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Imaginary-time correlation functions calculated by quantum Monte Carlo (QMC) are 
analyzed using the maximum entropy method (MaxEnt) to determine the ground-state energy 
and spectral overlap function. In contrast to earlier applications of MaxEnt, the data is 
obtained from importanced-sampled zero-temperature quantum Monte Carlo simulations. The 
analysis includes two steps. First, that spectral overlap function and ground state energy 
which maximizes the entropy and agrees with the QMC correlation functions is obtained. Then 
the errors in the energy are evaluated by averaging over all the possible images (average 
MaxEnt method), the multidimensional integrals being computed using the Metropolis 
algorithm. The central feature of this approach is that all the information present in the 
correlation functions is used in the only way consistent with fundamental probabilistic 
hypotheses. This allows us to fully exploit the information contained in the correlation 
functions at small imaginary times, thus avoiding large statistical fluctuations associated with 
large imaginary times. In addition, the computed errors include both the statistical 
errors and systematic extrapolation errors. The method is illustrated with a harmonic oscillator 
and the four-electron LIH molecule. 

I. INTRODUCTION 

It is known to be very difficult to solve the Schrodinger 
equation for fermion systems with a Monte Carlo proce- 
dure because of the “sign problem.” This problem arises 
because Fermi averages decompose into a difference of 
contributions corresponding to even and odd permutations 
of the particle labels. At large imaginary times, these con- 
tributions nearly cancel and become exponentially smaller 
than the statistical error, but large times are needed to 
project out from the trial wave function excited state com- 
ponents. The increased variance coming from the cancel- 
lations at large times will be greatly reduced by exploiting 
more fully all the information present in data at small 
times. In any case, it is important to estimate not only the 
statistical errors, but the systematic errors resulting from 
stopping the calculation at a fixed projection time. These 
same issues are involved in computing the energy of any 
excited state, not just the Fermion ground state. 

In a previous work,’ we have shown that the usual 
methods of calculating the energy are not optimal. More 
specifically, using a variation of the Lanczos algorithm for 
QMC, we have shown that the ground-state energy could 
be recovered from fixed-node or released-node data com- 
puted at smaller imaginary times. However, there is no 
guarantee that the Lanczos method will use all the infor- 
mation present in the data and the stability of the algo- 
rithm with respect to statistical fluctuations is bad. 

In this work, we present a general procedure for taking 
full advantage of the QMC data. In addition, this method 
allows one to evaluate error bars on the energies including 
systematic errors. The framework employed is Bayesian 
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probability theory and more specifically the maximum en- 
tropy (MaxEnt) method. Maximum entropy has been 
used in a wide variety of image reconstruction problems 
encountered in such different fields as astronomy, magnetic 
resonance imaging, neutron scattering, etc.2 MaxEnt is a 
general and powerful technique for reconstructing positive 
images from noisy and incomplete data. Recently, several 
groups have applied this technique to extract dynamical 
information from imaginary-time quantum Monte Carlo 
Green’s functions of lattice models,3-5 e.g., a single- 
impurity Anderson model. 

Here, we propose to apply this method to data from 
electronic systems, calculated by zero-temperature quan- 
tum Monte Carlo. Although we shall also be concerned 
with extracting a spectral overlap, our main purpose is to 
estimate the ground-state energy. As explained before, our 
ultimate goal is to avoid the sign problem appearing at 
large times while still calculating converged results, both 
for the ground state of Fermion systems and for quantum 
excited states. 

Let us briefly outline our approach. Quantum Monte 
Carlo can estimate imaginary-time correlation functions of 
the form 

hW=W~le-cHI~d, (1) 

where Y r is a known antisymmetric trial function. This 
correlation function is related by a Laplace transform 

J- 
+cO 

h(t)= dE c(E)emcE 
-co 

to the spectral overlap 

(2) 

c(E) = c &E-4) I W,l *i) 12, (3) 
i 
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where cE,~i) are the ith exact eigenvalueand kigenfimc- 
tion of H. In contrast to the usual spectral density, c(E) 
includes the squared overlap between the trial function and 
the exact excited states. The use of a good trial function 
leads to very accurate estimates of the ground-state energy. 
Essentially, one is doing Monte Carlo only on the errors of 
the trial function. 

The usual method of calculating the ground-state en- 
ergy from h(t) is to find its rate of decay at large time. Let 
the transient estimate energy be defined as 

‘where‘ky{O,l,2), =Y, is the trial function, generally the 
best available computable approximate wave function 
known for the system under consideration, and the opera- 
tor O(t) is anevolution operator. Two forms for O(t) are 
used for continuous systems; they define the two following 
-algorithms: 
(i) Diffusion Monte Carlo (DMC) i 

O(nr)-exp[ -wr(H-ET)]; 

(ii) Green’s function Monte Carlo (GFMC) 
(9) 

ET&)=- dln[h(t)l -pdt -. . .z..- -_. ..:r :... (4) 
O(n~)=[1+7(H--ET)]--n. (10) 

Here ET is the reference energy and r is the time step. 
Then ; L ‘i In both approaches, time-correlation functions of Eq. 

lim&dt)=&. I _. _. - _-_ ._ .(?I 
c-m 

It is this transient estimate which has an exponentialiy 
increasing signal-to-noise ratio at large time for a Fermion 
ground state. 

The approach considered here is to regard Eq. (2) as 
an ill-conditioned inversion problem and ask what spectral 
overlaps are consistent with the noisy estimates of h(t). 
Using Bayes’ theorem, we postulate that the probability 
distribution of a given spectral overlap is 

P(clh,c*) aP(hIc)P((:Ic*), ‘. (6) 

where the likelihood function P(h 1 c) is the distribution of 
Monte Carlo errors given a spectral overlap and P( c ] c*) is 
the prior probability of a given spectral overlap and may 
depend on an assumed model spectral function c*. We will 
use an entropic form for this prior probability. 

The proposed approach includes two steps. First, we 
maximize P(c I h,c*) with respect to c and thus determine 
the most likely overlap. This we will call the MaxEnt step. 
Then, to obtain a reliable estimate of the statistical errors, 
we sample possible overlaps with probability P(c] h,c*). 
This we will call the AvEnt step. 

The organization of this paper is as follows: In Sec. II, 
the quantum Monte Carlo methods used in this work are 
discussed briefly. Section III is concerned with the general 
presentation of the proposed approach. In Sec. IV, the 
main ideas of the method and details of implementation are 
presented for a harmonic oscillator and in Sec. V, for the 
LiH molecule. Finally, some concluding remarks are made 
in Sec. VI. 

II. THE QUANTUM MONTE CARLO METHODS 

In this paper, we are concerned with quantum systems 
described by a Hamiltonian of the form 

1 N 
H= -2 -3 -VT+ V(rI,...,rN), 

i-l 
(7) 

where ri is the position of the ith particle and V(R) is the 
potential energy. Our analysis is based on the following 
three imaginary-time correlation functions: 

h(k)(t)=(YTIHkO(f)IYy) (8) 

(8.) may be computed as averages over an ensemble of 
configurations (walkers) evolving in the 3N-dimensional 
configuration space according to some appropriate proba- 
bilistic rules. Since both methods will be used to compute 
the time-correlation functions hck) (t), we shall give a brief 
description of each of them. For the complete description 
of the basic aspects of QMC techniques, the reader is re- 
ferred to the original works. 
A. Diffusion Monte Carlo (DMC) 

In DMC, configurations advance according to three 
elementary processes-diffusion, drift, and branching. In 
fact, branching is not a necessary step in DMC since it may 
be taken into account by introducing weights in the corre- 
lation functions defined along the stochastic trajectories 
generated by diffusion and drift. In this case, the number of 
walkers remains .constant and the notion of trajectory is 
identical with that used in a classical molecular dynamics 
simulation. In this “pure” DMC, the configurations ad- 
vance from t to t+r according to 

fW,t+r) = s ~p(R+R’,dfUV), (11) 

where f (R,t) represents the density of configurations 
(walkers) at time t and p (R + R’,r) is the transition prob- 
ability density describing the drifted diffusion. In the short- 
time approximation, it has the form 

exp{- [R’-R--b(Rjr12/2r), 
\  I  

where the drift is 
(12) 

b(R) =V ln(YG) (13) 
and YG a strictly positive function is a guiding (or impor- 
tance) function used to increase the efficiency of the sim- 
ulation by keeping the walk in important regions of phase 
space. 

= It is possible to show by iterating the relation ( 1 1 ), 
and by introducing at each iteration the weight factor 
e-T# L, where g’(R) =BYG(R)/YG is the local energy as- 
sociated with Y G, hck) (t) may be estimated as 

h(O)(t) =I( w(Ojw(t)exp[ --Jo’ @(s)ds] ) DRW9 
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h"'(f) =I (w(O>w(t>f[E,T(O) +El(t)] 
( 

Xexp[ - Jof~(S)dS])DRW. 

and 

Xexp[ - J~-@(s)dsJhw, (14) 

where~(R)=Y#lJ~isaweight,E~(R)=HYr/Y~isthe 
local energy associated with the trial function, (a *-)nRw 
refers to the average over drifting random walks generated 
by Eqs. (ll)-(13), and I=.fY~ is a normalization con- 
stant which will eventually drop out. The practical evalu- 
ation of time-correlation functions from Eq. (14) is rather 
simple; for more details, the interested reader is referred to 
Ref. 6. 

Note that when Y, is chosen to be 1 Y rj, drifting ran- 
dom walks generated via Eqs. ( 1 l)-( 13) are trapped in 
subdomains of the configuration space delimited by the 
(3N-1 )-dimensional nodes of the trial wave function Y r 
and no change of sign of the weight factors w occurs. This 
approach is called fixed-node approximation since the 
nodes are in general approximate. When Yd is chosen to be 
strictly positive everywhere, no approximation is made, but 
the weights have no longer a definite sign for fermions. 
This exact, but unstable method will be referred to in the 
following as the transient method. More details about both 
approaches may be found elsewhere.&’ 

B. Green’s function Monte Carlo (GFMC) 

The Green’s function Monte Carlo method is similar 
to the DMC method, but it does not have the time-step 
error inherent to DMC approaches. We will see that it is 
important to remove all systematic errors before using the 
Bayesian statistical analysis since otherwise these errors 
could be amplified. There exist different variants of 
GFMC; we shall use the formalism developed by Ceperley’ 
which is particularly convenient for particles interacting 
via a Coulombic force. Precise rules for diffusion, drift, and 
branching are described in the Ref. 8. 

To compute the time correlation functions let us as- 
sume that & is a configuration distributed according to 
Yi(R,,)/l. Then assume that the set of configurations 
{Ri}, with lai<M(&n), are produced after n genera- 
tions (applications of the evolution operator). Then 

( 

‘wR),n) 
h'o)(n~)=I w(h) 1 w(Ri,) . > (15) 

j=l 

The other correlation functions h”‘(t) and hc2’(t) are 
computed in a similar way. 

The situation with respect to Fermi statistics is identi- 
cal in GFMC and DMC. The fixed-node approximation is 
obtained when YG is chosen to be 1 Y rj, and a transient 
approach corresponds to the use of a positive guiding func- 
tion. 

Here, we shall consider an additional exact approach, 
the released-node method,8 where the basic GFMC algo- 
rithm is used with an important difference. The initial con- 
figuration (denoted above as Ra) comes from the output of 
a fixed-node calculation instead of a variational one. It 
should be emphasized that by so doing, slightly different 
matrix elements of the evolution operator are obtained, 
namely, 

and 

1 1 
n 1 +dH-ET) 

1 
1 -tdH--ET) 

@FN 

n 

(16) 

where @rN stands for the “exact” fixed-node wave func- 
tion. It is difficult to compute /zc2’ (t), since the analytical 
form for the result of the action of H on the fixed-node 
wave function is not known. 

III. MAXIMUM ENTROPY ANALYSIS 

In order not to repeat almost identical formulas for 
both DMC and GFMC data, we shall present the method 
only with DMC evolution [Eq. (9)], the extension to 
GFMC evolution [Eq. (lo)] being straightforward. 

The first step consists of realizing that the data h(‘) (t) 
are related to the spectral overlap c(E) via a linear trans- 
formation 

h(k)(t)= s 
+CO 

dE Ekc(E)eBtCEmET), k=0,1,2, (17) 
-cc 

where c(E) has already been defined in Eq. (3). Now c(E) 
exhibits a very sharp maximum at E=Eo since Yr is cho- 
sen as close as possible to the ground-state wave function 
+@ The “zero-variance” principle of (zero-temperature) 
quantum Monte Carlo states that as the trial function ap- 
proaches an exact eigenfunction, the statistical variance 
vanishes. It is important to preserve this property in the 
MaxEnt analysis. This we do by requiring that the recon- 
struction fit both h(O) (t) and h(l) (t) . 

Now, our problem is the following: Having computed 
with QMC a set of data {h (‘) h(1),h(2)} at different times , 
fk: l< k0-f and estimated (via statistically independent 
calculations) the statistical errors of this data, we would 
like to find the “best” and the “average” spectral overlap 
c(E) compatible-in a sense to be specified below-with 
our incomplete and noisy data. This problem is often en- 
countered in image processing where noisy data are related 
to the quantity of interest-the image-by a linear trans- 
formation. A robust and coherent way of tackling this dif- 
ficult problem is the maximum entropy method based on 
Bayesian logic. The essence of this approach is to look for 
the most probable function c(E) compatible with the data 
and with any prior knowledge about c(E). 

For simplicity, we shall represent the data by using a 
single vector h(t) as follows: 
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A(&) =h”‘(tk) , h(t k+M) =h”‘(tk), 

h(fk+;?M) =h%k) (18) 

and use a subscript C and F to distinguish between com- 
puted (QMC) data h,( tk) and their corresponding fitted 
values hF( tk) obtained via a representation of Eq. ( 17) in 
terms of a large (but finite) number of real exponentials 

hLk) (t) = i= c&e-f(Et-ET), 
I=0 

(19) 

where P is typically of the order of 200. The number of 
components and the spacing in energy are chosen to have 
a good representation of the integral in Eq. ( 17). 

Now consider the first of the two probability functions 
in Bayes’ theorem [Eq. (6)], the likelihood function. Ac- 
cording to the central limit theorem [assuming that the 
variances of w(R) and w(R )E,(R) exist] for sufficiently 
large simulation times, the probability of finding of a given 
QMC correlation function h,(t) will have a Gaussian dis- 
tribution about its exact value hF(t); 

P(hcl c> = exp( -x2/2>, 

where 

(20) 

3M 

x2= s [12F(fi)-hC(tijjC~~l[hF(tj)-hC(tj)]. (21) 

Here Cij is the covariance matrix defined by 

C,=(h,(ti>hc(tj))-(hc(ti))(hc(tj)), (22) 

where the averages are over a set of statistically indepen- 
dent calculations. We have checked systematically that our 
QMC-calculated correlation functions obey Gaussian sta- 
tistics. 

Any image c(E) [in practice, the finite number of co- 
efficients cl in Eq. (19)] with a x2 significantly greater than 
the number 3M of data points is improbable. The set of 
feasible images is defined as the set of images verifying 

x2-number of data points. (23) 

Clearly, when the chi squared is significantly smaller than 
the number of data points, we are overtitting the data, and 
the resulting fit, which is essentially determined by the 
noise, should be excluded from the set of feasible images. 

Now we need a criterion to pick up among all these 
feasible images. Many of the feasible images are physically 
impossible or improbable, e.g., those with a negative spec- 
tral overlap C(E) < 0. The role of the prior probability 
P(c 1 c*) is to filter out from all feasible images those that 
are very different from a default model containing any 
prior knowledge we have about the exact solution. It can 
be argued by using very general probabilistic concepts that 
for positive and additive images, there is a natural measure 
for that probability-the entropic form” 

P(cjc*) aexp[crS(clc*)], 

where the entropy is 

(24) 

P 
4-W 

S= c c(El) -c*(El) -c(E&ln - 
I=0 c”U4) 
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(25) 

and c*(E) is a default spectral overlap which encapsulates 
all exact knowledge about the spectral overlap before add- 
ing in the information from QMC. One may question 
whether this entropic function is appropriate for the spec- 
tral overlap function of a small molecule, where the dis- 
creteness of the energy levels may be important. Two of its 
features are significant-it only allows overlaps with c(E) 
>O and it has a maximum at c=c*. 

The maximum entropy image is then defined as the 
image having a x2 -number of data and maximizing the 
entropy. Since both the x2 function and the entropy are 
convex functions, this image is defined uniquely. The pa- 
rameter 0: controls the competition between S and x2. 

Since our goal is to have an accurate evaluation of the 
ground state energy Eo, it is included in the set of fitting 
parameters. In practice, this means that we shall define our 
max entropy solution is the set {Eo,co,...,cp3 maximizing S 
with the constraint that x2 -33M.. In the Bayesian frame- 
work, the parameter (Y becomes an additional variable with 
its own prior distribution. Following standard practice,” 
we use a probability distribution uniform in log (a: ) and the 
MaxEnt optimization and AvEnt averages evaluated with 
P(c I h,c*)P(a), where P(a) = l/a over some “sensible” 
range. 

Once the MaxEnt spectral function has been deter- 
mined, it is important to estimate the statistical and sys- 
tematic error. For that, we look at a typical set of feasible 
images, sampled from P(c I h,c*) as defined from Eqs. (6), 
(21>, and (24). Then the error on any component of the 
spectral density, say the ground-state energy, is 

SE,= &CEO- (Eo) 12>, (26) 

where the averages are over P( c 1 h,c*) . A similar formula 
may be written for the error of any coefficient ck This 
approach, which consists of integrating the fluctuations 
around the MaxEnt solution in the functional space of all 
possible images, is the average maximum entropy 
method” The multidimensional integrals involved can be 
computed using the Metropolis algorithm. 

The reader may be wondering why we have chosen to 
fit the three functions hck’(t) rather than simply h”‘(t), 
since analytically h(‘)(t) is equivalent. There are several 
reasons. In the pure DMC approach, if the trial function 
equals the guiding function, it is true that one could nu- 
merically differentiate h(O) (t) to obtain h(l) (t) and hC2) (t). 
In practice, this introduces systematic errors which cause 
the statistical analysis to become unreliable. In the more 
important case where the guiding function is not equal to 
the trial function, statistical fluctuations in the time deriv- 
ative of h”‘(t) are different from those where h”‘(t) is 
computed directly. In fact, it is the very strong correlation 
between the fluctuations of h”‘(t) and h”‘(t) which lead 
to the zero variance property of QMC. It is clearly impor- 
tant to use both h(O) and h(l) in doing the statistical anal- 
ysis, since it is in the correlation between these two func- 
tions that gives a low variance energy estimate. 
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Knowledge of all three correlation functions implies 
that the feasible images have values of the ground-state 
energy bounded from both above and below. The upper 
bound is given by the transient estimate energy and a lower 
bound by the Temple boundi 

ETE(t)-[h(2)(t)-ETE(t)21~EO<ETE(f) I7 , (27) 
%vP 

where EBap is the gap to the next state of the same symme- 
try. Note that these upper and lower bounds squeeze in the 
exact energy exponentially fast in t because the energy ETE 
of the projected trial function e-‘H’2YT converges expo- 
nentially fast to the ground state. Now the spread in 
ground-state energies for feasible images will be smaller 
than the bounds in the above inequalities because we are 
asking that the spectral overlap and energy fit the Monte 
Carlo data at many times simultaneously. For example, the 
results of the Lanczos method, described below, give 
tighter upper bounds than the transient estimate energy 
using the same functions h(O) (t) and h(l) (t). 

The fact that the fitting gives tighter energy bounds is 
only one of the reasons to use this approach. It is perhaps 
more important that the information in the correlation 
functions is combined in a statistically robust way. The 
error bars on the correlation functions are all exponentially 
increasing in time. Thus it is important to strongly weight 
the small time data. Bayesian statistics provides a system- 
atic framework for balancing the statistically accurate, but 
biased data at short times with the noisy, but more con- 
verged data at large times. 

IV. APPLICATION TO THE HARMONIC OSCILLATOR 

In this section, we apply our approach to the Hamil- 
tonian 

1d2 1 
H=-z@+2X2+yx, 

where y is some constant defining the magnitude of the 
linear perturbation. By using the Green’s function Monte 
Carlo method presented in Sec. II B, we calculate the time- 
correlation functions with a trial wave function Y r chosen 
to be the ground-state wave function of the unperturbed 
( y = 0) harmonic oscillator 

y/T,e-2/2 (29) 

and Y o= Y p Then one can show 

h(i)(nr)=e-?/2 i. i ($)k(k+Eo)i(y-$---)n (30) 

when the reference energy is equal to the ground-state en- 
ergy ET= (l/2) - (y/2). We have performed a GFMC 
calculation using the time-dependent Green’s function of 
the unperturbed harmonic oscillator as trial Green’s func- 
tion. 

The upper curve of Fig. 1 shows the transient energy 
ETE( t). The open circles are the QMC results, to be com- 
pared with the solid line representing the analytical results 

E 

FIG. 1. Energy as a function of the projecting time for the harmonic 
oscillator. The solid line is the exact transient estimate energy from Eq. 
(30); the open circles are &s(t) from QMC. Results obtained from a 
Lanczbs-type analysis are shown by the filled circles and t labels the 
amount of data used in the analysis. The dashed line shows the exact 
ground-state energy. 

obtained from Eq. (30). The agreement between exact and 
computed values is excellent. 

The lower curve gives the result of a Lanczb-type 
analysis using the same data. The Lanczb algorithm used 
here has been presented elsewhere’ and may be summa- 
rized as follows: Consider the following projected trial 
wave function at some given time tP=pr: 

1 

I 

P 

l+r(Jf-~~) yT* 

The overlap and Hamiltonian matrix elements between any 
two such states, say, at times tp and tp may be expressed in 
terms of the time-correlation functions h(O) and h(l). We 
have 

@T(tp, IHI~T(tq))=h(‘)(tp+tq). (32) 

Having computed all the time-correlation functions h(‘) up 
to a given maximum time t, we consider the generalized 
eigenvalue problem defined in the basis set consisting of all 
of the projected trial wave functions defined at different 
times with ti<t/2. By doing this, tighter upper bounds are 
obtained from the QMC data than from the transient esti- 
mate energy since more variational freedom is introduced. 
One is constructing the best linear combination of the pro- 
jected_ trial wave function defined at different times 
BgkY T( tk). One sees from Fig. 1 that the exact result is 
obtained almost immediately from the “short-time” infor- 
mation. However, this procedure, based on a nonlinear 
relation between QMC correlation functions and the en- 
ergy, is unstable with respect to statistical errors. 

Because of the discrete nature of the energy levels of 
the oscillator, we represent the spectral overlap by a sum of 
delta functions 

P-l 

C*(E)= 2 G(E-Ei)CT. (33) 
i=O 
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TABLE I. Maximum entropy analysis for the harmonic oscillator. 

c*(E) Most probable c(E) Average c(E) 

0.500 0.419 8 D.419 9(2) 
0.900 0.923 21 0.923 2(2) 
0.025 0.073 78 0.073 8(l) 
0.025 0.003 13 0.003 lO(5) 
0.025 0 0 
0.025 0 0 

Exact c(E) 

0.420 00 
0.923 12 
0.073 85 
0.002 95 

7.8X 1O-5 
1.5x 10-6 

EO 
co 
Cl 
c2 

c3 

c4 

The coefficient representing the ground state is by far the 
largest since the overlap between the trial wave function 
and the ground state has been optimized. The energies Ei 
for i> 1 could be incorporated into the fitting procedure, 
but for simplicity in this model, we only optimized the 
location of the main peak corresponding to the ground- 
state energy Ep The other energies were fixed at their exact 
value. In applications to many-electron systems with a qua- 
sicontinuum of excited states, the assumption of a uniform 
grid in energy is more appropriate. 

We assumed a “flat” default model, i.e., a model in 
which a uniform weight is used for the excited peaks. It is 
essential to introduce in the default model the fact that 
there is a very dominant peak close to the variational en- 
ergy, but its precise magnitude does not matter. Once the 
magnitude of this peak has been chosen (we have taken 
0.9), the common magnitude of the other peaks is chosen 
uniformly 

P-l 
c +P)(O)=l. (34) 
i=O 

In our numerical applications, we have chosen P=5 and 
therefore CT = 0.025 (for i> 0). We have then used the 
GFMC method to calculate the values of h(O) (t), /z(i) (t), 
and hc2’ (t) at the 13 times shown in Fig. 1. 

A very important point to notice is that the transient 
estimate of the ground-state energy is a relatively smooth 
function of time despite the stochastic nature of its evalu- 
ation. This is due to the fact that we use a common set of 
random walks to compute the correlation functions at dif- 
ferent times. In other words, all the QMC data on which 
we base our analysis are highly correlated. It is essential to 
include this correlation between the data in calculating the 
x2. In fact, when we tried to perform the MaxEnt analysis 
neglecting this correlation, the resulting ground-state en- 
ergy was systematically biased because of a tendency to fit 
the noise. Therefore, our first step consists of performing a 
singular value decomposition of the covariance matrix Cii 
to determine the degree of correlation between data and to 
discard those eigenvalues with singular values less than the 
computer’s precision lo- 16. For the case shown in Fig. 1, 
12 eigenvectors are kept out of 39 original data points. 

The maximum entropy solution is given in Table I. It 
is remarkable that the analysis succeeds in reproducing 
accurately the magnitude of the first three peaks. The error 
bars have been obtained by averaging over the probability 
distribution of feasible images. This simple example illus- 
trates the feasibility of this approach on an exact model. 
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FIG. 2. Fixed node energy as a function of the projecting time t for LiH. 
The upper curve of the three pictures is &n(t) and +‘s are the Lanczbs 
results. The lower curve of the first picture represents the average MaxEnt 
results obtained from the time-correlation function h”‘(f’) only using the 
data t’<t. The second picture gives the result obtained with /z(O) and ht” 
and the third with /z(O), h(i), and h t2). The solid horizontal line indicates 
the fixed-node energy. 

V. A REALISTIC APPLICATION: THE LiH MOLECULE 

Let us now apply the maximum entropy ideas to the 
determination of the ground-state energy of the LiH mol- 
ecule. We begin with the fixed-node, pure DMC method of 
Sec. II A. In the calculations below, the Li and H ions were 
fixed with a bond length of 3.015 bohr, the trial wave 
function was VI1 of Ref. 13, and the guiding function from 
Ref. 8. The exact electronic energy, corrected from zero- 
point and relativistic effects, is estimated at - 8.070 23 har- 
trees. This number is computed by adding together the 
nonrelativistic energies of Li and H atoms,14 subtracting 
the experimental binding energy of the molecule,15 and the 
zero point energy of LiH. This experimental number is 
lower than a modern configuration interaction (CI) calcu- 
ationi6 (which obtained an energy of -8.06904 hartrees) 
by 1.2 mhartrees. 
A. Fixed node approach 

The Monte Carlo data input to the Bayesian analysis 
consist of a set of 13 values for each correlation function 
h”‘(t) (i=O,1,2) starting at t=O and uniformly distrib- 
uted with a spacing of &=0.2 a.u. The upper curve of Fig. 
2(a) [upper curves of Figs. 2( a)-2(c) are all identical] 
shows the transient energy E&t>. Because the fixed-node 
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FIG. 3. Fixed node spectral overlap for LiH using all the Monte Carlo 
data. 

method is stable, one can extend this curve until the tran- 
sient energy has converged. This occurs for times on the 
order of 3-4 au., where it reaches the value of - 8.0680(6) 
(represented by the horizontal solid line). This is higher 
than the exact energy because the assumed nodes of the 
trial function are not correct. We also show the Lanczos 
results [Figs. 2( a)-2(c), “+“,I ob_tained by u_sing a two- 
dimensional basis set consisting of Y T( 0) and ‘I’ T( no) with 
n=l ,...,6. The convergence of the Lanczos energy is faster 
than that of the transient energy. 

We have used a flat model for the spectral overlap, but 
in order to represent the continuum of states present, it was 
necessary to use a large number of fixed energies. P in Eq. 
(19) was on the order of a few hundreds. The spacing 
between these peaks needed to describe the details of the 
spectral overlap was found to be 0.1 a.u. In order to get a 
good fit to the data, energies up to 20 a.u. were included. 
Only the ground-state energy was varied in the analysis; 
the other energies (but not the spectral overlaps) were 
fixed. We note that one can prove by considering the ex- 
istence of the integrals SY+l,,,YT=S dE E”‘c(E) that the 
spectral overlap for a trial function of a Coulombic inter- 
action will decay as O(Ek> at large energies where the 
exponent k depends on whether the trial function has the 
correct two-particle cusp condition. We have chosen not to 
use this additional analytic prior information in our anal- 
ysis. Indeed, our results are insensitive to the default 
model. 

Figure 3 presents the maximum entropy spectral over- 
lap obtained when all the data available [h”’ (ti), /z(l) (ti), 
and hc2’( fi) for i= l-131 are used. We see clearly besides 
the very dominant peak associated with the ground state, a 
structure for the excited states. More precisely, a second 
peak is seen - - 7 a.u. as well as a smaller peak - - 2 a.u. 
Note that the location of the first peak is in agreement with 
the estimate of the gap in energy which can be obtained 
from the exponential decay of the transient estimate curve 
of Fig. 2(a). This gap does not represent the first excited 
state, which is much smaller, but represents the lowest 

FIG. 4. Transient estimate energy (filled circles) and Lanczb energies 
(open squares) for LiH. The dashed line indicates the exact energy. 

M. Caffarel and D. M. Ceperley: Monte Carlo correlation functions 8421 

excited state having a large overlap with the trial wave 
function. The small peak at an energy of -2 a.u., which is 
always present in our analysis, represents a nontrivial fea- 
ture of c(E). 

The lower curves of Figs. 2 (squares with error bars) 
show the dependence of the estimated ground-state energy 
on the quantity of information available. For example, at 
f =0.2 [Fig. 2(a) 1, we use only h”‘(0.2), perform the fit, 
and calculate errors. Obviously, the quantity of informa- 
tion is very limited and the error bar obtained on the en- 
ergy is therefore large. Nonetheless, the error bars overlap 
with the exact result. Then, we incorporate the next value 
h”‘( 27), etc. The convergence is very rapid. Figures 2(b) 
and 2(c) show how the information contained in h(l) and 
hc2) affects the estimated energy and errors. The conver- 
gence is much enhanced, particularly at the very short 
times for which any additional information improves our 
knowledge of the ground-state energy substantially. How- 
ever, we also see when convergence is reached, at approx- 
imately 1 a.u., introducing more data does not significantly 
reduce the error bars since little additional information is 
contained in the correlation functions. The only way of 
decreasing this error bar would be to decrease the statisti- 
cal errors on the data by making a much longer Monte 
Carlo run. 

In this example, the trial function was chosen equal to 
the guiding function which implies that the information in 
h”’ and hc2) is essentially present in h(‘). Hence there is 
not a rapid decrease in errors bars as h(l) and hc2) are 
added to the analysis. 

B. Transient method 

We have computed the correlation functions using a 
strictly positive guiding function, thus removing the fixed- 
node restriction. The results in this section were done with 
the pure diffusion Monte Carlo scheme presented in Sec. 
II A. The upper curve of Fig. 4 reproduces the conver- 
gence of the transient estimate energy ETE( t). The sign 
problem is evident for t~2.0 a.u. The lower curve shows 
the results obtained by using the Lances algorithm for 
these data. In contrast to the fixed-node case for which the 
MaxEnt analysis was successful, we encountered some se- 
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FIG. 5. Released-node energy as a function of the projecting time for 
LiH. The upper curve (X) is ETE. The average MaxEnt results are given 
by filled circles. Note the expanded scale. 

rious problems in doing the analysis for the transient data. 
Indeed, we found that the analysis is very sensitive to sys- 
tematic time-step errors in the data. Very small time steps 
are required to obtain a time step-independent image. Un- 
fortunately, in that case, the corresponding total simula- 
tion time (roughly, the number of MC steps multiplied by 
the time step) is too short to give reliable QMC data. 

C. Nodal-release approach 

To avoid the time-step errors and to speed up the con- 
vergence in imaginary time, we used the GFMC method 
with released node where one starts from the fixed-node 
output W,Y, as initial population instead of the transient 
method which starts from Y$. This means that we com- 
pute slightly different matrix elements of the evolution op- 
erator and that 

c(E) = c NE--E,) (‘u,l@i> ($1 %N) (35) 

is not necessarily positive. However, since the trial wave 
function Y, is chosen quite close to the fixed-node solu- 
tion, it is likely that significant values of c(E) are positive 
and we continued to use the entropic prior function. We 
are currently investigating a more rigorous prior function 
which will be needed to extend this analysis to excited state 
energies. -~ 

The transient energy is shown as the upper curve (X) 
of Fig. 5. The Bayesian results are given by filled circles. 
Since there is no simple way of computing the correlation 
function hc2) (t), the fit only includes h(O) and h(l). We see 
that the convergence of the MaxEnt solution is very rapid 
and leads to a stable solution without going to large pro- 
jecting times. We get a very accurate value of -8.0700 
*0.0002 for the ground-state energy. In contrast to previ- 
ous calculations, our errors include both statistical errors 

and systematic errors. The only uncontrolled systematic 
error arises from the assumption of the prior probability. 
Our result is 0.23kO.2 mhartree above the experimental 
result. 

VI. CONCLUSIONS 

In this paper, we have presented an application of Bay- 
esian statistics to the determination of the ground-state 
energy of quantum systems. We analyze time-correlation 
functions obtained from zero-temperature quantum Monte 
Carlo calculations (projector methods) to obtain the spec- 
tral overlap function of a given trial function. This spectral 
overlap contains a dominant peak at the ground state and 
small components at higher energies. It has been found 
that the default model appearing in the prior probability 
does not play a role as important as in other applications, 
so a flat model for the density of excited states is sufficient. 
In order to calculate the ground-state energy, we consid- 
ered the location of the main peak as a parameter to be 
optimized. By using a chi-squared likelihood function and 
an entropic prior function, we have computed the average 
and the dispersion of the estimator of the energy (average 
maximum entropy) with the Metropolis method. In that 
way; a reliable estimate of the errors is obtained. Our nu- 
merical applications have demonstrated the efficiency of 
this approach for simple problems, e.g., the LiH molecule 
treated with the fixed-node method. However, the situation 
is a little more difficult when real Fermion data (data ex- 
hibiting the sign problem) are analyzed. In particular, we 
found that the maximum entropy analysis for LiH was 
very sensitive to systematic errors such as the finite time- 
step error. By using a GFMC scheme free of systematic 
error and a released-node approach starting from an initial 
fixed-node population, we demonstrated feasibility of the 
method on the four-electron LiH molecule. It is not yet 
clear how this method will scale with the number of Fer- 
mions, but this way of analyzing the correlation functions 
is guaranteed to be better than the transient estimate 
method, simply because all information generated in the 
QMC is used. 

The Bayesian approach also appears to provide a way 
of calculating excited state properties with quantum Monte 
Carlo. Our previous workI has used a generalization of the 
transient estimate method and was bedeviled with instabil- 
ities coming from statistical fluctuations. The approach 
considered here is the most general way of treating system- 
atic and statistical errors and uses all information in the 
correlation functions. At present, we are testing various 
choices for the nonpositive prior functions needed for ex- 
cited states. Applications to these more difficult problems 
will determine the usefulness and generality of this type of 
analysis. 
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