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We report fixed-node diffusion Monte Carlo �FN-DMC� calculations of the singlet n→�� �CO�
vertical transition of acrolein. The impact of the fixed-node approximation on the excitation energy
is investigated. To do that, trial wave functions corresponding to various nodal patterns are used.
They are constructed by using either a minimal complete-active-space self-consistent field
�CASSCF� calculation involving an oxygen lone pair n and the �� �CO� molecular orbitals or a
more complete set involving all the molecular orbitals expected to play a significant role in the
excitation process. Calculations of both states have been performed with molecular orbitals
optimized separately for each state via standard “state specific” CASSCF calculations or by using a
common set of optimized orbitals �“state averaged” CASSCF calculations� whose effect is to
introduce some important correlation between the nodal patterns of the two electronic states. To
investigate the role of the basis set three different basis of increasing size have been employed. The
comparative study based on the use of all possible combinations of basis sets, active spaces, and
type of optimized molecular orbitals shows that the nodal error on the difference of energies is small
when chemically relevant active space and state-averaged-type CASSCF wave functions are used,
although the fixed-node error on the individual total energies involved can vary substantially. This
remarkable result obtained for the acrolein suggests that FN-DMC calculations based on a simple
strategy �use of standard ab initio wave functions and no Monte Carlo optimization of molecular
orbital parameters� could be a working computational tool for computing electronic transition
energies for more general systems. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3086023�

I. INTRODUCTION

Quantum Monte Carlo �QMC� methods are known to be
the most powerful approaches for computing total ground-
state energies of many-electron systems �see, e.g., Ref. 1�. In
short, QMC is based on two key ingredients: �i� The use of
an approximate trial wave function �T and �ii� the introduc-
tion of stochastic rules to sample the 3N-dimensional elec-
tronic configuration space according to some target probabil-
ity density �proportional to �T

2 in variational Monte Carlo
�VMC� and �T�0 in diffusion Monte Carlo �DMC�, �0 be-
ing the exact ground state�.

The approximate trial wave function is chosen to be the
best compromise available between compactness and accu-
racy. A common choice for �T consists of a product of two
terms. The first term has a standard determinantal form de-
scribing the one-particle shell structure of molecules. It is
obtained from a preliminary Hartree–Fock �HF�, complete-
active-space self-consistent-field �CASSCF�, configuration
interaction �CI�, or density functional theory �DFT� calcula-
tion and is expressed as one �or a combination of a few�
determinant�s� of single-particle orbitals. The second term is
more original and is introduced to impose the electron-
electron cusp condition �in the Kato’s sense, Ref. 2� of the

exact wave function and also to incorporate some explicit
coupling between electron-nucleus and electron-electron co-
ordinates �see Ref. 3�.

Regarding the choice of the stochastic rules, many vari-
ants have been proposed. This diversity is at the origin of the
great variety of acronyms found in the QMC literature:
VMC, DMC, PDMC, GFMC, projector MC, reptation MC,
etc. However, from a theoretical point of view, all these
methods actually differ very little. In practice, the most
widely used approach is the so-called fixed-node diffusion
Monte Carlo �FN-DMC� method and this will be the variant
used in what follows. The stochastic rules of FN-DMC can
be summarized as follows.

�i� A stochastic diffusion step corresponding to a free
Brownian motion for the electrons.

�ii� A deterministic move done along the drift vector
given as

b = ��T/�T. �1�

�iii� A branching step simulated by the death or the dupli-
cation �birth� of the electronic configurations accord-
ing to the magnitude of the local energy defined as

EL � H�T/�T. �2�

The QMC simulation is performed by applying thesea�Electronic mail: michel.caffarel@irsamc.ups-tlse.fr.

THE JOURNAL OF CHEMICAL PHYSICS 130, 114107 �2009�

0021-9606/2009/130�11�/114107/8/$25.00 © 2009 American Institute of Physics130, 114107-1

Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.3086023
http://dx.doi.org/10.1063/1.3086023
http://dx.doi.org/10.1063/1.3086023
http://dx.doi.org/10.1063/1.3086023


rules a large number of times over a large enough population
of electronic configurations �or walkers�. At equilibrium, the
exact ground-state energy is obtained by simply averaging
the local energy over the walkers.

In a FN-DMC calculation there exist essentially two
types of error. The first one is the usual statistical error re-
sulting from a finite simulation time. This error, present in
any Monte Carlo scheme �either classical or quantum�, be-
haves as 1 /�K where K is the number of Monte Carlo steps.
In principle, by using a brute force approach �more and more
central processing unit time, i.e., K→��, it is always pos-
sible to decrease the statistical down to the accuracy desired.
The origin of the second type of error which will be the
focus of the present study is less obvious and is related to the
nodal properties of the trial wave function. To understand its
origin, let us remark that at the nodes of �T �nodes are
defined as configurations verifying �T=0� the drift vector,
Eq. �1�, diverges and the nodal surfaces act as infinitely re-
pulsive barriers for the walkers. Consequently, each diffusing
walker is trapped for ever within the nodal hyperdomain
where it starts and the Schrödinger equation is solved sto-
chastically separately within each nodal domain. Now, be-
cause the �3N−1�-dimensional nodes of an antisymmetric
trial wave function are in general different from the exact
ones, the FN-DMC simulation introduces a finite error re-
lated to the wrong location of these nodes. This error is re-
ferred to as the “fixed-node error” and it can be shown that
the fixed-node energy is an upper bound of the exact energy
�variational property�.4

Now, the central issue is the importance of the fixed-
node error. In other words, can the FN-DMC algorithm be
used with success for realistic chemical problems or, stated
differently, can QMC compete with the most accurate meth-
ods of quantum chemistry, e.g., coupled cluster with single
and double and perturbative triple excitations �CCSD�T�� or
multireference CI methods? To answer this question it is nec-
essary to distinguish between calculations of total energies
and calculations of differences of energies. In the first case, it
is true that QMC methods are presently the most powerful
approaches for computing ground-state energies �and, more
generally, ground-state energies in each symmetry sector
�space and spin��. For the various molecular systems treated
up to now, it has been found that about 90%–100% of the
correlation energy can be recovered, the magnitude of the
“small” residual fixed-node error depending on the type of
systems treated and on the nodal pattern of the trial wave
function employed. For small systems, such an accuracy cor-
responds typically to a CCSD�T� calculation with a large
basis set �see Ref. 5�. For larger systems such high-quality ab
initio calculation are no longer possible �the formal scaling
of CCSD�T� with number of electrons N is N7� but FN-DMC
simulations are still possible �to date, the largest calculation
has involved about 1000 electrons6� and there is no reason
not to believe that a large fraction of the total correlation
energy for these large systems is recovered. On the other
hand, it is also clear that total ground-state energies by them-
selves are not of great interest for chemistry. Indeed, roughly
speaking, it can be said that all chemistry is about differences
of energies. Chemists are interested in comparing the ener-

gies of different structures �reactants, products, etc.�, poten-
tial energy profiles, height of barriers, electronic transitions,
electron affinities, etc. Even the properties other than the
energy can be reformulated as infinitesimal differences of
energies using the Hellmann–Feynman theorem.7

At this point, a most important point consists in remark-
ing that these differences of energies so important in chem-
istry are typically of the same order of magnitude as the
fixed-node error itself on each component of the energy dif-
ference. Accordingly, we are in a tricky situation where some
important and controlled compensation of errors must abso-
lutely be at work if we want the FN-DMC method to be
useful. However, it is most important to emphasize that this
situation is not specific to QMC methods. In any electronic
structure calculations �either DFT or ab initio wave function
based� we are faced with the very same problem. In a DFT
calculation, each energy component of a small difference of
energies must absolutely be computed with the same method
�local density approximation, B3LYP, generalized gradient
approximation, etc.� and the same basis set. In ab initio ap-
proaches, the same method and basis sets must also be used
and there is a long history about devising clever schemes for
avoiding calculating large and expensive contributions which
are supposed to cancel out when differences are computed
�e.g., perturbational approaches such as symmetry-adapted-
perturbation theories8�.

In this work we address this problem by reporting a de-
tailed analysis of the role of the fixed-node approximation
for a prototypical electronic transition occurring in an or-
ganic molecule. We have chosen the well-studied singlet n
→�� vertical transition on the carbonyl part of the acrolein
�or propenal� molecule, C3H4O. In this transition a lone pair
electron of the oxygen atom is promoted to the empty ��

antibonding orbital of the CO bond. The two total energies
computed using FN-DMC correspond to two ground-state
energies in their respective symmetry space �even/odd parity
with respect to the molecular plane�. For each state, various
nodal patterns associated with various trial wave functions
have been employed. Despite the fact that, as expected, the
fixed-node errors on each total energy may vary a lot �of the
order of the transition energy� we have found that it is pos-
sible to propose a simple strategy for getting accurate and
controlled transition energies.

Note that the use of FN-DMC for computing transition
energies in organic molecules is not new. We can cite, for
example, the work of Grossman et al.9 about excitation en-
ergies for the silane and methane molecules, the work of
Aspuru-Guzik et al.10 on electronic transitions in free-base
porphyrin, the work of Drummond et al.11 on excitation en-
ergies and ionization energies of diamondoids, and very re-
cently the study of Tiago et al.12 on the low-energy excita-
tions of several carbon fullerenes. In all these works,
comparisons between QMC results and previous high-quality
ab initio or DFT calculations and also experimental results,
when available, have illustrated the excellent performances
of QMC. However, no systematic study of the impact of the
nodal structure on the results is in general done even if, in
some cases, some particular aspects are investigated: depen-
dence on the type of orbitals �HF, Kohn–Sham, natural�, sen-
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sitivity to the number of determinants used, etc. Now, for the
reasons discussed above we would like to emphasize that,
despite the good results obtained in these works, the problem
of obtaining systematic good FN-DMC results for the small
energy differences of chemistry is not at all solved. To give a
precise example, in a recent work on the O4 molecule, Caf-
farel et al.13 found that the height of the dissociation barrier
�an energy difference of about 12 kcal/mol� is extremely
dependent on the nature of the nodes.

In a number of recent works,14–17 interesting contribu-
tions toward defining a more systematic strategy to obtain
controlled energy differences have been made. In these
works, a full optimization of the trial wave functions at the
VMC level is performed. The optimization involves not only
the complete set of the parameters of the Jastrow part but
also the parameters of all molecular orbitals involved and the
coefficients of the determinantal expansion. By doing this,
the hope is to improve nodes �although it is not certain18� and
to get better differences of energy �not certain also�. Here,
we shall follow a quite different route. As we shall see, no
optimization will be done and we shall strongly rely on the
use of the fixed nodal patterns associated with simple and
standard trial wave functions of quantum chemistry. Our
general and long-term objective is to devise a simple �use of
standard ab initio wave functions� and robust �no system-
dependent optimization� strategy for computing electronic
transitions, which is feasible not only for the small molecules
but also for the large systems for which full optimizations
appear difficult to perform. In this work, we have found that
such a strategy leads to very good results in the case of the
acrolein molecule.

The organization of this paper is as follows. In Sec. II
the acrolein molecule and the electronic transition considered
are presented. In Sec. III the computational details �methods,
trial wave functions, and basis sets� are given. In Sec. IV the
FN-DMC results are presented and some comparisons with
ab initio CI calculations are made. Finally, we present some
summary and perspectives in Sec. V.

II. THE ACROLEIN MOLECULE AND THE n\��

TRANSITION

In this work we are concerned with the n→�� vertical
electronic transition of the acrolein �or propenal� molecule,
CH2=CH–CHO, between the two lower-lying singlet states
�ground state and first singlet excited state�. As represented
pictorially in Fig. 1 this excitation process is associated with

the promotion of a lone pair electron of the oxygen atom
�occupying the orbital n� to the empty �� antibonding orbital
of the CO group. In this work we have considered two dif-
ferent geometries for the molecule. The first one corresponds
to a model geometry which has been used in previous
works19 and which allows to perform easily systematic stud-
ies for series of polyenals of increasing sizes, the acrolein
molecule being the smallest one. The geometry considered
corresponds to a s-cis configuration and the internuclear dis-
tances are given by dC–O=1.22 Å, dC–C=1.45 Å, dC=C

=1.35 Å, dC–H=1.1 Å, and XCŶ =120° �for all combina-
tions X ,Y =C,H,O�. To make contact with experiments we
also consider the experimental geometry as obtained by
Blom et al.20 using microwave spectroscopy. The geometry,
given in Ref. 20 and represented in Fig. 1, is that of the
s-trans isomer which, at room temperature, represents the
great majority of the molecules.21 Note that in both cases the
geometry corresponds to a planar structure and the molecule
has a Cs symmetry group. Molecular orbitals are classified
according to the two irreducible representations A� �symmet-
ric with respect to the plane� and A� �antisymmetric�. The
closed-shell ground state is of symmetry A� while the open-
shell excited state belongs to A�.

III. COMPUTATIONAL DETAILS

A. Methods

The computational method at the heart of this study is
the FN-DMC. In Sec. I, the key ideas of the method neces-
sary to the understanding of the present work have already
been presented. For details of FN-DMC the reader is re-
ferred, e.g., to Ref. 22 or Ref. 1. For comparisons, we also
present results obtained with the CI method using single and
double excitations on a mono-SCF or multi-CASSCF con-
figurational references. CI being a standard and well-
documented approach, we refer the reader interested by the
details to the relevant literature.

B. Trial wave functions

The fundamental quantity governing the efficiency of
our Monte Carlo simulations is the trial wave function. It
enters the simulation via the drift vector, Eq. �1�, and the
local energy, Eq. �2�. The key point is that “good” trial wave
functions are associated with small fixed-node biases �errors
due to approximate nodes� and small statistical errors on the
energy estimator. In the limit of an exact trial wave function,
both errors entirely vanish. This property is known as the
zero-variance zero-bias property.7 Here, we have chosen to
employ a form consisting of the product of a Jastrow part
and a Slater-type part consisting of a linear combination of a
small number of determinants,

�T�R� � = exp��
�

�
	i,j


U�ri�,rj�,rij���
k

ckDk
↑�R� �Dk

↓�R� � , �3�

where the sum over � denotes a sum over the nuclei, �	i,j
 is
a sum over the pair of electrons, ck are the coefficients of the
multiconfigurational expansion, and Dk

� ��=↑ or ↓� are de-
terminants made of one-particle space orbitals. The exponen-

π *

C C

C O

H

H

H

H

n

FIG. 1. Pictorial representation of the excitation process corresponding to
the promotion of a lone pair electron of the oxygen atom �orbital n� to the
empty �� antibonding orbital of the CO group. The geometry considered is
the experimental geometry proposed by Blom et al. �Ref. 20�.
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tial Jastrow term which depends explicitly on interelectronic
distances is introduced to reproduce the small electron-
electron distance behavior of the exact wave function �cusp
condition� and also to incorporate explicit couplings between
electron-nucleus and electron-electron coordinates. Here, we
have chosen to use the form introduced in Ref. 7. Regarding
the determinantal part, we have used either a monoconfigu-
rational form obtained via a SCF calculation or a multicon-
figurational form obtained via a CASSCF calculation. The
CASSCF form is introduced to incorporate the main part of
the multiconfigurational character of the exact wave function
issued from the interference between the various low-energy
components �“nondynamic” correlation effects�. This multi-
configurational character is known to play an important role
for excited states. The choice of the active space is crucial to
get a chemically relevant CASSCF wave function. Here, two
choices have been considered. The first choice is the minimal
one. It consists in considering only the two molecular orbit-
als associated with the oxygen lone pair n and the �� orbital
of the CO bond. The resulting active space built with two
electrons within two orbitals is denoted as CAS�2,2�. Be-
cause of the Cs symmetry it is of dimension 2 both for the
ground and excited states. The second choice is based on the
fact that the CO � bond is expected to interact with the �
system of the C=C double bond. Letting aside the much
more inert �-bond system we propose to consider the active
space built by distributing six electrons within the five mo-
lecular orbitals n, �CO, �CO

� , �CC, �CC
� �denoted as the

CAS�6,5� active space�. Using symmetry considerations this
active space consists of 52 and 48 determinants for the
ground and excited states, respectively.

To build the Slater-type multiconfigurational wave func-
tions two types of approach have been considered. First, we
have made standard CASSCF calculations for both states. In
such calculations the molecular orbitals �both occupied and
active� as well as the coefficients of the determinantal expan-
sion are fully optimized �in the deterministic ab initio sense�
in an independent way for the two states. Such calculations
are referred here to as state specific �SS� �SS-CASSCF�. In
the second approach, the CASSCF wave functions are opti-
mized in a correlated way using a common set of molecular
orbitals, the linear coefficients of the expansion being still
taken as independent. In practice, this is realized by making
stationary with respect to the various parameters a weighted
average of the energies of the states under consideration �the
standard choice consisting in taking equal weights is adopted
here�. This approach is known as a state-averaged �SA�
method.23

Regarding optimization of the Jastrow part of the trial
wave function very little has been done here: Only a few
parameters of the Jastrow factor have been optimized in or-
der to reduce the statistical fluctuations. It has been done
separately for both states using standard techniques �see Ref.
24�. Let us emphasize that by optimizing only the Jastrow
part as done here the nodal patterns of the various ab initio
trial wave functions introduced in this work are kept un-
changed.

Finally, let us give some practical details. The present
FN-DMC calculations are all-electron calculations done with

a very small time step, �=0.000 25, to ensure a proper treat-
ment of the nodal hypersurfaces and to remove the time-step
error within statistical uncertainties. For a system consisting
of light atoms such as the acrolein some care has to be taken
for properly reproducing the electron-nucleus cusp both for
the core and valence electrons. Regarding the core region,
we have replaced the 1s atomic orbitals �oxygen and carbon
atoms� expanded over the Gaussian basis set by the 1s
Slater-type orbitals given in Clementi and Roetti’s tables.25

On the other hand, the valence molecular orbitals are also
modified at short nuclear distances to impose the nuclear
cusp; we do that using a short-r representation of the radial
part of orbitals under the form c�1+�r2+	r3�exp�−
r�, in
the same spirit as in Ref. 26. For each trial wave function
and simulation, the calculations are extensive and have been
carried over a large number of processors, the total statistics
representing about 109 Monte Carlo steps.

C. Basis sets

Three Gaussian basis sets of increasing size have been
considered. They are extracted from the ANO �atomic natu-
ral orbital� basis sets of Widmark et al. presented in Ref. 27.
Basis set 1 consists of �14s ,9p�→ �3s ,2p� for the oxygen
and carbon atoms and �8s�→ �2s� for H �44 atomic basis
functions�. Basis set 2 is given by �14s ,9p ,4d�
→ �3s ,2p ,1d� for O and C and �8s ,4p�→ �2s ,1p� for H �76
basis functions�. Basis set 3 is given by �14s ,9p ,4d ,3f�
→ �4s ,3p ,2d ,1f� for O and C and �8s ,4p ,3d�
→ �3s ,2p ,1d� for H �176 basis functions�.

IV. RESULTS

A. Configuration interaction

SCF, CASSCF, and configuration interaction single and
double �CISD� calculations for the model geometry are pre-
sented in Table I. We also present equation-of-motion
coupled-cluster single and double �EOM-CCSD� calculations
to get an alternative estimate of the transition energy. Note
that the largest calculations presented here are the CAS�6,5�-
CISD. For these calculations the transition energies are simi-
lar and vary between 3.42 and 3.59 eV. The EOM-CCSD
calculations vary between 3.51 and 3.63 eV. Consequently,
an estimate for the gap of about 3.5 eV at this geometry
appears reasonable. In what follows, we will refer to this
value as the reference energy.

Let us now comment in more detail on the results ob-
tained. First, let us begin with the calculations at the SCF and
CASSCF levels �no treatment of the dynamic correlation ef-
fects�. At the SCF level �one determinant for the closed-shell
ground state of symmetry A� and a two-determinant
CAS�2,2� structure for the open-shell excited state to recover
the A� symmetry� the gap is found too small �about 2.80 eV�,
in error of about 20%. Note that the result obtained with the
small basis �basis 1� is rather different from those obtained
with the two other basis sets. However, results with bases 2
and 3 are very similar. This observation turns out to be true
for all data presented below, thus indicating that finite basis
set effects are marginal here for basis sets of a quality com-
parable to basis 2.
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Using the “minimal” active space consisting of the oxy-
gen lone pair and �CO

� orbital �SA-CAS�2,2� calculation� the
gap is seriously increased up to the value of about 3.3 eV.
When the full “chemically relevant” active space is em-
ployed �CAS�6,5� calculations� the reference value for the
gap is approximately obtained. Note the difference of results
for the SS and SA calculations. In the first case the gap found
is found to be slightly too large by about 0.1 eV. In the
second case the gap obtained is close to the correct value.
Finally, let us comment on the impact of dynamical correla-
tion contributions by looking at the CI results. Starting from
a single SCF reference �SR-CI� the CI result �about 3.3 eV�
improves the SCF result �about 2.8 eV� but is not able to
recover the reference value. This illustrates clearly the neces-
sity of introducing the nondynamical correlation contribu-
tions. At the CAS�2,2�-CISD SS level the value is slightly
improved �gap of about 3.4 eV� but is still in error of about
0.1 eV. When using a CAS�2,2� reference function and a SA
approach the reference value is recovered. Using a CAS�6,5�
reference function does not appear to change the results, both

SS and SA approaches leading indeed to the reference value.
However, because of the CAS�6,5�-CASSCF results dis-
cussed above, it should be suspected that this result is a
consequence of some cancellation of errors between missing
dynamic and nondynamic correlation effects.

B. Fixed-node diffusion Monte Carlo

Our all-electron FN-DMC calculations for the ground-
and first-excited-state energies of the acrolein �model geom-
etry� are presented in Table II. Trial wave functions having
various nodal patterns have been used. The trial wave func-
tions have been built from SCF, SS-CASSCF, and SA-
CASSCF Slater part with molecular orbitals optimized �in
the deterministic ab initio sense� using the three basis sets of
increasing sizes. Monte Carlo simulations have been per-
formed to reach the 0.05–0.10 eV accuracy on the transition
energies.

A first important remark is the great quality of the FN-
DMC total energies. For example, the best QMC value ob-

TABLE I. All-electron ab initio calculations of the ground- and first-excited-state energies of the acrolein
molecule using different levels of theory. The geometry of the molecule is the model geometry described in the
text.

E0

�a.u.�
E1

�a.u.� �=E1−E0 �eV�

CASSCF
SCF for E0; CAS�2,2� for E1 basis 1 �190.703 362 12 �190.609 505 39 2.55
SCF for E0; CAS�2,2� for E1 basis 2 �190.811 565 58 �190.707 449 19 2.83
SCF for E0; CAS�2,2� for E1 basis 3 �190.835 585 73 �190.732 824 05 2.80
CAS�2,2� SA basis 1 �190.690 552 31 �190.575 940 43 3.12
CAS�2,2� SA basis 2 �190.804 270 04 �190.680 399 63 3.37
CAS�2,2� SA basis 3 �190.823 777 95 �190.701 483 01 3.33
CAS�6,5�a SA basis 1 �190.766 391 54 �190.643 706 13 3.34
CAS�6,5�a SA basis 2 �190.870 615 36 �190.741 889 78 3.50
CAS�6,5�a SA basis 3 �190.889 590 34 �190.762 087 12 3.47
CAS�6,5�a SS basis 1 �190.774 808 28 �190.648 067 78 3.45
CAS�6,5�a SS basis 2 �190.881 577 16 �190.748 017 29 3.63
CAS�6,5�a SS basis 3 �190.900 822 19 �190.768 835 60 3.59

CASSCF-CISD
SR-CISD basis 1 �SS� �191.056 529 56 �190.936 638 09 3.26
SR-CISD basis 2 �SS� �191.339 091 15 �191.216 253 17 3.34
SR-CISD basis 3 �SS� �191.484 469 42 �191.364 258 78 3.27
CAS�2,2�-CISD basis 1 �SA� �191.053 161 81 �190.927 502 65 3.42
CAS�2,2�-CISD basis 2 �SA� �191.335 107 51 �191.205 936 13 3.51
CAS�2,2�-CISD basis 3 �SA� �191.479 768 06 �191.352 997 62 3.45
CAS�2,2�-CISD basis 1 �SS� �191.057 939 72 �190.936 935 25 3.29
CAS�2,2�-CISD basis 2 �SS� �191.341 344 83 �191.216 673 57 3.39
CAS�2,2�-CISD basis 3 �SS� �191.487 157 72 �191.364 723 44 3.33
CAS�6,5�-CISD basis 1 �SA� �191.080 410 05 �190.953 688 31 3.42
CAS�6,5�-CISD basis 2 �SA� �191.365 186 07 �191.235 393 68 3.53
CAS�6,5�-CISD basis 1 �SS� �191.082 792 09 �190.954 568 33 3.49
CAS�6,5�-CISD basis 2 �SS� �191.368 843 45 �191.236 840 21 3.59

EOM-CCSD
Basis 1 3.51
Basis 2 3.63
Basis 3 3.61

aFifty-two determinants for the ground state and 48 determinants for the excited state.
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tained here for E0 is −191.8410.003 �FN-DMC with
CAS�2,2�-SA nodes and basis 2 in Table II�. To compare
with, we have performed CCSD�T� calculations with large
basis sets, the results obtained being as follows:
E0=−191.410 671 04 �using cc-pCVDZ�, E0=−191.598
624 99 �cc-pCVTZ�, and E0=−191.651 392 55 �using cc-

pCVQZ�. This result exemplifies the fact that QMC is a
highly accurate method for computing total energies, a point
already emphasized in Sec. I. A second important remark is
that the fixed-node error magnitude as a function of the nodal
pattern used �the nodes are changed when using different
levels of theory and basis sets� is large at the scale of our
problem. For E0 the higher and lower values are
�191.719�3� and �191.841�3�, respectively. This makes a
variation of 0.122�4� a.u., that is, 3.3 eV. For E1 the variation
is 3.4 eV. As seen, the range of the fixed-node energy varia-
tion is of the order of the gap itself. This result illustrates
clearly the need of some “constructive correlation” between
the fixed-node error on both energy components if some
meaningful result for the transition energy is desired. How-
ever, as already pointed out, this fundamental problem is not
specific to QMC but is present in any electronic structure
method. For example, in the case of the best CAS�2,2�-CISD
calculations presented in Table I, the variation of the total
energies as a function of the basis set used is about 11.6 eV,
more than three times the FN-DMC result and the gap in
energy itself! Another important remark regarding the FN-
DMC results of Table II is that the fixed-node total energies
does not necessarily improve �i.e., decrease� as the size of
the basis set is increased. This result is a nice illustration of
the fundamental point already stressed in Sec. I regarding the

fact that decreasing the total variational energy does not nec-
essarily improve the nodes of the trial wave function �see
also comment in Ref. 18�.

Using the SCF nodes, the QMC gap obtained varies be-
tween 3.02 and 3.37 eV. Such values obtained with monode-
terminantal wave functions are reminiscent of the SR-CI cal-
culations results presented above. Using CASSCF nodes the
value of the gap is increased. With the SA-CAS�2,2� nodal
pattern values close to the reference gap are obtained. How-
ever, the variations of the results as a function of the basis set
are large, namely, 0.36 eV. At the SS-CAS�6,5� level the
variations are still larger �0.55 eV� and the average value of
the gap seems to be too large �3.92 eV�. This is also remi-
niscent of the SS-CAS�6,5� CASSCF calculations which
gives a slightly too large value. Finally, with the SA-
CAS�6,5� nodes the results obtained are much more coher-
ent: Remarkably, the variations of the results as a function of
the basis set are almost suppressed and the average value is
excellent.

A few general comments are now in order. As seen from
our results the quality of the nodes of the trial wave function
plays indeed a central role. Let us insist that imposing ap-
proximate nodes is the sole source of systematic error within
the FN-DMC framework �the statistical error is controllable
by making sufficient long simulations�. In the case of the
acrolein molecule, using “monodeterminantal” or “SCF”
nodes leads to too small transition energies, although a large
part of the correlation energy is recovered via FN-DMC.
This result is also true in extensive ab initio CISD calcula-
tions based on a monoconfigurational reference wave func-
tion. This important result suggests that there probably exists
some relation between the nature of the correlation energy
recovered by FN-DMC and the nature of the nodes em-
ployed. To be more precise, using SCF nodes the DMC pro-
cess would recover essentially the dynamic correlation ef-
fects and very little of the nondynamic correlation
component. To recover this last contribution, we really need
nodes which have some “multiconfigurational” character.
Physically, such statement makes sense but, mathematically,
the situation is much less clear. Note that this idea is sup-
ported by some recent calculations done by Caffarel and
Ramirez-Solis28 on the chromium dimer at the equilibrium
distance. It is known that the electronic structure of this mol-
ecule is very hard to recover and that Cr2 is considered as a
real nightmare for standard methods of quantum chemistry.
In particular, the ground-state wave function has a very
strong multiconfigurational character. It has been shown that
using SCF nodes a very small fraction of the binding energy
is recovered by FN-DMC. This result is similar to what has
been obtained by Scuseria29 using SR CCSD�T� calculations
using very large basis sets. Here, also, by using “monocon-
figurational” nodes in FN-DMC it seems that only the dy-
namic correlation contribution is recovered.

Another remark is that “SA” CASSCF nodes appear ef-
fective to get the correct estimate transition energy. Such a
result can be understood by the fact that using the same set
of molecular orbitals for the two states allows large compen-
sations of the fixed-node error components corresponding to
configuration space regions where the nodal structure is

TABLE II. All-electron FN-DMC calculations of the ground- and first-
excited-state energies of the acrolein molecule using different nodal struc-
tures. The geometry of the molecule is the model geometry described in the
text.

E0

�a.u.�
E1

�a.u.�
�=E1−E0

�eV�

QMC
FN-DMC�nodes: SCF for E0;CAS�2,2� for E1�

Basis 1 −191.8140.0045 −191.6900.0023 3.370.14
Basis 2 −191.8190.0020 −191.7080.0042 3.020.13
Basis 3 −191.7290.0037 −191.6080.0021 3.290.12

FN-DMC�nodes:CAS�2,2�SA�
Basis 1 −191.8030.0015 −191.6650.0013 3.760.05
Basis 2 −191.8410.0031 −191.7160.0042 3.400.14
Basis 3 −191.7630.0021 −191.6340.0022 3.510.08

FN-DMC�nodes:CAS�6,5�aSS�
Basis 1 −191.7950.0033 −191.6630.0034 3.590.13
Basis 2 −191.7550.0022 −191.6030.0031 4.140.10
Basis 3 −191.7440.0048 −191.5960.0021 4.030.14

FN-DMC�nodes:CAS�6,5�aSA�
Basis 1 −191.7910.0026 −191.6630.0025 3.480.10
Basis 2 −191.7190.0027 −191.5920.0026 3.460.10
Basis 3 −191.7390.0034 −191.6110.0023 3.480.11

aFifty-two determinants for the ground state and 48 determinants for the
excited state.
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common to both states and not primarily involved in the
excitation process. For the acrolein molecule we have found
that by using a minimal active space the correct value is
recovered but the sensitivity of the value to the basis set is
important. When the active space contains all molecular or-
bitals which are critical in the excitation process, this sensi-
tivity appears to be much less important. Due to the local
character of these excitations, we expect that such a result
could extend to a large class of organic compounds and,
more generally, to any system where a chemically active
space can be properly defined. Note that, to the best of our
knowledge, the first use of SA-CASSCF wave functions for
FN-DMC has been done by Schautz et al.14,15 In these
works, SA-CASSCF wave functions have been introduced
essentially to avoid the so-called root flipping problem oc-
curring in MCSCF �multi-configurational-self-consistent-
field� calculations �optimization of a state in the presence of
lower states of the same symmetry�. Here, the motivation is
different: we employ a SA approach to get two CASSCF
wave functions �of different symmetry and thus always
orthogonal� constructed from a common set of optimized
molecular orbitals. In this way, we can expect a maximal
similarity between the nodal hypersurfaces of both states
and, thus, a minimization of the fixed-node error on the en-
ergy difference.

Finally, in Table III the CI and FN-DMC results at the
experimental equilibrium geometry20 are presented. The larg-
est CI calculation �CAS�6,5�-CISD basis 2 �SA�� leads to a
value of 3.84 eV. The FN-DMC result is 3.860.07 eV, in
full agreement with the ab initio transition energy. To the
best of our knowledge, the experimental data of the literature
fall into the range �3.69, 3.75� eV.30–32 According to these
data, the ab initio value is found to be slightly greater than
expected. The FN-DMC value is also slightly greater. How-
ever, considering the statistical character of the result, there
is a probability of about 6% that our transition energy falls
into the previous experimental interval.

V. SUMMARY AND PERSPECTIVES

In this work we have presented FN-DMC calculations of
the energy gap of a prototypical electronic transition in a
simple organic molecule having a carbonyl group. To eluci-
date the impact of the fixed-node approximation on the com-
putation of electronic energy differences and, more specifi-
cally, on the possible existence of compensation of errors,

we have performed FN-DMC simulations under various con-
ditions. These conditions include basis sets of various sizes,
CASSCF wave functions with different active spaces, and
molecular orbitals optimized for each state separately or mo-
lecular orbitals common to both states. Changing these con-
ditions leads to changing the nodal hypersurfaces and, there-
fore, the magnitude of the fixed-node error. We emphasize
that, in contrast with some other groups14–17 we propose here
not to change the nodal structure of the various ab initio trial
wave functions used �in other words, no optimization of the
determinantal part in Eq. �3��. Besides avoiding the optimi-
zation of many �hundreds� of parameters �always a not-so-
easy task, particularly for large systems�, our major motiva-
tion is to avoid as much as possible the lost of the coherence
between the two nodal patterns. In agreement with the com-
mon wisdom of the domain, it has been found that the impact
of each of the previous factors is very important. More pre-
cisely, by changing the various conditions the fixed-node er-
ror on both total energies can vary by an amount which is of
the order of magnitude of the energy difference. This
result—quite common in standard DFT or ab initio-wave
function based methods—confirms the fact that any realistic
FN-DMC calculation must be based on a large and con-
trolled compensation of errors. In other words, the error
made on the location of the nodes for a given state must be
tightly correlated with the error made for the other state. To
achieve this, we have proposed to use the same set of opti-
mized molecular orbitals for describing the two states in-
volved in the transition �the so-called SA approach of ab
initio approach�. By doing this the total energies obtained are
less accurate but we introduce some “coherence” between
the nodal shapes of the two states. Our FN-DMC results
show, at least for the system studied, that this compensation
works very well. Indeed, it has been found that in a SA
calculation using a chemically meaningful active space, the
energy gap is nearly independent of the basis set despite the
fact that fixed-node errors on separate total energies vary
substantially. Such a result is particularly interesting since it
suggests that meaningful results can be obtained by using a
simple strategy based on standard and compact ab initio trial
wave functions without resorting to large-scale optimizations
which will become increasingly difficult for large systems.
However, to validate our approach it is clear that the next
step will consist in investigating larger molecular systems.

TABLE III. CI and FN-DMC calculations of the transition energy at experimental equilibrium geometry.
Comparison with experiment.

E0

�a.u.�
E1

�a.u.�
�=E1−E0

�eV�

FN-DMC�nodes:CAS�6,5�SA� basis 3 −191.85040.0020 −191.70860.0023 3.860.07
CAS�2,2�-CISD basis 1 �SA� �191.058 675 38 �190.923 190 83 3.69
CAS�2,2�-CISD basis 2 �SA� �191.342 283 92 �191.201 061 17 3.84
CAS�2,2�-CISD basis 3 �SA� �191.487 441 01 �191.348 531 05 3.78
CAS�6,5�-CISD basis 1 �SA� �191.085 252 53 �190.949 179 07 3.70
CAS�6,5�-CISD basis 2 �SA� �191.371 580 70 �191.230 307 15 3.84
Experimental results 3.69–3.75a

aReferences 30–32.
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