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Chaotic versus Nonchaotic Stochastic Dynamics in Monte Carlo Simulations: A Route
for Accurate Energy Differences in N-Body Systems
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We present a method to efficiently evaluate small energy differences of two close N-body systems by
employing stochastic processes having a stability versus chaos property. By using the same random noise,
energy differences are computed from close trajectories without reweighting procedures. The approach is
presented for quantum systems but can be applied to classical N-body systems as well. It is exemplified
with diffusion Monte Carlo simulations for long chains of hydrogen atoms and molecules for which it is
shown that the long-standing problem of computing energy derivatives is solved.
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At the heart of the N-body quantum problem in physics
and chemistry is the evaluation of excitation energies
corresponding to small energy differences associated
with two close Hamiltonians. Evaluating such excitations
allows detailed knowledge of both the nature of the ground
state and of the low-energy properties of the system.
Denoting H as the reference N-body Hamiltonian defined
over N degrees of freedom and H, some small perturbation
of it (including eventually a slight change in N), where A is
a small parameter connecting both Hamiltonians, we are
interested in the excitation energies defined as the differ-
ence A = E}} — E, in ground-state energies. Depending on
the domain of application (nuclear physics, quantum
liquids, solid-state physics, quantum chemistry, etc.),
such excitations may appear under various names such
as, e.g., phonon, plasmon, spinon, or charge excitations,
bound states, reaction barriers, electronic affinities, bind-
ing energies, etc. We may also be interested in evaluating
infinitesimal energy differences such as in the important
case of computing properties other than the energy via the
Hellman-Feynman theorem (energy derivative) or in the
case of the thermodynamic limit where energy differences
(for example, a one-particle gap) usually scale at most as a
tiny fraction of order 1/N of the total energy. Although
total energies are usually computed with high accuracy in
quantum Monte Carlo (QMC) calculations, it is in most
cases not sufficient to compensate for the tremendous loss
of relative accuracy when small differences are computed
by using independent calculations of each energy compo-
nent. Today, a number of approaches have been devised to
tackle the problem of computing small differences and
derivatives of energies, e.g., [1-5]. The most popular strat-
egy employed up to now is to introduce a scheme based on
the idea of correlated sampling [1,6—8]. This idea has been
implemented by introducing common stochastic dynamics
for the two close Hamiltonians H, and H and by taking
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into account their difference via modified estimators in-
cluding weighting factors related to the difference, i.e.,
reweighting techniques. Here, it is emphasized that intro-
ducing such weights is problematic since they are respon-
sible for the occurrence of large statistical or in some case
infinite fluctuations; see, for example, [3]. These fluctua-
tions not only completely or partially cancel the benefit of
the correlation but also introduce systematic errors, in
particular, for the important case of fermionic systems
where the change of nodal topology is difficult to take
into account [1,2,9].

The purpose of this Letter is to present a method which
circumvents such difficulties. In short, we rely on a stabil-
ity property versus chaos which states that stochastic tra-
jectories having different initial conditions but a common
noise meet exponentially fast in time. We show that be-
cause of this property two slightly different processes
sharing the same noise will produce two trajectories that
will remain close forever. This situation is clearly particu-
larly favorable for computing small energy differences
efficiently, since we keep the advantage of the correlation
without the drawback of reweighted estimators. Note that
the observation that configurations can coalesce after some
time in a Monte Carlo scheme when a common set of
random numbers is used is not new [10-13]. The ideas
will be presented here in the case of two popular QMC
approaches, namely, the variational Monte Carlo and the
fixed-node diffusion Monte Carlo methods. However, we
emphasize that such ideas can be extended without diffi-
culties to other types of Monte Carlo methods including
classical Monte Carlo simulations (e.g., by sampling the
Boltzmann density with a continuous Langevin-type pro-
cess). Finally, we present a few applications of the method
to long chains of hydrogen atoms and molecules.

In any Monte Carlo algorithm, one evaluates a property,
for example, the energy, as the average of some function
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e(R), over a probability distribution 77(R) (analytically
known or sampled):

Eo = (e(R)), — f ¢(R)m(R)dR. (1)

Depending on the variant of the Monte Carlo method used,
R may represent a point in the N-particle space (varia-
tional, diffusion, Green’s function, projector Monte Carlo,
etc.) or a path in a path-integral formulation (path-integral,
reptation, pure diffusion Monte Carlo, etc.). The distribu-
tion 77(R) may represent various N-body densities or some
positive functional of the path (typically, a Feynman-Kac
weight). In all cases the following ground-state energy
difference has to be calculated:

E} — Ey = (e,(R)),, — (e(R))., )

where A is the (small) parameter connecting the two (close)
N-body Hamiltonians, 7= and 7, the respective ground-
state densities, and e and e, the energy estimators. In a
standard correlated sampling approach, we would use the
same distribution for the two calculations:

_(eA(R)A(R)),
(xR, = (e(R))y = ==

Here, to avoid the introduction of the weights % , we define
a stochastic process within the space of pairs (R, R)),
where R and R sample 7 and 7, respectively. For that
purpose, two close stochastic processes admitting 7 and
7, as steady densities are introduced. They are correlated
through the use of a common realization of the stochastic
part (same pseudorandom sequence), and the energy dif-
ference reads

E} — Ey = (e,(R)) — e(R))zr R, 4)

where 7(R, R,) is the density in the space of pairs.
Condition for finite variance on the derivative.—We
search to keep the fluctuations of the energy difference of
order A when A — (. Writing the energy estimator differ-
ence inside the brackets in (4) to first order in A, we get

ex(Ry) —e(R) = A[R]+ (Ry —R)Ve,  (5)

—(eR)5. (3)

where ¢/(R) = %\A | \—o- It follows that the squared average

of the left-hand side of Eq. (5) becomes
R, —R 2
(ealR,] = elRD?/) = (R ve) )

+ <e’2 + 26’¥V6>. (6)

To see when the average of the squared term can be finite in
the limit A — 0, let us first note that the quantities e, ¢’, and
Ve have in general a small variance (for zero-temperature
QMC methods, we even have a zero-variance property).
Assuming that these quantities have a finite variance, it is
straightforward to apply the Schwartz inequality and check
that (6) has a finite variance in the limit A — O provided
that the following stability property is fulfilled:

R, — R\2
lim<( A )> finite. (7
A—0 A [R,R,]

Equivalence to nonchaotic behavior—To proceed fur-
ther we shall prove that the property (7) is equivalent to a
stability property with respect to chaos of the stochastic
dynamics. The proof is written in the context of an over-
damped Langevin stochastic equation but extends to more
general stochastic processes. The overdamped Langevin
equation is written as

R (r + dt) = R(¢) + bdt + dW, (8)

where dW is the standard Wiener process and b a drift
vector leading to the stationary density m, ie., b =
%_V In7r. The secondary process has an analogous expres-
sion

R (1 + d) = R, (1) + b,dt + AW, 9)

with b the new drift vector associated with the density 7.
The two Wiener processes are chosen to be identical:
dW, = dW, and thus we have

R ,(t+dt) —R(t+dt) = (b, —b)dt — [R (1) — R(1)].

(10)
Introducing the following tangent vector:
_ .. Ry =R
TO= = (b
and writing Eq. (10) at first order in A, one has
0 = IHROITO + () (12)
t

where JH is the Hessian matrix built from % In7r (spatial
second derivatives of it) and

ab,

b’ =
aA

(13)

A=0

Equation (12) is a linear differential equation of first order.
For a given stochastic trajectory the formal solution with
T = 0 as the initial condition [i.e., R,(t = 0) = R(z = 0)]
can be written as

T() — [ "U(s)b(s)ds, (14)
0
where U(s) is the operator obeying

%] = H[R()]U, with U(t=0) = Id. (15)
From a physical point of view, the operator U—which
depends on the trajectory—expresses the sensitivity of
the walker position at time ¢ with respect to a perturbation
of the initial conditions. The expression arising in (7)
which can also be written as

Lo
(TMROR, 0] = tlgg " [0 T?(s)ds (16)
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is finite if T2(s) is bounded as a function of time. From
Eq. (14) it is seen that it is sufficient that the norm of the
operator U(r) decreases exponentially fast. This property
tells us that two trajectories with different initial conditions
and the same random noise meet exponentially fast (in the
L? norm sense). Such a result is referred to as stability
versus chaos in the context of dynamical systems or syn-
chronization in the context of stochastic processes.
Variational Monte Carlo calculations for hydrogen
chains.—In Fig. 1, the fundamental aspects of our ap-
proach are presented for the linear metallic H;,, molecule
with a constant internuclear distance (1.4 a.u.). The varia-
tional energy is equal to the average of the local energy

H .
defined as E;, = % over the overdamped Langevin
A

process with ;Z/%;A as stationary density. Here, i/, is a
simple Hartree-Fock wave function and A the magnitude of
the small displacement of the first atom of the chain. On the
left side of the figure, the variance of the spatial distances
between correlated walkers (A = 0 and # 0) as a function
of the simulation time is shown. As seen, the fundamental
synchronization or stability property [Eq. (7)] is perfectly
fulfilled, a remarkable result for such a large system
(120 electrons). On the right side, the finite differences of
both local energy and displacement as a function of A are
displayed. For small enough values of A, the finite differ-
ences are found to be independent on the parameter. As an
important consequence, exact derivatives can be obtained
with finite fluctuations. Comparison with the standard
(reweighted) correlated method [1,2] shows that the statis-
tical error is reduced by a factor proportional to the square
root of the number of electrons over standard correlated
sampling methods, making the method vastly more effi-
cient at large sizes [14].

Diffusion Monte Carlo simulations.—We now apply the
approach to the calculation of the exact derivatives
by using a diffusion Monte Carlo (DMC) scheme.
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FIG. 1 (color online).

Compared to variational Monte Carlo simulations, in
DMC an additional weighting factor is introduced to re-
cover the exact energy. This factor can be simulated via a
birth-death process as in the standard DMC method [15] or
“carried”” by the walkers as in the pure DMC (PDMC)
method [16] we shall employ here. In the correlated ap-
proach E, and E} are computed along the same stochastic
trajectory by using identical Wiener processes and guiding
functions W = Ws. A major drawback of such an ap-
proach for computing the energy difference E} — Ej is that
the difference of local energies E;, — E; appearing in the
estimator can have large or even infinite fluctuations
(e.g., in the case of a force on a nucleus). Also, the same
nodes are imposed for the two close systems, thus prevent-
ing one from accounting for the nodal dependence of i,
as a function of A. All proposals presented so far [1,2,17]
thus rely on the quality of an analytical guess for the fixed-
node function and its derivative, which introduces an
uncontrolled and unsatisfactory approximation. We first
consider the problem of computing the internuclear force
for the H, molecule, a system for which the force curve is
known with high accuracy. The ground-state wave function
being nodeless, there is no fixed-node approximation and
the PDMC energy yields the exact energy regardless the
choice of the (positive) wave function W,;. Here, we
choose a standard simple form [15]. Upon displacement
A, the wave function W, is chosen to keep the same form
with the same parameters, except that the center of atomic
orbitals (nuclei) are displaced.

On the left part of Fig. 2, several curves are presented
representing the difference between the finite-difference
derivative of the PDMC energy, F(7), and the exact force
value F,,, as a function of the internucleus distance. Each
curve corresponds to a different value of the projection time
t. At zero projection time, the curve gives the difference
between the derivatives of the variational and exact
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FIG. 2 (color online).

PDMC convergence of the derivative for Li2 (3.000 Bohr)
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On the left, PDMC energy derivatives for the H, molecule as a function of the internucleus distance and

computed at different projection times 7. On the right, convergence of the derivatives of PDMC energies computed with different

Jastrow factors for the Li, molecule.

energies. As seen, the curve is far away from being equal to
zero, thus illustrating the poor quality of the guiding func-
tion used here. However, in spite of this, the exact energy
derivative is recovered without difficulties at large projec-
tion times. Let us emphasize that, as desired, the result
depends neither on the chosen trial wave function nor on
any analytical approximation of its derivative. Now, let us
consider the important case where the trial wave function
displays a nodal pattern depending on the parameter A
(here, change of nuclei positions). We consider the Li,
molecule described by a standard Jastrow-Slater form. As
in the previous cases, the stability condition [Eq. (7)] is
found to be perfectly fulfilled. In the right part of Fig. 2, the
derivative of the fixed-node PDMC energy as a function of
the projection time ¢ is displayed. The different curves
correspond to different choices of the parameters of the
Jastrow factors. As observed, the long-time behavior of
the derivative does not depend on these different choices,
thus showing that the derivative of the fixed-node energy
can be recovered for this system.

As a last remark, we would like to emphasize that,
although the approach presented here has been shown to
be particularly efficient, we still have to deal with the
problem of the validity of the stability condition which is
not a trivial result. It has been found fulfilled for rather long
chains of hydrogen atoms with a restricted Hartree-Fock
guiding function (up to 120 atoms tested) and for the Li,
molecule. However, the stability of the ‘“‘naive” over-
damped Langevin process does not hold in general; for
example, we have found that applied to larger Li clusters a
weak instability may develop, even if it requires such large
times to amplify that a transient estimate of the energy
differences is still possible in practice. This work motivates
further the interest of looking for stable stochastic dynam-
ics in QMC and, more generally, in Monte Carlo methods.
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