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Abstract 
     It is illustrated that quantum Monte Carlo can be 
a very useful tool for studying key problems in the 
spectroscopy of metallic molecules. For atomic metallic
systems we have recently shown that all-electron 
fixed-node diffusion quantum Monte Carlo (FN-DMC) 
leads to results of a quality similar to that obtained 
with benchmark  ab  initio  calculations  [M. Caffarel,
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J.P Daudey, J.L. Heully, and A. Ramírez-Solís, J. Chem. Phys. 123, 094102 
(2005)]. In the complex paradigmatic molecular case of CuCl2 presented here, 
the spatial distribution of fundamental quantities such as the ground state 
spin-density (SD) derived from FN-DMC are found to be qualitatively different 
from those of the standard ab initio or DFT methods. From a general 
perspective, we propose that spin and charge properties obtained for 
transition metal-containing molecules using accurate FN-DMC calculations 
should be used as input information in the parametrization of newer and more 
reliable exchange and correlation functionals. 
 
I. Introduction 
 In recent years, quantum Monte Carlo (QMC) has been applied 
successfully to a number of electronic systems including atoms, molecules, 
liquids, and solids (e.g[1-9] and references in [10]). The quality of the results 
obtained is in general impressive, the accuracy achieved is comparable or even 
superior to that of standard high-quality ab initio methods (e.g Coupled Cluster 
with large basis set). However, the vast majority of the systems studied so far 
involves only light elements of the first and second rows with small variations 
of the electronic density. In sharp contrast, very little has been done for the 
description of complex systems where the electronic density structure is much 
more intricate. A prototypical example of such complexity is found in 
transition metal systems. From a general perspective, the physico-chemical and 
spectroscopic properties of metal-containing molecules are extremely difficult 
to describe accurately with the available electronic structure methods and this 
one of the key issues of modern computational quantum chemistry. As well 
known, this difficulty arise from the electronic complexity involved when 
many electrons are localized in a small spatial region, for instance, in the 3d 
and 4d shells of the transition metal family. However, for a wide variety of 
cases, the understanding of the basic process at work in these metal-containing 
systems requires quantitatively a high degree of accuracy on the transition 
energies between the low-lying electronic states.  
 Up to date very few QMC studies have addressed this most important 
problem (for references, see [11]). Furthermore, all these studies rely on the 
use of effective core potentials (ECP) to reproduce the effect of the innermost 
electrons. It has been shown that the systematic bias associated with the use of 
ECP in QMC (the so-called “localization” error) can be difficult to control for 
metallic systems when spectroscopic quantities are searched for [11], [12]. In a 
recent network [11] we have shown that it is actually possible to perform all-
electron quantum Monte Carlo calculations for such systems, thus escaping 
from this difficulty. More precisely, using all-electron Fixed-Node Diffusion 
Monte Carlo (FN-DMC) calculations we have been able to accurately compute 
the transition energies between the low-lying electronic states of the copper 
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atom and its cation, the states being the most relevant ones for the organo-
metallic chemistry of copper-containing systems. To the best of our knowledge, 
this work has provide the most accurate correlation energies ever calculated for 
these levels. This remarkable result must be considered as a first step towards 
the applicability of QMC to the study of the physico-chemical properties of 
transition metal-containing systems.  
 Here, we go one step further by presenting DMC simulations for a difficult 
molecular case, namely the CuCl2 molecule. 
  Before doing that, let us recall briefly the basic ideas of quantum Monte 
Carlo in its two most popular versions, namely the Variational Monte Carlo 
(VMC) and Fixed-Node Diffusion Monte Carlo (FN-DMC) approaches. QMC 
methods being relatively new and, by far, of a much more confidential use than 
standard ab initio wavefunction-based and DFT methods, we think that such a 
presentation can be useful. 
 
II. Quantum Monte Carlo  
 In a quantum Monte Carlo scheme a series of  “states”, or configurations”, 
or “walkers” are generated using some elementary stochastic rules. Here, a 
configuration is defined as the set of the 3N-electronic coordinates (N number 
of electrons), the positions of the nuclei being fixed (within the Born-
Oppenheimer approximation) 
 

                                                                                                (1) 
 
Stated differently, a configuration  may be viewed as a “snapshot” of the 
molecule showing the instantaneous positions of each electron. Stochastic rules 
are chosen so that configurations are generated according to some target 
probability density, Π( ). Note that the probability density is defined over the 
complete 3N-dimensional configuration space and not over the ordinary 3D 
space. Many variants of QMC can be found in the literature (referred to with 
various acronyms: VMC, DMC, PDMC, GFMC, etc…). They essentially 
differ by the type of stochastic rules used and/or by the specific stationary 
density produced.  In practice, the two most popular QMC approaches used for 
simulating complex molecular systems are the so-called Variational Monte 
Carlo (VMC) and fixed-node Diffusion Monte Carlo (FN-DMC) methods.  
 
A. Variational Monte Carlo (VMC) 
 In a VMC calculation the probability density generated is given by 
 

                                                                          (2) 
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where  is a high-quality electronic trial wavefunction. The standard 
expression used in VMC for  consists of a product of two terms. The first 
term is introduced to describe the one-particle shell-structure of molecules. It is 
obtained from a preliminary HF or DFT ab initio calculation and is expressed 
as one (or a combination of a few) determinant(s) of single-particle orbitals. 
The second term is more original and is introduced to reproduce the electron-
electron cusp condition of the exact wavefunction and, also, to incorporate 
some explicit coupling between electron-nucleus and electron-electron coordinates. 
[13]. Note that the electron-electron cusp condition is known to be particularly 
difficult to fulfill in standard ab initio calculations using expansions over one-
electron basis sets (due to the 1/l4- behavior of the energy convergence one 
must consider very high values of the orbital angular momentum l to obtain 
accurate results). The explicitly correlated term is usually referred to as the 
Jastrow factor. In the spin-free formalism used in QMC this trial wavefunction 
is written as 
 

                                     (3)   
 
where the sum over α denotes as sum over the nuclei,  a sum over the 
pair of electrons, and  are determinants made of one-particle 
space-orbitals. Different expressions for the Jastrow part have been presented 
in the literature. Here, we shall use the “minimal” standard form written as follows 
 

                                              
(4)  

 
where  can take two different values depending on the spin of the pairs of 
electrons considered. In this latter expression the quantities  play the 
role of variational parameters. 
 The numerical method (stochastic rules) employed to generate the known 
VMC density, Eq. (2), is a standard Monte Carlo approach based on the use of 
a generalized Metropolis algorithm. In practice, the walkers are moved using a 
Langevin-type stochastic differential equation 
 

                                                           (5) 
 

where τ  is an elementary time-step,  is the so-called drift vector given by 
 

                                                                                                          (6)  
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and  is a gaussian vector made of 3N independent gaussian numbers with 
zero mean and unit variance. Each elementary move  is considered as 
“trial” move and is accepted or rejected according to the acceptance 
probability  given by 
 

                                                             (7) 
 
where  is the transition probability density corresponding to 
Eq.(5), namely 
 

                                            
 (8) 

 
 
When the movies rejected the new position of the walker is considered to be 
the old one. It can be easily shown that this generalized Metropolis algorithm 
admits  Eq.(2), as stationary density (see, e.g [14]). 
 Now, to calculate the variational energy associated with the trial 
wavefunction 
 

                                                                          
(9)

 
 
we just need to average the so-called local energy at each Monte Carlo step 
 

                                                                       
(10)  

 
where the local energy is defined as 
 

                                                                                          (11)  
 
and the superscript (i) labels the successive configurations. Note that for a 
finite number of Monte Carlo steps P, the variational energy is obtained with a 
finite statistical error δE which goes to zero as    
 A critical step in the VMC approach is the optimization of the parameters 
entering the trial wavefunction. A standard method consists in searching for 
parameters minimizing the fluctuations in configuration space of the local 
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energy. This criterion is based on the fact that for the exact wavefunction the 
local energy reduces everywhere to a constant -the exact energy- and, thus, the 
fluctuations of the local energy entirely vanish. Accordingly, small fluctuations 
are associated with “good” trial wavefunctions. A number of methods have 
been developed to perform efficiently the optimzation step within a QMC 
framework. Probably the most common one is the correlated sampling method 
of Umrigar et al. [15], an approach based on the minimization of the weighted 
variance of the local energy over a set of fixed configurations. Note that, very 
recently, efficient methods based on the direct minimization of the total energy 
have also been proposed (see, Refs.[16],[17]).  
 Once the optimal parameters have been determined, the quality of the 
resulting trial wavefunction is usually good. When using sophisticated Jastrow 
part [generalizations of Eq.(4), see eg Ref.[13]] a major part of the dynamical 
correlation energy (Coulomb hole) is recovered and the gross features of the 
one-particle back ground are also correctly described via the determinantal part 
(no-dynamical correlation). For most atoms it is possible to recover up to 80% 
− 90% of the exact correlation energy [13]; for molecules, the domain of 
variation lies usually between 30 and 90%.  
 
B. Fixed-node diffusion Monte Carlo(FN-DMC)  
 In a diffusion Monte Carlo scheme the stochastic rules employed are the 
same as in the VMC case previously described (generalized Metropolis 
algorithm based on a Langevin move) plus a new rule corresponding to a 
branching (or birth-death) process. More precisely, depending on the magnitude 
of the local energy a given walker can be destroyed (when the local energy is 
greater than some estimate of the exact energy) or duplicated a certain number 
of times (local energy lower than the estimate of the exact energy). In practice, 
the branching step is very easy to implement. After each move the walker is 
copied a number of times equal to 
 

                                                                     (12)  
 
where Int[] is the integer part of a real number, ET some reference energy, and 
u an uniform random number defined over (0,1). This expression is built so 
that in average the number of copies is equal to the branching weight exp 

 Remark that the total number of walkers can now fluctuate 
and, thus, some sort of population control is required. Indeed, nothing prevents 
the total walker population from exploding or collapsing entirely. Various 
solutions to this problem have been proposed. The most popular approaches 
consists either in performing from time to time a random deletion/duplication 
step or in varying slowly enough the reference energy, ET, to keep the average 
number of walkers approximately constant.  
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 It can be shown that the stationary density resulting from these rules is 
given by 
 

                                                                   (13)  
 
where  denotes the unknown ground-state wavefunction. It is easy to 
verify that the exact energy is, in the same way as in VMC, obtained as the 
average of the local energy over the DMC density: 
 

                                                         (14)  
 
 Actually, because the density ΠDMC is necessarily positive (as any 
stationary density resulting from some stochastic rules), φ0 is not precisely the 
exact ground-state wavefunction but some approximate one, still solution of 
the Schrödinger equation but with additional constraint that φ0 has the same 
sign as the trial wavefunction (so that the product in Eq. (13) remains always 
positive). Such a constraint implies that the nodes of φ0 (values of  for which 
the wavefunction vanishes) are identical to those of the approximate wave-
function . The resulting error is called the “fixed-node” error. Generally, this 
approximation is very good, the fixed-node error on total energies representing 
a few percents of the total correlation energy. Finally, it can be shown that the 
fixed-node energy is an upper bound of the exact energy (so that FN-DMC is a 
truly variational method) 
 

                                                                                      (15)  
 
 The interested reader can find more details about the various QMC 
algorithms in several excellent reviews, e. g. [10],[18]. For the more specific 
details of the implementation of FN-DMC to transition-metal systems, the reader 
is referred to our recent work on the spectroscopy of the copper atom. [11]. 
 

III. Ab initio and DFT results for the spectroscopy of 
CuCl2 
 The spectroscopy of the CuCl2 molecule is a particularly difficult case for 
ab initio and DFT methods, since correlation effects arising mainly in the 3d 
shell of copper are very important; fortunately, the low-lying transitions are 
experimentally quite well known [19],[20]. The accurate determination of such 
effects by ab initio techniques imperatively requires large optimized basis sets 
and extensive treatment of correlation effects through multireference CI 
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(MRCI), coupled cluster singles-doubles and perturbative triples [CCSD(T)], 
or coupled pair functional (CPF)-derived methods [21], generally using 
orbitals obtained through rather sophisticated CASSCF algorithms if one aims 
at providing accurate enough energies to compare with experimental data[22]. 
On the other hand, since the lowest five electronic states (all doublets) of 
CuCl2 belong to different spatial symmetries, it has been possible to study 
these states through the ∆SCF approach in the DFT framework [22],[23],[24]. 
In this approximation each state, which is the ground state for a given spin and 
space symmetry, is optimized independently. Therefore, the main goal of [25] 
was to perform a coherent assessment of DFT results with benchmark ab initio 
calculations, eliminating the discrepancies found in previous studies so that the 
comparison was restricted to the basic ideas of DFT. The DFT calculations 
were done with the same RECP and optimized extended basis sets used in 
Refs. [22] and [26]. In order to understand the extraordinary complexity in the 
spectroscopic description involving the five lowest ligand-field (LF) and 
charge-transfer (CT) states note that, at the doubly ionic limit, CuCl2 is 
described by the Cl−Cu2+(3d9)Cl− structure, while in the covalent ClCuCl 
description, the copper atom which is promoted to the 3d94s2 excited state 
undergoes 4s-4p hybridization and can establish covalent bonds with both Cl 
atoms. An intermediate situation arise when one considers the resonant 
Cl−Cu+(3d94s1)Cl and ClCu+(3d94s1)Cl− ionic structures. Near the equilibrium 
distance, the exact electronic structure for all states in a mixture of these three 
valence situations. The first three LF states  correspond to d-d 
transitions on the copper ion and they can be described by the σ, π or δ 
orientations of the singly occupied 3d orbital. It is now known that a correct 
description of electronic structures, and even more with such close lying states, 
must include a correct description of correlation effects especially important 
for the d shell, but also must allow for larger polarization differential effects 
between localized d-d states and charge transfer states. We stress that single-
reference methods like the CPF and CCSD(T) ones can be used, since the HF 
wavefunctions are excellent zeroth-order approximations for all states of CuCl2 
[21]. From the DFT perspective, this feature is also a very good point, since 
standard DFT-based methods should, in principle, be well adapted to describe 
transitions where only a change in the orientation of the 3d-hole in the central 
metal atom is involved. The  transition represents a most difficult 
problem from the quantum theoretical point of views in since it has been predicted 
to rangefrom-2495 to5887 cm−1. Table I presents some selected DFT-derived 
(LDA, GGA, hybrid and meta) and the ab initio  transition energies. 
 Note that, within the ab initio framework, the dynamic correlation effects 
that control the nature of the Cu 3d-hole in the ground state are extremely 
difficult to obtain correctly since the SCF, the SDCI, and even the usually very  
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Table I. DFT (vertical) transition energies in wavenumbers compared with ab initio 
and experimental results.  
 

 
 
accurate but non-variational SDCI+Q (with Davidson's correction) schemes, 
all wrongly lead to a  ground state. Only much more sophisticated size- 
consistent ab initio methods like the CPF, CCSD(T) or CASSCF+ACPF ones 
are able to produce a  ground state, lying only 659,859 and 232 cm−1 
(respectively) below the  one, without spin-orbit effects; these transition 
energies must be compared with the theoretical SO-deperturbed value, 
estimated to be 900 cm−1 [22]. The most challenging question, and its this one 
we shall be focusing on from here onwards, concerns the way the different 
DFT approximations (local, semi-local, no-local hybrid and non-local meta-) 
treat the exchange and correlation effects that, in a very subtle manner, control 
whether the ground state is of  or  nature. Note that most functionals 
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(GGA, hybrid and even meta-ones) like HCTH407, BLYP, PBE96, OptX-LYP 
and TPSS largely overestimate this transition, all yielding values above 4000 
cm−1. It is really surprising to find out that two semi-empirical hybrid 
functionals (PBE0 and B97-2) can provide such accurate transition energies, 
when even very large CASSCF+CASPT2 calculations perform as badly as 
most of the other functionals for the LF excitations. From examination of table I 
it appears clearly that the PBE0 hybrid functional provides a result (around 750 
cm−1) in excellent agreement with the benchmark ab initio CASSCF+ACPF 
SO-deperturbed value of 900 cm−1 [22]. The B3LYP functional exaggerates 
this energy by more than 100%, placing it around 1700 cm−1. TheB97-2 
functional performs even better than the very popular B3LYP for this case. In 
order to connect this with the QMC calculations to follow, it is crucial to note 
here that scalar relativistic (Darwin and mass-velocity) effects cancel out for 
the energy differences and are negligible on this transition, as shown by the 
very similar non-relativistic-CPF, and relativistic CCSD(T) and ACPF results. 
Therefore, the main source of error comes from the differential correlation 
energy associated with the σ or π orientation of the 3d hole on the central metal 
atom. This is an essential point since it allows us to make non-relativistic all-
electron FN-DMC simulations to describe this transition on CuCl2. It is 
important to stress that, given the complexity of this problem, only three semi-
empirical hybrid functionals provide accurate transition energies and, 
therefore, the role of the non-local HF exchange seems to be crucial to 
compensate the errors made on the correlation contributions to correctly 
describe the transition energy between these two states. This compensation of 
errors has recently been shown to occur for the same transition in the AgCl2 
molecule [27], where the optimal weight of the exact HF exchange was found 
to be 42%, instead of the usual 20% in the B3LYP hybridization of the 
exchange energy; however, this larger weight makes both equilibrium 
geometries get considerably longer than the benchmark CASSCF+ACPF ones. 
Note that up to date, it is impossible to decide a priori which functional is to 
be used and which can be trusted to yield reliable transition energies. The 
delicate issue of the parametrization of all the existing xc functionals without 
the inclusion of transition metal containing systems has been discussed 
extensively [25] in this context. It is somewhat ironic that much less expensive 
and sophisticated descriptions such as those given by the PBE0 (750 cm−1) and 
the B97-2 (1400 cm−1) functionals yield better approximations to this transition 
energy than the very computational demanding benchmark CASSCF+ACPF 
one at 232 cm−1. So the natural question arises: are these hybrid PBE0 and 
B97-2 densities really accurate for each electronic state, therefore providing 
truly accurate total energies, or is this energy difference hiding some 
cancellation of errors associated with physically relevant quantities, such as the 
spatial distribution of charge and spin densities? 
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IV. Charge and spin densities: DFT vs. ab initio 
descriptions  
 In order to answer this question we show in table II the values of several 
LDA, GGA and hybrid DFT-derived Mulliken charges and spin-densities on 
the central Cu atom against the very accurate ab initio CASSCF figures. The 
equilibrium geometries of the five lowest-lying electronic states are also shown 
to stress the fact that, inspite that the transition energies obtained with the 
hybrid PBE0 and B97-2 empirical functionals are in good agreement with the 
benchmark ab initio ones, the shape and the relative position of the minima for 
the two-lowest lying is reversed, with a DFT  state around 0.06 bohr longer 
than the  one, while the CASSCF and ACPF descriptions predict exactly 
the opposite. A rather different picture of the charge and spin-density 
distribution is obtained with the DFT-derived methods vs. the corresponding 
ab initio ones, especially for the  state. Interesting remarks arise from the 
comparison of the CASSCF (21, 14) and DFT Mulliken charges on Cu. At the 
CASSCF level, all the LF states are rather ionic, the  ground state presents 
a Cu Mulliken net charge of +0.63, while the  state shows a net charge of 
+0.69. The DFT-based Mulliken charges on Cu differ significantly from one 
functional to the other. For instance, while the best performing-functional 
(PBE0) leads to Cu Mulliken charges of 0.18, 0.34 and 0.20 for the ,  
and  LF states respectively, for the CT states these charges are almost 
identical, 0.18 ( ) and 0.16 ( ) to that of the ground state; these are 
actually quite counterintuitive and unexpected results, since the large difference 
in ionicity between the CT and LF states has usually been highlighted. The last 
remark concerning the Mulliken charges is that the bad-performing functionals 
produce almost covalent and  LF states, while the  state appears with a 
slightly larger cu charge of around 0.22. A particularly rich discussion arises 
upon analysis of the spin density (SD) results for several of the functionals 
used. It is quite remarkable that the quality of the excitation spectrum obtained 
with these functionals can, qualitatively, be related to the magnitude of the 
spin-density on the central metal atom, since although all the functionals yield 
SD (Cu) values close to 1.05 for the  and  LF states, the corresponding 
value for the  ground state shows variations one order of magnitude 
larger (around 0.14) between the good and bad-performing functionals; the 
PBE0 SD (Cu) value is 0.64 while the BLYP and PBE96 spin-densities on 
copper are only 0.43. An intermediate situation arises for the next two best 
performing functionals, B3LYP and B97-2, with larger values of 0.54 and 
0.57. As expected, the SD (Cu) values for the CT states is close to zero for all 
the functionals, since the open shell for these ungerade states resides mainly on 
both Cl atoms.  The      benchmark CASSCF (21,14) Mulliken spin-densities are  
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Table II. Comparison of the DFT-derived Mulliken charges (Q) and spin-densities 
(SD) on Cu vs. the benchmark CASSCF ab initio values for selected functionals. 
Equilibrium Cu-Cl geometries for the symmetric stretching mode of CuCl2 (bohr) in the 
five lowest electronic states. 
 

 
 
available to compare these DFT-derived quantities. The SD values for the three 
LF states are very close to 1, which suggest that the states actually present a 
much more localized hole on the central copper atom than any of the DFT 
calculations provide. 
 

V. Diffusion quantum Monte Carlo calculations for 
CuCl2  
 Given these facts it is clear that another approach, which is basis set-free 
and excitation degree-free in the electronic correlation treatment is needed to 
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yield a more reliable  -  transition energy and which could, at the same 
time, provide new information to be used as reference concerning the spatial 
distribution of charge and spin densities along the molecular axis, which 
appear to vary greatly depending on the ab initio or semi-empirical DFT 
method used. Here, we have used quantum Monte Carlo (QMC), a powerful 
stochastic method well adapted to this kind of problem. It is our belief that 
QMC can provide a very interesting alternate way to better understand the 
complex dynamic correlation effects responsible for the -  gap. At the 
root of a FN-DMC calculation is the choice of the trial wavefunction. The 
better this wavefunction is, the smallest the statistical and fixed-node errors 
are. Here, the trial wavefunction is built from a SCF solution for both states, 
since exact wavefunctions have been shown to have a strong mono-
configurational character [21],[22]. Large all-electron ANO-type basis sets 
were used to build both HF trial wavefunctions; in particular, for Cu we have 
used the all-electron very large ANO basis set of Bauschlicher [28]. To take 
into account the electron-electron cusp the simple Jastrow factor, Eq. (4), has 
been employed. Intensive DMC simulations have been performed, the total 
number of Monte Carlo steps reaching about 2.2x109 for each state. The total 
ground-state energies obtained are-2560.826 (17) and -2560.785(20) for the 

 and  states, respectively. In wavenumbers the corresponding transition 
energy is –8998 cm−1 with an error bar of 5706 cm−1. Remark that with the 
standard definition employed here for the error bar, the probability that the 
exact DMC result is within the interval -8998 cm−1 ± 5706 cm−1 is 68%, while 
the probability is 95% for an interval two times larger. Clearly, the statistical 
error is still too large and our result is statistically compatible with almost all 
results of Table I. To get a more accurate valuation of the transition energy 
would be very desirable, but in practice it is particularly expensive due to the 

-statistical convergence of Monte Carlo simulations (P = number of Monte 
Carlo steps). Now, although the convergence of energy calculations with the 
required accuracy to deal with the transition energy appears to be out of reach 
(recall that the total uncertainty on the difference of energies is the squared 
root of the sum of the squared uncertainties on the energy of each state), there 
is a lot of precious information to b extracted from other properties. As 
mentioned above, particularly interesting quantities are the spin densities. The 
quantity considered here is the difference of spin densities integrated within 
the plane perpendicular to the molecular axis (actually, a paralleliped of small 
thickness). Our working definition is 
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where z is the coordinate along the molecular axis of the linear molecule, the 
Copper atom being at the origin, and  is a small positive parameter (here, 
chosen equal to 0.1 a.u) corresponding to the thickness of the paralleliped. The 
α− and β− spin densities have been computed using the distribution of 
electrons generated during the stochastic simulation [29]. The FN-DMC results 
are presented in Figs. 1 and 2 for the two lowest states and compared to the 
results obtained at different levels of theory.  
 Several important remarks appear upon analysis of the differences 
observed for the  function obtained for the SCF, CASSCF, and the 
various DFT approximations. First of all, for both states, the CASSCF (21, 14) 
curves present very small differences with respect to the SCF ones (for clarity 
the CASSCF data have thus been omitted in the figures). This is consistent 
with the fact the HF-SCF wavefunction is an excellent reference for the CPF 
and CCSD (T) calculations for both, the  and  states, as mentioned 
before. However, it is remarkable that the FN-DMC spin densities for both 
states show much larger oscillations with significant change of signs, not only 
on the outer parts, but also in the bonding regions between the Cu and Cl 
nuclei. For the  state note, for example, that while neither the ab initio 
SCF/CASSCF nor any of the increasingly sophisticated local (LDA), semi-
local GGA(BLYP) or even the non-local hybrid (PBE0, B3LYP) DFT 
descriptions provide negative values for the spin-density in the bonding regions,  
 

 
Figure 1.  state. Integrated difference in spin densities along the molecular axis at 
different levels of theory. Copper at the origin and both chlorine atoms placed 3.9 bohr 
on each side. 
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Figure 2.  state. Integrate difference in spin densities along the molecular axis at 
different levels of theory. Copper at the origin and both chlorine atoms placed 3.9 bohr 
on each side.  
 
the FN-DMC spin-density has its most negative value at the midpoint of the 
Cu-Cl bonds. It is also noteworthy that, while the ab initio and the DFT spin-
density at the Cl nuclei is nearly zero, the FN-DMC value has there the second 
largest positive value and shows large oscillations, which actually have the 
opposite sign of the PBE0 and B3LYP values in the outer regions (beyond 4 
bohrs). For the  state the discrepancy of the ab initio and DFT with FN-
DMC results is, qualitatively, even worse, but in different spatial regions for 
the DFT and for the ab initio approaches. Note that while the spin density on 
the copper atom of every DFT-based method is much smaller than that 
calculated with ab initio SCF or CASSCF methods, the latter provides very 
good values as compared with FN-DMC ones. On the contrary, in the regions 
around the Cl nuclei all DFT schemes provide large maxima, while the ab 
initio spin-densities are nearly zero around the halogens; the FN-DMC 
simulations also provide maxima whose shape resembles the DFT ones, but the 
absolute values of the spin-densities of these two approaches are shifted along 
the internuclear axis, so that while the FN-DMC value at the Cl nuclei is very 
nearly zero, the DFT values are positive and much larger. Once again, in the 
bonding region large oscillations appear with the FN-DMC spin density which 
are completely absent with the ab initio or any DFT-based method. Overall, it 
can be concluded that the actual spatial distribution of the spin density for 
these low-lying states shows a much richer structure, having many more nodes 
along the molecular axis, than could be anticipated using standard DFT, or for 
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that matter, even with sophisticated CASSCF ab initio approaches. We think 
these accurate and detailed spin-density curves are conceptually very important 
and provide lots of relevant information that should be used as basic input for 
the design of more advanced “non-empirical”, or even to develop more reliable 
“semi-empirical” hybrid exchange-correlation functionals within the DFT 
framework. We are currently investigating this important issue; some progress 
along this path will be presented in a forthcoming publication [30]. 
 
VI. Conclusions  
 We have shown that, in spite of the fact some of the hybrid-type 
functionals produce very good transition energies between the two lowest-
lying electronic states of the paradigmatic CuCl2 molecule, the spin densities 
obtained through functionals belonging to all rungs in DFT Jacob's ladder are 
extremely delocalized along the nuclear axis, when compared to the ab initio 
CASSCF ones. A quite intriguing finding has been obtained concerning the 
relative quality of benchmark-type ab initio spin-densities for the ground and 
first excited states since, although in a different qualitative manner, these also 
differ significantly from the FN-DMC ones, particularly near the metal-ligand 
bonding regions, where even large ab initio CASSCF calculations fail at 
describing the spin-density oscillations and the non-negligible spin-densities in 
the outer region, found to exist with the FN-DMC approach. This is a 
particularly relevant since, up to date, no better way than the CASSCF+ACPF 
method is available to accurately address the electronic structure of transition 
metal molecules; therefore, we leave this matter as an open question that 
certainly deserves further investigations. Our conclusion is that the very 
accurate transition energies obtained by DFT approaches (from high-level 
approximations in Jacob's Ladder) actually arise from cancellation of errors 
made in the spatial distribution of spin-densities for the states under study. 
Now, we hope that the DFT community will take advantage of the present 
results to improve the way the exchange and correlation functionals are 
modelled. Certainly, for such complex metallic systems this not an easy task, 
given the minute energy differences involved in the change of shape of the 
electronic hole along the molecular axis. Finally, we stress that much physical 
insight can be gained by analyzing the FN-DMC densities by comparing these 
with the ab initio and DFT-derived ones, and it is expected that clearer view on 
these very complex electronic systems will emerge from these comparisons. 
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