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In this paper we discuss the application of quantum Monte Carlo (QMC) techniques
to the electronic many-body problem as encountered in computational chemistry. The
Fixed-Node Diffusion Monte Carlo (FN-DMC) algorithm -the most common QMC
scheme for treating molecules- is presented. The impact of the fixed-node error is illus-
trated through numerical applications including the calculation of the electronic affinity
of the chlorine atom, the dissociation barrier of the O4 molecule, and the binding energy
of the dichromium molecule, Cr2. Although total energies calculated with FN-DMC are
very accurate (more accurate than the best alternative methods available), it is empha-
sized that the error associated with approximate nodes can lead to important errors in
the small differences of total energies, quantities which are particularly important in
chemistry.
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1. Introduction

At the heart of quantitative chemistry is the formidable mathematical task consist-

ing in finding accurate eigensolutions of theN -body electronic Schrödinger equation.

This task is particularly difficult for several reasons. First, the precision required to

meet the “chemical” accuracy in realistic applications is very high. For example, in

the case of small organic molecules the calculation of atomization energies (the en-

ergy needed to break apart a molecule into separated atoms) requires a relative error

on the total ground-state energies of at least 10−4. Calculating electronic affinities,

ionization potentials, barriers to dissociation etc. is more demanding and a level of at

least 10−5 in accuracy is in general required. For intermolecular forces (hydrogen-

bonds, van der Waals interaction, etc.) the accuracy needed is at least 10−6. A

second aspect which makes the electronic N -body problem difficult is the fermionic

character of electrons. It is well-known that fermions are more difficult to simulate
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than bosons. The basic reason is that fermionic ground-states can be viewed as

“mathematically” excited-states of the Hamiltonian and, therefore, display a much

more intricate structure in configuration space than bosonic ground-states. Another

important aspect concerns the nature of the interaction between electrons and nu-

clei. The existence of strong attractive nuclei centers localized at fixed positions

makes the structure of the electronic distribution highly non-uniform, leading to

huge density variations, a situation not easy to describe. Finally, let us empha-

size that the electronic structure problem for molecules is a full N -body problem

where N is large but finite. Many powerful tools have been developped, in particular

in the condensed matter community, to treat efficiently the thermodynamical limit,

N → ∞. Here, we face a fully quantitative problem where the small finite variations

between the N - and (N + 1)-particle systems are of central importance.

To deal with this difficult electronic problem, a number of methods have been

developped in the past sixty years. Today, two main approaches are employed.

The most popular one is the Density Functional Theory (DFT). In short, DFT

approaches are based on the use of approximate energy functionals of the one-

body density. A major advantage of DFT is that it is computationally very efficient

(computational scaling as N3, where N is the number of electrons) and, thus, rather

large electronic systems can be considered, up to several thousands of electrons.

However, its main weakness is the difficulty in controlling the error made, since

the choice of the most appropriate approximate energy functional to deal with a

given system is a matter of physical insight and personal experience. The second

approach concerns the so-called post-Hartree-Fock methods based on the use of an

explicit N -body wavefunction optimized using the variational principle (“ab initio

wavefunction-based methods”). There exist many versions of them known under

various acronyms like CI (Configuration Interaction), MRCI (MultiReference CI),

MPn (perturbational Möller-Plesset of order n), MCSCF (MultiConfiguration Self-

Consistent Field), CASSCF (Complete Active Space SCF), CCSD(T) (Coupled

Cluster with Single and Double excitations, the Triples treated perturbatively),

etc. In contrast with DFT, the accuracy of the ab initio methods is supposed to

be controlled: the larger the size of the one-particle basis set and the greater the

order of the method are, the smaller the error is. However, when searching for high

accuracy in large fermionic cases, in practice, the exponential increase of the size

of the Fock space makes these approaches much less controlled than desired. For a

large enough electronic system the size of the tractable basis set is relatively small

and the quality of the know-how of the practitioner remains essential to get good

results, despite the “ab initio” character of the approach.

The main alternative approaches to these well-established methods are the quan-

tum Monte Carlo (QMC) techniques, a set of stochastic methods to solve the

Schrödinger equation. QMC is widely used in the field of quantum solids, quan-

tum liquids, spin systems, and nuclear matter. Successful applications include the

uniform electron gas,1 the phase diagrams of hydrogen and helium,2 the properties

of solids,3 etc. In these various fields, QMC is considered as one of the state-of-the-
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art methods for studying complex systems of interacting particles. In constrast, in

computational quantum chemistry the situation is different. Despite a number of

interesting successes (see, e.g., References in4) QMC is still considered as a promis-

ing approach but not as an established one. The reasons for that are directly related

to the various difficult aspects of the molecular many-body problem listed above, in

particular to the problem of reaching a high accuracy in energy differences. In this

paper we discuss one of the key difficulties -the fixed-node approximation- encoun-

tered when applying QMC to molecules.

The organization of this paper is as follows. In the first section, we present

a rapid summary of the standard QMC algorithm used for electronic structure

calculations, namely the Fixed-Node DMC approach. In the next section, some

illustrative examples enlightening the impact of the fixed-node approximation are

presented. Finally, we present some remarks summarizing the main points of the

paper.

2. Fixed-Node Diffusion Monte Carlo (FN-DMC)

2.1. The DMC algorithm

In a quantum Monte Carlo scheme a series of “states”, “configurations”, or “walk-

ers” are generated using some elementary stochastic rules. Here, a configuration is

defined as the set of the 3N -electronic coordinates (N number of electrons), the

positions of the nuclei being fixed (Born-Oppenheimer approximation)

~R = (~r1, ..., ~rN ). (1)

Stated differently, a configuration ~R may be viewed as a “snapshot” of the molecule

showing the instantaneous positions of each electron. Stochastic rules are chosen

so that configurations are generated according to some target probability density,

Π(~R). Note that the probability density is defined over the complete 3N -dimensional

configuration space and not over the ordinary three-dimensional space. Many vari-

ants of QMC can be found in the literature (referred to with various acronyms:

VMC, DMC, PDMC, GFMC, etc...). They essentially differ by the type of stochas-

tic rules used and/or by the specific stationary density produced.

In the case of the Diffusion Monte Carlo (DMC) approach -the most popular

approach for dealing with realistic systems- two basic steps are performed:

i.) a standard Monte Carlo step based on the use of a generalized Metropolis

algorithm:

The walkers are moved using a Langevin-type stochastic differential equation

~Rnew = ~Rold +~b[~Rold]τ +
√
τ~η, (2)

where τ is an elementary time-step, ~b is the so-called drift vector given by

~b =
~∇ψT

ψT
, (3)
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where ψT is some approximate trial wavefunction and ~η a gaussian vector made

of 3N independent gaussian numbers with zero mean and unit variance. Each el-

ementary move ~Rnew is considered as a “trial” move and is accepted or rejected

according to the acceptance probability q ∈ (0, 1) given by

q ≡Min[1,
ψ2

T (~Rnew)p(~Rnew → ~Rold, τ)

ψ2
T (~Rold)p(~Rold → ~Rnew, τ)

], (4)

where p(~Rold → ~Rnew, τ) is the transition probability density corresponding to

Eq.(2), namely

p(~Rold → ~Rnew, τ) =

1

(2π)3N/2
exp {−[(~Rnew − ~Rold −~boldτ)

2]/2τ}. (5)

When the move is rejected the new position of the walker is considered to be the

old one. It can be easily shown that this generalized Metropolis algorithm admits

ψ2
T as stationary density (see, e.g.5).

ii.) a branching (or birth-death) process:

Depending on the magnitude of the local energy defined as

EL ≡ HψT

ψT
, (6)

a given walker can be destroyed (when the local energy is greater than some estimate

of the exact energy) or duplicated a certain number of times (local energy lower

than the estimate of the exact energy). In practice, the branching step is very easy

to implement. After each move the walker is copied a number of times equal to

M = Int[exp {−(EL − ET )τ} + u] (7)

where Int[] is the integer part of a real number, ET some reference energy, and u

an uniform random number defined over (0,1). This expression is built so that in

average the number of copies is equal to the branching weight exp {−(EL − ET )τ}.
Remark that the total number of walkers can now fluctuate and, thus, some sort of

population control is required. Indeed, nothing prevents the total walker population

from exploding or collapsing entirely. Various solutions to this problem have been

proposed. The most popular approaches consist either in performing from time to

time a random deletion/duplication step or in varying slowly enough the reference

energy, ET , to keep the average number of walkers approximately constant.

It can be shown that the stationary density resulting from these rules is given

by

ΠDMC(~R) = ψT (~R)φ0(~R) (8)

where φ0(~R) denotes the unknown ground-state wavefunction. It is easy to verify

that the exact energy is obtained as the average of the local energy over the DMC
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density:

EDMC
0 = lim

P→+∞

1

P

P∑

i=1

EL[~R(i)]. (9)

2.2. The Fixed-Node (FN) approximation

For bosonic systems the ground-state does not vanish at finite distances and the

DMC algorithm just described is exact within statistical uncertainties. In contrast,

for fermions the algorithm is slightly biased. To understand this point we first

note that the density ΠDMC is necessarily positive by its very definition (as any

stationary density resulting from some stochastic rules). As a consequence, φ0 is

not the exact ground-state wavefunction but some approximate one, still solution

of the Schrödinger equation but with the additional constraint that φ0 has the same

sign as the trial wavefunction everywhere, so that the product in Eq.(8) is always

positive. Such a constraint implies that the nodes of φ0 (values of ~R for which the

wavefunction vanishes) are identical to those of the approximate wavefunction ψT .

The resulting error is called the “fixed-node” error. Finally, it can be shown6 that

the fixed-node energy is an upper bound of the exact energy, so that FN-DMC is a

truly variational method:

EFN−DMC
0 ≥ Eexact

0 . (10)

The interested reader can find more details about the various QMC algorithms

in several excellent reviews, e.g.3 or.7

3. The accuracy of FN-DMC

3.1. Total energies

As a general rule, FN-DMC ground-state energies are of a very high quality. For

small systems (say, number of electrons smaller than 30) the accuracy achieved

is comparable or even superior to that obtained with the best high-level ab initio

methods of computational chemistry. For larger systems, these latter approaches

are just not feasible, while QMC calculations are still doable with results of similar

quality. The number of electrons that can be treated by QMC is rather large. To

the best of our knowledge, the largest FN-DMC all-electron calculation published

so far concerns the porphyrine molecule, a system having 182 electrons.8 Using

effective core potentials to reproduce the effect of the innermost 1s electron of

silicon, Williamson et al.9 were able of computing the ground-state energy of a

cluster of silicon and hydrogen atoms containing 986 electrons.

To give some illustrative examples we present in Table 1 several calculations

performed on various atomic systems of increasing complexity: the chlorine atom (17

electrons) and its anion (18 electrons), the chromium atom (24 electrons), and the

copper atom (29 electrons). All electrons (core and valence) have been included in
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the simulation and the FN-DMC algorithm presented above has been employed. The

trial wavefunction used has a standard form consisting of a Jastrow term multiplied

by a one-particle determinantal part, see e.g. Ref.10 The orbitals have been chosen

of the Slater type and are taken from Clementi and Roetti.11 The time step is chosen

sufficiently small to get an acceptance rate larger than 0.995.

As seen from Table 1 the ground-state energies are very good. Regarding the

lighter system, the chlorine atom, the exact non-relativistic energy is known.12 In

quantum chemistry it is usual practice to measure the errors on energies as per-

cents of the so-called correlation energy, defined as the difference of the exact non-

relativistic value and the Hartree-Fock energy. For the chlorine atom the error due

to the approximate Hartree-Fock nodes represents only 7% of the correlation en-

ergy. Note that this error corresponds to a relative error on the total energy (lowest

eigenvalue of the Schrödinger operator) of only 0.1%. In chemistry, such a result is

considered as very good.

For the Cr and Cu atoms the exact non-relativistic energies are not known. To

estimate the accuracy obtained by QMC we have performed for these systems some

CCSD(T) calculations using very large atomic basis sets. The CCSD(T) acronym

stands for “Coupled Cluster using Single and Double excitations, the Triple exci-

tations being treated in perturbation”.13 When the basis set is large enough and

the exact wavefunction is supposed to have a strong monoconfigurational charac-

ter, CCSD(T) is considered as one of the most accurate methods in computational

chemistry. Very large atomic basis sets were used here; for example, in the case of

the chromium and copper atoms the primitive basis set are (21s14p7d5f4g3h2i) and

(22s17p11d7f5g2h2i), contracted as 244 and 270 one-particle functions, respectively.

The number of derminants treated is about 6x108. Although CCSD(T) results are

supposed to be very accurate, we see in Table 1 that FN-DMC energies are system-

atically better(lower).

Numerical experience on various molecular systems shows that this result is ac-

tually general. The all-electron FN-DMC method can therefore be considered as

the method of choice when accurate total ground-state energies of molecular sys-

tems are searched for if the constituing atoms do not present important relativistic

contributions (Z< 30).

Table 1. All-electron total ground-state energies at various levels of approximation for Cl, Cl−, Cr,
and Cu. Energies in atomic units. Statistical errors on the last digit in parentheses. HF stands for
Hartree-Fock, CCSD(T) for Coupled Cluster using Simple and Double excitations, the Triple excitations
being treated in perturbation, CE for Correlation Energy.

EHF ECCSD(T ) E0(Fixed-Node DMC) E0(exact) CE/% recovered

Cl (Nelec=17) -459.4820 -459.9705 -460.1012(9) -460.150 0.668/92.7(1)

Cl− (Nelec=18) -459.5770 -460.1046 -460.2328(24) -460.283 0.706/92.9(3)

Cr (Nelec=24)) -1043.3559 -1043.8917∗ -1044.310(21) ? 0.954/?

Cu (Nelec=29)) -1638.9632 -1640.3971 -1640.411(5) ? 1.448/?

∗ Averaged Coupled Pair Functional (ACPF) energy for the 7S ground-state of Cr.
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3.2. Difference of energies

Getting very accurate total energies is satisfactory, however, it is important to

emphasize that the vast majority of chemistry problems does not require precise

total energies but, rather, accurate differences of total energies such as barriers,

enthalpies, electronic affinities, etc. A general idea valid for any approach is that

accurate differences are obtained only when the systematic errors of both compo-

nents nearly cancel. This is a fundamental point for any ab initio method and it is,

of course, also true for QMC. Within the fixed-node scheme used here it means that

the two following conditions need to be fulfilled. First, the statistical fluctuations

are to be smaller or much smaller than the difference of energies computed. Second,

the fixed-node error on both energy components must almost compensate. Thus,

the quality of the results depends very much on the relative magnitudes of these two

errors with respect to the desired difference. In Table 2 we present an application

of FN-DMC to the computation of the electron affinity (EA) of the chlorine atom

(difference of total energies between the neutral atom and its anion, Cl−). In this

example, the energy difference of the order of 10−1 Hartree is large for the standards

of most chemical applications. For both atoms the nodes are Hartree-Fock nodes.

Note that the Hartree-Fock EA has a large error (about 30%), thus illustrating the

importance of electronic correlations. At the FN-DMC level, the statistical error

can be easily controlled (about 2%). Within the error bars the FN-DMC result is

found to coincide with the experimental result. In this example, the error related to

the approximate Hartree-Fock nodes is small. Note also the fact that, in spite that

the CCSD(T) energies for Cl and its anion are much less accurate than FN-DMC

ones (differences of about 4 eV, see Table 1), their difference is actually very close to

the difference of the latter (only 0.08 eV). This latter remark illustrates clearly the

very large compensations of errors at work within the ab initio methods framework.

Table 2. Electron affinity (EA) of the chlorine atom in eV. Comparison be-
tween Hartree-Fock (STO basis), CCSD(T), Fixed-Node DMC, and exact or
experimental results. Statistical errors on the last digit in parentheses.

Hartree-Fock CCSD(T) FN-DMC Exact or Expt

Electron Affinity 2.58 3.65 3.58(7) 3.619,3.62(Expt)

Now, most realistic situations in chemistry involve smaller energy differences.

Typical cases concern energy variations of a few kcal/mol, that is ∼ 10−2 Hartree.

At this level of accuracy, numerical experience shows that it is still possible to

decrease enough the statistical fluctuations by using properly optimized trial wave-

functions and by performing long enough computations. However, the fixed-node

error begins to play a crucial role on these small differences. In Table 3 an illustra-

tive application involving the metastable O4 molecule is presented. The question

to solve here is to know whether or not the O4 molecule has a sufficiently long

life-time to play a role in the dynamical processes at work in the upper atmosphere.
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Experimental results seem to indicate that it is indeed the case. High-level ab initio

calculations give a slightly too low barrier. Here, the central quantity to determine

is the height of the dissociation barrier for O4 into molecular oxygen, that is the

difference of total energies between the metastable O4 singlet molecule and the two

separated O2 triplet molecules. Although there is no direct experimental value for

this barrier, various dynamical models built for polyoxygen species seem to indicate

that it should be greater than 10 kcal/mol. The best ab initio wave-function based

approaches lead to a value of about 9.3 kcal/mol, a result that seems to be in con-

tradiction with experimental findings. To elucidate this point, we have performed

single reference (Hartree-Fock) and multireference FN-DMC simulations.16 As seen

in Table 3 the nature of the nodes plays a crucial role in such calculations. Using

Hartree-Fock nodes, the barrier is found to be about 26 kcal/mol. Clearly, such a

result is unphysical and is related to the poor quality of the Hartee-Fock nodes. Us-

ing a MCSCF (Multi-Configurational-Self-Consistent-Field) trial wave function the

barrier is dramatically reduced to a value of 11.4 kcal/mol, in quantitive agreement

with the experimental data.

Table 3. Dissociation barrier H of the metastable O4 molecule in kcal/mol. Statistical errors
on the last digit in parentheses.

FN-DMC with HF nodes FN-DMC with MCSCF nodes ab initio Expt

Barrier H=26.2 ±2.9 H= 11.4 ±1.6 H=7.9a,9.3b H> 10

a CCSD(T)/aug-cc-pVDZ value from14

b CASSCF+ACPF/aug-cc-pVQZ benchmark value from15

Another enlightening application showing the impact of the fixed-node approx-

imation in diffusion Monte Carlo is the calculation of the binding energy of the

dichromium molecule, Cr2. One of the most difficult problems in quantum chem-

istry is to accurately describe the formation and breaking of multiple bonds. In

this respect, the electronic structure of the chromium dimer represents a very hard

problem to describe, even though it is a “simple” diatomic molecule. The theo-

retical challenge arises from the fact that the dissociation of the molecular singlet

ground-state leads to a couple of separate chromium atoms, each one in their S=7

spin-state (six unpaired electrons in six open shells). Accordingly, Cr2 is considered

as a genuine “bête noire” for all high-level ab initio correlation treatments. In Ta-

ble 4 we present our all-electron FN-DMC calculations for Cr2 at a bond length of

R = 3.2, close to the experimental value. The trial wavefunction used Hartree-Fock

nodes and the data are compared to CCSD(T) calculations and experimental ones.

A first important remark is that, at the Hartree-Fock level, the Cr2 molecule is not

bound by a large amount, +0.795 a.u., although this molecule is experimentally

known with a binding energy of about -0.056 a.u. This result illustrates clearly the

very strong multiconfigurational character of the exact wavefunction. In quantum

chemistry it is usual to split the correlation energy (defined above) into two compo-

nents: a so-called dynamical correlation energy corresponding to the instantaneous
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effect of the electron-electron interaction and a static or non-dynamical correla-

tion energy associated with a large overlap of the exact wavefunction with many

mono-configurational states. Here, the proper description of the S = 0 wavefunc-

tion, which is expected to dissociate into two S=7 atomic states, requires to take

into account in the zeroth order approximation, at least, all states (determinants)

corresponding to the various ways of distributing the twelve valence electrons into

the twelve valence orbitals (4s and 3d orbitals for both atoms). The number of such

states is about ∼ 800000. In Table 4 we also give the binding energy obtained by

Scuseria17 using the CCSD(T) approach. As already mentioned, CCSD(T) is con-

sidered as one of the most accurate methods for computing correlation energies.

However, since the method is built on a monoconfigurational reference, only the

major part of the dynamical correlation energy is recovered. Using a very large ba-

sis set, Scuseria found a value of -0.018 kcal/mol. This value is very different from

the experimental one and confirms the fact that, in this very complex case, the

binding energy is dominated by the non-dynamic correlation energy. We have done

extensive FN-DMC calculations using Hartree-Fock nodes. The basis set used is the

uncontracted Partridge basis set (20s12p9d).18 We have considered two cases corre-

sponding to using or not f polarization functions (6f basis set functions taken from

the Roos Double Zeta ANO basis19). As seen from the table, the effect of f functions

on the FN-DMC result is important. Note that the importance of f functions in the

context of HF theory has already been noticed in a previous work.20 Now, with the

largest basis set including f functions we get a FN-DMC binding energy of 0.01(3).

Within statistical uncertainty this result is similar to the Scuseria’s result of -0.018.

It is interesting to note that, although CCSD(T) and FN-DMC are two completely

different methods, similar results are obtained. In the case of the CCSD(T) method,

the bad result comes from the mono-configurational character of the reference func-

tion on which the coupled cluster ansatz is made. In the DMC case, the origin of

the large bias comes from the use of “mono-configurational” nodes.

Table 4. Total energies and binding energy of Cr2. Bond length R=3.2 Statistical errors on the last digit in
parentheses.

FN-DMC (HF nodes, no f) FN-DMC (HF nodes, f) HF CCSD(T) Expt.

Total energies (a.u.) -2088.522(22) -2088.612(24) -2085.917 -2087.516a

Binding energy (a.u.) 0.10(3) 0.01(3) 0.795 -0.018 -0.056
a 1s core electrons not correlated in CCSD(T) (this explains why the CCSD(T) total energy is much higher than
the FN-DMC one).

4. Summary

In this paper we have first summarized the various difficult aspects of the many-

body problem appearing in quantum chemistry, which make this problem so difficult

to solve for atomic and molecular systems. Then, we discussed the present achiev-

ments and limitations of quantum Monte Carlo techniques for this problem. After
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having briefly summarized the main steps of the fixed-node Diffusion Monte Carlo

-the standard QMC approach in Chemistry- a number of applications have been

presented. It has been illustrated that total ground-state energies obtained with

FN-DMC are in general very accurate: the fixed-node error represents only a few

percents of the difference between the mean-field result (Hartree-Fock) and the ex-

act energy, the difference being called the correlation energy in quantum chemistry.

For small molecules this accuracy is comparable or even superior to that of standard

very high-quality ab initio methods traditionally used in computational chemistry

(e.g., Coupled Cluster with large basis sets). However, for larger molecules (let us

say, with more than 50 active electrons) Fixed-Node QMC calculations are still fea-

sible with such an accuracy, while other methods are just impossible to implement.

However, it has been emphasized that in chemistry total energies are not the most

relevant quantities. In general, chemists are much more interested in small differ-

ences of energies which define spectroscopic and reactivity quantities like ionization

potentials, electroaffinities, reaction enthalpies and activation barriers. For these

differences, we have illustrated that the fixed-node approximation can introduce

sizable errors. For example, in the case of Cr2 the DMC result using Hartree-Fock

nodes predicts an unbound molecule! It is therefore important to construct physi-

cally meaningful trial wavefunctions in order to get useful FN-DMC simulations to

deal with real chemistry problems.
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