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Towards accurate all-electron quantum Monte Carlo calculations
of transition-metal systems: Spectroscopy of the copper atom
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In this work we present all-electron fixed-node diffusion Monte Carlo �FN-DMC� calculations of the
low-lying electronic states of the copper atom and its cation. The states considered are those which
are the most relevant for the organometallic chemistry of copper-containing systems, namely, the 2S,
2D, and 2P electronic states of Cu and the 1S ground state of Cu+. We systematically compare our
FN-DMC results to CCSD�T� calculations using very large atomic-natural-orbital-type all-electron
basis sets. The FN-DMC results presented in this work provide, to the best of our knowledge, the
most accurate nonrelativistic all-electron correlation energies for the lowest-lying states of copper
and its cation. To compare our results to experimental data we include the relativistic contributions
for all states through numerical Dirac-Fock calculations, which for copper �Z=29� provide almost
the entire relativistic effects. It is found that the fixed-node errors using Hartree-Fock nodes for the
lowest transition energies of copper and the first ionization potential of the atom cancel out within
statistical fluctuations. The overall accuracy achieved with quantum Monte Carlo for the
nonrelativistic correlation energy �statistical fluctuations of about 1600 cm−1 and near cancelation of
fixed-node errors� is good enough to reproduce the experimental spectrum when relativistic effects
are included. These results illustrate that, despite the presence of the large statistical fluctuations
associated with core electrons, accurate all-electron FN-DMC calculations for transition metals are
nowadays feasible using extensive but accessible computer resources. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2011393�
I. INTRODUCTION

In recent years, quantum Monte Carlo �QMC� has been
applied successfully to a number of electronic systems in-
cluding atoms, molecules, liquids, and solids �see, e.g., Refs.
1–9 and the references in Ref. 10�. The quality of the results
obtained for total energies is in general very good; the accu-
racy achieved is comparable or even superior to that of stan-
dard high-quality ab initio methods �e.g., coupled cluster
with large basis sets�. However, the vast majority of systems
studied so far involves only light elements of the first and
second rows with small variations of the electronic density.
Except for the innermost 1s electrons whose contribution is
usually reproduced using effective core potentials �ECPs�,14

the energy scales present in these systems are quite restricted
and Monte Carlo simulations are found to converge even for
very large systems containing hundreds of electrons �e.g., up
to 984 valence electrons are treated in Ref. 9�. In contrast,
much less has been done for the description of complex sys-
tems where the electronic density structure is more intricate.
A prototypical example of such complexity is found in
transition-metal systems. From a general perspective, the
physicochemical and spectroscopic properties of metal-
containing molecules are extremely difficult to describe ac-
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curately with the available electronic structure methods and
this is one of the key issues of modern computational quan-
tum chemistry. As is well known, this difficulty arises from
the electronic complexity involved when many electrons are
localized in a small spatial region �3d or 4d shell of the
transition-metal family�. It is crucial to emphasize that for a
wide variety of cases the understanding of the basic pro-
cesses at work in the metal-containing systems requires
quantitatively a high degree of accuracy on the transition
energies between the low-lying electronic states.

Up to date only a limited number of quantum Monte
Carlo studies have addressed this important problem.11–26 To
our knowledge all QMC applications involving transition-
metal atoms, except for the work of Belohorec et al.15 �see
also Rothstein16,17�, have used effective core potentials to
reproduce the effect of the innermost electrons. The major
motivation for introducing pseudopotentials is to remove
from the simulation the large energy and small length scales
associated with the chemically inactive core electrons. Spec-
troscopic properties calculated as differences of total ener-
gies are thus much less noisy �the large statistical fluctua-
tions coming from the core electrons have been removed�
and a much larger time step can be used for propagating
valence electrons. Both aspects lead to very important gains
in computer time compared to all-electron calculations.
However, the price to pay for these advantages is the intro-
duction of two additional systematic errors besides the usual

fixed-node error common to all-electron and pseudopotential
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calculations. The first error is associated with the pseudopo-
tential itself and the second one is the so-called localization
error resulting from the localization of the nonlocal ECP
operator by projection over an approximate trial wave func-
tion. Flad and Dolg20 have presented a detailed analysis of
the accuracy of pseudopotential-based QMC calculations by
computing atomic ionization and excitations energies for the
first-row transition metals Sc,V,Ti, and Cr and by systemati-
cally comparing the results to configuration-interaction �CI�
and coupled-cluster �CC� calculations using the same
pseudopotentials and very large basis sets. When using
small-core �Neon-core� pseudopotentials they estimate the
error due to the nonlocal pseudopotential for these systems to
be at most 0.1 eV. The localization and fixed-node errors are
found to be quite dependent on the quantity evaluated �ion-
ization or excitation energies�, on the occupation of the 3d
and 4s shells, and on the nature of the trial wave function
used �with or without Jastrow for the explicitly correlated
part of the wave function, using multiconfiguration self-
consistent-field �MCSCF� or restricted Hartree-Fock �RHF�
forms for the determinantal part�. Although it is not easy to
evaluate the relative importance of the fixed-node and local-
ization error �these errors are difficult to separate�, the results
presented by Flad and Dolg seem to indicate a localization
error on the differences of energies lying between 0.1 and
0.5 eV. Note that in an early study of the low-lying elec-
tronic states of the iron atom Mitáš19 obtained similar results,
although for the Fe atom the localization error appears to be
smaller than for the systems studied by Flad and Dolg. Fi-
nally, note that in the recent years some ECP-QMC calcula-
tions on molecular systems have been presented: dissociation
energy and energy splittings of the low-lying states of TiC,24

binding energies of TiO and MnO,25 relative energies of vari-
ous clusters such as CuSi4, CuSi6,21 and Cr2CO,23 singlet-
triplet gap for Ti@Si12,

22 and dissociation energies of
transition-metal carbonyls.26

In this work our purpose is to show that accurate all-
electron quantum Monte Carlo calculations for a transition-
metal atom such as copper can be performed despite the
presence of large fluctuations associated with core electrons.
In contrast with the early works of Belohorec et al.15 and
Rothstein,16,17 we use here an accurate fixed-node diffusion
Monte Carlo scheme and not a variational Monte Carlo
�VMC� approach biased by the choice of a particular trial
wave function for each electronic state. Using all-electron
FN-DMC calculations allows to avoid the limitations of the
pseudopotential approach discussed above and, in particular,
the delicate issue of estimating the systematic errors. Our
results for the electronic transitions Cu�2S�→Cu�2D�,
Cu�2S�→Cu�2P�, and Cu�2S�→Cu+�1S� �ionization poten-
tial� show that a statistical accuracy of about 0.15 eV can be
achieved. Within this error bar of 0.15 eV a full agreement
between the transition energies computed at the fixed-node
DMC level and the experimental data is obtained. In particu-
lar, the systematic fixed-node error associated with both ini-
tial and final electronic states is found to cancel within sta-
tistical fluctuations. Of course, to compare our results with
the experimental spectrum the relativistic effects need to be

taken into account. These effects include both scalar �Darwin
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and mass velocity� and J-dependent spin-orbit contributions.
For copper �Z=29� they are known to be adequately repro-
duced at the self-consistent-field level and can be directly
added on top of the nonrelativistic correlation energies �ad-
ditivity of relativistic and correlation effects�. Finally, since
standard highly correlated ab initio techniques can accurately
reproduce the transition energies of Cu, we systematically
compare our QMC results with all-electron CCSD�T� calcu-
lations using large optimized basis sets.

The organization of this paper is as follows. In Sec. II we
present the computational methods used in this work �QMC,
relativistic Dirac-Fock, and ab initio CCSD�T� approaches�.
In particular, a detailed presentation of the QMC strategy
employed to get stable and accurate all-electron calculations
is given. In Sec. III we discuss our results and, finally, some
conclusions are presented in Sec. IV.

II. COMPUTATIONAL METHODS

As pointed out in the Introduction we shall use the fact
that the total energy for a given electronic state can be de-
composed as

Ei,J
tot = Ei

scal.rel�DF� + Ei,J
SO�DF� + Ei

corr.nonrel + O��rel−corr� ,

�1�

where i denotes the L, and S quantum numbers �2S, 2D, 2P,
and 1S in our case� and J the total angular momentum. The
first two terms in the right-hand side of the equation corre-
spond to the main relativistic effects computed at the Dirac-
Fock �DF� level �scalar effects representing the Darwin and
mass-velocity terms plus the spin-orbit ones�; the third term
is the exact nonrelativistic correlation energy. Such an ap-
proximation is reasonable since it is known that the coupling
between relativistic and correlation effects is rather small for
Z=29. In what follows, we shall compute the total relativistic
effects, Ei,J

rel�DF�, via a Dirac-Fock description �see Sec. II B�
and the nonrelativistic correlation energies using either QMC
�Sec. II A� or CCSD�T� �Sec. II C�. Our final working for-
mula becomes

Ei,J
tot � Ei,J

rel�DF� + �Ei
nonrel�exact� − Ei

nonrel�HF�� . �2�

A. Quantum Monte Carlo

QMC methods are powerful stochastic approaches for
solving the Schrödinger equation. In this work we shall use
the FN-DMC method, the most commonly used variant of
QMC approaches for treating complex electronic systems.
Since several excellent presentations of the diffusion Monte
Carlo method have been published �see, e.g., Refs. 27, 28,
and 10� we shall not enter here into the details of the algo-
rithm. We shall restrict the presentation of DMC to the sole
equations useful for the understanding of our practical imple-
mentation of the method to high-Z systems such as copper
and its cation.

In the fixed-node DMC approach a population of “walk-
ers” is introduced. A walker is defined as the set of the spatial
coordinates of the N electrons of the system, R
= �r1 , . . . ,rN�. At each step of the simulation the walkers are

propagated using a Langevin-type move,
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Rnew = Rold + F�Rold�� + ��� , �3�

where � is the elementary time step, F the drift vector given
by F�R�=��T�R� /�T�R�, where �T is some optimized trial
wave function, and � a 3N-dimensional Gaussian random
vector �3N independent normal Gaussian components�.

To reduce the finite time step error, a Metropolis step is
performed and the preceding Langevin move is accepted
with probability

q = min�1,
�T�Rnew�2p�Rnew → Rold,��
�T�Rold�2p�Rold → Rnew,�� � , �4�

where p�R→R� ,�� is the Gaussian transition probability as-
sociated with Eq. �3�, p�R→R� ,��	exp�−�R�−R
−F�R���2 /2��. Finally, the last step consists in simulating a
birth/death �branching� process by deleting or duplicating �a
certain number of times� each walker according to the local
branching weight given by

W�Rold,Rnew,�� = e−���EL�Rold�+EL�Rnew��/2−ET�, �5�

where EL�R� is the local energy, EL�R�=H�T�R� /�T�R�, and
ET some reference energy.

In the long-time limit the walkers are distributed accord-
ing to the DMC density

�DMC�R� 	 �0�R��T�R� , �6�

where �0 represents the exact unknown ground-state wave
function. The exact energy is obtained by averaging the local
energy over the stationary DMC population.

Four different types of error are present in the fixed-node
diffusion Monte Carlo algorithm. The most fundamental one
is the fixed-node error related to the fact that during the
simulation the walkers are trapped into the nodal pockets
delimited by the nodal hypersurfaces of �T �the nodes act as
infinitely repulsive barriers�. The positive DMC density ac-
tually recovered by implementing the DMC algorithm is not
the true density �0�T of Eq. �6� �which actually has no rea-
son to have a constant sign� but some approximate positive
density associated with the fixed-node wave function �0

FN,
the solution of the Schrödinger equation having the same
nodes as the trial wave function �additional boundary condi-
tions with respect to the standard case�. It can be shown that
the fixed-node approach is variational29 and various studies
have illustrated that the corresponding error is in general
small �a few percent of the correlation energy, depending on
the quality of the nodes�. A second source of error is the
short-time error associated with the use of noninfinitesimal
values for the time step. This error appears through the
implementation of Eqs. �3� and �5� and also because of the
presence of unwanted crossings of the nodes �walkers can
“jump” over the nodes and the fixed-node constraint is not
exactly fulfilled�. This error is easily controlled by perform-
ing different calculations with different time steps and by
extrapolating the results to zero time step. A third source of
error is the so-called population control error.30 This error
results from the fact that some sort of population control is
needed to keep the average number of walkers roughly con-
stant �nothing preventing the population from exploding or

collapsing�. A usual solution to this problem consists in
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smoothly adjusting during the simulation the reference en-
ergy ET appearing in Eq. �5� to impose a stabilized popula-
tion. Finally, the last error is the Monte Carlo error itself. As
is well-known this error is inversely proportional to the
square root of the number of independent configurations
used to compute averages.

A central aspect of fixed-node DMC calculations is the
choice of the trial wave function, �T. The closer the trial
wave function is to the exact unknown wave function, the
smaller the various errors described above are. Here, we
have chosen for the trial wave function a standard form used
in most studies, namely,

�T�R� = exp�

�i,j�

U�ri,rj,rij��D↑�R�D↓�R� , �7�

where D��R���= ↑ or ↓ � are SCF determinants made of
one-particle space orbitals and exp�
�i,j�U�ri ,rj ,rij�� is an ex-
plicitly correlated prefactor �Jastrow term� taking into ac-
count various n-body effects �electron-electron cusp,
electron-electron-nucleus three-body term, etc.�.

In this work we have done extensive FN-DMC simula-
tions for the 2S, 2D, and 2P electronic states of Cu and the 1S
ground state of Cu+. The time step used is small enough to
achieve a very high acceptance rate �average value of the
probability q of Eq. �4��, to avoid large fluctuations of the
branching weight �Eq. �5�� and to get a very small amount of
nodal crossings. For the four electronic states considered
here we have taken �=0.000 02 a.u. in our production runs.
We have checked that using a smaller time step of �
=0.000 01 a.u. does not change our results within statistical
uncertainties. In the case of the 1S ground state of Cu+ the
acceptance rate obtained is �q��0.9956 and the frequency of
nodal crossing is about 0.000 14; similar values have been
obtained for the other electronic states. Our time step is par-
ticularly small compared to values employed elsewhere. In
the all-electron variational Monte Carlo study of Belohorec
et al. and Rothstein on the CuH molecule,15–17 the smallest
time step used for moving the innermost electrons was
0.000 16 a.u. In the work of Flad and Dolg20 based on the
use of pseudopotentials �=0.002 50 for Sc and Ti and �
=0.002 00 for V and Cr. Note the existence of two orders of
magnitude between our all-electron time step and the typical
time step used in the QMC calculations with pseudopoten-
tials. To get energy estimators correctly converged a suffi-
ciently large number of Monte Carlo steps for each walker
have to be done. This is an essential condition to have a
correct sampling of the entire configuration space. In our
simulations a number of steps of about 3�106 has been
performed, corresponding to random walks of length 60 a.u.
We have checked that such a length is sufficient by making
several simulations starting from various initial configura-
tions and using independent series of random numbers. No
systematic drift in the distribution of results has been ob-
served, as it could occur when there is some lack of er-
godization. With the trial wave functions and time step used
here, the branching weights �Eq. �5�� are found to vary very
little during the simulation. For the 1S ground state of Cu+

we have obtained Wmin	0.90 and Wmax	1.03. With such

values the population control error is rapidly negligible when
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using a not so large population of walkers. Here, the popu-
lation sizes have been maintained around 100 walkers and no
significant changes in the results �within statistical uncertain-
ties� have been observed with larger populations. Finally, the
values presented here have been obtained by performing par-
allel computations using 32–64 processors. The total statis-
tics for each electronic calculation is about 32
�number of processors��100 �population size��3�106

�Monte Carlo steps per walker�, that is, a total of about 1010

configurations for averages. Using a single Power4 proces-
sor, each calculation presented in this work has a computa-
tional cost of about 2000-h CPU.

Finally, let us now comment in more detail the choice of
the trial wave function. We have found that to get well-
behaved convergence of the energy estimators as a function
of the simulation time it is essential to describe accurately
the wave function at very short electron-nucleus distances.
For example, using a large all-electron optimized atomic
natural orbital Gaussian basis set31 �20s15p10d� with the
largest s exponent equal to 5 430 320.9 is not sufficient for
getting stabilized DMC simulations. Convergence properties
are hindered by occurrence of rare events associated with
very large negative local energies �no compensation between
the kinetic and the large Coulombic −Z /r terms�. To avoid
this problem we have employed Hartree-Fock �HF� orbitals
expressed in a Slater basis set. For the 2S of Cu we have used
the HF solution presented by Bunge et al.,32 and for the 2D
state of Cu and the 1S ground-state of Cu+ the solutions
proposed by Clementi and Roetti.33 In the case of the 2P
electronic state of Cu for which we have not been able to
find a Hartree-Fock solution in the literature, a hybrid
Gaussian/Slater representation for the wave function has
been used. The innermost orbitals belonging to the Neon
core and the 3s valence orbital have been chosen to be the
Slater orbitals of the 2S ground state of the copper atom, the
remaining valence orbitals 3p, 3d, and 4p being the Gaussian
orbitals of the 2P electronic state obtained using the MOL-

PRO2002.6 program34 with the �20s15p10d� atomic natural or-
bital �ANO� basis set developed by Bauschlicher, Jr.31 Note
that replacing the Gaussian 3s orbital of the 2P state by the
Slater 3s orbital of the 2S ground state is harmless here since
the global shape of both orbitals is almost identical. How-
ever, because the 3s orbital has a nonvanishing probability at
the nucleus, such a replacement has a huge impact on the
range of values taken by the local energy and, thus, on the
convergence properties of the simulation. To illustrate this

TABLE I. Minimum of the local energy and maxim
calculation for the 1S state of Cu+ as a function of
function �Slater-type orbitals �STOs� or Gaussian-type
the local energy ��2= ��EL− �EL��2�� are also given. �
FN-DMC calculation has been done with an average

STO:�Ne�/GTO: 3s23p63d10 ST

EL�min� −66 005.86
W�max� 1.902

�EL� −1640.15�4�
�2 482�27�
important point we present in Table I the minimal value
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taken by the local energy and the maximal value of the
branching weight during a DMC simulation as well as the
estimates of the total energy and of the variance of the local
energy, �2= ��EL− �EL��2�. These data are presented for the 1S
state of Cu+ and not for the 2P state of Cu since in the first
case pure Slater simulations are possible.

As seen in the table the data illustrate very clearly the
importance of correctly describing the short electron-nucleus
behavior not only of the orbitals of the Neon core but also of
the 3s valence orbital. In particular, let us emphasize that in
spite that the 1s, 2s, and 2p orbitals are taken from the HF-
STO atomic solution the simulation still produces rare events
associated with too low local energies, almost 13 times
smaller than the lowest local energy for the simulation where
the 3s orbital is also included in the Slater part. The presence
of these rare events is responsible for the large value of the
maximum of the branching weight �1.902 instead of 1.037
and 1.015� and also of the very large fluctuations on the
variance of the local energy. Let us remark that, although the
final energy average obtained with the Slater-type orbital
�STO� Neon-core only �first column of Table I� seems satis-
factory here, we have observed a poor reproducibility of such
a calculation when using different initial conditions and dif-
ferent random numbers. We insist that having local energies
with a not too large magnitude is a prerequisite for getting
well-behaved DMC simulations. Finally, using a variational
Monte Carlo calculation we have checked that the energy of
the pure Gaussian solution given by MOLPRO and the energy
of our Gaussian/Slater wave function almost coincide within
statistical uncertainties, although an accurate comparison is
difficult due to the large fluctuations associated with the
Gaussian solution.

Regarding the Jastrow part we have tried two different
forms. Our first choice is a standard “minimal” form taking
care of the electron-electron cusp and a simple one-body
electron-nucleus term:

U�ri,rj,rij� = arij/�1 + brij� − p�ri + rj� , �8�

where parameters a and b can take two different values de-
pending on the pairs of electrons considered �parallel or an-
tiparallel�. We have imposed the following exact cusp condi-
tions: a=0.5 for antiparallel and a=0.25 for parallel spins.29

The three other parameters: bparallel, bantiparallel, and p, have
been used as variational parameters. The second form con-
sidered here is a more sophisticated expression including a

f the branching weight W �Eq. �5�� in a FN-DMC
pe of orbitals used for constructing the SCF wave

tals �GTOs��. The average energy and the variance of
enotes the Neon-core configuration: 1s22s22p6. The
0 walkers and 4�106 Monte Carlo steps per walker.

e� 3s2 /GTO: 3p63d10 STO:�Ne� 3s23p63d10

−5126.96 −3127.95
1.037 1.0153

−1640.15�3� −1640.13�3�
419�1� 416�1�
um o
the ty
orbi

Ne� d
of 10

O:�N
systematic expansion of U�ri ,rj ,rij� in powers of xij
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rij / �1+brij� and xi
ri / �1+cri� as well as some terms in-
troducing the explicit couplings between the variables xij and
xi �electron-electron-nucleus three-body terms�. This last
form is very similar to the expression proposed in Ref. 35.
The variational parameters entering in the Jastrow terms
have been optimized using the correlated method of Umrigar
et al.,36 a standard approach based on the minimization of the
weighted variance of the local energy over a set of fixed
configurations.

Quite surprisingly, for the various electronic states con-
sidered here we have not been able to get reliable optimized
parameters for the sophisticated form. Optimal parameters
obtained from our minimization procedure have systemati-
cally led to unsufficiently converged DMC simulations, at
least with the number of Monte Carlo steps performed in our
simulations. We have found no improvement with the opti-
mized parameters obtained when increasing the number of
fixed configurations used in the optimization step �up to
10 000� or when changing the set of fixed configurations. In
contrast, the optimized minimal form �Eq. �8�� has system-
atically led to reliable FN-DMC simulations and, therefore, it
is this simple form that has been employed in this work. We
let for future work a precise understanding of the origin of
the difficulties observed when optimizing our sophisticated
trial wave function for these high-Z systems. Finally, let us
mention that the typical values of the variance of the local
energy for the wave functions used here �simple optimized
Jastrow+SCF part� are about �2	100–110.

B. Relativistic effects

Ab initio relativistic Dirac-Fock energies have been ob-
tained with the formalism and code developed by Lindgren
and Rosén37 Calculations are done using a logarithmic nu-
merical grid. Thanks to the spherical symmetry of atoms, the
algorithm reduces to a one-dimensional case and, thus, the
Dirac-Fock limit is easily reached. Note that for the systems
treated here the Breit term is small38 and is not included in
our calculations. Note also that the spin-orbit splitting is
quite well reproduced at the Dirac-Fock level.

C. Ab initio correlation treatment

Ab initio correlation energies have been computed with
the all-electron optimized atomic natural orbital basis set de-
veloped by Bauschlicher, Jr.3 The original �20s15p10d6f4g�
ANO basis has been augmented with a set of even-tempered
2s2p1d1f1g2h2i orbitals, so that we end up with a

TABLE II. All-electron nonrelativistic total energies
and its cation using SCF, CCSD�T�, and FN-
22s17p11d7f5g2h2i augmented from ANO basis give
digit in parentheses, e.g., −1640.411�5� means −1640

ESCF
nonrel ECCSD�T�

nonrel

Cu�2S� −1638.9637 −1640.3971
Cu�2D� −1638.9528 −1640.3276
Cu�2P� −1638.8508 −1640.2619
Cu+�1S� −1638.7276 −1640.1204
�22s17p11d7f5g2h2i� fully uncontracted basis set �available
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upon request�. The calculations have been made with the
MOLPRO2002.6 code.34 Hartree-Fock references have been
used to perform restricted open-shell coupled cluster calcu-
lations at the CCSD�T� level with all the orbitals active. Us-
ing this rather large basis set, the CCSD�T� space contains
around 2.6�106 configuration state functions �CSFs� for the
29-electron Cu doublet states. Each CCSD�T� calculation
takes less than 130 mins on a single Power4 processor with a
256-MB random access memory �RAM� requirement.

III. RESULTS AND DISCUSSION

In Table II we present the total energies calculated at the
nonrelativistic level using SCF, CCSD�T�, and fixed-node
DMC approaches for the first three electronic states 2S, 2D
and 2P of the copper atom as well as the ground state 1S of
the copper ion. We explicitly show the correlation energy for
each state with both correlated methods. It is seen that the
FN-DMC energies are systematically lower than the corre-
sponding CCSD�T� values. Given the fact that the fixed-node
method is variational,29 we conclude that the DMC approach
recovers a larger fraction of the total correlation energy. Note
that the statistical errors on the DMC energies are small
enough to validate such a conclusion. To the best of our
knowledge, the values presented in Table II provide the most
accurate all-electron nonrelativistic energies available for the
lowest-lying states of copper and its cation.

Getting very accurate total energies is certainly desirable
but, for practical purposes, we are much more interested in
obtaining high-quality energy differences. In Table III SCF,
CCSD�T�, and QMC energy differences are shown. At the
SCF level the 2S→ 2D transition is very badly reproduced
�2392 cm−1 instead of about 15 000 cm−1 with correlation�.
Such a result is expected since this transition implies a
change in the occupation of the 3d shell, a situation where
the electronic correlation plays a major role. For the two
other transitions where the number of 3d electrons remains
constant, the SCF errors are about 6000 cm−1 for the 2S

orrelation energies of the low-lying states of copper
. �Basis set for CCSD�T�: Fully uncontracted
Ref. 31.� Energies in a.u. Statistical errors on the last
±0.005.

ECCSD�T�
corr.nonrel EFN-DMC

nonrel EFN-DMC
corr.nonrel

−1.4334 −1640.411�5� −1.447�5�
−1.3748 −1640.342�4� −1.392�4�
−1.4111 −1640.273�5� −1.422�5�
−1.3928 −1640.137�6� −1.409�6�

TABLE III. Nonrelativistic transition energies between the low-lying states
of copper computed at the SCF, CCSD�T�, and FN-DMC levels. Energies in
wave numbers. Statistical errors on the last digit in parentheses for DMC
data.

	ESCF
nonrel 	ECCSD�T�

nonrel 	EFN-DMC
nonrel

Cu 2S→ 2D 2 392 15 254 15 144�1 405�
Cu 2S→ 2P 24 779 29 673 30 288�1 552�

Cu 2S→Cu+ 1S �IP� 51 818 60 729 60 136�1 714�
and c
DMC
n in
.411
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→ 2P transition �the correlated value being close to
30 000 cm−1� and 10 000 cm−1 for the 2S→Cu+ 1S transition
�correlated value of about 61 000 cm−1�. Although much
smaller than in the previous case the magnitude of these
errors illustrates the importance of correlation effects on such
transitions. Note that in the case of the 2S→ 2D transition our
result of 15 254 cm−1 is quite close to the QCISD�T� value of
14 921 cm−1 presented by Raghavachari and Trucks in Ref.
39. As seen in Table III no significant differences between
the transition energies calculated with CCSD�T� and FN-
DMC are observed within statistical error bars, the typical
DMC error being about 1600 cm−1.

The fact that CCSD�T� and FN-DMC give similar tran-
sition energies is an important result which deserves some
comment. Clearly, some cancelation of errors must be at
work in both approaches. For CCSD�T� numerical experi-
ence has shown that such cancelation is indeed observed
when—like in the present case—the two wave functions
share some common structure �several occupied orbitals hav-
ing almost the same shape� and when a common basis set is
used for the calculations. For QMC the situation is different.
Each DMC calculation is associated with a fixed-node error
depending solely on the quality of the nodal structure em-
ployed for the state under consideration. Clearly, it is diffi-
cult to know whether the nodal errors associated with the
two states involved in a transition will compensate or not.
The results obtained here for the copper atom show that us-
ing the Hartree-Fock nodes for both states leads to energy
differences compatible with CCSD�T� ones. Having in mind
that CCSD�T� transition energies are likely to be of a good
quality here, it seems reasonable to think that some cancela-
tion of errors also exists for fixed-node DMC calculations
based on Hartree-Fock nodes.

In order to have a complete description of the atomic
transitions the relativistic contributions have to evaluated. In

TABLE IV. Numerical Dirac-Fock total energies �a.u.� for the low-lying
states of copper. Spin-orbit splittings within each multiplet in wave num-
bers.

Configuration J EJ�DF� SO splitting �cm−1�

2S�3d10 4s1� 1/2 −1653.461 99
2D�3d9 4s2� 3/2 −1653.458 48

5/2 −1653.469 91 2509
2P�3d10 4p1� 1/2 −1653.345 19

3/2 −1653.344 36 181
1S�3d10� 0 −1653.220 67

TABLE V. Final transition energies between the low
puted at the Dirac-Fock level and nonrelativistic corre
tal results are taken from Ref. 40. Energies in wave
for DMC data.

J 	EDF
rel 	

Cu 2S→ 2D 5/2 −1738
3/2 770

Cu 2S→ 2P 1/2 25 635
3/2 25 817

Cu 2S→Cu+ 1S �IP� 0 52 964
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Table IV we present our numerical Dirac-Fock total energies
for the various states studied and in Table V our final values
obtained for transition energies when combining contribu-
tions from relativity and electronic correlation. According to
our basic assumption �Eq. �2�� transition energies can be
written as

	E � 	Erel�DF� + 	Ecorr.nonrel, �9�

where the relativistic contribution �Darwin, mass-velocity,
and spin-orbit terms� is computed at the Dirac-Fock level
and the electron correlation contribution at the nonrelativistic
level. 	ERel �DF� can be obtained by computing the differ-
ences of total energies presented in Table IV and 	Ecorr.nonrel

by computing the change in the correlation energies pre-
sented in Table II.

The results of Table V show that both CCSD�T� and
DMC results �complemented with relativistic contributions�
are in excellent agreement with the experimental data. Let us
emphasize that relativistic effects are not negligible. Indeed,
at the nonrelativistic level �see Table III� the 2S→ 2D transi-
tion energy is about 3000 cm−1 greater than the experimental
J-averaged value �12 019 cm−1�, the 2S→ 2P value is about
1000 cm−1 too small �expt.: 30 618 cm−1�, and the first ion-
ization potential �IP� is also found to be too small by an
amount close to 1600 cm−1 �expt.: 62 317 cm−1�.

When including the relativistic effects the errors on the
CCSD�T� results vary between 80 and 440 cm−1. Note that
the FN-DMC error bars �about 1600 cm−1� are large enough
to include both CCSD�T� and experimental values. We re-
mark that our CCSD�T� value of 61 875 cm−1 for the IP can
be compared with a previously obtained CCSD fully numeri-
cal result41 of 60 967 cm−1; this allows us to estimate the
contribution of the triple excitations to be around 1000 cm−1

on the IP.
Let us emphasize that the spin-orbit splittings of both

atomic transitions �2S→ 2D and 2S→ 2P� are quite well re-
produced at the Dirac-Fock level. This result, which shows
that there is a rather weak coupling between the spin-orbit
and correlation effects, supports our initial hypothesis con-
cerning the effective decoupling between relativity and cor-
relation. Finally, in spite of the not so large Z value for Cop-
per �Z=29� it is crucial to recognize that relativistic effects
play an essential role in the spectroscopy of this atom. To
illustrate this important point we present in Figs. 1 and 2 a
pictorial representation of the respective roles of relativity
and nonrelativistic correlation in the construction of the en-
ergy of each component Cu 2S→ 2DJ=5/2,3/2, and 2S

g states of copper including relativistic effects com-
n energies with FN-DMC and CCSD�T�. Experimen-
ers. Statistical errors on the last digit in parentheses

+	ECCSD�T�
corr.nonrel 	EDF

rel +	EFN-DMC
corr.nonrel Expt.

11 123 10 333�1 405� 11 203
13 631 12 841�1 405� 13 245
30 529 31 122�1 552� 30 535
30 711 31 304�1 552� 30 784
61 875 61 304�1 714� 62 317
-lyin
latio

numb

EDF
rel
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→ 2PJ=3/2,1/2, respectively. Clearly, relativity plays a central
role in the spectroscopy of even such a light atom. In par-
ticular, note that relativity puts the lowest component of the
D doublet below the relativistic 2S ground state and that
correlation effects are needed to recover the correct energetic
differences between these states.

IV. CONCLUSIONS

In this work we have presented a complete analysis of
the role of the relativity and electronic correlation in the
transition energies between the low-lying states of the copper
atom and its cation. Our final values for the transition ener-
gies are found to be in excellent agreement with experimen-
tal data. The relativistic calculations have been performed at
the Dirac-Fock level using a basis-set-free description while
the correlation effects have been treated either through all-
electron CCSD�T� or fixed-node diffusion Monte Carlo. The
usual assumption concerning the decoupling between relativ-
ity and electronic correlation for a light atom such as copper
has been made and verified.

The primary goal of this work was to assess whether or
not all-electron fixed-node diffusion Monte Carlo techniques
could be successfully applied to the accurate calculation of
the low-lying electronic states of high-Z systems involving
highly-correlated 3d electrons. Several QMC calculations on
metal-containing systems have been published but they all
make use of effective core potentials to represent the effects
of the innermost electrons. To the best of our knowledge we

FIG. 1. Pictorial representation of the 2S→ 2D transition with the various
contributions considered. The SCF transition energy of 2392 cm−1 is indi-
cated to set the scale. The vertical arrows in the FN-DMC+rel. column
denote the statistical errors.

FIG. 2. Pictorial representation of the 2S→ 2P transition with the various
contributions considered. The SCF transition energy of 2392 cm−1 between
the 2S and 2D states is indicated to set the scale. The vertical arrows in the

FN-DMC+rel. column denote the statistical errors.
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present here the first accurate all-electron FN-DMC calcula-
tions for a transition-metal system. The accuracy achieved in
this work is about 0.15 eV, an error comparable to that ob-
tained in pseudpotential-based DMC calculations. However,
the nature of the errors in both approaches are quite different.
In our all-electron calculations the final error is essentially of
statistical nature and, therefore, can be reduced by increasing
the length of the simulations. Here, the calculations have
been quite extensive since each of the four electronic states
has required about 2000-h CPU on a single Power4 proces-
sor. However, such calculations are presently accessible us-
ing parallel computations on machines having a moderate
number of processors. The fact that QMC approaches paral-
lelize trivially is clearly a major advantage with respect to
more standard ab initio correlated methods. Besides the sta-
tistical error, there is one more error left, the fixed-node er-
ror. In contrast with the statistical error, it is a systematic bias
and there is no simple way of decreasing it just by perform-
ing longer computations. In this work, we have found that
the fixed-node error on the differences of energies of the
low-lying states of the copper is smaller than the 0.15 eV
statistical error when Hartree-Fock nodes are employed.
Such a result is of course very encouraging for the use of the
all-electron approach for more complex metal-containing
systems. However, it should be noted that in recent FN-DMC
studies using ECPs,25,26 some influence of the choice of the
nodal hypersurfaces �resulting either from Hartree-Fock or
Kohn-Sham orbitals� has been observed in the binding en-
ergy of MnO and TiO �Ref. 25� and in the dissociation en-
ergy of transition-metal carbonyls.26 Now, regarding DMC
calculations with pseudopotentials two additional systematic
errors show up: the pseudopotential itself and the localiza-
tion error. The error due to the pseudopotential can be easily
evaluated by making comparaisons between results obtained
from traditional high-quality ab initio calculations with and
without pseudopotentials. For the 3d transition metal this
error is estimated to be at most 0.1 eV.20 The magnitude of
the localization error is much more difficult to evaluate since
it is intimately mixed with the fixed-node error. In the work
presented by Flad and Dolg,20 this error is found to vary
between 0.1 and 0.5 eV depending on the type of trial wave
functions used, the occupation of the 3d and 4s shells, and on
the quantity evaluated. In this work we have shown that it is
possible to avoid these two latter sources of systematic error
by making all-electron FN-DMC calculations. This is clearly
an advantage when one is interested in accurate estimation of
the total nonrelativistic correlation energies of transition-
metal-containing systems. For instance in the CuCl2 case
studied by two of us42–44 this nonrelativistic correlation en-
ergy, which determines whether the ground state is of 2
g

+ or
2�g nature, has been particularly difficult to obtain accu-
rately by highly correlated ab initio methods, even with the
most sophisticated multireference CI approaches. The accu-
racy needed to distinguish between the two states has to be
smaller than 0.04 eV, a precision which appears difficult to
attain with ECP-FN-DMC calculations �all-electron QMC
calculations for this problem are in progress45�. On the other
hand, to be fair it should be mentioned that the ECP ap-

proach presents an important practical advantage with re-
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spect to all-electron calculations since it allows to include, in
a very convenient way, the scalar relativistic effects, which
for larger Z atoms are absolutely crucial.46
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