
ARTICLE

Using perturbatively selected configuration interaction in quantum
Monte Carlo calculations
Emmanuel Giner, Anthony Scemama, and Michel Caffarel

Abstract: Defining accurate and compact trial wavefunctions leading to small statistical and fixed-node errors in quantum
Monte Carlo (QMC) calculations is still a challenging problem. Herewe propose tomake use of selected configuration interaction
(CI) expansions obtained by selecting the most important determinants through a perturbative criterion. A major advantage
with respect to truncated CASSCFwavefunctions or CI expansions limited to amaximumnumber of excitations (e.g, CISD) is that
much smaller expansions can be considered (many unessential determinants are avoided), an important practical point for
efficient QMC calculations. The most important determinants entering first during the selection process (hierarchical construc-
tion) the main features of the nodal structure of the wavefunction can be expected to be obtained with a moderate number of
determinants. Thanks to this property, the delicate problem of optimizing in aMonte Carlo framework the numerous linear and
(or) nonlinear parameters of the determinantal part of the trial wavefunction could be avoided. As a first numerical example, the
calculation of the ground-state energy of the oxygen atom is presented. The best DMC value reported so far is obtained.

Key words: perturbatively selected configuration interaction, quantum Monte Carlo, fixed-node diffusion Monte Carlo.

Résumé : La définition de fonctions d’onde d’essai à la fois précises et compactes conduisant à de petites erreurs satistiques et
de petites erreurs des noeuds fixés dans les calculs Monte Carlo quantique (QMC) demeure un problème difficile. Ici, on propose
d’utiliser des développements tronqués de type interaction de configuration (IC) obtenus en sélectionnant les déterminants les
plus importants au moyen d’un critère perturbatif. Un avantage important par rapport aux fonctions d’onde CASSCF tronquées
ou aux développements de type IC limitées à un nombremaximal d’excitations (p.ex. CISD) est que l’on peut se restreindre à des
développements beaucoup plus petits (de nombreux déterminants inessentiels sont évités), un point pratique important pour
des calculs QMC efficaces. Vu que les déterminants les plus importants entrent les premiers durant le processus de sélection
(construction hiérarchique), on peut s’attendre à obtenir les caractéristiques principales de la structure nodale de la fonction
d’onde à partir d’un nombre modéré de déterminants. Grâce à cette propriété, on peut éviter le problème délicat de
l’optimisation des nombreux paramètres linéaires/non linéaires de la partie déterminantale de la fonction d’onde dans un cadre
Monte Carlo. À titre de première application numérique, on présente le calcul de l’énergie de l’état fondamental de l’atome
d’oxygène. On obtient la meilleure valeur DMC signalée jusqu’à présent. [Traduit par la Rédaction]

Mots-clés : interaction de configuration sélectionnée perturbativement, Monte Carlo quantique, Monte Carlo diffusionnel à
noeuds fixés.

Introduction
Quantum Monte Carlo (QMC) methods are known to be power-

ful stochastic approaches for obtaining accurate ground-state
properties of quantum systems. For bosonic systems, the results
obtained are essentially exact, up to some statistical error as in
any Monte Carlo approach (see, for example the reference simu-
lations for the He4 quantum liquid1). In contrast, for Fermi sys-
tems where the antisymmetry of the wavefunction is to be
imposed, the situation is different. As is known, it has not been
possible so far to devise a QMC algorithm for fermions that would
be both stable (controlled fluctuations of the wavefunction sign)
and exact (no systematic error in the limit of infinite simulation
time). In practice, this difficulty, known as the “fermionic sign
problem”, is circumvented by using the so-called “fixed-node” (FN)
approach, where the sign instability is removed at the expense of
a small systematic (fixed-node) error. In short, the FN approach
consists in defining a juxtaposition of bosonic-type simulations
defined independently within each nodal pocket (domains of con-
stant sign) of an approximate Fermi (antisymmetric) trial wave-
function, �T. When the nodes (or zeroes) of �T coincide with the

exact nodes, the algorithm is exact. If not, which is the general
case except for some elementary systems, a fixed-node error is
introduced.2 Using standard trial wavefunctions, this error is in
general small,3 typically a few percent of the correlation energy
for total energies. However, this remarkable accuracy on total
energies can still be insufficient when calculating the energy dif-
ferences at the heart of quantitative chemistry:4 binding energies,
energy variations along a reaction path, forces (viewed as infini-
tesimal differences), electronic affinities, electronic transition en-
ergies, etc. Indeed, on the total energy scale these differences are
extremely small, at least of the same order of magnitude, and
most often smaller, than the already very small FN error. The
precision on energy differences is thus directly related to the
quality of the nodal hypersurfaces of the trial wavefunction and
on the way the FN error compensates or not when computing
differences of large total energies.5,6 For this reason, defining trial
wavefunctions with accurate nodes is still one of the important
issues of quantum Monte Carlo (QMC) approaches for chemistry.

Besides this important aspect, the trial wavefunction is also
directly related to the efficiency of QMC simulations (defined here
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as a good convergence of the estimators as a function of the sim-
ulation time and a low level of statistical fluctuations). Because
QMC methods are highly CPU-intensive (“number crunching” ap-
proaches), this aspect is of particular importance. In the impor-
tant case of the energy, the crucial role of the trial wavefunction is
directly seen from the fact that the closest to the exact wavefunc-
tion the trial wavefunction is, the smallest the statistical error on
the total energy is (zero-variance property, see e.g., Ref. 3).

In view of the importance of the trial wavefunction, much ef-
fort has beenmade to propose and optimize functional forms that
lead to accurate nodes and low level of fluctuations. In addition,
the trial wavefunction must be compact enough to be rapidly
evaluated at each of themillions andmoreMonte Carlo steps. The
standard expression employed in QMC is the Jastrow–Slater form,
expressed as a short expansion over a set of Slater determinants
multiplied by a global Jastrow factor describing explicitly the
electron-electron and electron-electron-nucleus interactions and,
in particular, imposing the electron-electron CUSP conditions as-
sociated with the zero-interelectronic distance limit of the true
wavefunction. A variety of alternative forms aimed at better de-
scribing the exact wavefunction have been introduced. Without
entering into the details, let us cite the geminal wavefunction of
Sorella and co-workers,7 the Pfaffian wavefunction of Mitáš and
collaborators,8 the backflow trial wavefunction of Rios et al.,9 the
generalized valence bond (GVB) of Anderson and Goddard,10 the
linear scaling GVB version of Fracchia et al.,11 the Jastrow-valence-
bond wavefunction of Braida et al.,12 or the multi-Jastrow trial
wavefunction of Bouabça et al.13 Once a trial wavefunction has
been chosen, its various parameters (Jastrow parameters, deter-
minantal coefficients, molecular orbital coefficients, basis set ex-
ponents, and so on) are in general optimized. The criterion
employed can be either the minimization of the variational en-
ergy associated with the trial wavefunction, ��T | H | �T�, its vari-
ance ��T | H2 | �T� − ��T | H | �T�

2, or a combination of both. Note
that optimizing hundreds and (or) thousands of linear and non-
linear parameters within a framework where the energy and vari-
ance are subject to a statistical noise is not an easy task. A number
of solutions have been proposed, let us just mention here the
recent approach of Umrigar and collaborators14 and references
therein.

In this work we propose to exploit the multi-determinant ex-
pansions of the post-HF approaches of quantum chemistry. So far,
multi-determinant expansions in QMC have been mainly limited
to the use of CASSCF-like or CI-like wavefunctions truncated at a
moderate number of determinants or configurations (say, a max-
imum of a few thousand) selected by using some threshold in the
expansion coefficients (see, e.g., Refs. 15,16,17,18,19,20,11,21). To
the best of our knowledge, the only DMC calculation using a
complete full CI wavefunction (expansion over all possible deter-
minants in a given set of molecular orbitals) has been made in
Ref. 22 for the Li2 molecule. However, this calculation involving
about 16 000 determinants has been possible only because the
number of active electrons for such a molecule is very small. As is
well-known, due to the exponential increase of the dimension of
the FCI space, to consider much larger systems is not realistic.
Here, we propose to use trial wavefunctions based on truncated
expansions containing the most “important” determinants while
remaining compact enough to be evaluated at each Monte Carlo
step (say, expansions involving at most a few hundreds of thou-
sands of determinants). In quantum chemistry there is a long
history of developing approximate schemes based on various ap-
proximations: configuration interaction expansion truncated to a
certain level of excitation (single: CIS, double: CISD, etc.); expo-
nential ansatz: CCSD, CCSD(T), etc.; perturbative approaches:
Møller–PlessetMP2, etc.; CASSCF approaches, and so on. However,
such schemes still generate too many determinants to be tracta-
ble in QMC, and furthermore, the choice of the criterion em-
ployed for truncation may be questionable. Here, we shall follow

a different route introduced in the last decades by a number of
authors (see, e.g., Refs. 23–31). In a few words, the approach con-
sists in building the multi-determinantal expansion iteratively by
selecting at each step one determinant (or a group of determinants)
according to a perturbative criterion. In short, a determinantDi (or a
group of determinants) is added to the current wavefunction if its
(their) energetic contribution(s) is (are) sufficiently large. In thiswork
the formalism employed is close to the one adopted in the CIPSI
algorithm.24,30 Finally, let us note that some time ago Koch and
Dalgaard32 proposed amethodhaving some similar aspects (add one
determinant at a time and try to keep themulti-determinant expan-
sion as compact as possible) but resting on a completely different
approach for building the expansion.

The contents of this paper is as follows. In the section, Pertur-
batively selected configuration interaction, the algorithm used
for building the selected configuration interaction expansion
(CIPSI-like algorithm) is presented. In the section, The fixed-node
diffusionMonte Carlo, a fewwords about the fixed-node diffusion
Monte Carlo method employed here are given. In the section,
Numerical results, the first application to the calculation of the 3P
ground-state energy of the oxygen atom is presented. The various
aspects related to the implementation of the CIPSI algorithm and
the FN calculations are described. Finally, the main ideas and
results of this work are summarized in the Summary section.

Perturbatively selected configuration interaction
In multi-determinantal expansions the ground-state wavefunc-

tion | �0� is written as a linear combination of Slater determinants
{| Di�}, each determinant corresponding to a given occupation by
the N� and N� electrons of N = N� + N� orbitals among a set of M
spin-orbitals {�1, ., �M} (restricted case). When no symmetries are
considered, the maximum number of such determinants is

�MN�
��MN�

�, a number that grows factorially withM and N. The best

representation of the exact wavefunction in the determinantal basis is
the full configuration interaction (FCI) wave functionwritten as,

(1) | �0� � �
i

ci | Di�

where ci are the ground-state coefficients obtained by diagonaliz-
ing the matrix, Hij = �Di | H | Dj�, within the full orthonormalized
set, �Di | Dj� � �ij, of determinants | Di�.

In its simplest form, our multi-determinant wavefunction is
iteratively built as follows:

• Step 0: Start from a given determinant (e.g., the Hartree–Fock
determinant) or set of determinants, thus defining an initial
reference subspace: S0 = �� D0�, …}. Diagonalize Hwithin S0 and
get the ground-state energy E0

�0� and eigenvector:

(2) � �0
(0)� � �

i�S0

ci
(0) � Di�

Here and in what follows, a superscript on various quantities is
used to indicate the iteration number.

Then, do iteratively (n=0,…):

• Step 1: Collect all different determinants | Dic� connected by H to
| �0

�n��, namely,

(3) ��0
(n) | H | Dic� ≠ 0

• Step 2: Compute the second-order perturbative energetic change
of the total energy resulting from each connected determinant:
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(4) �e�| Dic�� � 	
��0

(n) | H | Dic�
2

�Dic | H | Dic� 	 E0
(n)

• Step 3: Add the determinant | Dic
∗� associatedwith the largest |�e|

to the reference subspace:

Sn ¡ Sn
1 � Sn � �| Dic
∗�	

• Step 4: Diagonalize H within Sn+1 to get:

(5) ��0
(n
1)� � �

i�Sn
1

ci
(n
1) � Di� with E0

(n
1)

• Go to step 1 or stop if the target size for the reference subspace
has been reached.

Denoting Ndets the final number of determinants in | �0�Ndets��
and E0(Ndets) the final energy, a perturbative second-order esti-
mate of the exact energy, the so-called CIPSI energy, can be ob-
tained as,

(6) E0(CIPSI) � E0(Ndets) 	 �
i�M

��0(Ndets) | H | Di�
2

�Di | H | Di� 	 E0(Ndets)

where M denotes the set of all determinants not belonging to the
reference space and connected to the reference vector | �0�Ndets��
by H (single and double excitations). In what follows, the wave
function | �0�Ndets�� that will be used for QMC calculations will be
referred to as the reference wave function.

At this point a number of remarks are in order:

(i) Although the selection scheme is presented here for com-
puting the ground-state eigenvector only, no special diffi-
culties arise when generalizing the scheme to a finite
number of states (see, e.g., Ref. 30).

(ii) The decomposition of the Hamiltonian H underlying the
perturbative second-order expression introduced in step 2
is given by,

H � H0 
 �Dic | H | Dic� | Dic� �Dic |

where H0 is the restriction of H to the reference subspace.
This decomposition, known as the Epstein–Nesbet parti-
tion,33,34 is not unique, other possible choices are the
Møller–Plesset partition35 or the barycentric one,24 (see
discussion in Ref. 30).

(iii) Instead of calculating the energetic change perturbatively,
eq. (4), it can be preferable to employ the nonperturbative
expression resulting from the diagonalization ofH into the
two-dimensional basis consisting of the vectors | �0

�n�� and
| Dic�. Simple algebra shows that the energetic change is
given by

(7) �e�| Dic�� �


� Dic � H � Dic� 	 E0(Ndets)� 1 	 �1 

4��0

(n) � H �Dic�
2


�Dic � H � Dic� 	 E0(Ndets)�
2

2

In the limit of small transitionmatrix elements, ��0
�n� �H �Dic�,

both eqs. (4) and (7) coincide. In what follows, the nonper-
turbative formula will be used.

(iv) In step 3, a unique determinant is added at each iteration.
Adding a few of them simultaneously is also possible, a
feature particularly desirable when quasi-degenerate low-
lying determinants are showing up. In the applications to
follow, this possibility has been systematically used by
keeping at each iteration all determinants associated with
an energetic change whose absolute value is greater than a
given threshold.

(v) The implementation of this algorithm can be performed
using limited amount of central memory. On the other
hand, the CPU time required is essentially proportional to
NdetsNocc

2 Nvirt
2 , where Nocc is the number of occupied molec-

ular orbitals and Nvirt the number of virtual orbitals.

The fixed-node diffusion Monte Carlo
In this work the fixed-node diffusion Monte Carlo (FN-DMC)

method, the standard quantum Monte Carlo electronic-structure
approach for molecules, is employed. For a detailed presentation
of its theoretical and practical aspects, the reader is referred to
Refs. 36–38. Here, we just recall that the central quantity of such
approaches is the trial wavefunction �T, determining both the
quality of the statistical convergence (good trial wavefunctions =
small statistical fluctuations) and themagnitude of the fixed-node
bias resulting from the approximate nodes of the trial wavefunc-

tion. The computational cost of FN-DMC is almost entirely
determined by the evaluation at each Monte Carlo step of the
value of �T and its first (drift vector) and second derivatives (Lapla-
cian needed for the local energy). In view of the very large number
of MC steps usually required (typically, at least millions and often
much more) to be able to compute such quantities very rapidly is
essential. In contrast with most implementations of FN-DMC,
where compact forms for �T are used (typically, at most a few
hundred determinants), quite lengthy multi-determinantal ex-
pansions are considered here (up to 200 000 determinants in the
numerical application presented below). As a consequence, some
care is required when computing such expansions. At first glance,
the CPU cost is expected to be proportional to the number of
determinants Ndets involved in the expansion of the trial wave-
function. Actually it is not true, since in the spin-free formalism
used inQMC (Ref. 39 and also Refs. 36–38) each Slater determinant
expressed in terms of spin-orbitals decomposes into a product of
two determinants, each corresponding to a given occupation of a
set of purely spatial molecular orbitals. The number of different
determinants to be computed is thus of the order of Ndets and
not Ndets. Another point having a significant impact on the com-
putational cost is the order in which determinants are calculated.
Indeed, avoiding to re-compute successive determinants differing
from preceding ones only by a single or double molecular orbital
substitution can be efficient. In practice, this is done by re-
actualizing the determinants using a Sherman–Morisson-type for-
mula.40 Now, to determine which ordering is the most effective is
a difficult problem of combinatorial complexity. Here, we employ
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a simple strategy based on a preliminary preconditioning step.
More involved strategies for treating bigger systems and larger
expansions will be presented elsewhere.

Numerical results
In this section, CIPSI and FN-DMC calculations of the 3P ground-

state energy of the oxygen atom are presented. Among the first-
row atoms, O is known to be the atom whose nodes are the most
difficult to describe (fixed-node error of about 6% of the correla-
tion energy when using Hartree–Fock nodes).41

CIPSI wavefunctions
Selected configuration interation wave functions are con-

structed using Hartree–Fock canonical atomic orbitals obtained
with various Dunning basis sets,42 cc-pVXZ (denoted as VXZ), aug-
cc-pVXZ (denoted as AVXZ), and cc-pCVXZ basis sets (denoted as
CVXZ), with X = D, V, T, Q, 5. All-electron calculations are per-
formed and the full set of atomic orbitals are active in the excita-
tion process, except when freezing the 1s innermost atomic
orbital when indicated (FC for frozen core).

In Fig. 1, the convergence of the variational E0(Ndets) and CIPSI
energies (variational + PT2 correction) for the VDZ, VTZ, VQZ, and
V5Z basis sets as a function of the number of determinants kept in
the selection process is shown. The exact nonrelativistic ground-
state energy –75.0674, evaluated by Chakravorty et al.43 is also
indicated. As shown, a striking feature is the extremely rapid
convergence of total energies. To better visualize this conver-
gence, particularly at small number of determinants, the abscissa
has been scaled logarithmically. As expected, the variational en-
ergy associated with the reference wavefunction converges to the
asymptotic limit from above. In contrast, the CIPSI energy, includ-
ing second-order correction, is found to systematically converge
from below. Remarkably, in all cases the convergence is attained
for a tiny fraction of the total number of determinants of the FCI
space. Quantitatively, it is interesting to determine, for each basis
set, the minimum number of determinants needed to reach 1% or
less of the total correlation energy computed within the basis
considered. For the DZ basis set, this level of accuracy is attained
with about 500 determinants for E0(Ndets) and about 80 determi-
nants for the CIPSI energy. For TZ, QZ, and 5Z, these numbers are
(�10 000, �40), (�30 000, �90), and (�50 000, �300), respectively.
It is seen that the CIPSI energy convergence depends weakly on

the basis set size, a remarkable result illustrating that the second-
order correction is able to recover most of the missing part. In
contrast, for the variational energy the minimum number of de-
terminants needed increases as a function of the basis set size.
However, this increase is moderate when compared with the ex-
ponential increase of the FCI space dimensionality. Quantita-
tively, the target accuracy of less than 1% of the correlation energy
is attained at the variational level for a fraction of determinants

given by f �
Ndets

NFCI
� 7.010−4, �2.010–5, �3.310–7, and �9.110–9 for

the DZ, TZ, QZ, and 5Z basis sets, respectively. However, note that
in the context of building compact trial wave functions for QMC
the key quantity is the total number of contributing determinants
(associated with the computational cost) and not the fraction. To
better visualize how the energies converge, Fig. 2 presents an
expanded view of Fig. 1 in the region of the large number of
determinants for the two biggest basis sets, QZ and 5Z. Very sim-
ilar behaviors are obtained for the DZ and TZ smaller basis sets.
Once more, the very rapid convergence of the full energy includ-
ing the second-order energy correction is clearly seen. Regarding
the variational energy, the convergence is much less impressive
but still very satisfactory. It is reasonable to expect the conver-
gence of both variational and CIPSI energies to a common asymp-
totic value, as it should be.

A key aspect of CIPSI is that the multi-determinantal expansion
is built by selecting the determinants according to their contribu-
tion to the wavefunction and total energy, and not according to
some fixed maximum level of excitations (single, double, tri-
ple,…) as is usual in most post-Hartree–Fock schemes. In Fig. 3,
this aspect is illustrated by showing the evolution of the number
of selected determinants, corresponding to a given excitation
level as a function of the total number of determinants kept dur-
ing the selection process up to the first 50 000 determinants (TZ
basis basis set). Starting from the unique HF determinant with no
excitation (determinant #1), the first determinants to enter are of
double-excitation type (from determinant #2 to determinant #19),
the 20th is a single excitation determinant, etc. Table 1 reports
when a determinant of a given excitation level class appears for
the first time (“occurence” time) together with the total number
of determinants in each class of excitation level at the end of the
selection process. It is remarkable to see how far we are from a
selection process where the derminants would be chosen accord-
ing to their level of excitation (lower numbers of excitations first).
In particular, high-level excitations enter quite soon into the
wavefunction: at N = 1188 and N = 8159 for 5-uple and 6-uple
excitations, respectively (here, no 7- or 8-uple excitations are

Fig. 1. Convergence of the variational E0(Ndets) (denoted VXZ) and
CIPSI energies (variational + PT2 correction, denoted CIPSI/VXZ) for
the VDZ, VTZ, VQZ, and V5Z basis sets as a function of the number
of determinants kept in the selection process. FCI values for the VDZ
and VTZ basis sets are indicated together with the estimated exact
nonrelativistic ground-state energy.43

Fig. 2. Expanded view of Fig. 1 in the region of large number of
determinants for the two largest basis sets, VQZ and V5Z.
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observed). Single and double-excitations are found to saturate,
while the other types of excitations are still increasing in number.
After 50 000 selected determinants, the most numerous determi-
nants are of quadruple- and triple-excitation types.

Table 2 collects the set of results obtained with various basis
sets and truncation levels (number of determinants kept in the
reference wavefunction). The data are presented for the VDZ,
AVDZ, VTZ, AVTZ, VQZ, AVQZ, CVQZ, and V5Z basis sets. In the
case of the VDZ, VTZ, and VQZ basis set results obtained by freez-
ing the 1s core orbital are also given.When available (VDZ and VTZ
basis sets) the full CI (FCI) energy is indicated. We also report the
FCI-QMC results of Booth and Alavi44 for the AVDZ, AVTZ, AVQZ,
and AV5Z basis sets. In each case the total number of determi-
nants of the FCI space is given. For each total energy, the percent-
age of the exact correlation energy is given in brackets. As already
seen qualitatively on Figs. 1 and 2, the convergence of the varia-
tional and CIPSI energies to the FCI limit is very statisfactory for
all basis sets. For the DZ basis set, the FCI, variational, and CIPSI
energies coincide with seven digits in the VDZ-FC and VDZ cases
and with about six digits for AVDZ. For the larger basis sets, the
differences are always smaller than the milliHartree (chemical
accuracy). Finally, it is interesting to note that using a basis set
adapted to the core region (CVQZ), an energy value of –75.054 38
has been obtained here, much lower than the best value of
Booth and Alavi obtained with the V5Z basis set, namely E0 =
–75.037 49(6). This latter result illustrates the quantitative
importance of the core contribution to the total atomic energy.
However, when computing energy differences for molecular

properties, such a purely atomic contribution is expected to can-
cel almost entirely.

QMC calculations using selected configuration interaction
wavefunctions

In Figs. 4 and 5, the fixed-node DMC ground-state energies for
the oxygen atom as a function of the number of determinants
kept for the VDZ, VTZ, and VQZ basis sets are presented. Figure 4
shows the entire curve using a logarithmic scale for the abscissa,
while the region at small number of determinants is presented in
Fig. 5 with a standard linear scale. As shown, except in one case
that shall be discussed below (VQZ at Ndets = 50), the fixed-node
energy is found to decrease regularly with the number of deter-
minants. Such a result shows that a simple and systematic control
of the nodal quality of the trial wavefunction through determi-
nantal selection is possible. Although such a remarkable behavior
is not easy to justify mathematically, it is coherent with the fact
that the selection process realizes a hierarchical buildup of the
main features of the wavefunction and thus of its nodal structure.
It is also coherent with the fact that the second-order perturbative
correction was able to recover most of the missing part of the FCI
energy very rapidly as a function of the number of determinants
kept, thus confirming that the most important features enter
quickly the reference wavefunction upon selection.

In most QMC works, a prelimary optimization step of the trial
wavefunction is performed before running DMC calculations.
This is done because the introduction of the various N-body
terms aiming at better describing the physical properties of the
trial wavefunction (Jastrow factor, backflow transformation,
geminal functions, etc.) has a strong impact on the initial deter-
minantal part optimized in the absence of such terms. To decrease
the fixed-node error, it is thus necessary to re-optimize all param-
eters of the trial wavefunction including those of the determinan-
tal part (all molecular orbitals and determinantal coefficients). In
practice, it can be a particularly tedious task, although much
effort has been produced to make it as automatic as possible. The
fact that the objective function to be minimized (total energy,
energy variance, or a combination of both) is calculated with a
statistical noise and that most parameters are nonlinear are the
two main difficulties for the optimization. Here, the situation is
different since the optimization of the determinantal part is over-
come when using perturbatively selected interaction configura-
tion expansions. Eventually, the only optimizable parameters left
are those not changing the nodes (typically the Jastrow parame-
ters). Here, we have chosen to compute the FN-DMC energies us-
ing the pure CIPSI wave functions without Jastrow term, so that
no optimization at all was necessary. Actually, the deterministic
construction of a reference function through the diagonalization
of a truncated Hamiltonian matrix must be considered as an op-
timization step (minimization of the total energy with respect to
the coefficients of the multi-determinantal expansion). However,
in sharp contrast withwhat happens in QMC, such a step is simple
and automatic (no noise and linear parameters). This aspect will
be particularly interesting when more complex systems will be
considered. Finally, a few words of caution are in order. As seen
above, in one case (VQZ basis set and small number of determi-
nants, see Figs. 4 and 5) the fixed-node energy is found to go up
instead of decreasing. This result may indicate that the behavior
of the fixed-node error is not so simple. However, it is also possible
to interpret it as a transient effect related to the small number of
determinants and large basis set regime.

In Table 3 the FN-DMC energies obtained using several basis sets
and various sizes of the reference wave function are presented.
The correlation energy recovered in the FN-DMC calculations var-
ies from 90% to nearly 100%, depending on the nodal structure of
the reference wave function. As was the case at the FCI level, to
use a basis set adapted to the core region (CVQZ) is quantitatively
important when highly accurate total FN-DMC energies are

Fig. 3. Number of determinants in each excitation class (single,
double, triple, quadruple, quintuple, sextuple excitations) with
respect to the total number of determinants in the reference wave
function.

Table 1. First occurence and total number of determinants of each
class of excitation during the selection process up to the first 50 000
determinants (VTZ basis set).

Excitation class First occurence Total number of determinants

None (HF) 1 1
Single 20 34
Double 2 2 205
Triple 194 16 870
Quadruple 413 29 618
Quintuple 1 188 1 184
Sextuple 8 159 88
Septuple 0 0
Octuple 0 0
Total 50 000
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searched for. This result illustrates the fact that the nodes in the
nucleus region play a significant role. Our best total energy is
obtained with the CVQZ basis set and 200 000 determinants. The
value obtained is –75.065 8 ± 0.0001 recovering 99.4 ± 0.1% of the
correlation energy. To the best of our knowledge it is the best
FN-DMC value reported so far for the oxygen atom. Note that it is
slighter lower than the value of –75.065 4 ± 0.0001 obtained very
recently by Seth et al.20 with a fully optimized multideterminant
Jastrow backflow trial wave function. For comparison, Table 3
reports also some of the most accurate energies obtained for this
atom by different methods. At the FCI level, the best result we
know is that of Booth and Alavi.44 At the FN-DMC level, it is that of
Seth et al. just mentioned. Finally, to the best of our knowledge
the best energy reported up now is the value obtained by Gdanitz
using the r12-MR-ACPF method.45

Summary
In this work we have proposed to use trial wave functions for

QMC based on selected configuration interaction (CI) expansions.
The expansion is built iteratively by selecting at each step the
most important determinants through a perturbative criterion. In

Table 2. Variational total energy, E0(Ndets), and CIPSI total energy, E0(CIPSI) = E0(Ndets) + EPT2, for the 3P ground-state of
the oxygen atomusing various basis sets and numbers of determinants in the referencewavefunction. For each energy
the percentage of the exact correlation energy recovered is given in brackets. FCI-QMC calculations of Booth and
Alavi44 are given for comparison.

Basis set Ndets E0(FCI) Ndets E0(Ndets) EPT2 E0(CIPSI)

DZ
VDZ FCb �5.6×104 –74.910 15[39.1%] 50 000 –74.910 15[39.1%] 0.0 –74.910 15[39.1%]
VDZ �7.3×105 –74.911 75[39.7%] 50 000 –74.911 75[39.7%] –3.5×10−9 –74.911 75[39.7%]
AVDZ �5.9×107 –74.927 72(2)a[45.9%] 50 000 –74.927 67[45.9%] –9.9×10−6 –74.927 68[45.9%]
TZ
VTZ FCb �9.6×106 –74.974 24[63.9%] 50 000 –74.974 15[63.9%] –1.5×10−5 –74.974 17[63.9%]
VTZ �5.8×108 –74.985 28[68.2%] 100 000 –74.985 19[68.1%] –9.0×10−5 –74.985 28[68.2%]
AVTZ �2.1×1010 –74.990 77(4)a[70.3%] 100 000 –74.990 13[70.1%] –2.9×10−4 –74.990 41[70.2%]
QZ
VQZ FCb �4.5×108 — 50 000 –74.993 15[71.2%] –4.3×10−4 –74.993 57[71.4%]
VQZ �9.1×1010 — 100 000 –75.022 69[82.7%] –3.2×10−4 –75.023 00[82.8%]
AVQZ �2.0×1012 –75.025 34(4)a[83.7%] 200 000 –75.022 69[82.7%] –2.1×−3 –75.024 76[83.5%]
CVQZ �2.7×1012 — 250 000 –75.051 67[93.9%] –2.7×10−3 –75.054 38[95.0%]
5Z
V5Z �5.6×1012 — 200 000 –75.027 40[84.5%] –9.9×10−4 –75.028 39[84.9%]
AV5Z �8.5×1013 –75.037 49(6)a[88.4%]

aValues from Ref. 44.
bFC refers to a (1s2) frozen-core.

Fig. 4. Fixed-node DMC ground-state energies for the oxygen atom
as a function of the number of determinants kept for the VDZ, VTZ,
and VQZ basis sets. A logarithmic scale for the abscissa is used.

Fig. 5. Fixed-node DMC ground-state energies in the small number
of determinants region.

Table 3. FN-DMC energies and percentages of the correlation energy
recovered for the 3P ground-state of the oxygen atom using various
basis sets and truncation levels for the reference wavefunction. Com-
parison with accurate values available in the literature.

Basis set Ndets E0(FN-DMC)
Correlation
energy (%)

cc-pVDZ 1 (HF) –75.041 8(5) 90.1(2)
cc-pVDZ 5 000 –75.051 9(4) 94.0(2)
cc-pVTZ 1 (HF) –75.045 7(4) 91.6(2)
cc-pVTZ 2 000 –75.059 5(4) 96.9(2)
cc-pVQZ 20 000 –75.064 2(2) 98.8(1)
cc-pCVQZ 100 000 –75.065 8(1) 99.4(1)
Other works
FCIQMCa –75.037 49(6) 88.40(2)
FN-DMCb –75.065 4(1) 99.2(1)
r12-MR-ACPFc –75.066 960 99.83
Exact NRd –75.067 4 100.0

aRef. 44.
bRef. 20.
cRef. 45.
dRef. 43.
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short, a determinant Di (or a group of determinants) is added to
the reference wavefunction if its (their) energetic contribution(s)
is (are) sufficiently large (CIPSI-like algorithm). In practice, the
expansion is stopped for the maximum number of determinants
compatible with a rapid evaluation of the trial wavefunction at
each step of the QMC calculation (here, a few hundreds of thou-
sands of determinants for the oxygen atom). Themain advantages
of such wave functions are as follows.

(i) In constrast with truncated CASSCF wavefunctions or CI
expansions limited to a maximum number of excitations
(e.g., CISD), near FCI quality for the reference function can
be reached with a much smaller number of determinants
(many determinants with negligible weight in the exact
wavefunction are avoided). For the case of the oxygen
atom, the error with respect to the FCI limit for the DZ and
TZ basis sets is systematically smaller than one milliHar-
tree with the number of determinants not exceeding 105.
For the largest QZ and 5Z and a comparable number of
determinants, the error does not exceed a few milliHar-
tree.

(ii) Because the reference wave function is built hierarchically
(most dominant determinants first), it is reasonable to ex-
pect that its overall quality improves as the number of
determinants is increased and, in particular, its nodal
structure. In this work, this point has been verified for the
oxygen atom but its validity for more complex systems
remains to be investigated.

(iii) Taking for granted the nodal quality of the multidetermi-
nantal wavefunction when the CI expansion is sufficiently
large, the tedious and delicate task of re-optimizing in a
QMC framework the numerous linear and nonlinear pa-
rameters of the determinantal part can be avoided. Such a
possibility of constructing optimal nodes in a purely deter-
ministic and automatic way is a very appealing feature for
future applications.

Finally, let us insist that the various aspects just discussed need
to be investigated for more realistic systems beyond the oxygen
atom. A study of the potential energy curve of the first-row di-
atomics molecules is presently underway.
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