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3)Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

Due to their diverse nature, the faithful description of excited states within electronic structure theory methods
remains one of the grand challenges of modern theoretical chemistry. �antum Monte Carlo (QMC) methods have
been applied very successfully to ground state properties but still remain less e�ective than other non-stochastic
methods for electronically excited states. Nonetheless, we have recently reported accurate excitation energies for
small organic molecules at the �xed-node di�usion Monte Carlo (FN-DMC) within a Jastrow-free QMC protocol
relying on a deterministic and systematic construction of nodal surfaces using the selected con�guration interaction
(sCI) algorithm known as CIPSI (Con�guration Interaction using a Perturbative Selection made Iteratively). Albeit
highly accurate, these all-electron calculations are computationally expensive due to the presence of core electrons.
One very popular approach to remove these chemically-inert electrons from the QMC simulation is to introduce
pseudopotentials. However, such approach inevitably introduces a bias due to the approximate nature of these
pseudopotentials. Furthermore, an additional bias may be introduced in DMC due to the localization of nonlocal
pseudopotentials. Taking the water molecule as an example, we investigate the in�uence of pseudopotentials on vertical
excitation energies obtained with sCI and FN-DMC methods. Although pseudopotentials are known to be relatively
safe for ground state properties, we evidence that special care is required if one strives for highly accurate vertical
transition energies. Indeed, comparing all-electron and valence-only calculations, we show that the approximate
nature of the pseudopotentials can induce errors as large as 0.1 eV on the excitation energies. While acceptable for
most chemical applications, it might become unacceptable for benchmark studies. We show that estimating the error
induced by the pseudopotentials at the sCI level should provide a reasonable estimate of the error that should occur in
the FN-DMC excitation energies.

I. INTRODUCTION

At the very heart of photochemistry lies the subtle role
played by low-lying electronic states and their mutual
interactions.1–5 In general, the correct description of these
phenomena requires to locate with enough accuracy the
�rst few low-lying excited states of the system and to un-
derstand how such states interact not only between them-
selves (conical intersections, spin-orbit e�ects, . . . ) but also
with other degrees of freedom (coupling with ro-vibrational
modes, environnement e�ects, . . . ). For example, in the case
of the photophysics of vision, precious information can be
gained by exploring the excited states of polyenes6–15 that
are closely related to rhodopsin which is involved in visual
phototransduction.16–21

Accurate and e�cient electronic structure methods are
now available for the computation of molecular excited states.
Time-dependent density-functional theory (TD-DFT)22 is un-
doubtedly at the front of the pack thanks to its favorable
cost/accuracy ratio, although several well-documented short-
comings have been put forward in the past twenty years.23–36.
More expensive methods, such as CIS(D),37 CC2,38 CC3,39

ADC(2),40 ADC(3),41 EOM-CCSD42 (and higher orders CC
approaches43) are also available. Albeit o�en more computa-
tionally expensive, one can also rely on multicon�gurational
methods such as the complete active space self-consistent �eld
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(CASSCF) method,44 its second-order perturbation-corrected
variant (CASPT2),45 as well as the second-order n-electron
valence state perturbation theory (NEVPT2),46 to compute
accurate transition energies. Alternatively to the mainstream
methods mentioned above, selected con�guration interaction
(sCI) methods47–50 have demonstrated to be valuable alterna-
tives for the computation of highly accurate transition ener-
gies for small molecules.51–67

Pushing further this idea, we have reported, in a recent
study,60 accurate excitation energies for two small organic
molecules (water and formaldehyde) using �xed-node di�u-
sion Monte Carlo (FN-DMC)68–73 within a Jastrow-free quan-
tum Monte Carlo (QMC) protocol relying on a deterministic
and systematic construction of nodal surfaces using the sCI
algorithm known as CIPSI (Con�guration Interaction using
a Perturbative Selection made Iteratively).49,51–55,59,60,67,74–76.
Within FN-DMC, ensuring accurate calculations of vertical
transition energies is far from being straightforward59,60,77–98

as the mechanism and degree of error compensation of the
�xed-node error99–103 in the ground and excited states are
mostly unknown, expect in a few cases.104–111 However, our
study has clearly evidenced that the �xed-node errors in the
ground and excited states obtained with sCI trial wave func-
tions cancel out to a large extent, allowing for the determi-
nation of accurate vertical excitation energies for both the
singlet and triplet manifolds.

�e FN-DMC results reported in Ref. 60 are based on all-
electron calculations, i.e., we do not use pseudopotentials to
model the core electrons, contrary to what is done in most
QMC calculations on large systems.73,112–114 Our motivation



2

Start with |Ψ(0)
k 〉 = ∑

I∈D0

c(0)I,k |I〉

Find |α〉’s such that
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FIG. 1. �e CIPSI algorithm. See text for notations.

was to avoid any unnecessary approximation on our excitation
energies. However, due to the large �uctuations associated
with the very energetic core electrons, all-electron calcula-
tions are computationally expensive and must be avoided for
large systems. It is then highly desirable to quantify the error
that one introduces with pseudopotentials. �is problem is
investigated here both for sCI and DMC calculations using
the water molecule as a test system.

�is manuscript is organized as follows. �e CIPSI algo-
rithm used to obtain ground and excited-state wave functions
is presented in Sec. II. Computational details are reported in
Sec. III. In Sec. IV, we discuss our results and we draw our
conclusions in Sec. V. Unless otherwise stated, atomic units
are used throughout this study.

II. CIPSI FOR EXCITED STATES

As mentioned above, our sCI method is based on the CIPSI
algorithm.49 For a calculation involving Nstates states, the
CIPSI algorithm, represented in Fig. 1, starts with the follow-
ing wave functions

|Ψ(0)
k 〉 = ∑

I∈D0

c(0)I,k |I〉 , (1)

where 0 ≤ k ≤ Nstates − 1. For a ground-state calculation,
D0 is usually taken as the HF determinant only, or a deter-
minant made of natural orbitals obtained from a preliminary
calculation. �e second option usually signi�cantly speeds
up the convergence to the FCI limit. In the case of an excited-
state calculation, D0 contains the HF determinant as well as
all single excitations (CIS wave function) and state-averaged
natural orbitals are usually employed.

�en, we enter the CIPSI iterative process and look for the
set Ai of (external) determinants |α〉 connected to the set Di
of (internal) determinants |I〉, i.e. 〈α|Ĥ|I〉 6= 0.

Next, following Angeli and Persico,117 we calculate, using
Epstein-Nesbet perturbation theory, the second-order energy
contribution for each determinant |α〉 averaged over all states

δE(α) =
Nstates

∑
k

cαk

maxI c2
Ik
〈Ψ(i)

k |Ĥ|α〉 , (2)

with

cαk =
〈Ψ(i)

k |Ĥ|α〉
〈Ψ(i)

k |Ĥ|Ψ
(i)
k 〉 − 〈α|Ĥ|α〉

. (3)

�is choice gives a balanced selection between states of dif-
ferent multi-con�gurational nature. We then select the deter-
minants |α∗〉 having the largest contributions, i.e.

δE(α∗) = max
α∈Ai

δE(α). (4)

�e subset A∗i ⊂ Ai of determinants |α∗〉 are then added to
Di to form Di+1, i.e. Di+1 = Di ∪A∗i .

�is process is repeated until convergence of the ground-
and excited-state energies given by the lowest eigenvalues
of the Hamiltonian Ĥ. At convergence, the CIPSI algorithm
provides ground- and excited-state wave functions

|Ψ(n)
k 〉 = ∑

I∈Dn

cI,k |I〉 (5)

that can be used for QMC calculations.

III. COMPUTATIONAL DETAILS

�e sCI calculations have been performed with the elec-
tronic structure so�ware qantum package,67 while the
QMC calculations have been performed with the qmc=chem
program.118,119 Both so�ware packages are developed in
Toulouse and are freely available. Our computational pro-
cedure follows closely the one reported in Ref. 60, where
the interested reader will �nd additional details about trial
wave functions and our Jastrow-free QMC protocol. Be-
low, we report more information regarding pseudopotentials.
�e ground state geometry of H2O has been obtained at the
CC3/aug-cc-pVTZ level without frozen core approximation.
�is geometry has been extracted from Ref. 61 and is also
reported as supplementary material for sake of completeness.
�e sCI calculations have been performed in the frozen-core
approximation with the CIPSI algorithm49 which selects per-
turbatively determinants in the FCI space.51–55,59–61,66,74–76

For the calculations involving pseudopotentials, we have
used the valence-only Burkatzki-Filippi-Dolg (BFD) cc-pVXZ
basis sets (with X = D, T and Q) in conjunction with the
corresponding BFD small-core pseudopotentials.120,121 �e
di�use functions from the standard (all-electron) Dunning
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TABLE I. Vertical excitation energies (in eV) for the three lowest singlet and three lowest triplet excited states of water obtained with
all-electron AVXZ basis set and with the combination of BFD pseudopotentials and valence-only AVXZ basis sets (X = D, T, and Q). �e error
bar corresponding to one standard error is reported in parenthesis. �e relative di�erence between the all-electron and the corresponding
pseudopotential calculation is reported in square brackets.
Basis Method Singlet excitations Triplet excitations

1B1(n→ 3s) 1 A2(n→ 3p) 1 A1(n→ 3s) 3B1(n→ 3s) 3 A2(n→ 3p) 3 A1(n→ 3s)
AVDZ exFCIa 7.53 9.32 9.94 7.14 9.14 9.48

SHCIb 9.94(1)
exDMCa 7.73(1) 9.48(1) 10.10(1) 7.36(1) 9.33(1) 9.63(1)

AVDZ-BFD exFCIc 7.48[-0.05] 9.28[-0.04] 9.88[-0.06] 7.07[-0.07] 9.11[-0.03] 9.43[-0.05]
SHCIb 9.86(1)[-0.08]
exDMCc 7.65(1)[-0.08] 9.45(1)[-0.03] 10.00(1)[-0.10] 7.26(1)[-0.10] 9.27(1)[-0.06] 9.54(1)[-0.09]
DMC{J,O}a 9.97(1)

AVTZ exFCIa 7.63 9.41 9.99 7.25 9.24 9.54
SHCIb 10.00(0)
exDMCa 7.70(2) 9.47(2) 10.05(2) 7.35(1) 9.32(1) 9.61(1)

AVTZ-BFD exFCIc 7.58[-0.05] 9.38[-0.03] 9.93[-0.06] 7.16[-0.09] 9.21[-0.03] 9.47[-0.07]
SHCIb 9.93(1)[-0.07]
exDMCc 7.66(1)[-0.04] 9.49(1)[+0.02] 10.04(1)[-0.01] 7.25(1)[-0.10] 9.30(1)[-0.02] 9.55(1)[-0.06]
DMC{J,O}b 10.01(1)

AVQZ exFCIa 7.68 9.46 10.03 7.30 9.29 9.58
SHCIb 10.02(1)
exDMCa 7.71(1) 9.47(1) 10.03(1) 7.30(1) 9.28(1) 9.59(1)

AVQZ-BFD exFCIc 7.63[-0.05] 9.43[-0.03] 9.97[-0.06] 7.21[-0.09] 9.26[-0.03] 9.52[-0.06]
SHCIb 9.97(2)[-0.05]
exDMCc 7.65(1)[-0.06] 9.45(1)[-0.02] 10.02(1)[-0.01] 7.22(1)[-0.08] 9.24(1)[-0.04] 9.52(1)[-0.07]
DMC{J,O}b 10.01(1)

CBS exFCIa 7.70 9.48 10.03 7.31 9.30 9.58
exDMCa 7.70(1) 9.46(1) 10.01(1) 7.30(1) 9.28(1) 9.57(1)

CBS-BFD exFCIc 7.65[-0.05] 9.46[-0.02] 9.98[-0.05] 7.24[-0.07] 9.28[-0.02] 9.52[-0.06]
exDMCc 7.66(1)[-0.04] 9.48(1)[+0.02] 10.04(1)[+0.03] 7.23(1)[-0.07] 9.27(1)[-0.01] 9.53(1)[-0.04]

TBEd 7.70 9.47 9.97 7.33 9.30 9.59
Exp.e 7.41 9.20 9.67 7.20 8.90 9.46

a Reference 60.
b Reference 115.
c �is work.
d �eoretical best estimates of Ref. 61 obtained from exFCI/AVQZ data corrected with the di�erence between CC3/AVQZ and CC3/d-aug-cc-pV5Z values.
e Energy loss experiment from Ref. 116.

basis set family aug-cc-pVXZ were then added to the (di�use-
less) BFD bases. In the following, we labeled as AVXZ and
AVXZ-BFD the all-electron Dunning and valence-only BFD
bases, respectively.

�e FN-DMC simulations are performed using the stochas-
tic recon�guration algorithm developed by Assaraf et al.,122

with a time-step of 2× 10−4. In the present case, it is not
necessary to perform time step extrapolations as the time step
error is smaller than the statistical error in the computation of
excitation energies. Preliminary calculations have shown that
using the T-moves scheme in FN-DMC123,124 had no in�uence
in the calculation of the excitation energies. �is observation
is in agreement with the recent results of Blunt and Neuscam-
man on the same system.125 As pointed out by Hammond
and coworkers,126 when the trial wave function does not in-
clude a Jastrow factor, the non-local pseudopotential can be
localized analytically and the usual numerical quadrature over
the angular part of the non-local pseudopotential can be es-
chewed. In practice, the calculation of the localized part of the
pseudopotential represents only a small overhead (about 15%)
with respect to a calculation without pseudopotentials (and
the same number of electrons). For more details about our
implementation of pseudopotentials within QMC, we refer
the interested readers to Ref. 127.

IV. RESULTS

A. Selected configuration interaction

Vertical excitation energies for various singlet and triplet
states of the water molecule are reported in Table I. For a
molecule as small as water (even in a fairly large basis set),
it is straightforward to converge sCI calculations and to ob-
tain vertical excitation energies with an uncertainty (for a
given basis) of 0.01 eV. �roughout the paper, we label these
calculations as exFCI (extrapolated FCI) for consistency with
our previous studies.59–61,66 In Table I, the relative di�erence
between the all-electron and the corresponding pseudopoten-
tial calculations is reported in square brackets. For compari-
son, we also report the (extrapolated) energies of Blunt and
Neuscamman125 obtained with the semistochastic heat-bath
CI (SHCI) method,56,57,128 one of the other sCI variants. As
expected, these values agree perfectly (within statistical error)
with the exFCI energies.

Table I also contains complete basis set (CBS) estimates
obtained with the usual extrapolation formula129

EexFCI(X) = ECBS
exFCI +

α

(X + 1/2)3 , (6)

where α and ECBS
exFCI are obtained by ��ing the exFCI results

for X = 2 (AVDZ), X = 3 (AVTZ), and X = 4 (AVQZ). For
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FIG. 2. Extrapolation of the exFCI energies to the complete basis set (CBS) limit for the water molecule. �e extrapolated sCI energy EexFCI is
plo�ed as a function of (X + 1/2)−3 for X = 2 (AVDZ-BFD), X = 3 (AVTZ-BFD) and X = 4 (AVQZ-BFD). ECBS

exFCI stands for the CBS energy
obtained at the exFCI level.

the BFD bases, these �ts are represented in Fig. 2 for the
four singlet and three triplet transitions studied here. �e
corresponding all-electron extrapolations can be found in
Ref. 60. From Fig. 2, it is clear that these extrapolations can
be safely trusted.

At the sCI level, one can clearly see that, for both spin mani-
folds, the pseudopotentials induce a rather systematic redshi�
on the excitation energies of magnitude 0.05 eV (i.e. roughly
1 kcal/mol) which may or may not be an acceptable error de-
pending on the target accuracy. �e maximum error is found
to be -0.09 eV for the �rst triplet state whereas the minimum
errors are as small as 0.02–0.03 eV in some cases.

B. Di�usion Monte Carlo

�e ground- and excited-state wave functions obtained with
the CIPSI algorithm [see Eq. (5)] are usually too large to be
used right out of the box in FN-DMC calculations. Indeed, the
number of determinants in these wave functions is usually of
the order of several million which is still out of reach with
our current QMC implementation.75,119 �erefore, they are
truncated and extrapolations are performed based on smaller
trial wave functions in order to recover the DMC energy
associated with the untruncated trial wave function. In Table
II, we report the singlet and triplet excitation energies of water
obtained at the FN-DMC level for various multideterminantal
trial wave functions

ΨT =
Ndet

∑
I

cI |I〉 (7)

of size Ndet and variational energy EsCI (where |I〉 is a Slater
determinant and cI its corresponding CI coe�cient). �e ex-
trapolated FN-DMC results, labeled as exDMC and reported in
Table I, are obtained by performing a linear extrapolation of
the FN-DMC energy EDMC as a function of EexFCI − EsCI for
various values of Ndet. Identifying the quantity EexFCI − EsCI
as the variational biais introduced by the truncation of the
trial wave function, based on these smaller trial wave func-
tions, we can extrapolate EDMC to EexFCI − EsCI = 0 in order
to estimate the FN-DMC energy of the (untruncated) trial
wave function. Additional details about this procedure can
be found in Refs. 59–61. �e graphs associated with these
extrapolations are reported as supplementary material for the
singlet and triplet transitions. It is noteworthy that only the
last three points are taken into account in the linear extrapo-
lation, i.e., the point corresponding to the smallest trial wave
function is systematically discarded.

Following a similar procedure as for exFCI (see Sec. IV A),
we have performed CBS extrapolations of the exDMC ener-
gies. �ese are represented in Fig. 3. At �rst sight, it seems
that the CBS extrapolations of the exDMC energies are less
trustworthy than their variational versions (see Fig. 2). How-
ever, it is important to realise that there is a factor of about
16 between the energy scale of the two extrapolation sets
in Figs. 2 and 3. In other words, the exDMC extrapolation
lines are much �a�er than their exFCI counterparts, which
does explain their magni�ed sensitivity. For extra statistics,
the two sets of energies can be used altogether as they must
extrapolate to the same CBS limit.

At this state, it is worth emphasising that it is particularly
reassuring that, in most cases, the energies obtained at the
exFCI and exDMC levels do converge, within statistical error,
to the same CBS limit (that is, the exact energy) as it should
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FIG. 3. Extrapolation of the exDMC energies to the complete basis set (CBS) limit for the water molecule. �e extrapolated FN-DMC energy
EexDMC is plo�ed as a function of (X + 1/2)−3 for X = 2 (AVDZ-BFD), X = 3 (AVTZ-BFD) and X = 4 (AVQZ-BFD). ECBS

exDMC stands for the
CBS energy obtained at the exDMC level.

be. �is key observation validates the here-proposed strat-
egy for the CBS extrapolation. However, there is one case
for which it is not true, namely the 1 A1(n→ 3p) transition,
where ECBS

exFCI and ECBS
exDMC are signi�cantly di�erent (0.06 eV).

�is can be explained by the particularly strong basis set ef-
fect associated with the pronounced Rydberg nature of this
transition. Indeed, we have recently shown that, even within
conventional deterministic wave function methods such as
high-level coupled cluster theories, this particular state re-
quires doubly-augmented basis sets (d-aug-cc-pVXZ) to be
properly modeled.61

Compared to the conclusion drawn in Sec. IV A, the exci-
tation energies gathered in Table I show that the deviation
between the all-electron and valence-only results are slightly
larger at the FN-DMC level. Yet, this discrepancy is fairly
acceptable for usual chemical applications with a maximum
error of 0.1 eV, especially knowing the inherent uncertain-
ties associated with stochastic simulations. In this regard,
we can point out that the excitation energies of Blunt and
Neuscamman (obtained with their simple two-determinant
ansatz labeled as DMC{J,O} in Table I) seem to bene�t from
small, yet systematic, error compensations.125

As a �nal remark, we would like to point out that, in a
large number of cases, we see that the di�erence between all-
electron and pseudopotential calculations can be transferred
from the variational to the FN-DMC level. Consequently, if
one is able to estimate the error induced by the pseudopoten-
tials at the sCI level, it should provide a reasonable estimate of
the error that should occur in the FN-DMC excitation energies.

V. CONCLUSION

In the present manuscript, we have studied the in�uence
of pseudopotentials on vertical excitation energies obtained
at the FN-DMC level. By comparing our valence-only and all-
electron calculations performed for six low-lying states of the
water molecule, we clearly evidence that a small and system-
atic error is induced by the pseudopotentials. Generally, the
use of pseudopotentials redshi�s the transition energy by 0.05
eV at the variational level and slightly more at the FN-DMC
level. Overall, the small bias introduced by pseudopotentials
is acceptable for the vast majority of applications, but can
be problematic when looking for very high precision (like in
benchmark studies).

SUPPLEMENTARY MATERIAL

See supplementary material for the geometry of the water
molecule and the graphs associated with the DMC extrapola-
tions.
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TABLE II. Vertical excitation energies (in eV) for the three lowest
singlet and three lowest triplet excited states of water obtained with
the BFD pseudopotentials and the valence-only AVXZ basis sets (X
= D, T, and Q). Ndet is the number of determinants in the trial wave
functions.
Transition AVDZ-BFD AVTZ-BFD AVQZ-BFD

Ndet FN-DMC Ndet FN-DMC Ndet FN-DMC
1 A1 8 825 7.67(1) 8 655 7.68(1) 8 856 7.71(1)

65 600 7.66(1) 82 387 7.67(1) 97 937 7.68(1)
287 688 7.65(1) 334 839 7.66(2) 532 734 7.69(1)
646 643 7.65(1) 694 560 7.67(1) 1 579 987 7.63(1)
exDMC 7.65(1) 7.66(1) 7.65(1)

1 A2 8 825 9.46(1) 8 655 9.49(1) 8 856 9.47(1)
65 600 9.45(1) 82 387 9.47(1) 97 937 9.48(1)

287 688 9.45(1) 334 839 9.50(2) 532 734 9.49(1)
646 643 9.45(1) 694 560 9.47(1) 1 579 987 9.44(1)
exDMC 9.45(1) 9.49(1) 9.45(1)

1 A1 8 825 10.05(1) 8 655 10.07(1) 8 856 10.08(1)
65 600 10.03(1) 82 387 10.03(1) 97 937 10.04(1)

287 688 10.01(1) 334 839 10.02(2) 532 734 10.04(1)
646 643 10.00(1) 694 560 10.04(1) 1 579 987 10.01(1)
exDMC 10.00(1) 10.04(1) 10.02(1)

3B1 5 848 7.23(1) 6 532 7.25(1) 6 446 7.25(1)
51 538 7.24(1) 68 255 7.24(1) 70 637 7.23(1)

289 748 7.25(1) 473 245 7.23(1) 424 318 7.24(1)
1 518 066 7.28(1) 2 128 116 7.25(1) 1 695 420 7.21(1)
exDMC 7.26(1) 7.25(1) 7.22(1)

3 A2 5 848 9.23(1) 6 532 9.26(1) 6 446 9.25(1)
51 538 9.29(1) 68 255 9.28(1) 70 637 9.28(1)

289 748 9.29(1) 473 245 9.29(1) 424 318 9.28(1)
1 518 066 9.25(1) 2 128 116 9.29(2) 1 695 420 9.23(1)
exDMC 9.27(1) 9.30(1) 9.24(1)

3 A1 5 848 9.54(1) 6 532 9.54(1) 6 446 9.54(1)
51 538 9.55(1) 68 255 9.53(1) 70 637 9.54(1)

289 748 9.54(1) 473 245 9.54(1) 424 318 9.54(1)
1 518 066 9.54(1) 2 128 116 9.53(1) 1 695 420 9.50(1)
exDMC 9.54(1) 9.55(1) 9.52(1)
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