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Comment on “Feynman-Kac
Path-Integral Calculation
of the Ground-State Energies of Atoms”

Korzeniowski et al. [1] have presented a method for
solving the many electron problem based on Feynman-
Kac path integrals. But the efficiency of the proposed
method is low because no importance sampling is used,
a spatial grid has been used unnecessarily, antisymmetry
has not been correctly taken into account, and the results
have converged to the wrong energy levels in violation of
a variational bound.

The basis of the quantum Monte Carlo method (QMC)
is that exp(—tH) can be interpreted as a diffusion process
and can project out the ground state of H. To generate
free Brownian trajectories and to take the average of the
potential is a particularly easy task on a computer. How-
ever, such a scheme is highly inefficient: evaluating the
time integral along a Brownian trajectory with a strongly
fluctuating potential converges slowly both in the num-
ber of trajectories and in the discretization of “time.”

Improved methods have been introduced [2]. With im-
portance sampling one biases the walk using a drift given
by VIn¥r, and ¥r an assumed trial function [2—4].
Aside from the complications of computing the trial func-
tion, the computer program is almost as trivial. But the
fluctuations due to the bare potential are replaced by the
much smaller fluctuations of the local energy, H¥r/Ur.
There are many applications directly based on the im-
portance sampled Feynman-Kac formula [2].

In the diffusion Monte Carlo method [4, 5] the Feyn-
man-Kac exponential weight is replaced by an equiva-
lent branching process which further increases the effi-
ciency allowing calculations of liquid and solid helium
(3], the electron gas [6], and numerous molecular systems
[7]. In the most advanced related method, Green’s func-
tion Monte Carlo, there are no time step errors [3]. All
these methods are mathematically equivalent.

To deal with fermions, Korzeniowski et al. have chosen
the standard approach in QMC, the fixed-node approxi-
mation [5]. The Schrédinger equation with the boundary
condition that the wave function vanish on an assumed
hypersurface is solved by only taking walks that never
cross it. The energy so obtained is an upper bound to
the ground state having the same symmetry as the nodal
surface and obtaining the exact energy only for the ex-
act surface. Since the exact nodal surfaces of general
electronic systems are not known, this method is only
approximate.

For nodal surfaces, the authors projected the coordi-
nates of each electron onto the {1, 1, 1} direction and dis-
carded random walks whenever two electrons with the
same spin had the same projection. The nodes and re-
sulting wave functions are too simple for real atoms or
molecules, and in two of the examples (the He and Li
atoms) their assumed nodal surface has the parity of an
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excited state. The lowest triplet (S = 1) state (1s2s) of
the He atom has even parity and energy —2.1752 a.u. The
odd parity triplet state (1s2p) has energy —2.1333 a.u.
Since inversion maps a point from one nodal region to the
other nodal region, their state has odd parity and by the
variational principle its energy must be greater than the
lowest triplet odd parity state, i.e., above —2.1333 a.u.
To obtain the energy of the even parity state one must use
the nodal condition r; = r2. Similarly, their Li energy
must be higher than —7.410 a.u. Hence there must be
a perfectly compensating systematic error (greater than
0.042 a.u. for He and 0.068 a.u. for Li) to bring their
results in precise agreement with the even parity energy
levels.

It is possible to incorporate the exact fermion sym-
metry in QMC by using any antisymmetric function as
an initial state and to project against at the end [2, 8],
but the error of the energy becomes much larger than its
mean value at large time or as the number of electrons
increases. It is to this sign problem that much research
has been addressed.

M. Caffarel
Laboratoire de Physique Quantique, IRSAMC
Université Paul Sabatier, Toulouse, France

D. M. Ceperley
Department of Physics
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

M. H. Kalos
Center for Theory and Simulation in Science
and Engineering
Cornell University
Ithaca, New York 14853

Received 4 November 1992
PACS numbers: 31.15.+q, 71.10.4+x

(1] A. Korzeniowski, J.L. Fry, D.E. Orr, and N.G. Fazleev,
Phys. Rev. Lett. 69, 893 (1992); J. Maddox, Nature (Lon-
don) 358, 707 (1992).

[2] M. Caffarel and P. Claverie, J. Chem. Phys. 88, 1088
(1988); 88, 1100 (1988).

[3] M.H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A 9,
2178 (1974).

[4] P.J. Reynolds, D.M. Ceperley, B.J. Alder, and W.A
Lester, Jr., J. Chem. Phys. 77, 5593 (1982).

[5] J.B. Anderson, J. Chem. Phys. 63, 1499 (1975); 80, 2675
(1984).

[6] D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566
(1980).

[7] W.A. Lester, Jr., and B.L. Hammond, Annu. Rev. Phys.
Chem. 41, 283 (1990).

[8] K.E. Schmidt and M.H. Kalos, in Applications of the
Monte Carlo Method in Statistical Physics, edited by K.
Binder (Springer-Verlag, Berlin, 1984).

2159

© 1993 The American Physical Society



