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SUMMARY.
Following explicit formulae for the calculation of second-order exchange contributions

(induction as well as dispersion) within the framework of Symmetry-Adapted-
Perturbation-Theories (SAPT), exchange contributions can be expressed as a combi-
nation of electrostatic interaction energies between suitably generalized charge
distributions (overlap intermolecular distributions). Numerical calculations for the
interaction of two water molecules are presented. The possibility of defining simple
analytical functions representing each contribution of the interaction energy is discussed.

INTRODUCTION : ¢

In the field of theoretical evaluations of interaction energies, two types of approach
are generally distinguished. The first approach is the so-called supermolecule method
(ref. 1) in which the interaction energy is obtained as a difference between the total
energy of the interacting molecules (the supermolecule) and the sum of the total energies
of each monomer, all energies being calculated by using the same method. But he dis-
persion contribution cannot be obtained at the SCF level, in other words, an extensive
CI calculation would be necessary to recover this important contribution. In the second
approach, the intermolecular interaction energy is calculated from perturbation theory
using the intermolecular potential as perturbing operator. When the intermolecular dis-
tance R is large, one is dealing with the Rayleigh-Schrédinger perturbation theory in
which only simple prdducts of monomer wavefunctions are used. Due to the large
separation between monomers no antisymmetrization of the factorized wave functions
1s necessary. For shorter distances, e.g. distances corresponding to the region around the
equilibrium configuration, the usual Rayleigh-Schrodinger perturbation theory must be
abandoned (ref. 2) and in order to take into account, at least to some extent, the

exchange of electrons between the interacting molecules, some form of exchange per-



turbation theory (the so-called Symmetry Adaptfed Perturbation Theories (SAPT), ( refs.
3-4) must be used. It is important to emphésize that this approach is particularly at-
tractive with regard to the usual supermolecular approach since the interaction energy |
is decomposed into a sum of terms for each of which it is possible to give some physical
interpretation (at least for terms up to and including second-order termsg. ‘This is a very
appealing feature for a qualitative understanding of the interaction and can be very
helpful for the development of simplified formulas for intermolecular interactions.

To our knowledge, the first example of an exchange-perturbation theory calculation
is due to Jeziorski and van Hemert in their pioneering work on the water dimer (ref. 5).
Neglecting all intramonomer correlation effects, they evaluated the complete first-order
interaction energy E® = ES + E2, (explicitly, the sum of the Rayleigh-Schrédinger and
first-order exchange energies) and only the Rayleigh-Schrédinger sécond-order interac-
tion energy. '

Very recently Hess et al. (ref. 6) have presented a new method of deriving explicit
formulaé for the calculation of second-order exchange contributions (induction as well
as dispersion) within the fr‘amework of Symmetry-Adapted-Perturbation-Theory.
Numerical results for the interaction of two water molecules have been presented,
putting into evidence the nonnegligible role of the complete second-order exchange
contributions. But it is well known that the quality of the results strongly depends on the

size of the basis set used in the calculations, thus such a method cannot be applied to

‘arbitrarily large systems. In fact the ability to determine with a high accuracy the values

of each component of intermolecular interaction energy opens a way towards

representing them through simple analytical functions fitted on values calculated in the
framework of this perturbation treatment. In this present work we have been interested
by the development of simplified formulae for the calculation of the dispersion and
exchange-dispersion energies. .

The organization of the present paper is as follows. In Sec. I and II we summarize
the formal development of the second-order exchange contributions derived by Hess ez
al. (ref. 6) together with the most important results obtained by these authors for the
water dimer. Sec. III is devoted to the investigation of basis set effects upon the
different interaction energy components calculated with the method here-above cited. In
section I'V we will present and discuss some simplified formulae elaborated for dispersion

and exchange dispersion contributions.

I. METHOD
We will just summarize the formal development of second-order exchange contribu-

tions presented by Hess er al. (ref. 6)
Following standard Symmetry-Adapted Perturbation Theories (refs. 3,4) the complete

first- and second-order interaction energies are written as:
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where R, denotes the reduced resolvent of H; given by
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(the prime in 3" means as usual that the term corresponding to i=0 and j= 0 is excluded

from the summation) and A is the intersystem antisymmetrizer which is written in the
form (ref. 7). '

A=1-A=1—P(1)+P(2)'_---+(’—1) fP(IVinf) ’ (4)

where P, = Z“ ZB P, denotes the sum of all permutations exchanging (space and spin)
coordinates of electron i of molecule A with coordinates of electron j of molecule B, and
similar definitions hold for P, , P, ... (N, denotes the smallest value of N . and Ny, the
numbers of electrons of molecule A and B respectively).

The second-order perturbation energy E® (Eq. (2)) may be decomposed into the usual
second-order Rayleigh-Schrodinger (RS) perturbation energy Ee: (obtained by putting

A =1 in Eq. (1)) and into the so-called second-order exchange energy E2,

EQ. = E?_ g

exc
<Y (v —EY (A —<A >) |0V > ' )
- <A> o

where < A’ > and < A > are the expectation values of A’ and A calculated with the
ground-state wavefunction ¥ ¥; and ®“ stands for the first-order correction to the

wavefunction in the perturbation theory (ref. 4).
oD = —R, VP WL wE (6)

Now, since multiple exchanges are supposed to contribute weakly in the region around
the equilibrium geometry (ref. 8-9) only the leading contribution to E%, correéponding
to a single exchange of electrons between molecules A and B has been calculated. Thus,
putting A’ = Py, in Eq. (5) and neglecting terms which will correspond to contributions
of order higher than S (where S stands for overlap integrals between orbitals of
monomers A and B) within the Hartree-Fock formalism used below, EZ, is obtained

EQy=—<Y¥i ¥ | (v —< V" >)(Pyy— < Pyy>) 100> (7)

X



Rewritting @ (Eq. (6)) as follows
oV =¥ OF ,+ Dy Yo + (Dgifp , (8)

and inserting the previous decomposition of ®” into Eq. (7), the second-order exchange

energy decomposes into three terms

Egc)c = o —ind (A - B) + E(2) —ind (B - A) + Eﬁi)ch—disp . - (9)

exch exch

The sum of the first two terms in Eq. (9) will be referred to in the following as the
exchange induction energy, while Ef;h_disp will be referred to as the exchange dispersion
energy.

In fact following Claverie (ref. 7) the method adopted by Hess er al. (ref. 6) is
essentially to express éxchange contributions as a combination of formal electrostatic
interaction energies between suitably generalized charge distributions (so called overlap
intermolecular charge distributions). To do that, two basic ingredients have been used,
namely:

1) The possibility of reducing the action of intersystem antisymmetrizer (appearing in
SAPT) on factorized SCF wave functions to a sum of simple products of SCF

determinants pertaining to each subsystem, namely

P(l; K& \y?] = Z Z WA(Z) \FB(Zt) ’ | (10)
i/ J
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where the summation is over the spin-orbitals of determinants ¥* (here labeled by i) and
¥’ (labeled by j). Using Eq. (10) all integrals involving functions of the t(cFé

. . . . b, ;
Py, [¥* W] are reduced to sums of integrals involving simple products ‘¥* a ¥,

; O

of “opposite transfer” determinants.
2) The next step consists of the use of the so-called Longuet-Higgins representation
of the interaction operator V*’ in terms of the molecular charge distributions p"

(M= A,B) (ref. 10), namely:

AB p (") o0 ~A B
V =J.f py— dridr” ' (11)
r—r
with

M M — M —
p (V) = Pruclear (r) + Petectronic (r)
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The use of these two ingredients allows this development to have a .systematic

character. Within the SCF approximation, the different components of interaction



energy are now written as appropriate combinations of (mono- bielectronic and overlap)
integrals involving spin-orbitals of closed-shell isolated systems (for more details see ref.
6).

Now, when performing the practical evaluation of the quantiti;:s necessary to the
above calculation, one is faced to the well-known problem of summing expressibns
defined over the infinite set of unoccupied orbitals of the Fock operator belonging to the
continuous spectrum. As pointed out by Jeziorski and van Hemert (ref. 5), such
summations are practically inexecutable integration. To overcome this difficulty, it has
been used the variational-perturbation method proposed by these authors. This method
which is essentially based on the minimization of a Hylleraas-type functional, has been

already described in detail (see e.g. refs. 5,11)

II. NUMERICAL RESULTS AND DISCUSSION

All calculations have been done for a fixed relative orientation of the two interacting
water molecules and by varying only the distance Roo between the two oxygen atoms.
In order to facilitate comparisons, the fixed orientation has been chosen to be identical
with that used by Jeziorski and van Hemert in their original work on the water dimer
(ref. 5). Calculations have been performed using a substantially larger basis set. The
so-called isotropic part of the basis (functions deécribing orbitals -occupied in the
ground-states of the atoms, see ref. 12) has been taken from ref. 13 and consists of a set
of (13s8p) and (6s) functions on the oxygens and hydrogens, respectively. This basis set
has been extended with a set of (2d) and (2p) polarization functions on oxygen and
hydrogen respectively. The exponents were chosen in order to minimize the dispersion
as well as the complementary exchange energies (see ref. 7). Exponents a,=1 and 0.3 ,
o, = 0.6 and 0.15 have been obtained. The complete contracted basis consists of 94 basis
functions for the water dimer.

The energy of the water monomer calculated by using this basis set equals -76.06004
a.u.. The SCF binding energies obtained for the water dimer are -3.96 kcal/mol and -3.73
kcal/mol without and with the counterpoise correction (CP), respectively. The latter va-
lue agrees very well with the SCF limit of —3.73 + 0.05 kcal/mol (including CP correc-
tion) recently estimated by Szalewicz et al (ref. 14) using a very large basis set contaihing
212 contracted orbitals. The values of the particular contributions to the interaction
energy are listed in Table I.

The essential results to point out are the folloWing ones:

1) the second order exchange-induction was found to be quite important. At
equilibrium distance, it compensates approximatively for 50% the induction energy. The

importance of this contribution has been already noticed for inert gas dimers (refs.

9,11,15,16).



2) the second order exéhange-dispersion energy represents about 20% of the disper-

sion energy, thus confirming the non-negligible role of this contribution.

Roo® | Eg Eper Epi Eg, Eond | Eoras
4.40 -23.66 50.31 -21.25 -8.90 14.28 3.32
4.80 -16.68 24.19 -9.42 -5.27 6.19 1.51
5.20 -10.81 11.61 -4.37 -3.18 2.70 0.75
5.67 -6.89 4.85 -1.82 -1.79 099 | 032
7.00 -2.67 0.39 022 | -0.46 .06 0.03
9.00 -1.05 0.01 003 | -0.09 0.00 0.00

Table I. Particular contributions to the interaction energy of the water dimer (in
kcal/mol) calculated with a 94 AO basis set.*

a. Basis set described in the text.

b. Atomic units.

It has seemed interesting to compare the SCF binding energy to the sum of the
complete first-order and second-order induction energies; these values are displayed in

table II ( columns 3 and 2 respectively).

R | ELE | g g | meeng | Bl E()
4.40 16.68 10.97 11.10 2.07 5.39 d
4.80 . 4.28 1.08 0.52 -4.19 -2.68

5.20 - -0.87 - -2.62 -3.30 -5.80 -5.05

5.67 ' -2.87 -3.73 -4.34 -5.52 -5.20

7.00 -2.44 -2.55 -2.87 -3.01 -2.98

9.00 -1.07 -1.08 -1.15 -1.16 -1.16

Table II. Comparison of the SCF and perturbation theory interaction energies for the
water dimer (in kcal/mol) calculated with the 94 AO basis set.

a. Atomic units. ,

b. Pure perturbational interaction energy calculated as :

Ey' = Eps+ Ep+ Epat Egoy+ EQly_uu+ E

int

Except at large distances, Table II clearly demonstrates the non-coincidence of these
two quantities. In fact the additional terms present in the SCF binding energy (induc-
tion part of third and higher-order Rayleigh-Schrédinger terms, some intramolecular

correlation contribution introduced when doing a SCF supermolecule calculation



(ref. 8)) contribute in a non negligible way, even in the neighborhood of the equilibrium
geometry. It may be noticed that these additional contributions become more and more
important as the intermolecular distance is decreased. One might expect that the
difference between ESF and E® + E2 would be partly cancelled if in the perturbational
approach the induction part of third and higher-order contributions would “be
considered. Thus presently, as a possibility, one may calculate the interaction energy by
adding to the SCF binding energy the dispersion term calculated within a perturbation
method, but in that case one has to be cautious to also take into account the

exchange-dispersion terms. Thus one has to use the following decomposition:

SCF 2 2 ' :
Eintinnt + Ec(Iz.gp + Eéx)ch-—disp . (]3)
Table II shows that the location of the energy minimum is different following that the
second order exchange- dispersion term is (or is not) taken into account. The values

we have obtained are R, ,= 5.67 a.u. and 5.20 a.u. respectively.

III. IMPORTANCE OF THE BASIS SET QUALITY
Now, we will pay some attention to the important problem of the quality of the basis
set used. The results listed in table III clearly show that the different components of

pertubation development are'quite sensible to the choice of the basis set.

Base | STO-3G | 4-31G | 6-31G** JvH? O.H’
EY -4.12 -8.88 -7.13 -7.11 -6.89
EY, 1.72 2.10 2.60 4.89 485
E2, -0.64 -0.94 -1.04 -1.63 -1.82
ED, -0.20 -0.42 -0.93 -1.54 -1.79
I 0.45 0.25 0.33 0.80 "0.99
Ep 0.04 0.05 0.13 0.27 0.32
Er -2.75 -7.84 -6.04 -4.32 -4.34
Dipole moment 1.72 2.60 2.18 2.06 1.98

Table I1I. Different components of intermolecular interaction energies calculated within
different basis sets. All energy values are given in kcal/mol. The dipole moments are
given in Debyes. (a) JvH stands for a gaussian basis (11,7,2/6,1) contracted into
(4,3,2/2,1), this means 70 functions for the dimer (ref. 5).(b) This basis set containing 94
AO for the dimer has been discussed in section III. Results obtained using the geometry
of ref. S with R,_, =5.67 a.u.



1) The electrostatic component is well reproduced only if the wave function of the
unperturbed system correctly describes the charge distibution of isolated molecules
(monomers). The calculation of multipolar moments gives a good criterion for the
quality of the basis set. In this work we have calculated the dipole Iﬁomem of the water
molecule wihin the different basis sets studied, results presented in Table 3 (last line)
have to be compared to the experimental value of 1.85 Debyes (ref. 17). When using the
very large basis set (47 AO for water monomer), we have obtained a value which is in a
very good agreement with the Hartree-Fock limit value (1.98 Debyes) estimated by
Szalewicz et al. (ref.14). In facf, it is well known that at the SCF level, dipole moments
are calculated Withl an error of about 10% because of the lack of electronic correlation
at this level (ref. 12,14). . |

2) The exchange energy increases with the size of the basis set used; even 6-31G** basis
set underestimates this contribution. This result proceeds from the imperfect behaviour
of the wave function at long range leading to an underestimation of overlap effects
between electronic clouds of different sub-systems. It has been noticed that nearly same
values have been obtained when using basis sets including 70 and 94 AO for a water
dimer. 4 '

It has appeared interesting to compare the first order energy we have calculated with the

~ so-called Heitler-London first order energy defined as:

<W¥ | H|¥,>

) _
E(HL <¥|¥,> (14)
where ¥, is the antisymmetrized wave function calculated with the exact wave function
of the two monomers, .

AyB

and H the total Hamiltonian of the system in interaction. In (in and only) that case the

Heitler London energy may be written as:

<@, | VB A, >

) _
Em=tot ——¢ Ta 0, > (16)

where E, is the eigenvalue of H;, and the second term of this equation is nothing else that
the total first order perturbation component. In practice we do not use exact wave

functions for calculating isolated molecules, so Eq.16 is written as:

<@ | (Eg— H)A' | ®y> <Oy VEA|Dy>

<Py | ADy > <Dy | A| Dy > (17)

where E, represents the mean energy associated to approximate wave functions of the
monomers. The last term of the second member of Eq.17 is the first order perturbation

contribution including both Rayleigh-Schrodinger and exchange terms, the second term

8



(second member) called complementary exchange energy represents a correction which
1s zero when Y, is the exact eigen function of H, .Now, the Heitler-London energy is now

decomposed into:
. =Eo+ ER} + Egc)ch + Egc)ch—compl - (18)
We may denote:

EQ m = EQo + Egcz:h—compl (19)

The value of the complementary exchange energy is a good mean to check the quality
of the basis set. ( For more details see ref. 7, 17). Table IV displays *he calculated values

of E® and E®

exch ‘exch—compl®

It appears that only very large basis sets (at least 70 AO for a water

dimer) lead to quite correct values of first order exchange contributions.

Basis STO-3G 431G 6-31G** JvH? O.H'
E®. 1.72 2.10 2.60 4.89 4.85
ES comnt 1.74 1.48 1.12 -0.32 -0.17
E® 3.46 3.58 3.72 4.57 4.68

Table IV. Dependance of the contributions Eo, ES, ..., Ee n With the basis set.
For (a) and (b) see comments in Table III. All values (in kcal/mol) have been calculated
for the geometry of ref. 5 and for R, , =5.67 a.u.

.

3) The total induction and dispersion terms are correctly taken into account only if very
large basis sets are used. We may notice that the basis consisting in 94 AO which
includes neither f-orbitals on oxygen nor d-_brbitals on hydrogen leads to a value of the
dispersion term which is very close to the limit value estimated by Szalewicz et al.
(-2.kcal/mol) (ref. 14)

IV. DERIVATION OF SEMI-EMPIRICAL FORMULAE FOR SECOND ORDER

DISPERSION CONTRIBUTION
These two contributions have been calculated as a sum of atom-atom interactions :

EP=>" D Eyis) | (20)
icA jeB ,

where i (and j) are atoms belonging to molecule A (and B); the subscript X stands for

dispersion or exchange-dispersion.



1) Second-order dispersion energy

This contribution is represented by:

N C. C;, GCy : .
Eggp(lzl)"_'“( 266 +‘288 + 211(;) Ykik; - (.21)_

with z= R,/R; and R, = [(2R")(2R)]"* where R’ and R’ are the van der Waals radii
of atomiand j. R is the distance between atoms i and ;. Factors £, ; allow the energy
minimum of E = E,,+ E,, , to have different values according to the atomic species
involved (ref. 21).

Coefficients C;, C;, and C,, have been calculated by identifying Fq. (21) with the one
given by Stogryn et al. (ref. 19) for He...He interaction:

» . 1471 . 141 . 182.0
Eéisp—_[ R6 + R8 RIO ] (22)

Namely: C, =0.143 kcal 4°/mol, C, = 0.0381 kcal A*/mol, C,, = 0.0137 keal A"’ /mol.

The terms besides C,/R® are not negligible in the equilibrium distance. For He...He, for
instance, these two terms amount to 1/3 of the main term —C,/R".

But it is well known that the multipolar part ( —1/R") of the dispersion energy
overestimates it at short distances owing to the neglect of the penetration part of the
intermolecular integrals which appear in the numerators of the pertubation expansion
(for more details see ref. 20 and references therein). In order to take into account the
reduction of different multipolar terms , we have applied the process defined by Caillet
et al. (ref. 21) when dealing with the sixth order power term of dispersion. Namely, we
choose two distances, R,,= R + ij and R, =T£12_ R,. Then for R > R,, we use the
normal parameters C, (n=6, 8, 10), for R < R,, we use modified reduced parameters C’,
and for R, < R < R,, we use interpolated values of these parameters accdrding to:

(Cot+Cy)

c,—C
Colx) = —"5—"=+ (0.375x> — 1.25x° + 1.875x) ("—2—-’1)— (23)

R R Ry, —R
x-—-[R—( M;‘ ) ]/[( M2 m)]

The polynomial P(x) has been chosen in order that: a) P(1) = 1 and P(-1) = -1;

b) the first and second derivatives of P(x) are continuous.
C's= G4/6.25 ; C'y = G/7.38 and '\, = C,,/10.44.

Using the geometrical drrangement studied by Jeziorski et al. (ref. 5) and varying only
R, 0 Eﬁzp has been fitted with regards to values calculated by SAPT method..

2) Second-order exchange energy

10



It has been found that this component which is purely short-range varies exponentially
with the distance R. The best fit has been given by the following analytical function
2 9 9 - 7 f
B aisp = k(1 — a1 =~ )ce™ B %)
i j .

val

where Q, (x——l or j) is the net charge of atom x and N,* the number of valence electrons

of atom x.

In the same way, as recommended by Caillet ez al. (ref. 21) , we have used the factor
(—Q)IN:* corresponding to the influence of the real electronic populatlon of each atom
on short range terms.

C = 484.98 kcal/mol and o = 9.18.

3) Results.

Roo EQ x Eg, Eg, o

4.50 -20.87 -7.65 (-7.80) 2.57 (2.92)

4.80 -13.88 . -5.04(-5.27) 1.52 (1.51)

5.00 -8.73 ©-3.98 (-4.10) 1.07 (1.07)

5.20 -5.77 -3.20 (-3.18) 0.75 (0.75)

5.67 ' 234 -1.91 (-1.80) 0.33 (0.32)

6.00 -1.47 -1.33 (-1.22) 0.19 (0.18)

7.00 -0.42 -0.42 (-0.47) 0.03 (0.03) |

Table V. Values (in kcal/mol) calculated with simplified formulas, and by ab initio
SAPT method (in parenthesis). For notations see the text.

In Table V, we have listed the values of the multipolar part of the second order disper-
sion denoted EZ)SP_M (Eq. 21), the values obtained for Ed.,,, when the penetration part is

- taken into account and the value of second order exchange-dispersion terms E2, | the

values between brackets are the ones calculated, within SAPT method (6). It may be
noticed that even in the equilibriurh region the taking in account of only the multipolar
part of dispersion overestimates this contribution. The agreement between values
calculated using simplified formulae or SAPT method is quite good in the case of second

order exchange-dispersion energy and good enough as concerns the second order dis-

persion term.

11



- IV. CONCLUSION

At this point, it is important to emphasize that the goal of this work was not to obtain
a very accurate value of the interaction energy between two water molecules, since it is
clear that for such a simple system, the supermolecule approach ba;ed on very large" CI
(refs. 10,11) are preferable. Actually, one of the basic motivation of our work was to
demonstrate the nonnegligible role of the complete second-order exchange contribution
(exchange induction as well as exchange-dispersion components). Furthermore the
ability to determine quantitatively the importance of each component of the total inter-
action energy has opened the way towards representing them through simple analytical
functions fitted on calculated values. It has appeared that such a fitting has to be done
departing from results obtained within a very large basis set. But as it has been discussed
in this paper the induction part of third (and perhaps higher orders) contributions should
be considered. In fact, these contributions may be obtained from SCF results. As a first
step simplified formulas for the calculation of the second-order dispersion ( including
exchange-dispersion) terms have been given. Work is under progress in order to verify
other contributions ( mainly first order exchange energy) of interaction energy. Such a
possibility is essential with respect to the problem of elaborating high quality simplified
functions for the calculation of the interaction energy between arbitrarily large

molecules.
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