
Chapter 19
Quantum Monte Carlo Calculations
of Electronic Excitation Energies: The Case
of the Singlet n→π∗ (CO) Transition in Acrolein

Julien Toulouse, Michel Caffarel, Peter Reinhardt, Philip E. Hoggan,
and C.J. Umrigar

Abstract We report state-of-the-art quantum Monte Carlo calculations of the
singlet n → π∗ (CO) vertical excitation energy in the acrolein molecule, extending
the recent study of Bouabça et al. [J Chem Phys 130:114107, 2009]. We investigate
the effect of using a Slater basis set instead of a Gaussian basis set, and of using
state-average versus state-specific complete-active-space (CAS) wave functions,
with or without reoptimization of the coefficients of the configuration state functions
(CSFs) and of the orbitals in variational Monte Carlo (VMC). It is found that, with
the Slater basis set used here, both state-average and state-specific CAS(6,5) wave
functions give an accurate excitation energy in diffusion Monte Carlo (DMC), with
or without reoptimization of the CSF and orbital coefficients in the presence of the
Jastrow factor. In contrast, the CAS(2,2) wave functions require reoptimization of
the CSF and orbital coefficients to give a good DMC excitation energy. Our best
estimates of the vertical excitation energy are between 3.86 and 3.89 eV.
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19.1 Introduction

Quantum Monte Carlo (QMC) methods (see, e.g., Refs. [1–3]) constitute an
alternative to standard quantum chemistry approaches for accurate calculations of
the electronic structure of atoms, molecules and solids. The two most commonly
used variants, variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC),
use a flexible trial wave function, generally consisting for atoms and molecules of
a Jastrow factor multiplied by a short expansion in configuration state functions
(CSFs), each consisting of a linear combination of Slater determinants. Although
VMC and DMC have mostly been used for computing ground-state energies,
excitation energies have been calculated as well (see, e.g., Refs. [4–15]).

The simplest QMC calculations of excited states have been performed without
reoptimizing the determinantal part of the wave function in the presence of the
Jastrow factor. It has recently become possible to optimize in VMC both the
Jastrow and determinantal parameters for excited states, either in a state-specific or
a state-average approach [6, 7, 9, 10, 12, 14, 15]. Although this leads to very reliable
excitation energies, reoptimization of the orbitals in VMC can be too costly for
large systems.

In this context, Bouabça et al. [13] studied how to obtain a reliable excitation
energy in QMC for the singlet n → π∗ (CO) vertical transition in the acrolein
molecule without reoptimization of the determinantal part of the wave function.
The acrolein molecule is the simplest member of the unsaturated aldehyde family
whose photochemistry is of great interest. They showed that a good DMC excitation
energy can be obtained by using non-reoptimized complete-active-space (CAS)
wave functions if two conditions are fulfilled: (a) The wave functions come from a
state-average multiconfiguration self-consistent-field (MCSCF) calculation (using
the same molecular orbitals for the two states is indeed expected to improve
the compensation of errors due to the fixed-node approximation in the excitation
energy), and (b) a sufficiently large active space including all chemically relevant
molecular orbitals for the excitation process is used. In comparison, all the small
CAS wave functions and the large state-specific CAS wave functions (coming
from two separate MCSCF calculations) were found to lead to quite unreliable
DMC excitation energies, with a strong dependence on the size of the basis set.
These results were obtained using standard all-electron QMC calculations with
Gaussian basis sets, with orbitals appropriately modified near the nuclei to enforce
the electron-nucleus cusp condition, in the same spirit as in Ref. [16].

In this work, we extend the study of Bouabça et al. by testing the use of a Slater
basis set and the effect of reoptimization of the determinantal part of the wave
function in VMC. The use of Slater basis functions is motivated by the observation
that they are capable of correctly reproducing the electron-nucleus cusp condition as
well as having the correct exponential decay at large distances. In contrast, Gaussian
basis functions have no cusp at the nucleus and a too rapid decay at large distances.
As regards the effect of reoptimization, conclusions about the validity of using
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non-reoptimized CAS wave functions are drawn. The paper is organized as follows.
In Sect. 19.2, we explain the methodology used. In Sect. 19.3, we present and discuss
our results. Finally, Sect. 19.4 summarizes our conclusions.

19.2 Methodology

We are concerned with the vertical electronic transition in the acrolein (or propenal)
molecule, CH2=CH–CHO (symmetry group Cs), from the spin-singlet ground
state (symmetry A′) to the first spin-singlet excited state (A′′). This transition is
identified as the excitation of an electron from the lone pair (n) of the oxygen to the
antibonding π∗ orbital of the CO moiety. We use the s-trans experimental geometry
of Ref. [17], obtained by microwave spectroscopy in the gas phase (Fig. 19.1).

We use Jastrow-Slater wave functions parametrized as [18, 19]

|Ψ(p)〉= Ĵ(α)eκ̂(κ)
NCSF

∑
I=1

cI|CI〉, (19.1)

where Ĵ(α) is a Jastrow factor operator, eκ̂(κ) is the orbital rotation operator and
|CI〉 are CSFs. Each CSF is a symmetry-adapted linear combination of Slater
determinants of single-particle orbitals which are expanded in Slater basis functions.
The parameters p = (α,c,κ) that are optimized are the Jastrow parameters α , the
CSF coefficients c and the orbital rotation parameters κ . The exponents of the basis
functions are kept fixed in this work. We use a Jastrow factor consisting of the
exponential of the sum of electron-nucleus, electron-electron, and electron-electron-
nucleus terms, written as systematic polynomial and Padé expansions [20] (see also
Refs. [21, 22]).

For each state, we start by generating standard restricted Hartree-Fock (RHF),
and state-average and state-specific MCSCF wave functions with a complete
active space generated by distributing N valence electrons in M valence orbitals
[CAS(N,M)], using the quantum chemistry program GAMESS [23]. As in Ref. [13],
we consider a minimal CAS(2,2) active space containing the two molecular orbitals
n (A′) and π∗

CO (A′′) involved in the excitation, and a larger CAS(6,5) active
space containing the five molecular orbitals that are expected to be chemically

Fig. 19.1 Schematic
representation of the singlet
n → π∗ excitation in the CO
moiety of the acrolein
molecule
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Table 19.1 Ground-state energy E0, first excited-state energy E1, and
vertical excitation energy E1 − E0 for the singlet n → π∗ transition in
the acrolein molecule at the experimental geometry calculated in DMC
with different time steps τ using the VB1 Slater basis set and a state-
specific Jastrow-Slater CAS(6,5) wave function with Jastrow, CSF and
orbital parameters optimized by energy minimization in VMC

τ (hartree−1) E0 (hartree) E1 (hartree) E1 −E0(eV)

0.01 −191.8734(4) −191.7312(4) 3.87(2)
0.005 −191.8753(4) −191.7319(4) 3.90(2)
0.0025 −191.8762(4) −191.7330(4) 3.90(2)
0.001 −191.8769(3) −191.7350(3) 3.86(1)

relevant: πCO (A′′), n (A′), πCC (A′′), π∗
CO (A′′), π∗

CC (A′′). Note that, since the
two states have different symmetries, the purpose behind using the state-average
procedure is not the usual one of avoiding a variational collapse of the excited
state onto the ground state, but rather to possibly improve the compensation of
errors in the excitation energy by using the same molecular orbitals for the two
states. We use the triple-zeta quality VB1 Slater basis of Ema et al. [24]. For C
and O, this basis contains two 1s, three 2s, three 2p and one 3d sets of functions;
for H, it contains three 1s and one 2p sets of functions. Each Slater function is
actually approximated by a fit to ten Gaussian functions [25–27] in GAMESS. These
wave functions are then multiplied by the Jastrow factor, imposing the electron-
electron cusp condition, and QMC calculations are performed with the program
CHAMP [28] using the true Slater basis set rather than its Gaussian expansion.
The wave function parameters are optimized with the linear energy minimization
method in VMC [18, 19, 29], using an accelerated Metropolis algorithm [30, 31].
Two levels of optimization are tested: optimization of only the Jastrow factor
while keeping the CSF and orbital parameters at their RHF or MCSCF values,
and simultaneous optimization of the Jastrow, CSF and orbital parameters. For
all wave functions, even the state-average ones, we always optimize a separate
Jastrow factor for each state, rather than a common Jastrow factor for the two
states. Although the electron-nucleus cusp condition is not enforced during the
optimization in our current implementation, the orbitals obtained from Slater basis
functions usually nearly satisfy the cusp condition. Once the trial wave functions
have been optimized, we perform DMC calculations within the short-time and fixed-
node (FN) approximations (see, e.g., Refs. [32–36]). We use an efficient DMC
algorithm with very small time-step errors [37]. For a given trial wave function,
the evolution of the ground- and excited-state total DMC energies and of the
corresponding excitation energy when the imaginary time step τ is decreased from
0.01 to 0.001 hartree−1 is shown in Table 19.1. While the time-step bias is clearly
seen for the total energies, it largely cancels out for the excitation energy for all
the time steps tested here and cannot be resolved within the statistical uncertainty.
In the following, we always use an imaginary time step of τ = 0.001 hartree−1.
Note that the Jastrow factor does not change the nodes of the wave function, and
therefore it has no direct effect on the fixed-node DMC total energy (aside from of
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course the time-step bias and the population-control bias). Improving the trial wave
function by optimization of the Jastrow factor is nevertheless important for DMC
calculations in order to reduce the fluctuations and to make the time-step error very
small and the population-control bias negligible. Of course, when the Jastrow factor
is optimized together with the CSF and/or orbital parameters, then it has an indirect
effect through those parameters on the nodes of the wave function.

19.3 Results and Discussion

Table 19.2 reports the ground-state energy E0, the first excited-state energy E1, and
the excitation energy E1 − E0 calculated by different methods. Since the excited
state is a spin-singlet open-shell state, it cannot be described by a restricted single-
determinant wave function; however, we report single-determinant results for the
ground state for comparison of total energies. We take our best estimates of the
vertical excitation energy to be those obtained with the CAS(6,5) wave functions
in DMC. They range from 3.86 to 3.89 eV, depending whether a state-average or
state-specific approach is used and whether the determinantal part of the wave
function is reoptimized in QMC. Previously reported calculations include (a) time-
dependent density-functional theory (TDDFT): 3.66 eV [38] and 3.78 eV [39]; (b)
complete-active-space second-order perturbation theory (CASPT2): 3.63 eV [38],
3.69 eV [40], and 3.77 eV [41]; (c) multireference configuration interaction:
3.85 eV [42]; (d) different variants of coupled cluster: 3.83 eV [43], 3.93 eV [39],
3.75 eV [39]. The most recent experimental estimate is 3.69 eV, which corresponds
to the maximum in the UV absorption band in gas phase and which is in agreement
with previous experimental data [44–47]. Beside different treatment of electron
correlation, the discrepancies between these values may be due to the high
sensitivity of the excitation energy to the C=C and C=O bond lengths [39].
Moreover, the comparison with experiment relies on the approximation that the
vertical excitation energy corresponds to the maximum of the broad UV absorption
band. In view of all these data, a safe estimate range for the exact vertical excitation
energy is from about 3.60 to 3.90 eV.

Even without reoptimization of the CSF and orbital coefficients, our state-
specific Jastrow-Slater CAS(6,5) wave functions give a DMC excitation energy,
3.88(2) eV, as accurate as the one obtained with the fully optimized wave functions,
even though the total energies E0 and E1 are about 20 mhartree higher. Also, our
non-reoptimized state-average Jastrow-Slater CAS(6,5) wave functions give an
essentially identical DMC excitation energy of 3.89(2) eV. This agrees well with
the DMC result of Bouabça et al. [13], 3.86(7) eV, obtained with non-reoptimized
state-average Jastrow-Slater CAS(6,5) wave functions with a Gaussian basis set.

Thus it appears possible to obtain an accurate excitation energy using non-
reoptimized state-specific CAS(6,5) wave functions in DMC. This is different from
what was observed in Ref. [13] where state-specific CAS(6,5) wave functions
were found to give unreliable excitation energies. The difference is that we use
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Table 19.2 Ground-state energy E0, first excited-state energy E1, and vertical excitation energy
E1 −E0 for the singlet n → π∗ transition in the acrolein molecule at the experimental geometry
calculated by different methods using the VB1 Slater basis set

E0 (hartree) E1 (hartree) E1 −E0(eV)

RHF −190.83430261
MCSCF CAS(2,2) SA −190.82258836 −190.68568203 3.73
MCSCF CAS(2,2) SS −190.83891553 −190.71709289 3.31
MCSCF CAS(6,5) SA −190.88736483 −190.74691372 3.82
MCSCF CAS(6,5) SS −190.89520291 −190.75181511 3.90

VMC JSD [J] −191.7107(5)
VMC JSD [J+o] −191.7636(5)
VMC JCAS(2,2) SA [J] −191.7121(5) −191.5619(5) 4.09(2)
VMC JCAS(2,2) SS [J] −191.7099(5) −191.5652(5) 3.94(2)
VMC JCAS(2,2) SS [J+c+o] −191.7643(5) −191.6247(5) 3.80(2)
VMC JCAS(6,5) SA [J] −191.7182(5) −191.5747(5) 3.90(2)
VMC JCAS(6,5) SS [J] −191.7221(5) −191.5776(5) 3.93(2)
VMC JCAS(6,5) SS [J+c+o] −191.7795(5) −191.6342(5) 3.95(2)

DMC JSD [J] −191.8613(4)
DMC JSD [J+o] −191.8698(3)
DMC JCAS(2,2) SA [J] −191.8608(5) −191.7133(5) 4.01(2)
DMC JCAS(2,2) SS [J] −191.8606(4) −191.7113(4) 4.06(2)
DMC JCAS(2,2) SS [J+c+o] −191.8700(3) −191.7293(3) 3.83(1)
DMC JCAS(6,5) SA [J] −191.8568(5) −191.7138(5) 3.89(2)
DMC JCAS(6,5) SS [J] −191.8585(4) −191.7160(4) 3.88(2)
DMC JCAS(6,5) SS [J+c+o] −191.8769(3) −191.7350(3) 3.86(1)

DMC JCAS(6,5) SA [J]a −191.8504(20) −191.7086(23) 3.86(7)

Experimental estimateb 3.69

The QMC calculations are done with Jastrow-Slater wave functions using a single determinant
(JSD), or a state-average (SA) or state-specific (SS) complete-active-space multideterminant
expansion (JCAS). The lists of parameters optimized by energy minimization in VMC are indicated
within square brackets: Jastrow (J), CSF coefficients (c), and orbitals (o). For comparison, the DMC
results of Ref. [13] obtained with state-average CAS(6,5) wave functions and a Gaussian basis set
are also shown
a QMC calculations with a Gaussian basis, Ref. [13]
b Maximum in the UV absorption band in gas phase, Ref. [39]

here a Slater basis set rather than the Gaussian basis set employed in Ref. [13]. Even
though the Gaussian basis contains more basis functions than the VB1 Slater basis,
it gives a higher DMC energy for both states and tends to favor one state over the
other in state-specific calculations. This example shows the importance of using a
well-balanced basis set in state-specific calculations, even in DMC.

We comment now on the results obtained with the CAS(2,2) wave functions.
The state-specific MCSCF CAS(2,2) excitation energy, 3.31 eV, is a strong under-
estimate. The corresponding VMC and DMC state-specific calculations without
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reoptimization of the CSF and orbital coefficients, give slightly overestimated
excitation energies, 3.94(2) and 4.06(2) eV, respectively. Whereas the state-average
MCSCF CAS(2,2) calculation gives a much better excitation energy, 3.73 eV,
compared to the state-specific MCSCF calculation, the non-reoptimized state-
average CAS(2,2) wave functions do not seem to improve the excitation energies
in VMC and DMC. In fact, they give a worse VMC excitation energy of 4.09(2) eV,
and a DMC excitation energy of 4.01(2) eV which is not significantly better than
with the non-reoptimized state-specific wave functions.

The excitation energies obtained from the CAS(6,5) wave functions depend
very little on whether (a) they are calculated in MCSCF, VMC or DMC, (b) the
state-average or the state-specific approach is employed, and (c) the CSF and
orbital coefficients are reoptimized or not in the presence of the Jastrow factor.
In contrast, the excitation energies obtained from CAS(2,2) wave functions do
depend on all of the above and, in particular the reoptimization of the CSF and
orbital coefficients in the presence of the Jastrow factor significantly improves the
VMC and DMC excitation energies, to 3.80(2) and 3.83(1) eV, respectively. The
importance of reoptimizing in VMC the CAS(2,2) expansions but not the CAS(6,5)
expansions suggests that the Jastrow factor includes important correlation effects
that are present in CAS(6,5) but not in CAS(2,2).

Finally, we note that without reoptimization of the determinantal part of the wave
functions, the ground-state VMC and DMC energies can actually increase when
going from a single-determinant wave function to a CAS(2,2) or CAS(6,5) wave
function. This behavior has been observed in other systems as well, e.g. in C2 and
Si2 [29]. Of course, if the CSF and orbital coefficients are reoptimized in VMC,
then the VMC total energies must decrease monotonically upon increasing the
number of CSFs. In practice, it is found that the DMC total energies also decrease
monotonically although there is in principle no guarantee that optimization in VMC
necessarily improves the nodes of the wave function.

19.4 Conclusion

In this work, we have extended the study of Bouabça et al. [13] on how to obtain
a reliable excitation energy in QMC for the singlet n → π∗ (CO) vertical transition
in the acrolein molecule. We have tested the use of a Slater basis set and the effect
of reoptimization of the determinantal part of the wave function in VMC and of the
corresponding changes in the nodal structure in fixed-node DMC. Putting together
the conclusions of the study of Bouabça et al. and the present one, we can summarize
the findings on acrolein as follows:

(a) It is possible to obtain an accurate DMC excitation energy with non-reoptimized
CAS wave functions, provided that a sufficiently large chemically relevant
active space is used. In the case of too small an active space, reoptimization of
the CSF and orbital coefficients in the presence of the Jastrow factor appears to
be necessary in order to get a good DMC excitation energy.
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(b) When using Gaussian basis sets of low or intermediate quality, reliable
DMC excitation energies could be obtained only by using state-average wave
functions (i.e., with the same molecular orbitals for the two states). In contrast,
when using a good quality Slater basis set such as the VB1 basis, state-specific
wave functions were found to also give reliable DMC excitation energies. Thus,
this provides some support for using Slater, rather than Gaussian, basis sets in
all-electron QMC calculations. Note that other authors also advocate the use of
Slater basis sets in all-electron QMC calculations (see, e.g., Refs. [48–50]).

It remains to check whether these conclusions are generally true for other
systems. It would be indeed desirable for calculations on large molecular systems
if accurate DMC excitation energies could be obtained with state-specific or state-
average CAS expansions without the need of an expensive reoptimization of the
determinantal part of the wave functions in QMC.
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