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One-dimensional pair hopping and attractive Hubbard models: A comparative study
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The low-energy physics of the one-dimensional pair hopping~PH! and attractive Hubbard models are
expected to be similar. Based on numerical calculations on small chains, several authors have recently chal-
lenged this idea and predicted the existence of a phase transition at half filling and finite positive coupling for
the pair-hopping model. We reexamine the controversy by making systematic comparisons between numerical
results obtained for the PH and attractive Hubbard models. To do so, we have calculated the Luttinger
parameters~spin and charge velocities, stiffnesses, etc.! of the two models using both the density matrix
renormalization-group method for large systems and Lanczo´s calculations with twisted boundary conditions for
smaller systems. Although most of our results confirm that both models are very similar we have found some
important differences in the spin properties for the small sizes considered by previous numerical studies~6–12
sites!. However, we show that these differences disappear at larger sizes~14–42 sites! when sufficiently
accurate eigenstates are considered. Accordingly, our results strongly suggest that the ground-state phase
transition previously found for small systems is a finite size artifact. Interpreting our results within the frame-
work of the Luttinger liquid theory, we discuss the origin of the apparent contradiction between the predictions
of the perturbative renormalization-group approach and numerical calculations at small sizes.
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I. INTRODUCTION

In this paper we are concerned with the pair-hopping~PH!
model described by the Hamiltonian

H52t (
^ i , j &s

@cis
† cjs1H.c#2V(

^ i , j &
@ci↑

† ci↓
† cj↓cj↑1H.c.#,

~1.1!

where cis
† (ci ,s) creates~destroys! a fermion of spins

(s5↑,↓) at lattice sitei . The first term is the usual kineti
energy term~tight-binding approximation!, the V term al-
lows spin-singlet pairs of electrons to hop from site to site
what follows, we shall restrict our study to the caseV.0.1

There are a number of reasons that make this mode
teresting to study. First, the pair-hopping model can
viewed as a phenomenological model to describe the dyn
ics of small size Cooper pairs. Since high-Tc superconduct-
ors are known to display such pairs, to study this model
be important to capture some of the physics of these ma
als. Of course, when working with such a model nothing
said about the nature of the underlying mechanism resp
sible for the tight binding of the pairs. Second, it can
shown that the pair-hopping term arises from Coulomb in
action at large negativeU in the Hubbard model.2,3 Accord-
ingly, the competition between the usual one-electron h
ping and pair hopping is related to the physics of t
Hubbard model at strong coupling. Finally, understand
the physics resulting from all possible unusual interaction
one-dimensional~1D! strongly correlated models is clearly
problem of central importance in solid-state physics.
540163-1829/96/54~24!/17414~8!/$10.00
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Very recently this model has led to some contradicto
results. Using exact diagonalization calculations on small
chains ~up to L510 sites, with periodic boundary cond
tions!, Penson and Kolb claimed4 that a phase transition
should occur at some finite critical value of the hopping p
rameterV with Vc /t; 1.4. More precisely, they showed tha
a gap in the single-particle spectrum of the half-filled syst
opens up at that value. They have also observed that
second derivative of the ground-state energy with respec
V ~a quantity similar to a specific heat! has a local maximum
at the transition, which seems not to diverge. This wo
indicate a phase transition with an essential singularity. V
soon after, Affleck and Marston,5 making a renormalization-
group analysis with bosonization methods of the PH mod
showed that, in the continuum limit~low-energy, long-
distance physics!, this model is essentially equivalent, up
some irrelevant terms, to the negative-U Hubbard model, the
only important difference lying in the bare coupling co
stants. Accordingly, they predicted that the transition in
pair-hopping model must occur atV50 just as in the Hub-
bard model, the finite value observed in the numerical cal
lations for very small chains being attributed to a finite-s
artifact. A few years later, Hui and Doniach6 presented some
numerical calculations analyzed with more sensitive to
than the standard finite-size scaling analysis based on
small samples. Using an eigenprojection decomposition
the different order parameter operators involved and a
some calculations of the helicity modulus, they found th
the data seemed indeed to be compatible with the existe
of a phase transition at a finite value ofV, thus in contradic-
tion with the weak-coupling renormalization-group resul
They also presented some arguments as to why the pre
17 414 © 1996 The American Physical Society
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54 17 415ONE-DIMENSIONAL PAIR HOPPING AND ATTRACTIVE . . .
tions of the renormalization-group analysis of Affleck a
Marston could be not valid. Very recently, Bhattachary
and Roy7 have investigated the PH model using a real-sp
renormalization-group method. At small positiveV they also
found the existence of a gapless phase~identified as a quasi
metallic phase dominated by short-range superconduc
correlations!, which disappears at some finite value of t
coupling. Finally, Sikkema and Affleck8 have presented
some numerical results for the one-particle gap as a func
of V using the density matrix renormalization-grou
~DMRG! method with open boundary conditions. Usin
samples up toL560, they concluded that there is no spi
gap transition at a nonzero positive value ofV and that the
standard low-energy picture given by the perturbat
renormalization-group approach is valid. Although we rea
in this work essentially the same conclusions, we shall
low here a quite different route. In particular, our DMR
calculations are done with periodic boundary conditio
~PBC! instead of open BC. This will allow us to study i
detail the very peculiar behavior of the pair hopping at sm
couplings~large correlation lengths!. This point is discussed
in Sec. IV.

At the heart of the controversy is the question of knowi
whether the long-distance, low-energy physics of the p
hopping model is different from that of the usual attracti
Hubbard model. As we shall see in the next section all st
dard approaches lead to the same conclusion: the low-en
sector of both Hamiltonians should be similar under
trivial correspondenceU522V. At half filling it is known
~an exact result! that no phase transition at a nonzero va
of U exists for the attractive Hubbard model. How can t
PH model exhibit a different behavior? This should res
from a highly nontrivial process involving nontrivial excita
tions. Note also that the exotic gapless phase is suppose
exist at an arbitrary small value of the hopping paramete
domain where the high-energy degrees of freedom are
expected to play an important role. In order to settle do
the controversy we propose to make a systematic compar
of the physics of the pair-hopping and attractive Hubb
models at low energy. To do so, we have calculated the
and charge velocities of the two models using both the d
sity matrix renormalization-group method with period
boundary conditions for large systems and Lanczo´s calcula-
tions with twisted boundary conditions for smaller system
Our results show that there are some important difference
the finite-size behavior of the two models. Using the fram
work of the Luttinger liquid we propose an interpretation
the origin of the controversy between the perturbative
prediction and the numerical results for small chains p
sented up to now.

The paper is structured in the following way. In Sec.
we briefly present the results of a number of approac
illustrating the very close similarity between the attracti
Hubbard model and the pair-hopping model. In Sec. III,
present our numerical results using the Luttinger liqu
theory and the twisted boundary conditions method on b
models for chains up toL512 sites. Then, using the DMRG
method we generalize the results presented for small ch
at some larger chains up toL542 sites. In Sec. V, we dis
cuss the results and comment on what we believe to be
origin of the controversy. We conclude that~1! both models
are indeed equivalent at low energy in the thermodyna
limit and that there is no phase transition at finiteV and half
filling in the PH model and~2! for small systems there exist
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a transient regime specific to the PH model and respons
for the unconventional behavior of this model.

II. PAIR-HOPPING AND ATTRACTIVE HUBBARD
MODELS

The Hamiltonian~1.1! for the pair-hopping model de
scribes a competition between the usual kinetic term (t term!
corresponding to single-electron hopping and aV term cor-
responding to the hopping of spin-singlet pairs, the range
both types of hopping being limited to nearest neighbo
WhenV/t is large (V.0), the pair-hopping term dominate
and the model becomes equivalent to spinless fermions~for
an even number of electrons!. The ground state is massivel
paired and there is a gap of orderV in the one-particle spec
trum ~binding energy of the pairs!. In the opposite limit,
V/t!1, the one-particle hopping dominates and the pa
tend to be destroyed. This type of competition is very simi
to that encountered in the attractive Hubbard model
scribed by the Hamiltonian

H52t (
^ i , j &s

@cis
† cjs1H.c.#1U(

i
ni↑ni↓ . ~2.1!

Here also we have a competition between a one-elec
hopping and the formation of spin-singlet pairs. However,
contrast with the PH model, pairs have no intrinsic mobil
~uncorrelated mobility via thet term!. The physics of the
attractive Hubbard model is well understood since this mo
admits an exact solution via the Bethe ansatz technique
particular, it is known that the effect of the on-site interacti
is rather drastic: a gap in the one-particle spectrum open
for any nonzero value of the interactionU ~negative or posi-
tive! at half filling. It is usually thought that a similar situa
tion should occur in the PH model. This opinion is support
by the fact that standard approximate approaches applie
both Hamiltonians lead quite systematically to the sa
physics at low energy under the trivial corresponden
U↔22V. However, as already emphasized, this idea
been recently challenged. The purpose of the next few s
tions is to shed some light on this controversy. Here,
would like to briefly illustrate, by applying some standa
methods, why the correspondence between both mode
usually taken for granted.

A first approach to consider is the mean-field approxim
tion. Defining the superconducting order parameter
P5^gnduci↓ci↑ugnd&, where ugnd& denotes the BCS-type
ground state, we consider the quantum fluctuations aro
this value and construct the approximate mean-field Ham
tonian by keeping only the terms that are of first order w
respect to the fluctuations. The following Hamiltonian is o
tained:

HMF5(
k,s

«~k!ck,s
† ck,s24VPD(

k
@ck,↑

† c2k,↓
† 1ck,↓c2k,↑ #

14VP2DLD, ~2.2!

where«(k)524t(m51
D cos(k•em), em being the unit vector

in direction m, and D the dimension of space. The ma
observation is that this Hamiltonian is identical to that o
tained in the case of the Hubbard model9 with the substitu-
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17 416 54MATHIAS VAN DEN BOSSCHE AND MICHEL CAFFAREL
tion U522V. Introducing the elementary excitations in th
usual way, we can compute the dependence of the gapD in
energy of the system, we get

D;te2ct/uVu for V→0, where c is a positive constant

and

D;V for V→`. ~2.3!

Clearly, in this approach both models are equivalent and
gap opens up atV/t50 with a standard behavior.

We have also considered the large-dimension limit of
pair-hopping model. This recent approach can be seen
sort of dynamical mean-field theory. Although this limit ma
seem rather academic, practical calculations have illustr
the fact that a great part of the physics of low-dimensio
systems is captured.10,11 Once again, in that approximatio
we have found that the equations reduce to those of the
responding attractive Hubbard model withU522V. In fact,
this is not really surprising since, because of the structur
the Fermi hypersurface in the limit of large dimensions,
effects of the high-energy excitations that could be resp
sible for nontrivial processes are strongly suppressed.

As we shall see in Sec. V the renormalization-group~RG!
flows in the weak-coupling limit are also identical for th
two models@Eq. ~5.1!# with, here also, the same correspo
dence between couplings. Only the initial values of the c
pling constants, are model dependent.

Finally, one can try to find out whether the PH model h
an exact solution via the Bethe ansatz. The essential ste
to compute the two-particleS matrix from the Schro¨dinger
equation and then to verify whether theSmatrix satisfies the
Yang-Baxter condition. Denoting byAs1 ,s2

(p1 ,p2) the am-
plitude of the two-particle wave function written in terms
a combination of plane waves, defining as usual the tw
particleSmatrix as

As2 ,s1
~p2 ,p1!5 (

s18 ,s28
S

s2 ,s28

s1 ,s18~p1 ,p2!As
18 ,s28

~p1 ,p2!,

~2.4!

forcing the wave function to obey the Schro¨dinger equation,
and imposing the continuity condition of the wave functio
we get the following expression for theSmatrix:

S
s2 ,s28

s1 ,s18~p1 ,p2!5
sinap12sinap2

sinap12sinap22 iVcos@a~p11p2!#

3ds1 ,s18
ds2 ,s28

2
iVcos@a~p11p2!#

sinap12sinap22 iVcos@a~p11p2!#

3ds1 ,s28
ds2 ,s18

. ~2.5!

It is easy to verify that theS matrix just given does no
satisfy the Yang-Baxter condition.12 Now, the important
point is that theS matrix ~2.5! is identical to that of the
Hubbard model with the substitutionU→22Vcos@a(p1
1p2)]. The lattice spacinga gives a natural high-energ
cutoff, 1/a, in the problem. In the low-energy regime, i.e
e

e
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ed
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s
is

-

,

pi!1/a, both approaches lead to the same equations and
two models related byU522V should be equivalent.

To summarize, mean-field approximation, large-D limit,
weak-coupling renormalization-group, and Bethe ansatz
proaches indicate that the PH model and theU522V attrac-
tive Hubbard model should be equivalent in the low-ene
regime.

III. LUTTINGER LIQUID BEHAVIOR: AN EXACT
DIAGONALIZATION STUDY ON SMALL SYSTEMS

In this part we are interested in evaluating the Lutting
liquid parameters for both the pair-hopping and attract
Hubbard models. As is well known the long distance beh
ior of one-dimensional gapless fermion systems can be s
ied by making use of the concept of ‘‘Luttinger liquid.’
Within the framework of this theory the low-energy prope
ties are given by an effective Luttinger model describi
collective spin and charge density oscillations. The gene
form of the effective Hamiltonian can be obtained by writin
the 1D fermion model in momentum space, restricting ex
tations and interactions to lie close to the Fermi surface,
looking for the important processes. As is well known on
four processes survive~in the renormalization-group sense!:
one describing backward scattering of oppositely mov
electrons with couplingg1, one describing forward scatterin
of oppositely moving electrons with couplingg2, one de-
scribing umklapp scattering with couplingg3, and, finally,
one describing forward scattering of electrons moving in
same direction with couplingg4. ~Notations are those o
Refs. 13 and 14.! Taking the continuum limit of the fermion
Hamiltonian and, then, bosonizing the Fermi fields, one g

Hb5Hr1Hs1H11H3 , ~3.1!

whereHn (n5r,s) are two free Bose Hamiltonians descri
ing the spin (n5s) and charge (n5r) collective excita-
tions:

Hn5E dXF un

2pKn
~]Xfn!21

unpKn

2
Pn

2G ~3.2!

andH1 andH3 are the terms corresponding to the backwa
and umklapp scattering contributions, respectively,

H15
2g1

~2pa!2
E dXcos~A8fs! ~3.3!

and

H35
2g3

~2pa!2
E dXcos~A8fr!. ~3.4!

Here,fr (fs) is the Bose field describing the charge~spin!
excitations, andPr (Ps) is its canonical conjugated field
The coefficientsur (us) are the charge~spin! excitation ve-
locities, and the parametersKr andKs are some constant
that can be shown to be related to the~nonuniversal! expo-
nents of the power-law behavior of the correlation functio
In Eqs.~3.3! and ~3.4! a is a short-distance cutoff.14

In the free-fermion case,Kr5Ks51 and ur5us5vF
52tsin@(p/2)n#, where n5N/L is the electron density
When interactions are switched on, theu and theK param-



be
a
sp
ta
in

fi-
a
o

th

an

ging
en
s
tion
of
el

a

.
cz
p t

s,

s.

.
czo
to

s,

s.

54 17 417ONE-DIMENSIONAL PAIR HOPPING AND ATTRACTIVE . . .
eters are renormalized. In particular, the two velocities
come different, charge and spin excitations do not propag
at the same speed. This phenomenon is known as the
charge separation in one-dimensional systems. All the de
concerning the Luttinger liquid theory can be found, e.g.,
Refs. 14 and 13 and references therein.

In order to compute numerically the Luttinger coef
cients, we have used their expressions in terms of spin
charge compressibilities and stiffnesses of the system. M
precisely, for the charge degrees of freedom we have

1

k
5

p

2

ur

Kr
, Dr52urKr , ~3.5!

wherek is the compressibility of the system andDr is the
charge stiffness, and for the spin degrees:

1

x
5

p

2

us

Ks
, Ds52usKs , ~3.6!

wherex is the spin susceptibility of the system andDs the
spin stiffness. These quantities can be computed from
spectrum of the system by using the relation15

FIG. 1. Charge velocityur as a function of the coupling
Crosses, pair-hopping model, squares, Hubbard model. Lan´s
calculations with twisted boundary conditions. Chains of sizes u
12 sites.

FIG. 2. Spin velocityus as a function of the coupling. Crosse
pair-hopping model; squares, Hubbard model. Lanczo´s calculations
with twisted boundary conditions. Chains of sizes up to 12 site
-
te
in-
ils

nd
re

e

Dn5p
]2E0

]wn
2 U

wn50

, ~3.7!

wherewr is a charge twist in the system@i.e., the system has
twisted boundary conditions such ascj1L,s

† 5exp(iwr)cj,s
† #,

and ws is a spin twist in the system @i.e.,
cj1L,s
† 5exp(isws)cj,s

† #, and

1

k
5

1

2L

]2E0

]n2
,

1

x
5

1

2L

]2E0

]sZ
2 , ~3.8!

with n5(N↑1N↓)/L and sZ5(N↑2N↓)/L. By computing
these quantities for different values of the interaction, we c
deduce the behavior of the Luttinger parametersun andKn

as a function of the coupling strength.
We have applied this approach to systems of sizes ran

from L54 to L512. The ground-state energies have be
calculated using a standard Lanczo´s procedure. The result
are presented in Figs. 1–5. Each figure shows the varia
of the corresponding Luttinger coefficient as a function
the interaction, both for the attractive Hubbard mod
~squares! and for the pair-hopping model~crosses!. Figure 1
gives the variation of the charge velocity,ur , as a function
of U or V. At small coupling both curves are linear with

o
o

FIG. 3. Charge parameterKr as a function of the coupling
Crosses, pair-hopping model; squares, Hubbard model. Lan´s
calculations with twisted boundary conditions. Chains of sizes up
12 sites.

FIG. 4. Spin exponentKs as a function of the coupling. Crosse
pair-hopping model; squares, Hubbard model. Lanczo´s calculations
with twisted boundary conditions. Chains of sizes up to 12 site
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17 418 54MATHIAS VAN DEN BOSSCHE AND MICHEL CAFFAREL
very good accuracy. More precisely, we findur;21V/2
andur;21U/4, for the pair-hopping and Hubbard mode
respectively. For stronger couplings, small corrections to
earity show up. Both behaviors are typical of a regime w
no charge gap. As we shall see later, these results ar
perfect quantitative agreement with the prediction of the L
tinger liquid theory@Eqs.~5.2! and ~5.3!#. Data for the spin
velocities are rather different. As can be seen in Fig. 2 t
distinct behaviors for the spin velocity are obtained. In t
case of the attractive Hubbard modelus decreases uniformly
from the free fermion value to zero at large coupling.
contrast, a maximum aroundV50.55t is found for the pair-
hopping model. Both models recover a similar behavior
tween approximatelyV51 andV51.5. Note that the transi
tion value observed in Refs. 4 and 6 lies within this interv
We shall discuss further this important difference of behav
for us in Sec. V. Figures 3 and 4 demonstrate that the c
stantsKr andKs behave essentially the same way in bo
models. As already mentioned, in the Luttinger liquid theo
these constants are related to the exponents of the powe
behavior of correlation functions. Accordingly, this comm
behavior would suggest that both models have the s
phases. In Fig. 5, the behavior of the spin stiffness of
pair-hopping model as a function of the size is displayed
very interesting feature is that this quantity can be exa
computed for the Hubbard model. The formula is16

Ds~L !5~21!L/211L1/2D~U !e2L/js~U !

with

js
21~U !5

4

UE1
`

dy
ln~y1Ay221!

cosh~2py/U !

and

D~U !;HA~2/pjs! for U→0

0.147 376U for U→`
~3.9!

This function is plotted in Fig. 5, forU/t522, with the
corresponding quantity for the pair-hopping model,
V/t51. The similarity between the two curves is striking.
the case of the Hubbard model, the oscillations around z

FIG. 5. Spin stiffnessDs as a function of the coupling. Crosse
pair-hopping model, squares, Hubbard model. Lanczo´s calculations
with twisted boundary conditions. Chains of sizes up to 12 si
The dotted line is just a guide to the eye.
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are related to the existence of a gap in the spin spectrum
the case of a gapless mode, the corresponding curv
smooth and never changes sign. Accordingly, we have h
strong evidence in favor of the existence of a spin gap in
pair-hopping model.

At this point, our results are contradictory. On one han
most of the results indicate that both models are quite sim
~behavior ofur , Kn , and spin stiffnesses!. On the other
hand, the spin velocities at small sizes for both models d
play a different behavior. A closer look at spin degrees
freedom at larger sizes is therefore necessary.

IV. LUTTINGER LIQUID BEHAVIOR: A DMRG STUDY
FOR LARGER SYSTEMS

Conformal field theory~CFT! is a powerful theory to de-
scribe the physics of 1D quantum~or 2D statistical! critical
systems. Once conformal invariance is supposed, CFT
vides a general framework relating finite-size scaling
physical quantities to thermodynamic properties.17–19 In this
work we shall essentially compare our data for excitat
gaps with the predictions of CFT. This will allow us to chec
whether or not our data are compatible with the existence
a critical regime for the pair-hopping model. Denotingn the
gapless excitation under consideration andun the velocity of
the corresponding critical mode, the finite-size scaling
pression of the excitation gapDn predicted by CFT is

Dn5
2pun

L
, ~4.1!

whereL is the system size. For a finite system at a giv
filling, the spin gap is defined as

Ds5E0~N↑11,N↓21!2E0~N↑ ,N↓!,

whereNs is the number ofs-spin electrons. Physically, i
gives the change in ground-state energy produced when
ping one spin, the charge number being kept fixed.

In order to calculate the spin gaps we have used the d
sity matrix renormalization-group method.20 DMRG is a
powerful technique to compute low-energy properties
quantum lattice systems. This method has been applied
success to several problems including the spin-1/2 Heis
berg chains,20 the spin-1 chains,21 the one-dimensiona
Kondo insulator,22 the two-chain Hubbard model,23 etc. The
results obtained are very accurate and the method allows
to treat systems of sizes a few times larger than those ac
sible with exact diagonalization techniques. Essentia
DMRG is a real-space numerical renormalization-group p
cedure. It differs from standard approaches in the way t
states of individual blocks are chosen. Instead of keeping
lowest eigenstates of the block considered as isolated f
the outside world, the kept states are the most proba
eigenstates of the density matrix associated with the bl
considered as a part of the whole system. It is easy to s
that doing this is equivalent to constructing the most accu
representation of the complete state of the system: block
the rest of the system. For a detailed and very clear pre
tation of the method the reader is referred to Ref. 20. Th
exist different ways of choosing the configuration of bloc
used for the density matrix calculations. In particular, th

s.
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choice will depend on the type of boundary conditions us
Here, all calculations have been done by using perio
boundary conditions~PBC!. We have chosen the superbloc
configurationBldBl

Rd with Bl118 5Bld as proposed in Ref
20 for PBC.Bl represents a block consisting ofl sites,Bl

R is
the reflected block~right interchanged with left!, andd rep-
resents a single site. All notations are those of Ref. 20
what follows we shall denote byM the number of eigen-
states of the density matrix that are kept.

Very recently, Sikkema and Affleck have present
DMRG calculations for the pair-hopping model.8 Their cal-
culations have been performed using open boundary co
tions ~OBC!. When the correlation length is finite and calc
lations with L@j are possible using OBC is usual
preferable~calculations with OBC are less demanding th
with PBC, the convergence as a function ofM being much
more rapid!. In the regime of smallj, Sikkema and Affleck
have shown that their data are consistent with the predic
of the standard perturbative RG flow. In this work we sh
use PBC in a regime where the correlation lengths are la
~small values of V!. As we shall see now, this will allow u
to study the very peculiar behavior of the pair-hoppi
model at small couplings.

To begin with we present some DMRG calculations
the attractive Hubbard model. The value of the Coulo
interaction,U521.1, has been chosen to correspond
V52U/250.55, the value for which the spin velocity of th
PH model is maximum; see Fig. 2. Since the Hubbard mo
admits an exact solution our results can be compared to
exact values obtained by solving the Lieb-Wu equation24

The inset of Fig. 6 shows how the DMRG spin gapDs

converges to the exact valueDs50.9297 for a chain of 14
sites as a function ofM , the number of states kept. Her
M ranges fromM516 toM5112. Clearly, the convergenc
of the DMRG values is quite good. In addition, this cur
provides a useful check of the validity of our code. The m
plot displays the variation of the spin gap as a function
1/L. The studied sizes are ranging fromL56 to L542. We

FIG. 6. Spin gap vs inverse of the system size for the attrac
Hubbard model atU/t521.1 using DMRG with periodic boundary
conditions for different values ofM ~see text!. Inset shows the
convergence of the spin gap as a function ofM at L514 sites. The
value at 1/M50 is the exact value calculated by solving th
Lieb-Wu equations.
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did not consider the system sizes corresponding to a mult
of 4 since, in this case, the ground state is degenerate,
causing a strong boundary frustration effect~which, of
course, disappears in theL→` limit !. For each size, we plo
the value of the DMRG spin gap for a number of kept sta
M596,M5112, andM5` ~exact Lieb-Wu value!. Let us
first consider the exact solution. Looking at theL→` limit,
we observed a very small gap as expected. In this regime
systems considered (L56–42! are in an effective quasicriti-
cal regime with a spectrum structure remaining close to
conformal tower structure. This allows us to write the fo
lowing ansatz:

Ds~L !5Ds
`1

2pus

L
, ~4.2!

valid in the regimea!L!j, and whereus should be con-
sidered as an effective spin velocity. The results obtained
in excellent agreement with the behavior predicted by f
mula ~4.2! with a spin velocity very close to the free valu
In addition, for small systems (L56,10) the spin velocity
obtained from the slope of the spin gap is in very go
agreement with the value obtained in the preceding sec
~within 1.5%! based on a completely independent evaluati

Let us now consider the DMRG results. We have o
served that, for large enough values ofM , the linear behavior
of the spin gap as a function of 1/L is recovered. In Fig. 6 we
show typical results forM596 andM5112. The value of
the spin velocity obtained from differentM are displayed in
Fig. 8 and are slightly smaller than the free value of 2. Th
results are consistent with a convergence to the exact valu
largeM . However, it is not possible from DMRG results t
get an accurate estimate of the value of the gap itself. Ind
although we have a good convergence of the results fo
given size as a function ofM ~see inset of Fig. 6!, the ex-
trapolated value of the gap using different sizes is a v
sensitive quantity. In fact, it is not reasonable to discrimin
between a small but finite gap and a strictly vanishing g
We clearly see in Fig. 6 that the extrapolated gap is not a
converged as a function ofM . In order to get converged
values we would need much larger values ofM , which are
clearly beyond of reach of present computers.

In Fig. 7 we present DMRG calculations for the pa
hopping model atV50.55. Results of the spin gap as a fun

e FIG. 7. Spin gap vs inverse of the system size for the p
hopping model atV/t50.55 using DMRG with periodic boundary
conditions for different values ofM ~see text!.
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tion of 1/L are presented forM596, 112, and 144. Here
again we clearly see a quasicritical regime very well d
scribed by formula~4.2!. As already emphasized for the a
tractive Hubbard model, the accessible values ofM do not
allow a direct conclusion on the existence or not of a fin
spin gap. However, the data provide an estimate of the
fective spin velocity via the slope of the curves. The sp
velocities obtained are plotted forM584, 96, 112, and 144
in Fig. 8. It is remarkable that the results are rather differ
for both models. As already noticed, for the Hubbard mo
the values ofus are slowly varying and always smaller tha
the free fermion value. In contrast, for the PH modelus is
quite important for small values ofM and decreases un
formly for increasingM . Only when large enough values o
M are used, spin velocities of both models become com
rable. We shall comment more on this point in the next s
tion.

V. DISCUSSION

Let us summarize the results obtained. For small si
(L54–12! we have computed the Luttinger paramete
ur ,us ,Kr ,Ks ,Dr , andDs as a function of the interaction
for both the attractive Hubbard and pair-hopping mode
Regarding charge degrees of freedom all results for b
models are consistent with the existence of a vanish
charge gap for arbitrary values of the interaction and with
fact that the low-energy charge sectors of both models
very similar. These results are in agreement with the con
sions of previous works.

Now, regarding spin degrees of freedom the situation
not so clear. For small sizes our results show that parame
Ks andDs for both models are almost identical~see Figs. 4
and 5!. In particular, in the case of the PH model we clea
see the oscillations ofDs around zero as a function of th
sizeL, a behavior that is usually interpreted as resulting fr
the existence of a gap. However, data for the spin velocity
the PH model do not display the expected behavior o
system with a gap. In contrast with the case of the attrac
Hubbard model for whichus decreases uniformly from th
free fermion value to zero at large coupling~a typical behav-
ior for a finite system with a finite gap in the thermodynam
limit !, we have observed a clear enhancement ofus when the
pair-hopping term is switched on. AtV;0.55t the spin ve-

FIG. 8. Spin velocityus computed from DMRG data as a func
tion of 1/M .
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locity of the PH model reaches a maximum and then
creases to zero. A similar behavior is recovered for b
models at approximatelyV.1.5. In order to understand
whether this surprising result has something to do with
existence of a gapless phase we have computed the spin
for larger systems using a DMRG approach with perio
boundary conditions. Extracting from the spin gaps so
effective spin velocity~meaningful only when correlation
lengths are much larger than lattice sizes! we have, here also
systematically obtained larger spin velocities for the P
model. In contrast, in the case of the Hubbard model the s
velocities are rather constant and are close to the free fe
ion value at small coupling. However, a remarkable resul
that the abnormally large values ofus for the PH model tend
to disappear when sufficiently accurate representations o
ground state of the system are considered~large number of
states kept for the density matrix!. Accordingly, our results
are consistent with the fact that the unconventional beha
of spin excitations of the PH model is a transient effect s
cific to this model.

Now, it is quite interesting to discuss our results with
the renormalization-group framework. As discussed very
cently by Sikkema and Affleck, contradictory results ha
been reported from the RG analyses of the phase diagra
the PH model. Using standard notations~see Ref. 13!, to
cubic order, the RG equations for the four coupling consta
of the continuum-limit Hamiltonian are

2
dgs
dl

5gs
21 1

2 ~gs1g4!gs
2 ,

2
dgr

dl
5g3

21 1
2 ~gr2g4!g3

2 ,

2
dg3
dl

5grg31
1
4 ~gr

21g3
222grg4!g3 ,

2
dg4
dl

5 3
4 ~grg3

22gs
3!,

~5.1!

where l52 lnL, L being the ultraviolet cutoff. It is impor-
tant to emphasize that these equations are identical for
models. The only difference lies in the initial values of th
coupling constants. To the lowest-order weak-coupling lim
the initial values are

vF52tgr52gs5g35g4

52V/pvF ~pair-hopping model! ~5.2!

vF52tgs52gr5g35g45U/pvF ~Hubbard model!.

O(V2) corrections are given in Refs. 5 and 6. When solvi
the RG equations, a standard approach consists in cons
ing thatg4 simply shifts the spin and charge velocities a
cording to

ur5vF~11g4/2!, ~5.3!

us5vF~12g4/2! ~5.4!

and then can be dropped from the RG equations. Doing
and using the initial conditions Affleck and Marston ha
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remarked thatgs50 is not a stable fixed point and that sta
ing with gs,0 (V.0) thengs flows to strong coupling, thus
indicating the opening of a gap in the spin excitations.
contrast, Hui and Doniach have kept theg4 constant in the
RG equations and integrated them using the initial condit
at orderO(V2). By doing this they obtained thatgs50 be-
comes a stable fixed point provided thatg4,22. For
0,V/t,1 the fixed point was obtained withg4;22.5. This
new phase was interpreted as having no gap for single
ticles and spin excitations. For a full discussion of the co
troversy the reader is referred to Ref. 8. However, whethe
not we keep the coupling constantg4 in the RG equations, it
is clear that it is difficult to draw firm conclusions usin
weak-coupling RG equations in a strong-coupling regi
~fixed point withg4;22.5). Nonperturbative results are e
sential to support any reasonable scenario. Let us discus
numerical results from that point of view. Figure 1 show
very clearly that the charge velocity for both models follow
exactly the behavior predicted by Eqs.~5.2! and ~5.3! with
the correct slope. The charge degrees of freedom are ga
and the effect of the coupling constantg4 is to renormalize
the charge velocity. Figure 2 forus for small sizes is con-
sistent with the fact that a spin gap exists for the attrac
Hubbard model. The behavior ofus is not linear at small
U as would be the case for a critical system. In additi
us decreases uniformly as a function ofU. In contrast, as
already pointed out we have found a different behavior
the PH model. At small sizes (L56–10! and small coupling,
us is larger than the free fermion value. This is also true
larger systems (L514–42! when approximate ground-sta
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