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1. I_ntroduction.

Quantum Monte Carlo (QMC) methods offer a possibility for very accurate calcu-
lations of correlation energies for atoms and molecules [1]. An important aspect of
these calculations is that one has to take care of the change of sign of the wave func-
tion during the random walk in configuration space. Several exact solutions to this
problem have been proposed. We will Jjust mention the method of correlated walkers
of Arnow et al. [2] (see also [3]), the released-node method of Ceperley and Alder [4];
the projection method of Caffarel and Claverie [5], and the method of Anderson et
al. [6]. Despite the great success of these kinds of methods in some selected cases,
its possible range of application still remains limited. Twenty years ago Anderson
suggested a very simple and efficient approximation, the so-called fixed-node approx-
imation [7]. It permits an exact stochastic solution of the Schrédinger equation within
a supplementary boundary condition. This boundary condition is given by the nodal

structure of a trial wave function and the stochastic solution is forced to have the .

same nodes. The resulting energies are upper bounds of the exact ground state ener-
gies (see e.g. [8] for a recent review). The importance of this approximate scheme in
QMC calculations is due to its robustness and asymptotic stability. Most of the QMC
applications for atoms and molecules published in the literature have been carried out
within the fixed-node approximation. At present it is unrivaled for calculations in-
cluding heavy elements [9, 10, 11, 12]. Moreover the fixed-node approximation is the
starting point for exact released-node calculations [4].

The crucial point of the fixed-node approximation is the selection of the trial
wave function which defines the nodal structure. If the approximate nodes are close
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to the exact ones, it is possible to get very accurate results for a variety of phys-
ical properties, like bond energies, excitation and ionization energies and electron
affinities, which are often rather sensitive to electron correlation. Unfortunately, the
nodal structure of many-electron wave functions is still rather mysterious. Apart from
symmetry restrictions, a general N-electron wave function depends on the complete
set of the 3N variables of the configuration space. The nodes are represented by a
(3N —1)-dimensional hypersurface in this space. It has been demonstrated by Ceper-
ley [13] that the exact ground state wave functions satisfy what he called the tiling
property, which means that there exits only one type of nodal cell and all others can
be obtained by permuting the particles in a suitable way. The arguments given by
Ceperley can in general not be extended to approximate wave functions because the
wave function has to be an eigenfunction of a Hamiltonian with local potential. The
local potential may have at most a weak singularity at the nodes. It is in general
not possible to determine the structure of the nodes from symmetry considerations
which contain permutational and point group symmetries [14]. This can be seen
by counting the number of constraints imposed on the configuration space. Due to
permutational symmetry the wave function vanishes if two electrons with equal spin
occupy the same part of space. The three constraints 7; = 7; belonging to it generate
a (3N — 3-dimensional hypersurface, which represents only a subset of the complete
nodal hypersurface.

An appropriate choice for the trial wave function has therefore to take into ac-
count not only symmetry requirements but also the electron interactions. Usually the
nodes of Hartree-Fock (HF) wave functions are used for the fixed-node approxima-
tion. These trial wave functions are solutions of nonlocal mean-field equations but
their structure is very close to solutions of Kohn-Sham equations with local exchange-
correlation potential. Therefore they will probably satisfy the tiling property (13]. In
some cases the HF wave function yields only a very poor description of the ground
state due to accidental near degeneracies. Extension of the wave function by inclusion
of the configurations which are energetically close to the HF configuration overcomes
this difficulty. A well-known example is the Be atom which has been studied by Har-
rison and Handy [15]. In this case we have a strong near-degeneracy between two
configurations with 15?2s> and 1522p? occupancies. The fixed-node correlation energy
can be improved by 10 % in going from HF to the two-configuration self-consistent- |
field wave function. Obviously it is in general straightforward to improve the HF
wave function in a systematic way by adding selected configurations. This procedure
includes some arbitrariness because the magnitude of the coefficients decreases quite
uniformly. :

In the remaining part of the paper we will discuss the effects of different types
of configurations on the fixed-node energies of the atoms B to F. Starting with con- |
ventional complete active space self-consistent field (CASSCF) calculations, we have
selected the dominant configuration state functions (CSFs). These have been added |
successively to the trial wave function, making it feasible to study the impact of]




75

different types of excitations on the nodal structure. Unfortunately, it is not readily
possible to conclude from the contribution to the total energy of a CSF its importarice
for the nodes.

At the end of this section we will briefly discuss possible methods to obtain trial
wave functions from standard methods in quantum chemistry. Due to the fact, that
one has to calculate the value of the wave function and its derivatives, only a small
number of configurations can be taken into account. To calculate such wave func-
tions, the multi-configuration self-consistent field (MCSCF) method seems to be most
appropriate. The orbitals and coefficients are optimized simultaneously with respect
to the energy but this does not mean, that they are also optimal with respect to the
nodes. Therefore one can think to replace the MCSCF orbitals by other types of
orbitals like natural or Brueckner orbitals. The first possibility has been suggested
by Grossman and Mit4$ in the case of silicon clusters [16]. For these systems they
obtained a slight improvement of their results by using natural orbitals in a single
determinant wave function.

2. Generation of CSF's for QMC calculations.

QMC methods which make use of trial wave functions differ in an essential point
from other methods usually applied in quantum chemistry. In contrast to most other
methods, QMC works in a spin-free formalism and it is necessary to calculate the
value of the trial wave function explicitly. This can raise difficulties if one wants
to use the outputs of atomic or molecular program packages to generate the trial
wave functions, at least for open shell configurations. In this section we give a brief
description how to construct spin-free trial wave functions for configurations with
more than one open shell. Spin-free formalisms are currently rarely used in quantum
chemistry, nevertheless their theory is well developed (see e.g. the book of Pauncz
[17]). We will choose an approach which is appropriate for the peculiarities of QMC
calculations.

Due to the fact, that the Hamiltonian is symmetric with respect to permutations
of electrons, it is possible to classify the eigenfunctions with respect to the irreducible
representations of the symmetric group [18]. Here we consider only the nonrelativistic
case, where the Hamiltonian contains no spin-dependent interactions. Therefore the
eigenfunctions depend only on the spatial coordinates. The irreducible representa-
tions generated by spatial eigenfunctions can be characterized by Young frames with
at most two columns. The number of boxes N is equal to the number of electrons.
The difference between the number of boxes in the left and right columns determines
the total spin of the wave function and is equal to 25 (see Figure 1). Distributing the
numbers 1,..., N among the boxes of the Young frame, one gets a Young tableau,
which can be viewed as an element of the group algebra. Each element of the group
-algebra can be represented by a linear combination of elements of the symmetric
group Sy. A Young tableau Y can be generated from two subgroups of the symmet-
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can be associated with the Young tableau Y, whereby the properties of Ey are com-
pletely determined through the assignment of the numbers and the shape of the Young
frame. From a given Young frame one can generate several different Young tableaux
Y;. Usually it is sufficient to consider only standard Young tableaux, which means
that the numbers in each row and column are arranged in ascending order from left
to right and from top to bottom (see Figure 2). Taking an arbitrary standard Young
tableau Y] as a reference, we can define operators

Ey, = Ny, Py, (5)

whereby §;; represents the permutation which transforms Y; to Y;. The operators E'y.,
constitute a set which is not linearly independent. A set of independent operators
can be obtained from the standard Young tableaux. By applying these operators to
an arbitrary function f(z;,z,,...,zx5) a D dimensional irreducible representation of
S(N) is generated, where D is the number of standard Young tableaux..

Di(z1, z2,..-,ZN) =En¢(rl,x2,...,zN) (6)

The functions ®;(z;,zs,...,zN) can be viewed as spatial parts of fermionic wave
functions. For fermions the total wave function has to be antisymmetric with respect
to the simultaneous permutation of both spatial and spin coordinates of any pair of
electrons. Based on previous work of Fock [19] (see e.g. the book of Hamermesh [20]
for a brief exposition), Drukarev [21] and Demkov [22] demonstrated that the total
wave function can be represented by a sum of products of spatial functions ®; and
spin functions Z;

Y[(73),,. .., (7f3).) = CNZJ (=)l &,(7, ..., 7%) Ei(GY, ..., 5) - )

The index i runs over all possible Young tableaux. The spin functions =;(d,...,5,)
appearing in Eq. 7, can be generated from a Young tableau Y;” with at most two
rows, which is obtained from Y; by converting columns into rows [18] and reversing
the order of the operators in Eq. 4. The generating spin function Z is conveniently
chosen to be a product of the form

N;g2$ N;ZS

E,...,n)= [] alk) 1_—[1 B(L;) 8)

i=1

which assures that the Z; are eigenfunctions of S? and S,,with S, = S. The indices
k; (i) refer to the numbers in the first (second) row of Y. It can be shown [17] that
the following relation

(VA _ @ f]e)
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applies to the expectation value of the energy. Therefore it is sufficient to consider
only one spatial wave function ®;. It is obvious, that the ®; are all equivalent due to
the fact that the Hamiltonian is invariant with respect to permutations.

In addition to permutational symmetries one has to take into account spatial
symmetry requirements. Atomic wave functions are characterized according to their
spin (S) and angular momentum (L) eigenvalues . For a nonrelativistic Hamiltonian
without spin-orbit coupling L, S are good quantum numbers. It is usually possi-
ble to construct different angular momentum eigenfunctions for given L value and
occupation number n of the shell. Within each I™ shell different coupling schemes
can be characterized by their angular momentum L~ within the shell and ‘a senior-
ity quantum number o (23], which specifies the number of electron pairs coupled to
zero angular momentum. The final eigenfunction can be obtained by coupling eigen-
functions ¢(I*, Li», o) of different shells in a convenient way. Programs like GENCL
which is a part of the MCHF atomic-structure package of Froese Fischer [24] can
be used to generate a list of possible coupling schemes. The explicit construction
of eigenfunctions in a form suitable for QMC calculations is straightforward. Start-
ing from one-particle eigenfunctions Yim within each shell, it is a simple genealogical
construction using the standard methods for angular momentum coupling.

#o(1,2) = 3 (Im,i(=m) | L'0) Yim(1)Yic-m)(2) (10)
$0(1,2,3) = (LM U(=M)| L'0) ¢ (1,2)Yi-m9(3)
M .

Here (lym,, lam, | LM) are Clebsch-Gordan coefficients which can be easily obtained
from the corresponding 3j-symbols [23]. Only eigenfunctions with M = 0 have been
calculated in this way. The other M values have been obtained by repeated applica-
tion of the ladder-operators. ‘

Lidpm(1,2,...,n) = \/IT'(L' +1) - M'(M' £1) ¢paran(1,2,-..,n) (A1)

1t is convenient to chose M = 0 because it gives a real function, just as well one can
take a real linear combination of ¢ra and ¢r(—ar)- The Yium; (4) are still complex and
have to be replaced by real spherical harmonics Zj;m; (4). The final angular momentum
eigenfunction ¢ro is a linear combination of products of one-particle functions.

N
¢L0(1) 27 M ] N) = Z ClLlenl...leN H Zl,m‘("') (12)
my..my =1
If the eigenfunction includes open shells with equal ! quantum number, it is necessary
to distinguish the Z;,, which belong to different shells. _
Up to now ¢ro does not represent a fermionic wave function because it does not
show the correct behavior with respect to permutations of particles. In order to
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obtain the spatial part of the trial wave function one has to apply the operator Ey
from an arbitrary Young tableau to ¢ro (see Eq. 6). However this is not sufficient
to get all the required CSFs. The CSFs differ not only in the manner in which the
angular momentum of the spatial parts are coupled, they can also differ in their spin
coupling scheme (see Appendix A). This is related to the fact, that we can get different
functions by interchanging the order of the variables in ¢ro. In order to obtain all
possible spin couplings it is sufficient to pick out a standard Young tableau Y; and
to determine all the permutations §,; which transform the standard Young tableaux
Y; to Y;.  The spatial trial wave functions belonging to different spin couplings can
then be_generated using the operators Eyl 915, which act on the angular momentum

eigenfunctions.
&4 (71, 72y - -2 7N) = By 13 610(F1, 72, -+ -, TN) (13)

The operator E‘yl symmetrizes the variables within the rows and thereafter it antisym-
metrizes the variables within the columns. Applying it to a product of one-particle
functions as it appears in Eq. 12, results in a sum of products of two determinants.

i —=Lo
}.0 = Z Cllml...leN l Z’lml e Z‘ama | I Zla+lma+l Tt ZIN""N I (14)

Limy..Inmy

In each product the two determinants represent electrons with o and 3 spins, respec-
tively. Closed shells which have not been considered so far can be easily incorporated
by inserting their orbitals in both determinants. This form of the trial wave function
enables an efficient evaluation of the local energy in QMC calculations [1]. The &},
are not necessarily orthogonal nor linearly independent, depending on the system
under consideration. Eliminating linear dependencies yields a-set of basis functions

&%, which constitute a vector space V(L). Finally it is necessary to identify the.

specific spin couplings in V(L). This can be done by a Schmidt-orthogonalization of
the remaining &%, and performing a convenient orthogonal transformation

-‘51[40(771’772)'”1771\():2 th q)Jl.,o(Flyﬁr"’FN)' (15)
J

For the systems under consideration it is straightforward to determine the matrix
elements I';; by inspection of the determinants which constitute the ®%,. There are
at most two or three different spin couplings between open shells for each ¢ and
some products possess typical distributions of the Zj, on the determinants which
are unique for a specific spin coupling. Requiring I' to decouple these determinants
determines the I';; uniquely (see Appendix B). After we have established a one to one
correspondence between the CSFs from a conventional ab initio calculation and the
spin-free CSF's used in QMC calculations, it remains to fix the sign of their coefficients
in the trial wave function. If the number of CSFs is small it takes usually less effort
to perform a few short VMC calculations to fix the signs. In some cases where
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an occupation gives rise to several CSFs, it is possible to determine their relative
signs from conventional ab initio calculations. Usually the CSFs have some common
determinants. We have performed MCSCF calculations in a determinant basis using
the MOLPRO program of Werner and Knowles [25, 26]. From the absolute values of

. the coefficients of the determinants which are common to several CSFs one can easily

obtain their relative signs. The absolute sign has been again determined from VMC
calculations. Further details are given in Appendices A and B.

3. Selection of the dominant CSF's for the ground states of
the atoms B to F.

The expansion of a wave function as a sum of determinants is the most common
method in quantum chemistry to calculate electron correlation. The determinants
are usually composed of orbitals taken from a preceding calculation. For a convenient
set of orbitals, like natural or MCSCF orbitals, the convergence of the energy is very
fast at the beginning but slows down considerably with increasing expansion length
[27]. The deterioration of the convergence results from short range correlations which
are poorly described by linear combinations of determinants [28]. We have restricted
ourselves to the most important CSFs. Single excitations can be neglected due to the
generalized Brillouin theorem.

The HF configurations for B to F possess a 2522p™ occupation in the valence shells.
Within the valence space, a double excitation 2522p™ — 2p™*? is possible for B and
C, otherwise no such excitations can occur. Thereafter a 2s electron can be put into
the 3d shell. The resulting 2s'2p™3d! configurations are not single excitations due to
regroupings within the 2p shell. This type of CSF can be generated for the whole row
B to F. Further important CSFs can be obtained from 25'3s'2p™~13p! and 25%2p™~23p?
occupations. We have performed CASSCF calculations for these occupations using
the MCHF program of Froese Fischer [24], in order to determine their contributions
to the correlation energy. This means that we have included all possible CSFs within
a given occupation. The results are shown in Figure 3, which shows the contributions
of the most important occupations for each atom. For the 2P: ground state of B
the most significant improvement can be achieved by adding the 2p? configuration.
Similar improvement can be obtained by including in addition the two CSFs with
25'2p*3d! occupation. All other occupations yield only minor contributions to the
correlation energy and have been neglected in the QMC treatment. A similar behavior
can be found for the 3P ground state of C. The contribution of the 2p* occupation is
only half as much as for the B atom, on the other hand it increases the importance
of the 25'2p?3d! occupation slightly. The most important CSF besides HF of the
4S ground state of N has a 2s!'2p33d! occupation. Next to it there are three CSFs
with 2513512p?3p! occupation. Up to now there is a clear order of precedence for the
contributions of different occupations. This is no longer valid for the ground states
of O and F. For the 3P state of O there are similar contributions from the 2s'2p*3d’,
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Figure 3: CASSCF calculations. Contributions of selected CSFs to the correlation energy
of the atoms B to F. The groups of CSFs which belong to a given occupation have been
added consecutively to the HF configuration. All CSFs which belong to a given occupation
have been included. :

25'35'2p33p! and 2s22p?3p? configurations. The contribution of 2s22p™ — 2s'2p™3d!
excitations decreases significantly from N to O, whereas the 2522p™ — 25%2p™~23p?
excitations come to the fore. The behavior of the 2P ground state of F continues
along this line. The CSFs with 2522p33p? occupation become dominant in this case.

4. Fixed-node PDMC calculations with different types of
trial wave functions. ‘

We have performed pure diffusion Monte Carlo (PDMC) calculations [5] within the
fixed-node and short-time approximation for the atoms B to Ne. The PDMC method
is based on a generalization of the Feynman-Kac formula for the imaginary time
Green’s function, which allows importance sampling with a given trial wave function.
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Figure 4: Variation of the percentage of the correlation energy for the atoms B to Ne in
variational Monte Carlo (VMC) calculations. For each atom selected groups of CSFs which
belong to a given occupation have been added consecutively to the HF configuration. The
parameters of the Jastrow factors have been optimized for HF wave functions only and have
been kept unchanged for the multi-reference wave functions.

The energy is calculated from the time-dependent equation
(¥ | Hexp (=pA) | W) . Jo 473 (BL(7) + Bi(7rvs)) exp (= [79 EL(7.)ds)
(Vjexp(~BH) | W) ~ 7o i drexp (- 7+ Ey(7,)ds)

(16)

with the local energy
HY() - :
===/ 17
calculated from the trial wave function W. The right hand side represents a fraction
of path integrals extending over all paths of length 8 which can be generated by the
stochastic differential equation

di = —V‘I’Edr +dW (18)
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Figure 5: Variation of the percentage of the correlation energy for the atoms B to Ne
in fixed-node pure diffusion Monte Carlo (PDMC) calculations. For each atom selected
groups of CSFs which belong to a given occupation have been added consecutively to the
HF configuration.

where W is a Wiener process. In the case of finite systems it is sufficient to generate
one infinitely long path parameterized by 7 and to subdivide it. For § = 0 we obtain
the variational Monte Carlo (VMC) result, which means that we have calculated the
energy expectation value for the trial wave function ¥. In the limit § — oo we get
the exact ground state energy for the Schrédinger equation with imposed fixed-node
boundary condition on the solution. It is imposed through Eq. (18) where the drift
term keeps walkers away from the nodes. The resulting energy is an upper bound of
the exact ground state energy. To generate a random walk by Eq. (18) it is necessary
to choose a finite time step A7. This leads to the so-called short-time error. The
trial wave functions ¥ are composed of a HF or multi-configuration wave function ®
and a Jastrow factor. Although we have considered only HF nodes for Ne, we will
mention it below for the sake of completeness. We have chosen the following ansatz
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for the JastrQW factor [29] -
‘ ¥ =[] exp {Us[Uso(r:, 75),7i]} © (19)
i<j
Ue = Ugo + c111z

1+ [(er - '21')/UG0]rl2 + cordy
3
UGO(T;', Tj) = - [ngdl (%)2 (e_mr,? +e—mrf)]
]

which contains the free parameters C1,C2, y,d;. They are optimized by minimizing
the variance of the local energy [30] for a given number of points in configuration
space. The points are distributed according to U2 for a given set of parameters and
held fixed during the optimization. The whole procedure has been repeated for the
new set of parameters until no further improvement could be achieved. The J astrow
factor has been described in more detail in ref, [29] which also contains a list of
parameters for the atoms discugsed below. The parameters have been optimized only
for @ taken from HF calculations. This is sufficient for our purposes because Jastrow
factors do not change the nodes. Furthermore Jastrow factors are especially intended
for the description of short-range correlations, whereas the MCSCF parts describe
mainly near-degeneracies. At least in a first approximation it can be assumed that
they act independently on the electrons. We will discuss this point subsequently. In
order to study the influence of the short-time approximation on our results, we have
performed calculations with HF trial wave functions for various values of the time
step. The chosen time steps are small enough to get no significant dependence of our
results on their magnitudes. This has been confirmed by a comparison of our results
with domain Green’s function Monte Carlo (DGFMC) calculations of Subramaniam
et al. [31] as will be discussed below.

Before we enter into the discussion of the PDMC calculations we will briefly con-
sider the VMC energies for the various trial wave functions. The VMC energies have
been plotted in Figure 4 corresponding to the CASSCF energies in Figure 3. The dif-
ferences in the correlation energies between both figures are due to the Jastrow factors
with which the multi-configuration wave functions have been multiplied. Comparing
Figures 3 and 4 it is clear that the relative energy differences between the wave func-
tions decrease in going from B to F. In the case of F the energy difference amounts

~only 3 % in VMC compared with 33 % in CASSCF calculations. This indicates,
that the additional CSFs and the Jastrow factors describe similar parts of electron
correlation. On the other side a more complementary behavior can be observed for
B and C.

The fixed-node PDMC energies for the various trial wave functions discussed above
are presented in Figure 5 and Table 1. It can be seen, that PDMC and VMC be-
have rather similar along the row B to Ne. The HF nodes turn out to be a very
poor approximation for B and C. Only 89.2(5) % and 89.8(3) %, respectively, have
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been recovered for these atoms. Taking care of the 2522p™ — 2p™*? near-degeneracy
improves the results to 95.3(4) % and 92.8(3) %, respectively, which is equivalent to
the Be atom discussed above. Moreover improvements can be achieved by adding
further all CSFs belonging to a 2s'2p"3d! occupation. For our best trial wave func-
tions 97.5(4) % and 97.1(4) % of the correlation energy is recovered for B and C. For
the atoms N, O and F the HF fixed-node energies recover 93.0(4) % to 95.5(4) % of
the correlation energy. The HF nodes become more reasonable in going from B to F.
Adding the CSFs which belong to a 2s'2p"3d" occupation improves the correlation
energy to 95.6(3) % and 95.1(4) % for N and O, but leaves F nearly unchanged. This
agrees well with the CASSCF calculations, which show that these CSFs are only of
minor importance for F. The CASSCF results of Figure 3 indicate that for O and F
other configurations become more important. These are CSFs with 2s22p™"~23p? and
25'3512p"13p! occupations. In the case of O we obtained from the CASSCF calcu-
lations 2522p?3p® as the most important occupation for additional CSFs. We have
first added only CSFs which belong to this occupation to the HF configuration and
obtained only 91.2(4) % (see Table 2) of the correlation energy. This is an example of
a decreasing PDMC correlation energy with simultaneous increase of the correspond-
ing VMC value. Adding the 25'2p*3d" and 2522p23p? configurations we get 92.3(4) %
which is still a little below the PDMC result with HF nodes. The correlation en-
ergy can be further improved by including the extra CSFs belonging to 2513s12p33p!.
The resulting 94.5(4) % corresponds to our result obtained by taking into account
only the 2s'2p*3d! configurations. For F. the results are even more discouraging. In
the CASSCF calculations 2p° — 2p33p® excitations give the chief contribution but
the PDMC correlation energy decreases to 92.5(4) % after expanding the HF wave
function by the CSFs belonging to it. If we add instead of these CSFs all that be-
long to the 25135'2p*3p' occupation, the correlation energy becomes even worse, only
91.0(4) % is recovered in this PDMC calculation. However if we add all CSF's to the
HF configuration which belong to 2s'2p°3d!, 25°2p*3p?, 25'3512p%3p! occupations we
get again 95.4(4) % of the correlation energy. ‘

These results indicate, that an improvement of the nodal structure is not equiva-
lent to an improvement of the correlation energy of the multi-reference wave function.
Some indications can be obtained from VMC calculations. If Jastrow factor and multi-
reference wave function complement each other, it can be expected that the nodes
improve with respect to HF. This type of behavior is mainly observed in cases where
near-degeneracies occur like for B and C. For atoms like O and F the situation is more
complicated. A significant deterioration of the results can be obtained by adding only
a restricted set of CSFs as can be seen in Table 2. It seems to be important to in-
clude all CSFs which yield comparable contributions to the correlation energy and
to avoid an arbitrary selection. In order to proceed along this line, it is necessary to
get a better understanding how CSFs influence the nodes. An interesting question is
the occurrence of spurious nodes. Is it possible to change the topology of the nodal
hypersurface by adding particular CSFs or do they merely generate deformations?
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Figure 6: Energy evolution during a simulation of the F atom for different values of 3.

. This will be a subject of further studies.

5. Computational details.

We have generated the coupling schemes for our wave functions using the program
GENCL ([24] of Froese Fischer. The CI coefficients belonging to the different CSFs
have been obtained using the atomic MCHF program [24] of Froese Fischer.

The procedure discussed above for the generation of spin-free trial wave functions
has been implemented in our QMC program. In order to check the reliability of
our program we have performed some independent tests on the resulting trial wave
functions. A simple check can be performed using a molecular MCSCF program.
These programs do not take account of the full atomic symmetries but it is possible
to perform a state-averaged CASSCF calculation in a determinant basis. Comparing
the absolute values of the coefficients of the determinants with those in the spin-free

case provides an easy check, which can be used to verify the signs of the coefficients of

the CSFs. We have used the MOLPRO program of Werner and Knowles [25, 26] for

this purpose. The ultimate test is to perform a VMC calculation and to compare the | '
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energy with the MCHF result. Although the statistical errors are quite large in VMC
calculations without Jastrow factors, it is possible to get sufficient accuracy to have
‘5 sensitive test of the trial wave function. We have used nodeless Slater type orbitals
(STOs) basis functions to represent the radial parts of the orbitals. The (6s,4p) STO
basis sets of Clementi and Roetti [33] which we have employed in our calculations are
close to the HF limit and are sufficiently flexible to represent 3s- and 3p-orbitals. For
the HF trial wave functions the coefficients of the STOs can be taken from [33]. In
the multi-reference case we have used a STO-6G expansion [34, 35] where each STO
is represented by a linear combination of 6 Gaussian type orbitals (GTOs). This
enables the calculation of the orbitals with the MCSCF part of MOLPRO. We have
checked the accuracy of this procedure for F by comparing VMC and PDMC energies
obtained with orbitals from the STO-6G expansion and those from Clementi and
Roetti. The 3d-orbitals are represented by a single STO with optimized exponents
1.500, 1.825, 2.174, 2.695, 3.173 for B, C, N, O and F. This has been shown to be
sufficiently accurate for our purposes. ) :

As mentioned above our PDMC calculations are based on the short-time approxi-
mation. Taking into account detailed balance in each step of the simulation together
with good trial wave functions reduce the short-time error below the statistical uncer-
tainty for appropriately chosen time steps. We have taken time steps of 0.005, 0.005,
0.004, 0.004, 0.003 hartree™* for B, C, N, O and F. In order to check the short-time
approximation we have also performed PDMC calculations for each element taking
time steps larger by 0.003 hartree™. The results agree within the statistical uncer-
tainties. Therefore it is to be supposed that our results are not significantly biased by
the short-time approximation. In all simulations we have sampled 200 independent
values for the energy from which we have calculated the standard deviation of the
mean energy.

In PDMC calculations it is necessary to consider limr_,o and limg o as can
be seen from equation (16). We have checked the convergence with respect to both
parameters by considering the evolution of a series of different values for 8. In Figure 6
we have plotted the behavior of different 8 during the simulation. In the following all
times refer to hartree~!. For 3 = 0 we observe statistical fluctuations which decrease
with increasing simulation time. At 8 = 1.5 we get a large decrease in energy relative
to B = 0, which remains constant apart from statistical fluctuations. For 8 = 4.5
a rapid decrease in energy has been observed for small values of T. After a total
simulation time T of app. 250 hartree™! the energy remains constant and below the
value for B = 1.5. The same behavior can be observed for 3 = 6.0, except from the
increasing simulation time which is necessary to achieve a constant energy. This can
be explained by statistical dependencies at the beginning of the walk. Let us assume,
that we have performed enough steps to generate one path of length (3, which will
contribute with a weight )

m@fﬁ@@ (20)
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in the path integral. After performing the next step AT we can add the next path
with weight

exp (— [ EL(r:)ds) (21)

It is clear, that the second path is nearly identical to the first one and therefore both
will nearly have the same weight. The same will be true for the following N steps until
we have N AT > 3. At the beginning of our simulation we sum only over statistically
highly dependent paths. This means that the weight factor in equation (16) is approx-
imately constant and can be factored out in both the numerator and denominator.
As a result we obtain approximately a sum over Eps which are distributed according
to ¥? yielding the VMC energy. If we continue the simulation we obtain independent
paths and the energy decreases until we have a representative selection of statistically
independent paths. From that point on we observe no systematic variations in the
energy. The number of steps which are necessary to reach this point clearly depends
on the magnitude of B, which can be seen in Figure 6. The convergence with respect
to B is very fast, so that we can extract the final energy without problems.

6. Comparison with previous QMC and other ab initio calcu-
lations.

In the following we will compare our results with quantum Monte Carlo calculations
reported in the literature. We will consider the percentage of the total correlation
energy obtained in the various calculations. We have referred all results to the es-
timated exact nonrelativistic correlation energies of Davidson et al. [32]. Statistical
errors in the last digit are given in parentheses. '

For the B atom a DGFMC calculation with HF-nodes, yielding 91(3) % [31] was
the only one published to our knowledge. This agrees within the statistical error
with our result of 89.2(5) %. In the case of the C atom DGFMC yields 89(8) % [31].
GFMC calculations of Schmidt and Moskowitz yield 89(3) %, 98(3) % with HF-,
MCSCF-nodes [36]. Unfortunately they did not specify the selected configurations.
Our results of 89.8(3) % and 97.1(4) %, respectively, are in close agreement with these
calculations. For N we can compare with a DMC calculation of Reynolds et al. [37).
They obtained 93.2(6) % with HF-nodes in comparison to our calculation which yields
93.0(4) %. The DGFMC calculation of Subramaniam et al. yielded 97(10) % for the
O atom compared to our value of 93.3(4) % obtained with HF-nodes. There are two
significantly different values for the F atom reported in the literature. Reynolds et al.
obtained 89.8(6) % [37] whereas Garmer and Anderson [38] got 95.1(2) % of the total
correlation energy. Both calculations are based on HF-nodes but Garmer and Ander-
son used the better basis set.- We obtained a similar result to that of Garmer and
Anderson, namely 95.5(4) %. Finally, we will mention the Ne atom, where Umrigar ef
al. obtained 96(1) % [39] which is also in perfect agreement with our result of 96(1) %.
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To see how our correlation energies fit into the results of other ab initio methods
we have mentioned the most accurate configuration interaction (CI) calculations for
these atoms reported in the literature (for a review see e.g. [40]). In Table 3 we
have compared these results with our best PDMC calculations. The percentages of
the total correlation energies have been calculated with respect to the experimental
values of Davidson et al. [32]. Our first reference is the classical work of Sasaki and
Yoshimine [41] which has been slightly improved by the work of Feller and Davidson
[42]. The CI treatment in [41] includes selected single, double, triple and quadruple
excitations and is based on a very large STO basis set including up to i-orbitals. Feller
and Davidson [42] used the multi-reference CI method and large GTO type basis sets
including up to g-orbitals. Only selected CSFs were included in the calculations.
Their results are probably at present the best available correlation energies for these
atoms, obtained with a strictly variational method. We have also included some
coupled-cluster (CCSD(T)) calculations which yield some further improvement with
respect to the MRCI results of Feller and Davidson. The triple excitations have been
treated by perturbation theory. Although CC methods are not strictly variational,
they usually give highly reliable correlation energies.

It can be seen, that fixed-node PDMC calculations can compete with these meth-
ods if the nodes are improved beyond HF by adding further CSFs. Unfortunately,
it is not easily possible to decide which CSFs are important for the nodes. In some
cases the results become even worse after adding additional CSFs. This is in contrast
to CI methods, where the addition of further CSFs or the expansion of the basis set
can only improve the correlation energy.
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Appendix A. Cbupling schemes for the CSFs used in QMC
calculations.

We have listed in this appendix all CSFs that have been used in the PDMC calcula-
tions. The CSFs are characterized by their coupling scheme, which has been generated
using the GENCL program of Froese Fischer [24]. The contributions of closed shells
have been omitted. Open shells I* with n > 3 are in general not uniquely character-
ized by their L, S values. It is necessary to specify in addition the seniority number
o [23], which depends on the number n, of electron pairs coupled to zero angular
momentum. It is defined by o = n — 2n, and is placed on the lower left part of the
term symbol (35+1L).
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Table 1: Fixed-node pure diffusion Monte Carlo (PDMC) and variational Monte Carlo
(VMC) energies (hartree) for various types of trial wave functions. Statistical errors on the
last digit are given in parentheses. The last column gives the number of determinants of

the trial wave function.

Nodes PDMC % VMC % Determinants
B 2P
Hartree Fock -24.6404 (7) 89.2 (5) -24.6102 (6) 650 (5) 1
+2p3 -24.6480 (5) 95.3 (4) -24.6284 (5) 79.6 (4) 3
+2s'2p'3d!  -24.6508 (5) 97.5 (4) -24.6348 (4) 84.7 (4) 12
Exact energy® -24.65393
Cc 3p
Hartree Fock  -37.8291 (5) 89.8 (3) -37.7928 (5) 66.6 (3) 1
+2pt -37.8338 (4) 92.8 (3) -37.8032 (3) 73.3.(2) 2
+25'2p?3d! -37.8404 (7) 97.1 (4) -37.8159 (7) 81.4 (4) 18
Exact energy  -37.8450
N 45
Hartree Fock  -54.5760 (8) 93.0 (4) -54.5359 (7) 71.7 (4) 1
+25'2p%3d! -54.5810 (6) 95.6 (3) -54.5497 (6)  79.0 (3) 12
Exact energy  -54.5893
0O 3p
Hartree Fock  -75.0498 (10) 93.3 (4) -74.9875(9) 69.1 (4) 1
+25'2p*3d! -75.0546 (9) 95.1 (4) -75.0002 (7) 74.0 (3) 17
+25%2p%3p>  -75.0474 (9) 92.3 (4) -75.0082 (8) 77.1 (3) 31
+25'35'2p%3p!  -75.0530 (9)  94.5 (4) -75.0137 (8) 79.2 (3) 62 |
Exact energy  -75.067 ’ i
t
F ?2p
Hartree Fock  -99.7190 (14) 95.5 (4) -99.6493 (12) 74.0 (4) 1
+2s'2p°3d* -99.7171 (12) 94.9 (4) -99.6524 (11) 74.9 (3) 10
+2522p%3p? -99.7121 (10) 93.3 (3) -99.6578 (8) 76.6 (3) 38
+25'35'2p"3p!  -99.7187 (14) 95.4 (4) -99.6586 (9) 76.8 (3) 67

Exact energy

-99.734

¢ The exact energies have been taken from [32].
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Table 2: Fixed-node pure diffusion Monte Carlo (PDMC) and variational Monte Carlo
(VMCQ) energies (hartree) for CSFs belonging to the specified occupations, which lead
to a deterioration with respect to HF nodes if added separately to the HF configuration.
Statistical errors on the last digit are given in parentheses.

Atom Nodes PDMC % VMC %
o 2522p3p? 750445 (9) 91.2 (4)  -74.9949 (8) 72.0 (3)
F 2522p33p? 99.7094 (12) 92.5 (4)  -99.6511(10) 74.5 (3)

F 2s!3512p13p!  -90.7044 (12) 91.0 (4)  -99.6423 (13) 71.8 (4)

b Table 3: Comparison of fixed-node PDMC correlation energies with MRCI and CCSD(T)
i results reported in the literature. Statistical errors on the last digit are given in parenthesis.

Method Reference B C N 0 F
CI(SDTQ) [41] 96.8 96.4 95.7 95.0 94.7
MRCI . [42] 97.7 97.5 97.0 95.8 @ 94.6
CCSD(T) [44] 95.6
CCSD(T) - [45] 96.7

PDMC Present work  97.5(4) 97.1(4) 95.6(3) 95.1(4)  95.5(4)

@ A slightly improved result (96.0) is reported in ref. [43].
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Figure 7: Coupling schemes for CSFs with a 2512p"3d! occupation. The first two diagrams
represent CSFs belonging to the 2P states of B and F, followed by three diagrams for the
3P states of C and O. The last diagram represents the CSF for the 45 state of N.
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Figure 8: Coupling schemes for CSFs with a 2522p"~23p? occupation. The first five dis
grams represent CSFs belonging to the 3P state of O, followed by six diagrams for the 2
state of F.
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Appendix B. The explicit construction of spin-free CSFs.

In this appendix we consider a simple example for the construction of spin-free CSFs
in detail. For the 2P state of the B atom we have two CSFs which belong to the
25'2p'3d" occupation (see Figure 7). The angular momentum eigenfunction ¢, is
obtained by coupling the 2p- and 3d-shell.

$10(1,2) = \/;‘3; {Yicy(1) Y21 (2) + Y11 () Yoy (2) }

: 4
- \/; Yio(1) Y0(2) (22)
After inserting real spherical harmonics and multiplying with the 2s-orbital we get

500,2.9) = |2 (29:00)300:2) 250) + 20, 1) 36,2 2(5)
+ \/%21),(1)3(122_,.2(2) 25(3) (23)

using the commonly adopted notation for the real orbitals in the 2p- and 3d-shell.

Figure 10 shows the two possible standard Young tableaux. If we apply Ey, to ¢10
(see Eq. 6) we obtain the first CSF. -

0,(1,2,3) = \/I—FO{IZS(I) 2p5(3)| 3dz.(2)+ | 2s(1) 3d22(3) | 2p=(2)}

+

\/%{I 25(1) 2py(3) | 3dy:(2)+ |25(1) 3dy=(3) | 2py(2)}
\/g {125(1) 2p.(3) | 3d;2-r2(2)+ |25(1) 3d,2_2(3) | 2p:(2)} (24)

+

The second Young tableau can be obtained from the first by interchanging 2 and 3.
Therefore if we interchange the two variables in Eq. 23 and apply againFEy, we obtain
the second possible CSF.

,(1,2,3) = \/%ﬂzpzu)sdﬂ(sn 25(2)+ [25(1) 3d=2(3)| 2=(2)}
+ \/%{Izpy(l) 3dy:(3) | 25(2)+ |25(1) 3dy2(3) | 2p4(2)}
+ \/gﬂzsu) 3d,2-12(3)| 22:(2)+ [P:(1) 3d_a(3) | 25(2)}  (29)

In the first two coupling schemes in Figure 7 the 2s- and 2p-orbitals are coupled
to a singlet and a triplet state, respectively. By inspection of Eq. 24 we see that the




95

1]2] 1[3]
3] 2]
Y; Y,

Figure 10: Standard Young tableaux for the 2P state of the B atom.

first, third and fifth terms contain both 2s- and 2p-orbitals in the determinant. As
a consequence these terms belong to triplet coupling and cannot occur in the singlet

case. Therefore it is only necessary to orthogonalize ®; with respect to @, to obtain
the desired CSFs.

$,(1,2,3) = —%{2@1(1,2,3)—%(1,2,3)}
$(1,2,3) = \—}_5<1>2(1,2,3) (26)

The assignment is unique because every rotation of the ®; leads inevitably to the
occurrence of triplet terms in both CSFs.

We will close this appendix by constructing the antisymmetric spin-dependent
wave function given in Eq. 7. Interchanging rows and columns transforms Y; to Ys.
If we apply the operator Py, Ny, to the primitive spin function a(1)5(2)a(3) we get

£1(1,2,3) = 20(1)8(2)(3) = &(2) {a(1)8(3) + B(1)(3)} (27)
Neglecting the normalization constant we obtain from Eq. 7
\I’l[(F&)l: (F6)2: (7-'.6)3] = Ql (Fl’ F?) 7_':'5) El (&‘11 52: 53)
- (pl(f'lyFSa 7-:2) E1(5"11&‘1‘!:(—7‘2)
+ (7%, 73,71) E1(52, 53, 51) -(28)

which can be rewritten into the more familiar linear combination of determinants.

¥, (1,2,3) = \/_{|25“(1)2pf(2)3d L(3)| — 125°(1) 2p2(2) 342, (3) [}
\/‘ {125%(1) 205/(2) 3d5.(3) | — 125%(1) 205 (2) 345 (3) [}
\/;{ |25%(1) 29 (2) 33‘:2_,2 (3) — 125°(1) 29(2) 3d52_,2(3) [} (29)

A similar expression can be obtained for ¥,(1,2, 3).
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