucleus of a Ne atom located at the origin. The other
electrons have been positioned randomly. The Gaussian basis set is Pople’s 6-31G basis
and the Slater basis function has an exponent α̃Ne = 10.

with various schemes. For the He atom, we compare the cusp-corrected
orbitals produced by the OS and SCD procedures. One can clearly see that
the qualitative difference between the cusp-corrected orbitals is small (at
least graphically). For the Ne atom, one cannot graphically distinguished
between the two cusp-correcting schemes. Figure 3 reports the local energy
of the cuspless and cusp-corrected HF wave functions as an electron is moved
through the nucleus of a Ne atom located at the origin. (The other electrons
have been positioned randomly.) The right panel of Fig. 3 corresponds to a
zoom around the origin where the local energy associated with the cuspless
wave function is strongly oscillatory and ultimately diverges towards −∞
as r → 0. We observe that the cusp-correcting algorithm removes both the
divergence of the local energy at the origin but also smooths out its erratic
oscillations in the neighborhood of the origin, while remaining identical to
the local energy obtained with the cuspless wave function for large r. In
particular, one can see that the node (i.e. zero) of the wave function around
r = −2 is not significantly altered by the addition of the Slater basis function
(albeit not strictly identical).

Table 2 reports the energy and the corresponding variance of the He atom
computed at the VMC and DMC level. The trial wave function is the HF
wave function computed in the 6-31G basis with or without cusp correction.
Similar to the case of the H atom discussed above, the OS and SCD schemes
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Table 2: Energy and corresponding variance of the He atom computed with various
methods. The trial wave function is the HF wave function computed in the 6-31G basis.
The error bar corresponding to one standard deviation is reported in parenthesis.

Cusp Energy (a.u.) Variance (a.u.)
correction Deterministic VMC DMC VMC DMC

— −2.855 160 −2.855 12(6) −2.903 9(1) 3.99(3) 4.47(18)
OS −2.857 89(6) −2.903 4(3) 0.605(6) 0.498(2)

SCD −2.858 17(9) −2.903 2(2) 0.610(3) 0.498(1)

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 4: Cuspless and cusp-corrected HF valence (ag and b1u) orbitals of the BeH2

molecule obtained with the 6-31G basis set. For the ag orbital, we have α̃Be = 3.7893
and α̃H = 1.1199, while for the b1u orbital, α̃H = 1.2056. The black line corresponds to
the difference between the cuspless and cusp-corrected orbitals magnified by one order of
magnitude.

reduce significantly both the variational energy and the variance. The energy
decreases by roughly 2.8 and 3.1 millihartree (compared to the uncorrected
scheme) using OS and SCD, respectively. Likewise, we observe that the
variance is reduced by one order of magnitude by applying our cusp-corrected
schemes, the difference between OS and SCD being negligible.

4.2. Molecules

As a molecular example, we consider the beryllium hydride molecule BeH2

at experimental geometry. The Gaussian basis set is Pople’s 6-31G basis and
the Slater exponents have been obtained via Eq. (22). The two HF valence
orbitals (ag and b1u) of this linear molecule are depicted in Fig. 4. The black
line corresponds to the difference between the cuspless and cusp-corrected
orbitals magnified by one order of magnitude. Note that the cusp-correcting
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Figure 5: Local energy EL(r) of the cuspless and cusp-corrected HF wave functions as an
electron is moved through the nuclei (marked with thin black lines) of the BeH2 molecule at
experimental geometry. The other electrons have been positioned randomly. The Gaussian
basis set is Pople’s 6-31G basis and the Slater exponents have been obtained via Eq. (22).

scheme does not correct the second MO on the Be nucleus because the value
of this MO is effectively zero on this center.

The corresponding local energies as an electron is moved through the
nuclei (marked with thin black lines) of the BeH2 molecule are represented
in Fig. 5. (The other electrons have been positioned randomly.) Similarly
to the results of the previous section, the cusp-correcting scheme removes
the divergences of the local energy at the nuclei. Note, however, that a
discontinuity appears in the local energy at the nuclear centers (see inset
graphs of Fig. 5). It is well-known that these discontinuities do not lead to
any problems within QMC calculations. Note also that the node of the wave
function around z = −3/4 is significantly shifted due to the introduction of
the Slater basis function.

5. Conclusion

We have introduced a procedure to enforce the electron-nucleus (e-n)
cusp by augmenting conventional (cuspless) Gaussian basis sets with cusp-
correcting Slater basis functions. Two types of procedure has been presented.
In the one-step (OS) procedure, the coefficients of the Slater functions are
obtained by ensuring the correct e-n cusp at each nucleus. We have also
designed a self-consistent procedure to optimize simultaneously the coefficients
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of the Gaussian and Slater basis functions by diagonalization of an orbital-
dependent effective Fock operator.

The same procedure could potentially be employed to correct the long-
range part of the electronic density with obvious application within DFT.
We are currently working on a similar methodology to enforce the electron-
electron cusp in explicitly correlated wave functions. We hope to be able to
report on this in the near future.

Appendix A. Dressing integrals

Thanks to the approximation (16), we eschew the calculations of two-
electron integrals and we only need to consider three types of one-electron
integrals in order to dress the Fock matrix in Eq. (14): overlap, kinetic
energy and nuclear attraction. (For a OS calculation, only the former is
mandatory.) Their particularity is that they are “mixed” integrals as they
involve one Gaussian function (with arbitrary angular momentum) and one
(momentumless) Slater function [73, 74]. Note that one can easily generalized
the present procedure and consider a (contracted) linear combination of s-type
Slater functions.

Appendix A.1. Overlap integrals

We must find mixed Gaussian-Slater overlap integrals of the form

S̃aB = 〈χa|χ̃B〉 =

∫
χa(r)χ̃B(r)dr, (A.1)

where χ̃B(r) is given by Eq. (8) (where we have removed the superscript i for
the sake of clarity) and

χa(r) = (x− Ax)ax(y − Ay)ay(z − Az)az exp
[
−α|r −A|2

]
(A.2)

is a primitive Gaussian function of exponent α and angular momentum
a = (ax, ay, az) centered in A = (Ax, Ay, Az), its total angular momentum
being given by a = ax + ay + az. Contracted integrals can be obtained by
a straightforward summation of the primitive integrals weighted by their
contraction coefficients [73, 75, 74].

We shall start by reporting the expression of the fundamental integral S̃0B

(where 0 = (0, 0, 0)). Higher angular momentum integrals can be obtained by
differentiation with respect to the center coordinates. For example, we have

S̃(1,0,0)B =
1

2α

∂S̃0B

∂Ax
. (A.3)
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Using the Gaussian representation of a Slater function

exp(−ζr) =
ζ√
π

∫ ∞
0

exp

[
−u−2r2 − ζ2u2

4

]
du, (A.4)

we obtain

S̃0B =
β̃5/2

π

∫ ∞
0

exp

[
− β̃

2u2

4

](∫
exp
[
−α|r −A|2

]
exp
[
−u−2|r −B|2

]
dr

)
du

=
β̃5/2

π

∫ ∞
0

exp

[
− β̃

2u2

4

](
π

α+ u−2

)3/2

exp

[
− αu−2

α+ u−2
AB2

]
du

=
πβ̃3/2

2α2|AB|

{√ β̃2

4α
+
√
α|AB|

 erfc

√ β̃2

4α
+
√
α|AB|

 exp

[
β̃2

4α
+ β̃|AB|

]

−

√ β̃2

4α
−
√
α|AB|

 erfc

√ β̃2

4α
−
√
α|AB|

 exp

[
β̃2

4α
− β̃|AB|

]}
,

(A.5)

where AB = A−B and erfc(x) is the complementary error function [68]. It
is easy to show that the use of the Gaussian representation (A.4) allows us
to reduce the integral to the conventional Gaussian-type function case, which
has been extensively discussed in the literature [67, 76]. One only needs to
perform the last integration that can be easily performed using a computer
algebra system such as Mathematica [77].

Appendix A.2. Kinetic energy integrals

The same technique is applied to the kinetic energy integral

T̃aB = −1

2

〈
∇2χa

∣∣χ̃B〉 , (A.6)

which yields

T̃0B =
πβ̃5/2

2α3/2|AB|

{1 +
β̃2

4α
−

√
β̃2

4
|AB|

 erfc

√ β̃2

4α
−
√
α|AB|

 exp

[
β̃2

4α
− β̃|AB|

]

−

1 +
β̃2

4α
+

√
β̃2

4
|AB|

 erfc

√ β̃2

4α
+
√
α|AB|

 exp

[
β̃2

4α
+ β̃|AB|

]}
.

(A.7)
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Appendix A.3. Nuclear attraction integrals

For the nuclear attraction integrals of the form

ṼaB = 〈χa||r −C|−1|χ̃B〉 , (A.8)

in addition to the Gaussian representation of the Slater function (see Eq. (A.9)),
we also use the well-known Gaussian representation of the Coulomb operator:

1

r
=

2√
π

∫ ∞
0

exp
(
−v2r2

)
dv. (A.9)

We obtain

Ṽ0B = 2β̃5/2

∫ ∞
0

1

α + u−2
F0

[
(α + u−2)

∣∣∣∣αA + u−2B

α + u−2
−C

∣∣∣∣2
]

exp

[
− αu−2

α + u−2
|AB|2

]
exp

[
− β̃

2u2

4

]
du, (A.10)

where F0(t) is the Boys function [78, 79, 80]. To the best of our knowledge,
this expression cannot be integrated further (expect in some particular cases)
but it can be efficiently evaluated by numerical quadrature using the Gauss-
Legendre rule. In the case of the nuclear attraction integrals, due to the form
of the integrand in Eq. (A.10), we use the conventional Gaussian recurrence
relations to evaluate higher angular momentum integrals. These involve the
evaluation of the generalized Boys functions Fm(t) which can be computed
efficiently using well-established algorithms [78, 79, 80]. We refer the reader
to Ref. [76] for more details.
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