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Quantum Monte Carlo Methods in Chemistry

Synonyms and Acronyms

Fixed-node diffusion Monte Carlo (FN-DMC); Green’s function Monte Carlo (GFMC); Pure diffusion Monte Carlo (PDMC);
 Monte Carlo (RMC); Stochastic reconfiguration Monte Carlo (SRMC); Variational Monte Carlo (VMC)Reptation

Description of the Problem

The problem considered here is to obtain accurate solutions of the time-independent Schrödinger equation for a general
molecular system described as  electrons moving within the external potential of a set of fixed nuclei. This problem canN
be considered as the central problem of theoretical and . Using the atomic units adapted to thecomputational chemistry
molecular scale the Schrödinger equation to solve can be written as

(1)

where  is the Hamiltonian operator given byH

(2)

 the spatial positions of the  electrons,  the Laplacian operator forN

electron  of coordinates ,  the wavefunction,  the total energy (a real constant), and  the potentiali Ψ E V

energy function expressed as

(3)

In this formula  is the interelectronic distance,  the charge of nucleus  (a positive integer),  itsZα α

vector position, , and . The Schrödinger equation being invariant under

complex conjugation, we can restrict without loss of generality the eigensolutions to be . The boundaryreal-valued
conditions are of Dirichlet-type: Eigenfunctions  are imposed to vanish whenever one electron (or more) goes to infinityΨ

(4)

In addition, the mathematical constraints resulting from the Pauli principle must be considered. Within a space-only
formalism as employed in QMC, two types of electron – usually referred to as the “spin-up” and “spin-down” electrons –
are distinguished and the Pauli principle is expressed as follows. Among all eigenfunctions verifying (1)–(4) only those
that are  are physically allowed. Because of theantisymmetric under the exchange of any pair of spin-like electrons
permutational invariance, the  spin-up electrons can be arbitrarily chosen as those having the first labels and theN↑
mathematical conditions can be written as

(5a)
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and

(5b)

for all pairs ( , ) of spin-like electrons. Equations 1–5b define the mathematical problem discussed here. Although such a i j
 model results from a number of  approximations, it contains the bulk of most chemical phenomenamathematical physical

and solving it with enough accuracy (=chemical accuracy) can be considered as the major problem of computational
chemistry. The two standard approaches to deal with the electronic structure problem in chemistry are the density
functional theory  ( ) and the post-Hartree–Fock wavefunction approaches ((DFT) Density Functional Theory Post-Hartree

, Coupled-Cluster Methods). Quantum Monte Carlo (QMC) presented hereFock Methods and Excited States Modelling
may be viewed as an alternative approach aiming at circumventing the limitations of these two well-established methods
(for a detailed presentation of QMC, see, e.g., [ ]). In contrast with these  approaches, QMC is based on a 1 deterministic

 sampling of the electronic . In the recent years, a number of remarkable applications havestochastic configuration space
been presented, thus establishing QMC as a high potential approach although a number of limitations are still present.
Here, we shall present the two most popular approaches used in chemistry, namely, the variational Monte Carlo (VMC)
and the fixed-node diffusion Monte Carlo (FN-DMC) methods.

The Variational Monte Carlo (VMC) Method

The variational Monte Carlo (VMC) method is the simpler and the most popular quantum Monte Carlo approach. From a
mathematical point of view, VMC is a standard   method. Introducing an Markov chain Monte Carlo (MCMC) approximate

trial wavefunction  known in an analytic form (a good approximation of the unknown wavefunction),

the Metropolis-Hastings algorithm is used to generate sample points distributed in the 3 -dimensional configurationN
space according to the quantum-mechanical probability density π associated with ΨT

(6)

where  is a compact notation representing the positions of the  electrons, . ExpectationN

values corresponding to various physical properties can be rewritten as averages over π. As an important example, the
total energy defined as

(7)

may be rewritten under the form

(8)

where  is the local energy defined as

(9)

In VMC, the total energy is thus estimated as a simple average of the local energy over a sufficiently large number  ofK

configurations  generated with the Monte Carlo procedure



3

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

(10)

the estimator becoming exact as  goes to infinity with a statistical error decreasing as . Properties other thanK

the energy can be obtained in a similar way.
In the case of the energy, it can be shown that there exists a  expressed as  for any ,variational principle (Ψ )≥EVMC T E0 ΨT
the equality being obtained for the exact ground-state wavefunction of energy . In addition, there also exists a E0

 stating that the closer the trial wavefunction is from the exact solution, the smaller the fluctuationszero-variance principle
of the local energy are, the statistical error vanishing in the limit of an exact trial wavefunction. In practice, both principles
– minimization of the energy and/or of the fluctuations of the local energy – are at the basis of the various approaches
proposed for optimizing the parameters entering the trial wavefunction.

The Diffusion Monte Carlo (DMC) Method

The fundamental idea is to introduce a formal  between the quantum and stochastic worlds bymathematical connection
introducing a  time dynamics as followsfictitious

(11)

where  plays the role of a time variable, , a time-dependent real wavefunction, and , some constantt ET
reference energy. The solution of this equation is uniquely defined by the choice of the initial wavefunction, 

. Using the spectral decomposition of the self-adjoint (hermitic) Hamiltonian operator, the solution of (11)

can be written as

(12)

where the sum is performed over the complete set of the eigensolutions of the Hamiltonian operator

(13)

and .

As seen from (12) the knowledge of the  solution of the Schrödinger equation allows to have direct accesstime-dependent

to information about the  eigensolutions, . As an important example, the exact ground-statetime-independent

wavefunction (corresponding to the smaller eigenvalue ) can be obtained by considering the large-time limit of theE0
time-dependent wavefunction

(14)

up to an unessential multiplicative factor.
In practice, to have an efficient  of the original time-dependent equation, we need to employ someMonte Carlo simulation
sort of , that is, a practical scheme for sampling only the regions of the very high-dimensional importance sampling

 where the quantities to be averaged have a non-vanishing contribution. Here, it is realized byconfiguration space
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introducing a trial wavefunction  (usually optimized in a preliminary VMC step) and by defining a new time-dependentΨT
density as follows

(15)

The equation that  obeys can be derived without difficulty from (11) and (15), we getπ

(16)

where  is a forward Fokker-Planck operator defined as (see, e.g., [ ])L 2

(17)

and  the drift vector given by

(18)

In order to define a step-by-step Monte Carlo algorithm, the fundamental equation (16) is rewritten under the following
equivalent integral form describing the evolution of the density during a time interval τ

(19)

where  is the following integral kernel (or imaginary-time propagator)K

(20)

For an arbitrary value of , the kernel is not known. However, for small enough time-step accurate approximations of τ K
can be obtained and sampled. To see this, let us first split the exponential operator into a product of exponentials by using
the Baker-Campbell-Hausdorff formulas [ ]3

(21)

and then introduce a short-time gaussian approximation of the Fokker-Planck kernel [ ],2

(22)

Finally, a working short-time approximation of the  kernel can be written asDMC

(23)

By considering small enough , the residual error (called the  in the context of QMC) can be madeτ short-time error
arbitrarily small. In practice, the DMC simulation is performed as follows. A population of  [or configuration walkers

] propagated stochastically from generation to generation according to the DMC kernel is introduced. At each
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step, the walkers are moved according to the gaussian transition probability, (22). Next, each walker is killed, kept
unchanged, or duplicated a certain number of times proportionally to the remaining part of the  kernel, namely, KDMC

. In practice, an unbiased  estimator  defining the number of copies (  =integer M M

0, 1, ) is used,  = [  + ], where  is the integer part and  is a uniform random number in (0, 1) (unbiased… M E w u E u

). In contrast with the Fokker-Planck part, this  (or birth-death) process causesbranching

fluctuations in the number of walkers. Because of that, some sort of  step is needed [ ]. The population control 1 stationary
 resulting from these stochastic rules can be obtained as the time-independent solution of (16). After somedistribution

simple algebra we get

(24)

provided the reference energy  is adjusted to the exact value, . From this  DMC distribution density, aET  = ET E0 mixed

simple and  estimator of the total energy is obtainedunbiased

(25)

For properties other than the energy, the exact distribution density, , must be sampled. This can be realized inΨ0
2

different ways, for example, by using a forward walking scheme Ref.[ ] or a  Monte Carlo algorithm, Ref.[ ].4 reptation 5

The Fixed-Node Approximation

In the preceding section, the DMC approach has been presented without taking care of the specific mathematical
constraints resulting from the Pauli principle, (5b). As it is, this algorithm can be directly employed for quantum systems
not subject to such constraints (bosonic systems, quantum oscillators, ensemble of distinguishable particles, etc.). An
important remark is that the algorithm converges to the stationary density, (24), associated with the lowest eigenfunction 

 which, in the case of a Hamiltonian of the form , is known to have a constant sign (say,

positive). This property is the generalization to continuous operators of the Perron-Frobenius theorem valid for matrices
with off-diagonal elements of the same sign.
For electronic systems, the additional fermionic constraints are to be taken into account and we must now force the DMC
algorithm to converge to the lowest eigenfunction obeying the Pauli principle (the “physical” or fermionic ground-state)
and not to the “mathematical” (or bosonic) ground-state having a constant sign. Unfortunately, up to now it has not been
possible to define a computationally tractable (polynomial) algorithm implementing exactly such a property for a general
fermionic system (known as the “sign problem”). However, at the price of introducing a , a stablefixed-node approximation
method can be defined. This approach called fixed-node  (FN-DMC) just consists in choosing a trial wavefunctionDMC
fulfilling the fermionic constraints, (5b). In contrast with the bosonic-type simulations where the trial wavefunction does not
vanish at finite distances, the walkers are now no longer free to move within the entire configurational space. This
property results directly from the fact that the nodes of the trial wavefunction [defined as the -dimensional(3  − 1)N

hypersurface where ] act as infinitely repulsive barriers for the walkers [divergence of the drift vector,

(18)]. Each walker is thus trapped  within the nodal pocket cut by the nodes of  where it starts from and theforever ΨT
Schrödinger equation is now solved with the  defined asadditional fixed-node boundary conditions

(26)

When the nodes of  coincide with the exact nodes, the algorithm is exact. If not, a fixed-node error is introduced.ψT
Hopefully, all the nodal pockets do not need to be sampled – which would be an unrealistic task for large systems – due
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to the existence of a “tilling” theorem stating that all the nodal pockets of the fermionic ground-state are essentially
equivalent and related by permutational invariance [ ]. For a mathematical presentation of the fixed-node approximation,6
see Ref.[ ]. Finally, remark that in principle defining an exact fermionic DMC scheme avoiding the fixed-node7
approximation is not difficult. For example, by letting the walkers go through the nodes and by keeping track of the various
changes of signs of the trial wavefunction. However, in practice all the schemes proposed up to now are faced with the
existence of an exponentially vanishing signal-to-noise problem related to the uncontrolled fluctuations of the trial
wavefunction sign. For details, the reader is referred to the work by Ceperley and Alder [ ].8

The Trial Wavefunction

A standard form for the trial wavefunction is

(27)

where the term  is usually referred to as the Jastrow factor describing explicitly the electron-electron interactions

at different level of approximations. A quite general form employed for  is

(28)

where ’s are simple functions (Many different expressions have been employed). The second part of the wavefunction isU
quite standard in chemistry and describes the shell-structure of molecules via a  of a product of twolinear combination
Slater determinants built from one-electron molecular orbitals. Note that several other forms for the trial wavefunction
have been introduced in the literature but so far they have remained of marginal use. Finally, let us emphasize that the
magnitude of the statistical error and the importance of the fixed-node bias being directly related to the quality of the trial
wavefunction (both errors vanish in the limit of an exact wavefunction), it is in general quite profitable to optimize the
parameters of the trial wavefunction. Several approaches have been proposed, we just mention here the recently
proposed method of Umrigar and collaborators [ ].9

Applications

In , the vast majority of the VMC and FN-DMC applications have been concerned with thecomputational chemistry
calculation of total energies and differences of total energies: atomization energies, electronic affinities, ionization
potentials, reaction barriers, excited-state energies, etc. To get a brief view of what can be achieved with QMC, let us
mention the existence of several benchmark studies comparing FN-DMC with the standard  and post-HF methods [DFT 10
– ]. In such studies, FN-DMC appears to be as accurate as the most accurate post-HF methods and advanced DFT12
approaches. In addition, like DFT – but in sharp contrast with the post-HF methods – the scaling of the computational cost
as a function of the system size is favorable, typically in ( ). However, QMC simulations are much more CPU-intensiveO N3

than DFT ones. To date the largest systems studied involve about 2,000 active electrons, see, e.g., [ ]. Finally, note that13
in principle, all chemical properties can be evaluated using QMC. Unfortunately, to reach the desired accuracy is often
difficult in practice. More progress is needed to improve the QMC estimators of such properties.

QMC and High-Performance Computing (HPC)

Let us end by emphasizing on one of the most important practical aspect of QMC methods, namely, their remarkable
adaptation to high  (HPC) and, particularly, to massive parallel computations. As most Monteperformance computing
Carlo algorithms, the computational effort is almost exclusively concentrated on pure  (“number crunching method”).CPU
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In addition, – and this is the key aspect for massive parallelism – calculations of averages can be decomposed at will: n
Monte Carlo steps over a single processor being equivalent to  ∕  steps over  processors with no communicationn p p
between the processors (apart from the initial/final data transfers). Very recently, it has been demonstrated that an almost
perfect parallel efficiency up to about 100,000 compute cores is achievable in practice [ , ]. In view of the formidable14 15
development of computational platforms: Presently up to a few hundreds of thousands compute cores (petascale
platforms) and many more soon (exascale in the near future) this property could be critical in assuring the success of
QMC in the years to come.
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