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One-dimensional pair hopping and attractive Hubbard models: A comparative study
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The low-energy physics of the one-dimensional pair hoppiRb) and attractive Hubbard models are
expected to be similar. Based on numerical calculations on small chains, several authors have recently chal-
lenged this idea and predicted the existence of a phase transition at half filling and finite positive coupling for
the pair-hopping model. We reexamine the controversy by making systematic comparisons between numerical
results obtained for the PH and attractive Hubbard models. To do so, we have calculated the Luttinger
parametergspin and charge velocities, stiffnesses, )etd. the two models using both the density matrix
renormalization-group method for large systems and Lagcatculations with twisted boundary conditions for
smaller systems. Although most of our results confirm that both models are very similar we have found some
important differences in the spin properties for the small sizes considered by previous numerical 6tttizes
siteg. However, we show that these differences disappear at larger didegl2 sites when sufficiently
accurate eigenstates are considered. Accordingly, our results strongly suggest that the ground-state phase
transition previously found for small systems is a finite size artifact. Interpreting our results within the frame-
work of the Luttinger liquid theory, we discuss the origin of the apparent contradiction between the predictions
of the perturbative renormalization-group approach and numerical calculations at small sizes.
[S0163-18286)05047-3

[. INTRODUCTION Very recently this model has led to some contradictory
results. Using exact diagonalization calculations on small 1D
chains (up to L=10 sites, with periodic boundary condi-
tions), Penson and Kolb claimédhat a phase transition
should occur at some finite critical value of the hopping pa-
rameterV with V./t~ 1.4. More precisely, they showed that
H=—t > [cl,cj,+H.cl-V> [cficlcjc+H.cl, a gap in the single-particle spectrum of the half-filled system
(L))o () (1.1) opens up at that value. They have also observed that the
' second derivative of the ground-state energy with respect to
V (a quantity similar to a specific hgdtas a local maximum
where c;rg (ci ,) creates(destroy$ a fermion of spino  at the transition, which seems not to diverge. This would
(oc=1,]) at lattice sitei. The first term is the usual kinetic indicate a phase transition with an essential singularity. Very
energy term(tight-binding approximation the V term al-  soon after, Affleck and Marstohmaking a renormalization-
lows spin-singlet pairs of electrons to hop from site to site. Ingroup analysis with bosonization methods of the PH model,
what follows, we shall restrict our study to the case 0.1 showed that, in the continuum limilow-energy, long-
There are a number of reasons that make this model indistance physigsthis model is essentially equivalent, up to
teresting to study. First, the pair-hopping model can besome irrelevant terms, to the negatideHubbard model, the
viewed as a phenomenological model to describe the dynanenly important difference lying in the bare coupling con-
ics of small size Cooper pairs. Since high-superconduct- stants. Accordingly, they predicted that the transition in the
ors are known to display such pairs, to study this model camair-hopping model must occur =0 just as in the Hub-
be important to capture some of the physics of these materbard model, the finite value observed in the numerical calcu-
als. Of course, when working with such a model nothing islations for very small chains being attributed to a finite-size
said about the nature of the underlying mechanism resporartifact. A few years later, Hui and Donidthresented some
sible for the tight binding of the pairs. Second, it can benumerical calculations analyzed with more sensitive tools
shown that the pair-hopping term arises from Coulomb interthan the standard finite-size scaling analysis based on very
action at large negativée in the Hubbard modeét® Accord-  small samples. Using an eigenprojection decomposition of
ingly, the competition between the usual one-electron hopthe different order parameter operators involved and also
ping and pair hopping is related to the physics of thesome calculations of the helicity modulus, they found that
Hubbard model at strong coupling. Finally, understandinghe data seemed indeed to be compatible with the existence
the physics resulting from all possible unusual interactions irof a phase transition at a finite value\éf thus in contradic-
one-dimensionallD) strongly correlated models is clearly a tion with the weak-coupling renormalization-group results.
problem of central importance in solid-state physics. They also presented some arguments as to why the predic-

In this paper we are concerned with the pair-hoppihk)
model described by the Hamiltonian
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tions of the renormalization-group analysis of Affleck anda transient regime specific to the PH model and responsible
Marston could be not valid. Very recently, Bhattacharyyafor the unconventional behavior of this model.

and Roy have investigated the PH model using a real-space

renormalization-group method. At small positiVethey also Il. PAIR-HOPPING AND ATTRACTIVE HUBBARD

found the existence of a gapless phédentified as a quasi- MODELS

metallic phase dominated by short-range superconducting

correlation$, which disappears at some finite value of the The Hamiltonian(1.1) for the pair-hopping model de-
coupling. Finally, Sikkema and Affleékhave presented scribes a competition between the usual kinetic tetrei(r)
some numerlcal results fpr the on_e-partlcle gap as a functiogorresponding to single-electron hopping an¥ &erm cor-

of V using the density matrix renormalization-group responding to the hopping of spin-singlet pairs, the range of
(DMRG) method with open boundary conditions. Using poth types of hopping being limited to nearest neighbors.
samples up td. =60, they concluded that there is no spin-\yhenv/t is large >0), the pair-hopping term dominates
gap transition at a nonzero positive value\ofand that the 5,4 the model becomes equivalent to spinless fermifors

standard low-energy picture given by the perturbative,, o\en number of electronghe ground state is massively

.reno_rmalization—gro.up approach is valid. Although we reacrbaired and there is a gap of ordérin the one-particle spec-
in this work essentially the same conclusions, we shall fol—,[rurn (binding energy of the paijsIn the opposite limit

low here a quite different route. In particular, our DMRG ! . . .
calculations are done with periodic boundary conditionsV/t<1’ the one-particle hopping dominates and the pairs

(PBC) instead of open BC. This will allow us to study in tend to be destroyed. This type of competition is very similar

detail the very peculiar behavior of the pair hopping at smalf® that encountered in the attractive Hubbard model de-
couplings(large correlation lengthsThis point is discussed Scribed by the Hamiltonian

in Sec. IV.
At the heart of the controversy is the question of knowing H=—t cfe +Hel+U> n.n 21
whether the long-distance, low-energy physics of the pair- <i%a[ oot Hel Z M- (2

hopping model is different from that of the usual attractive .
Hubbard model. As we shall see in the next section all stantiére also we have a competition between a one-electron
dard approaches lead to the same conclusion: the low-enerd@pPping and the formation of spin-singlet pairs. However, in
sector of both Hamiltonians should be similar under thecontrast with the PH model, pairs have no intrinsic mobility
trivial correspondencé) = —2V. At half filling it is known  (uncorrelated mobility via the term). The physics of the
(an exact resujtthat no phase transition at a nonzero valueattractive Hubbard model is well understood since this model
of U exists for the attractive Hubbard model. How can theadmits an exact solution via the Bethe ansatz technique. In
PH model exhibit a different behavior? This should resultparticular, it is known that the effect of the on-site interaction
from a highly nontrivial process involving nontrivial excita- is rather drastic: a gap in the one-particle spectrum opens up
tions. Note also that the exotic gapless phase is supposed fior any nonzero value of the interactidh (negative or posi-
exist at an arbitrary small value of the hopping parameter, &ive) at half filling. It is usually thought that a similar situa-
domain where the high-energy degrees of freedom are nafon should occur in the PH model. This opinion is supported
expected to play an important role. In order to settle dowrpy the fact that standard approximate approaches applied to
the controversy we propose to make a systematic comparistptn Hamiltonians lead quite systematically to the same
of the physics of the pair-hopping and attractive Hubbardvsics at low energy under the trivial correspondence
models at low energy. To do so, we have calculated the spify _, _ 5y However, as already emphasized, this idea has
a_rt1d chatrge velocmesl_oftt_he two modelihusc,jmg .tt)r?th th_e g.enf)een recently challenged. The purpose of the next few sec-
E' y matrix renormalization-group method ‘With perodic ;¢ is 1o shed some light on this controversy. Here, we

oundary conditions for large systems and Lascealcula- : . . .

would like to briefly illustrate, by applying some standard

tions with twisted boundary conditions for smaller systems. thod hv th q betw both dels |
Our results show that there are some important differences ifi€+104s, Why the correspondence between both Models 1S
usually taken for granted.

the finite-size behavior of the two models. Using the frame- ; . _ _

work of the Luttinger liquid we propose an interpretation of . A first approach to consider is the mean-field approxima-

the origin of the controversy between the perturbative RGOn. Defining the superconducting order parameter by

prediction and the numerical results for small chains prell=(gndic;;ci;|gnd), where|gnd) denotes the BCS-type

sented up to now. ground state, we consider the quantum fluctuations around
The paper is structured in the following way. In Sec. II, this value and construct the approximate mean-field Hamil-

we briefly present the results of a number of approachetonian by keeping only the terms that are of first order with

illustrating the very close similarity between the attractiverespect to the fluctuations. The following Hamiltonian is ob-

Hubbard model and the pair-hopping model. In Sec. lll, wetained:

present our numerical results using the Luttinger liquid

theory and the twisted boundary conditions method on both

models for chains up th =12 sites. Then, using the DMRG HMF:% e(K)Ck oCko— 4VHD; [efichi +ew ]

method we generalize the results presented for small chains

at some larger chains up to=42 sites. In Sec. V, we dis- +4VII?DLP, (2.2

cuss the results and comment on what we believe to be the

origin of the controversy. We conclude tha) both models Wheree(k)=—4t=D_;cosk-e,), e, being the unit vector

are indeed equivalent at low energy in the thermodynamidn direction «, and D the dimension of space. The main

limit and that there is no phase transition at finiteind half ~ observation is that this Hamiltonian is identical to that ob-

filling in the PH model and2) for small systems there exists tained in the case of the Hubbard mdeith the substitu-
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tion U= —2V. Introducing the elementary excitations in the p;<1/a, both approaches lead to the same equations and the
usual way, we can compute the dependence of theAgap  two models related by = — 2V should be equivalent.
energy of the system, we get To summarize, mean-field approximation, lamgeimit,
weak-coupling renormalization-group, and Bethe ansatz ap-
A~te M for V—0, wherec is a positive constant  proaches indicate that the PH model andlthe — 2V attrac-
tive Hubbard model should be equivalent in the low-energy

and regime.

A~V for V—oo, (2.3
Ill. LUTTINGER LIQUID BEHAVIOR: AN EXACT

Clearly, in this approach both models are equivalent and the DIAGONALIZATION STUDY ON SMALL SYSTEMS
gap opens up ar/t=0 with a standard behavior.

We have also considered the large-dimension limit of thel_
pair-hopping model. This recent approach can be seen as
sort of dynamical mean-field theory. Although this limit may . ; | )
seem rather academic, practical calculations have illustratel@" of one-d|menS|onaI gapless fermion iyste_ms can bg S,FUd'
the fact that a great part of the physics of Iow-dimensionafe‘:j py making use of the. concept of “Luttinger liquid.
systems is capturéd:l! Once again, in that approximation Within the framework of this theory the low-energy proper-

we have found that the equations reduce to those of the coll€S @re given by an effective Luttinger model describing
responding attractive Hubbard model with= — 2V. In fact collective spin and charge density oscillations. The general

this is not really surprising since, because of the structure Ofprm of the effective Hamiltonian can be obtained by writing

the Fermi hypersurface in the limit of large dimensions, thethe 1D fermion model in momentum space, restricting exci-

effects of the high-energy excitations that could be respont_atlons and interactions to lie close to the Fermi surface, and

sible for nontrivial processes are strongly suppressed. looking for the impo_rta_mt processes. As i_s well known only
As we shall see in Sec. V the renormalization-grdR(s) four processes surviven the renormallzatlon-grqup ser)se_
flows in the weak-coupling limit are also identical for the one descrlblng baqkward scatterlr'lg. of oppositely moving
two models[Eq. (5.1)] with, here also, the same Correspon_electrons_wnh coupllngl, one descrlblng foryvard scattering
dence between couplings. Only the initial values of the cou®f OPPOSitely moving electrons with coupling, one de-

pling constants, are model dependent. scribing umklapp scattering with couplings, and, finally,

Finally, one can try to find out whether the PH model has®"€ describing forward scattering of electrons moving in the

an exact solution via the Bethe ansatz. The essential step §&Me direction with coupling,. (Notations are those of
to compute the two-particl® matrix from the Schrdinger Refs:|13 and 14.Ter1]k|ng the cc.)n'tmm;]m limit ‘?‘;_thle fermion
equation and then to verify whether tBamatrix satisfies the Hamiltonian and, then, bosonizing the Fermi fields, one gets

Y:';mg-Baxter condmon'. Denoting bet(,.l,(,z(pl',pz) .the am- Hp=H,+H,+Hy+Hs, 3.1)
plitude of the two-particle wave function written in terms of

a combination of plane waves, defining as usual the twowhereH, (v=p,o) are two free Bose Hamiltonians describ-
particle S matrix as ing the spin ¢=0) and charge £=p) collective excita-

tions:

In this part we are interested in evaluating the Luttinger
uid parameters for both the pair-hopping and attractive
ubbard models. As is well known the long distance behav-

Agyr(P2,P1)= 2 Szlyz%(pl!pZ)AUi,aé(pllpZ)v
’ ’ 2'Y2

71:92
(2.9
andH, andHj are the terms corresponding to the backward

forcing the wave function to obey the Schiinger equation,  and umklapp scattering contributions, respectively,
and imposing the continuity condition of the wave function,

we get the following expression for tl& matrix: 20,

H —fdx N 9 2+U”WK”H2 3.2
v 27TKV( Xd)v) 2 v ( )

| | Hi= Gra)?) 9XCOX\B4,) (3.3
501'01( )= sinap;—sinap,
0p,0 P1.P2 sinap,;—sinap,—iVcoga(p;+p,)] and
X B4y 1By ! 29
19 92:9% ngﬁzf dXCOi\/gd)p) (34)
iVcoga(p;+p,)]

Here, ¢, (¢,) is the Bose field describing the charggpin)
excitations, andl, (II,) is its canonical conjugated field.

X Oy 5! 0g. o' (2.5  The coefficientsi, (u,) are the chargéspin excitation ve-

1'%2 2'71 .y
locities, and the parametel§, andK,, are some constants

It is easy to verify that theS matrix just given does not that can be shown to be related to {m@nuniversal expo-
satisfy the Yang-Baxter conditiof. Now, the important nents of the power-law behavior of the correlation functions.
point is that theS matrix (2.5) is identical to that of the In Egs.(3.3) and(3.4) « is a short-distance cutoff.
Hubbard model with the substitutiotd — —2Vcoga(p; In the free-fermion caseK,=K,=1 andu,=u,=ve
+p,)]. The lattice spacinga gives a natural high-energy =2tsin(#/2)n], where n=N/L is the electron density.
cutoff, 1/, in the problem. In the low-energy regime, i.e., When interactions are switched on, theand theK param-

~ sinap,—sinap,—iVcoda(p;+p,)]
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FIG. 1. Charge velocityu, as a function of the coupling. FIG. 3. Charge parametéf, as a function of the coupling.

Crosses, pair-hopping model, squares, Hubbard model. Lanczarosses, pair-hopping model; squares, Hubbard model. Lanczo
calculations with twisted boundary conditions. Chains of sizes up tqalculations with twisted boundary conditions. Chains of sizes up to

12 sites. 12 sites.

eters are renormalized. In particular, the two velocities be- =

come different, charge and spin excitations do not propagate D,= Trﬁ_@z , (3.7
at the same speed. This phenomenon is known as the spin- Vie,=0

charge separation in one-dimensional systems. All the deta”\f/here@p is a charge twist in the systefne., the system has

concerning the Luttinger liquid theory can be found, e.g., in_ . o = +
Refs. 14 and 13 and references therein. twisted bogndary con.d|t|ons. such a$+Lv”_EXpG‘pP)CJ»U]’
and ¢, is a spin twist in the system]i.e.,

In order to compute numerically the Luttinger coeffi- “.™ ™ + q
cients, we have used their expressions in terms of spin anti+L.o™ expioe,)ci . an
charge compressibilities and stiffnesses of the system. More 1 126, 1 1 75

recisely, for the charge degrees of freedom we have -2 __—_
P Y 9e 79 k 2L dn*’ x 2L gs3’ 8
_muUp D —2uK (3.5 with n=(N;+N,)/L ands;=(N;—N,)/L. By computing
2K, P PP ' these quantities for different values of the interaction, we can
deduce the behavior of the Luttinger parametgyandK,,
where « is the compressibility of the system amj, is the ~ as a function of the coupling strength. _ _
charge stiffness, and for the spin degrees: We have applied this approach to systems of sizes ranging
from L=4 to L=12. The ground-state energies have been
calculated using a standard Lanszorocedure. The results
_T 2 D,=2u,K,, (3.6)  are presented in Figs. 1-5. Each figure shows the variation
2 K, of the corresponding Luttinger coefficient as a function of
the interaction, both for the attractive Hubbard model
wherey is the spin susceptibility of the system abq the  (squaresand for the pair-hopping modétrosses Figure 1
spin stiffness. These quantities can be computed from thgives the variation of the charge velocity,, as a function

1
K

x|k
<

spectrum of the system by using the relation of U or V. At small coupling both curves are linear with a
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FIG. 2. Spin velocityu,, as a function of the coupling. Crosses, FIG. 4. Spin exponerK , as a function of the coupling. Crosses,
pair-hopping model; squares, Hubbard model. Lasaziculations  pair-hopping model; squares, Hubbard model. Lasaziculations
with twisted boundary conditions. Chains of sizes up to 12 sites. with twisted boundary conditions. Chains of sizes up to 12 sites.
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2 e are related to the existence of a gap in the spin spectrum. In
i . . ] the case of a gapless mode, the corresponding curve is
o i : ] smooth and never changes sign. Accordingly, we have here
a 0 — strong evidence in favor of the existence of a spin gap in the
% i ] pair-hopping model.
£ oL ] At this point, our results are contradictory. On one hand,
= L 5 most of the results indicate that both models are quite similar
o i g i (behavior ofu,, K,, and spin stiffnessg¢sOn the other
'(/55 -4 - C Hubbard ] hand, the spin velocities at small sizes for both models dis-
i x Pair Hopping | play a different behavior. A closer look at spin degrees of
6 L ‘f‘ e freedom at larger sizes is therefore necessary.

< 4 6 8 10 1z 14
System size L IV. LUTTINGER LIQUID BEHAVIOR: A DMRG STUDY

L . . FOR LARGER SYSTEMS
FIG. 5. Spin stiffnes® , as a function of the coupling. Crosses,

pair-hopping model, squares, Hubbard model. Lasaziculations Conformal field theory(CFT) is a powerful theory to de-
with twisted boundary conditions. Chains of sizes up to 12 sitesscribe the physics of 1D quantufor 2D statistical critical
The dotted line is just a guide to the eye. systems. Once conformal invariance is supposed, CFT pro-

vides a general framework relating finite-size scaling of
very good accuracy. More precisely, we fing~2+V/2  physical quantities to thermodynamic properfi&s? In this
andu,~2+U/4, for the pair-hopping and Hubbard models, work we shall essentially compare our data for excitation
respectively. For stronger couplings, small corrections to lin-gaps with the predictions of CFT. This will allow us to check
earity show up. Both behaviors are typical of a regime withwhether or not our data are compatible with the existence of
no charge gap. As we shall see later, these results are mcritical regime for the pair-hopping model. Denotinghe
perfect quantitative agreement with the prediction of the Lut-gapless excitation under consideration anpdhe velocity of
tinger liquid theory[Egs. (5.2) and (5.3)]. Data for the spin the corresponding critical mode, the finite-size scaling ex-
velocities are rather different. As can be seen in Fig. 2 twqoression of the excitation gap, predicted by CFT is
distinct behaviors for the spin velocity are obtained. In the
case of the attractive Hubbard model decreases uniformly 2mu,
from the free fermion value to zero at large coupling. In A,= L (4.2)
contrast, a maximum around= 0.5% is found for the pair-
hopping model. Both models recover a similar behavior bewhereL is the system size. For a finite system at a given
tween approximatel}/=1 andV=1.5. Note that the transi- filling, the spin gap is defined as
tion value observed in Refs. 4 and 6 lies within this interval.
We shall discuss further this important difference of behavior A,=Ep(N;+1N —1)=Eo(N;,N)),
for u, in Sec. V. Figures 3 and 4 demonstrate that the con-

stantsK - andK . behave essentiallv the same wav in bothwhere N, is the number ofo-spin electrons. Physically, it

P o Ve ualy . way | gives the change in ground-state energy produced when flip-
models. As already mentioned, in the Luttinger liquid theory ing one spin, the charge number being kept fixed
these constants are related to the exponents of the power-Ian In order to ,calculate the spin gaps we have used the den-
behavior of correlation functions. Accordingly, this common _; : o .
behavior would suggest that both models have the samgty matrix_renormalization-group meth6d.DMRG is a

phases. In Fig. 5, the behavior of the spin stiffness of th owerful technique to compute low-energy properties of

pair-hopping model as a function of the size is displayed. ASuantum lattice systems. This method has been applied with

very interesting feature is that this quantity can be exactlybucceSS 10 s(gaveral problems including the spin-1/2 Heisen-
computed for the Hubbard model. The formul&®is erg chains) the spin-1 chain$, the one-dimensional

Kondo insulator? the two-chain Hubbard modé&i,etc. The

D, (L)=(—1)-2* 1 2D (U)e &) results obtained are very accurgte and the method allows one

to treat systems of sizes a few times larger than those acces-
with sible with exact diagonalization techniques. Essentially,
DMRG is a real-space numerical renormalization-group pro-

PR 4j°°d In(y+y*-1) cedure. It differs from standard approaches in the way that

& (U)= uj, y cosh{2my/U) states of_individual blocks are chosen_. Instead o_f keeping the

lowest eigenstates of the block considered as isolated from

and the outside world, the kept states are the most probable
eigenstates of the density matrix associated with the block

V2Ilmé,) for U—0 considered as a part of the whole system. It is easy to show

D(U)~ [ 0147 376 for U—oo B9  that doing this is equivalent to constructing the most accurate

representation of the complete state of the system: block plus
This function is plotted in Fig. 5, fotdJ/t=—2, with the the rest of the system. For a detailed and very clear presen-
corresponding quantity for the pair-hopping model, attation of the method the reader is referred to Ref. 20. There
V/t=1. The similarity between the two curves is striking. In exist different ways of choosing the configuration of blocks
the case of the Hubbard model, the oscillations around zerused for the density matrix calculations. In particular, this
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FIG. 6. Spin gap vs inverse of the system size for the attractive FIG. 7. Spin gap vs inverse of the system size for the pair-
Hubbard model a)/t= — 1.1 using DMRG with periodic boundary hopping model a¥//t=0.55 using DMRG with periodic boundary
conditions for different values oM (see text Inset shows the conditions for different values dfl (see text
convergence of the spin gap as a functiovbfit L = 14 sites. The
value at IM=0 is the exact value calculated by solving the did not consider the system sizes corresponding to a multiple
Lieb-Wu equations. of 4 since, in this case, the ground state is degenerate, thus
causing a strong boundary frustration effggthich, of
course, disappears in the—« limit). For each size, we plot
the value of the DMRG spin gap for a number of kept states
W =96, M=112, andM =< (exact Lieb-Wu valug Let us
first consider the exact solution. Looking at the»oo limit,
we observed a very small gap as expected. In this regime the
20 for PBC.B, represents a block consisting loites,B* is  systems considered (642 are in an effective quasicriti-
the reflected blockright interchanged with left and® rep-  cal regime with a spectrum structure remaining close to the
resents a single site. All notations are those of Ref. 20. Izonformal tower structure. This allows us to write the fol-
what follows we shall denote b the number of eigen- lowing ansatz:
states of the density matrix that are kept.

Very recently, Sikkema and Affleck have presented A (L)=A"+ 27U,
DMRG calculations for the pair-hopping modeTheir cal- 7 v L
e o e LoVl i h regnes L., here, shul e on

. o . . . sidered as an effective spin velocity. The results obtained are
lations with L>¢ are possible using OBC is usually

. . . in excellent agreement with the behavior predicted by for-
preferable(calculations with OBC are less demanding thaty, 5 (4.2) with a spin velocity very close to the free value.
with PBC, the convergence as a functionMfbeing much

: . ’ In addition, for small systemsL(=6,10) the spin velocity
more rapid. In the regime of smalk, Sikkema and Affleck  gpiained from the slope of the spin gap is in very good

have shown that their data are consistent with the predictioggreement with the value obtained in the preceding section
of the standard perturbative RG flow. In this work we shall (within 1.5% based on a completely independent evaluation.
use PBC in a regime where the correlation lengths are large et us now consider the DMRG results. We have ob-
(small values of V. As we shall see now, this will allow us served that, for large enough values\bf the linear behavior
to study the very peculiar behavior of the pair-hoppingof the spin gap as a function ofl1is recovered. In Fig. 6 we
model at small couplings. show typical results foM =96 andM =112. The value of

To begin with we present some DMRG calculations forthe spin velocity obtained from differe are displayed in
the attractive Hubbard model. The value of the CoulombFig. 8 and are slightly smaller than the free value of 2. These
interaction,U=—1.1, has been chosen to correspond toresults are consistent with a convergence to the exact value at
V=—U/2=0.55, the value for which the spin velocity of the large M. However, it is not possible from DMRG results to
PH model is maximum; see Fig. 2. Since the Hubbard modeget an accurate estimate of the value of the gap itself. Indeed,
admits an exact solution our results can be compared to th@lthough we have a good convergence of the results for a
exact values obtained by solving the Lieb-Wu equatfdns. given size as a function d¥f (see inset of Fig. 6 the ex-
The inset of Fig. 6 shows how the DMRG spin gag trapqlgted valug of the gap using different sizes is a very
converges to the exact value,=0.9297 for a chain of 14 sensitive quantity. In fac.t, it is not reasongble to d!scrlmlnate
sites as a function oM, the number of states kept. Here, between a small but finite gap and a strictly vanishing gap.

M ranges fromM =16 toM = 112. Clearly, the convergence We clearly see in Fig. 6 that the extrapolated gap is not at all
of the DMRG values is quite good. In addition, this curve \(;glrsjveesrg\l;g vesuij fﬁgggor?]uﬂ'l;? g:df;hjgsﬁfft vSr?ir(];\r/we;?:d
provides a useful check of the validity of our code. The mainclearly beyond of reach of prese?lt computers

plot displays the variation of the spin gap as a function of In Fig. 7 we present DMRG calculations for the pair-

1/L. The studied sizes are ranging frdm6 to L=42. We hopping model av=0.55. Resuilts of the spin gap as a func-

choice will depend on the type of boundary conditions used
Here, all calculations have been done by using periodi
boundary condition$PBC). We have chosen the superblock
conﬁgurationB|.B|RQ with B/, ;=B,® as proposed in Ref.

4.2
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locity of the PH model reaches a maximum and then de-

T T 7T T T 1 T 17
o4 . creases to zero. A similar behavior is recovered for both
= F o ] models at approximately>1.5. In order to understand
22k R ’ . whether this surprising result has something to do with the
E B o - existence of a gapless phase we have computed the spin gaps
S o 7 for larger systems using a DMRG approach with periodic
i Ceo_e ] boundary conditions. Extracting from the spin gaps some
180 @ 7 effective spin velocity(meaningful only when correlation
2 =Hubbard, U/t=~1.1 ] lengths are much larger than lattice size® have, here also,
1 & [ePair Hopping V/t=0.55] systematically obtained larger spin velocities for the PH
T BT R model. In contrast, in the case of the Hubbard model the spin
0.005 0_011 1\({),015 0.02 velocities are rather constant and are close to the free ferm-

ion value at small coupling. However, a remarkable result is
_ ) that the abnormally large values wf for the PH model tend
~ FIG. 8. Spin velocityu,, computed from DMRG data as a func- g disappear when sufficiently accurate representations of the
tion of 1M. ground state of the system are considefladge number of
states kept for the density matrixAccordingly, our results
tion of 1L are presented foM =96, 112, and 144. Here are consistent with the fact that the unconventional behavior
again we clearly see a quasicritical regime very well de-of spin excitations of the PH model is a transient effect spe-
scribed by formula4.2). As already emphasized for the at- cific to this model.
tractive Hubbard model, the accessible valuesviofio not Now, it is quite interesting to discuss our results within
allow a direct conclusion on the existence or not of a finitethe renormalization-group framework. As discussed very re-
spin gap. However, the data provide an estimate of the efeently by Sikkema and Affleck, contradictory results have
fective spin velocity via the slope of the curves. The spinbeen reported from the RG analyses of the phase diagram of
velocities obtained are plotted fod =84, 96, 112, and 144 the PH model. Using standard notatio(see Ref. 1§ to
in Fig. 8. It is remarkable that the results are rather differentubic order, the RG equations for the four coupling constants
for both models. As already noticed, for the Hubbard modebf the continuum-limit Hamiltonian are
the values olu, are slowly varying and always smaller than

the free fermion value. In contrast, for the PH modeglis dgs_ 2 1 2
quite important for small values dfl and decreases uni- T 95Tz (9579405,
formly for increasingM. Only when large enough values of
M are used, spin velocities of both models become compa- dg, , )
rable. We shall comment more on this point in the next sec- — g1 ~9:t2(9,7 9405,
tion. 5.0
d .
V. DISCUSSION - %=gpgs+%(g§+ 95—29,04)0s.
Let us summarize the results obtained. For small sizes dos s 3
(L=4-12 we have computed the Luttinger parameters ~ar 4995795,
u,,u,,K,,K,,D,, andD, as a function of the interaction . _ o
for both the attractive Hubbard and pair-hopping modelsWherel=—InA, A being the ultraviolet cutoff. It is impor-

Regarding charge degrees of freedom all results for botkant to emphasize that these equations are identical for both
models are consistent with the existence of a Vanishin@ﬂOdG'S. The only difference lies in the initial values of the
charge gap for arbitrary values of the interaction and with thecoupling constants. To the lowest-order weak-coupling limit
fact that the low-energy charge sectors of both models arthe initial values are
very similar. These results are in agreement with the conclu-
sions of previous works. VE=219,= ~0s= 0= 04

Now, regarding spin degrees of freedom the situation is =2V/mve  (pair-hopping modaél (5.2
not so clear. For small sizes our results show that parameters
K, andD,, for both models are almost identio@ee Figs. 4 vE=2tgs=—9,=093=9s=U/mvg (Hubbard modsl
and 5. In particular, in the case of the PH model we clearly ] . ] ]
see the oscillations o, around zero as a function of the o(V?) corrections are given in Refs. 5 and 6. When solving
sizeL, a behavior that is usually interpreted as resulting fromfn® RG equations, a standard approach consists in consider-
the existence of a gap. However, data for the spin velocity of9 thatg, simply shifts the spin and charge velocities ac-
the PH model do not display the expected behavior of &ording to
system with a gap. In contrast with the case of the attractive
Hubbard model for whichu, decreases uniformly from the
free fermion value to zero at large couplitatypical behav- U, =ve(1—gal2) (5.4
ior for a finite system with a finite gap in the thermodynamic o= URL7 04 '
limit), we have observed a clear enhancement,ofrfhen the and then can be dropped from the RG equations. Doing this
pair-hopping term is switched on. At~0.5% the spin ve- and using the initial conditions Affleck and Marston have

U,=vr(1+g4/2), (5.3



54 ONE-DIMENSIONAL PAIR HOPPING AND ATTRACTIVE ... 17 421

remarked thag;=0 is not a stable fixed point and that start- wave functions are considered. From E@s4) we can view

ing with gs<0 (V>0) theng, flows to strong coupling, thus this regime as corresponding to a situation where the effec-
indicating the opening of a gap in the spin excitations. Intive constanty, starts to renormalize to negative values. In
contrast, Hui and Doniach have kept thg constant in the this situation the system appears to be attracted by a fixed
RG equations and integrated them using the initial conditiorpoint similar to the one discussed by Hui and Doniach. How-
at orderO(V?). By doing this they obtained that,=0 be- ever, as discussed before this is only a transient regime.
comes a stable fixed point provided thgt<—2. For When the low-lying eigenstates are sufficiently well de-
0<V/t<1 the fixed point was obtained witly~ —2.5. This  scribed (large number of kept states in DMRG@he high-

new phase was interpreted as having no gap for single pagnergy components responsible for this unconventional be-
ticles and spin excitations. For a full discussion of the con-havior are removed and the standard low-energy behavior is
troversy the reader is referred to Ref. 8. However, whether ofecovered. We believe that this very specific behavior of the
not we keep the coupling constagy in the RG equations, it PH model is at the origin of the unconventional results ob-
is clear that it is difficult to draw firm conclusions using tained for sized =4,12 in previous numerical work&Refs.
weak-coupling RG equations in a strong-coupling regime4, 6, and 7.

(fixed point withg,~ —2.5). Nonperturbative results are es- Note added in proofRecently we became aware of a
sential to support any reasonable scenario. Let us discuss opaper by A. Belkasri and F. D. Buzatu, Phys. Rev5§
numerical results from that point of view. Figure 1 shows7171(1996. In this work these authors reach essentially the
very clearly that the charge velocity for both models followssame conclusions as those presented here using a different
exactly the behavior predicted by Ed8.2) and (5.3 with method based on an approximate Bethe-Salpeter equation.
the correct slope. The charge degrees of freedom are gapless
and the effect of the coupling constagy is to renormalize

the charge velocity. Figure 2 far, for small sizes is con-
sistent with the fact that a spin gap exists for the attractive The authors are grateful to Professor I. Affleck for an
Hubbard model. The behavior af, is not linear at small important remark related to this subject. We also want to
U as would be the case for a critical system. In addition,acknowledge helpful discussions with P. Azaria, B. Dafc

u, decreases uniformly as a function Of In contrast, as T. Giamarchi, P. Lecheminant, C. Lhuillier, K.A. Penson,
already pointed out we have found a different behavior forand C. Sire. Part of the computations have been done using
the PH model. At small sizes 6-10 and small coupling, an allocation of computer time from the “Institut du” Ba-

u, is larger than the free fermion value. This is also true foroppement et des Ressources en Informatique Scientifique”
larger systemsl(=14—42 when approximate ground-state (IDRIS, Orsay.
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