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Abstract. A grid implementation of a massively parallel quantum Monte
Carlo (QMC) code on the EGEE grid architecture is discussed. Techni-
cal details allowing an efficient implementation are presented and the
grid performance (number of queued, running, and executed tasks as a
function of time) is discussed. Finally, we present a very accurate Lis
potential energy curve obtained by running simultaneously several hun-
dreds tasks on the grid.

1 Introduction

Quantum Monte Carlo (QMC) methods are known to be powerful stochastic
approaches for solving the Schrodinger equation.[1] Although they have been
widely used in computational physics during the last twenty years, they are still
of marginal use in computational chemistry.[2] Two major reasons can be in-
voked for that: i) the N-body problem encountered in chemistry is particularly
challenging (a set of strongly interacting electrons in the field of highly-attractive
nuclei) ii.) the level of numerical accuracy required is very high (the so-called
“chemical accuracy”). In computational chemistry, the two standard approaches
used presently are the Density Functional Theory (DFT) approaches and the
various post-Hartree-Fock wavefunction-based methods (Configuration Interac-
tion, Coupled Cluster, etc.) In practice, DFT methods are the most popular
approaches, essentially because they combine both a reasonable accuracy and
a favorable scaling of the computational effort as a function of the number of
electrons. On the other hand, post-HF methods are also employed since they
lead to a greater and much controlled accuracy than DFT. Unfortunately, the
price to pay for such an accuracy is too high to be of practical use for large
molecular systems.

QMC appears as a third promising alternative method essentially because
it combines the advantages of both approaches: a favorable scaling together
with a very good accuracy. In addition to this, and it is the central point of
the present note, the QMC approaches —in sharp contrast with DFT and post-
HF methods— are ideally suited to High-Performance-Computing (HPC) and,
more specifically, to massive parallel computations either on homogeneous multi-
processor platforms or on heterogeneous grid infrastructures. As most “classical”



or “quantum” Monte Carlo approaches, the algorithm is essentially of the num-
ber crunching type, the central memory requirements remain small and bounded
and the I/O flows are essentially marginal. Due to these extremely favorable
computational aspects plus the rapid evolution of computational infrastructures
towards more and more numerous and efficient processors, it is likely that QMC
will play in the next years a growing role in computational chemistry.

In the present study, the first implementation of our quantum Monte Carlo
program on a large scale grid —the European EGEE-III grid[3]— is presented.
As a scientific application we have chosen to compute with a very high accuracy
the potential energy curve (PEC) of the Lis molecule (total energy of the system
as a function of the Li-Li distance). To the best of our knowlegde, the curve
presented here is the most accurate PEC ever published for this system. In
order to reach such an accuracy two conditions need to be fulfilled. First, a large
enough Monte Carlo statistics has to be realized to reduce the final statistical
error down to the precision desired. Second, accurate enough trial wave functions
must be employed to reduce as much as possible the so-called “Fixed-Node”
error (the only systematic error left in a QMC calculation, see Ref.[2]). The
first condition is easy to fulfill since the system is small (only, six electrons) and
accumulating statistics is just a matter of making enough Monte Carlo steps
and using enough processors (“brute force” approach). The second condition is
much more challenging since we need to introduce trial wavefunctions with a
controlled nodal quality and which can be improved in a systematic way. Here,
we have realized this latter aspect by considering wavefunctions issued from Full
Configuration Interaction (FCI) calculations in a large basis-set (technically, the
cc-pVQZ basis set, Ref.[4]). Such a FCI trial wavefunction is expected to have
a very good nodal structure. However, there is a price to pay: To handle such a
function is quite expensive. More precisely, the FCI trial wavefunction used here
is expressed a sum of 16,138 products of two 3x 3 determinants (three a-electrons
and three [(-electrons) and, at each Monte Carlo step, this wavefunction and its
first- and second- derivatives have to be computed. Note that the computational
cost in terms of CPU time is directly proportional to the number of products
in the trial wavefunction expansion. To the best of our knowledge, it is the first
time that such a high number of determinants in a QMC calculation has been
used. Let us emphasize that it has been possible here only because of the use of
the grid infrastructure.

In Sec. 2 some technical details related to the implementation of a quan-
tum Monte Carlo simulation and the use of our QMC=Chem|[5] program are
presented. Section 3 presents the computational strategy employed in our appli-
cation to the Liy molecule. Section 4 gives the results and discusses the perfor-
mance. Finally, some conclusions are presented in Sec.5.

2 Technical details

A walker is a vector X of the 3/N-dimensional space containing the entire set
of the three-dimensional coordinates of the N electrons of the system. During



the simulation, a walker (or a population of walkers) samples via a Monte Carlo
Markov Chain process the 3N-dimensional space according to some target prob-
ability density (the precise density may vary from one QMC method to another).
From a practical point of view, the averages of the quantities of interest (energy,
densities, etc.) are calculated over a set as large as possible of independent ran-
dom walks. Random walks differ from each other only in the initial electron
positions Xg, and in the initial random seed Sy determining the entire series of
random numbers used.

In the QMC=Chem code used here, the main computational object is a block.
In a block, Ny, independent walkers realize random walks of length Ngep,
and the quantities of interest are averaged over all the steps of each random
walk. If Ngiep is significantly larger than the auto-correlation time (which is
usually rather small), the positions of the walkers at the end of the block can
be considered as independent of their initial positions and a new block can be
sampled using these configurations as X and using the current random seed as
So.

The final Monte Carlo result is obtained by averaging all the results obtained
for each block. If the data associated with each block are saved on disk, the
averages can be calculated as a post-processing of the data and the calculation
can be easily restarted using the last positions of the walkers and the last random
seed.

Note that the computation of the averages does not require any time order-
ing. If the user provides a set of Ny different initial conditions (walker posi-
tions and random seed), the blocks can be computed in parallel. In figure 1, we
give a pictorial representation of four independent processors computing blocks
sequentially, each block having different initial conditions.

2.1 Design of the QMC=Chem program

The QMC=Chem program was designed specifically to run on heterogeneous
clusters via the Message Passing Interface (MPI) API[7] and also in grid envi-
ronments via Python[8] scripts. The memory requirements, disk input/outputs
and network communications were minimized as much as possible, and the code
was written in order to allow asynchronous processes. This section presents the
general design of the program.

The behavior of the program is the following. A main Python program spawns
three processes: an observer, a computation engine, and a data server (see figure

2).

The observer The observer keeps a global knowledge of the whole calculation
(current values of the computed averages, total CPU time, wall time, etc). It
updates the results using the calculated blocks at regular intervals of time and
checks if the code should continue or stop by informing the data server. It also
checks if a stopping condition is reached. The stopping condition can be a max-
imum value of the total CPU time, the wall time, the number of blocks, or a
threshold on the statistical error bar of any Monte Carlo estimate.
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Fig. 1. Graphical representation of a QMC simulation. Each process generates blocks,
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Fig. 2. Inter-process communication of the QMC=Chem program.



The computation engine The computation engine starts the Fortran MPI
executable. The master MPI process broadcasts the common input data to the
slaves, and enters the main loop. In the main loop, the program computes one
block and sends the results to the data server via a trivial python XML-RPC
client. The reply of the data server determines if the main loop should be exited
or if it should compute another block. When the main loop is exited, there is an
MPI synchronization barrier where all the slave processes send the last walker
positions and their last random seed to the master, which writes them to disk.

A linear feedback shift register (LFSR) pseudo-random number generator|[6)
is implemented in the code. A pool of 7000 initial random seeds was previously
prepared, each random seed being separated from the previous one by 6.10%!
seeds. Every time a random number is drawn, a counter is incremented. If the
counter reaches 6.10'!, the next free random seed is used. This mechanism guar-
antees that the parallel processes will never use the same sequence of random
numbers.

The data server The data server is a Python XML-RPC server whose role is
to receive the computed data during a simulation and save it into files. Each file
is a few kilobytes large and contains the averages of interest computed over a
block. The data server also computes an MD5 key[9] related to the critical input
values to guarantee that the computed blocks belong to the simulation, and that
the input data has not been corrupted.

Generation of the output The output file of the program is not created
during the run which only produces block files via the data server. A separate
script analyzes the blocks written to disk to produce an output. This script can
be executed at any time: while a calculation is running to check the current
values, or when the simulation has finished. The consistence between the input
data with the blocks is checked with using the previously mentioned MD5 key.

Adaptation to grid environments A script was written to prepare as much
files as there are different requested tasks on the grid, each file name containing
the index of the task (for example 12.tar.gz). Each file is a gzipped tar file of
a directory containing all the needed input data. The only difference between
the input files of two distinct tasks is their vector Xy and their random seed
So. The script also generates a gzipped tar file gmcchem.tar.gz which contains
a statically linked non-MPI Fortran i686-linux executable, and all the needed
Python files (the XML-RPC data server, the observer, etc). A third generated
file is a shell script gmechem_grid.sh which will run the job.

Another script reverses this work. First, it unpacks all the tar.gz files con-
taining the input files and the block files. Then it collects all the block files into
a common directory for the future production of the output file.

Termination system signals (SIGKILL, SIGTERM, ...) are intercepted by
the QMC=Chem program. If any of this signals is caught, the program tries to
finish the current block and terminates in a clean way.



2.2 Advantages of such a design

Asynchronous processes Note that the transmission of the computed data is
not realized through MPI in the main loop of the computation engine, but with a
Python script instead. This latter point avoids the need for MPI synchronization
barriers inside the main loop, and allows the code to run on heterogeneous
clusters with a minimal use of MPI statements. The main advantage of this
design is that if the MPI processes are sent on machines with different types
of processors, each process will always use 100% of the CPU (except for the
synchronization barrier at the end) and fast processors will send more blocks to
the data server than the slower processors.

Analysis of the results The analysis of the blocks as a post-processing step
(see section 2.1) has major advantages. First, the analysis of the data with
graphical user interfaces is trivial since all the raw data is present in the block
files, and they are easy to read by programs, as opposed to traditional output
files which are written for the users. The degree of verbosity of the output can be
changed upon request by the user even after the end of the calculation, and this
avoids the user to read a large file to find only one small piece of information,
while it is still possible to have access to the verbose output. The last and most
important feature is that the production of the output does not impose any
synchronization of the parallel processes, and they can run naturally in grid
environments.

Failure of a process As all the processes are independent, if one task dies it
does not affect the other tasks. For instance, if a large job is sent on the grid
and one machine of the grid has a power failure, the user may not even remark
that part of the work has not been computed. Moreover, as the process signals
are intercepted, if a batch queuing system tries to kill a task (because it has
exceeded the maximum wall time of the queue, for example), the job is likely
to end gracefully and the computed blocks will be saved. This fail-safe feature
is essential in a grid environment where it is almost impredictable that all the
requested tasks will end as expected.

Flexibility The duration of a block can be tuned by the user since it is propor-
tional to the number of steps per trajectory. In the present work, the stopping
condition was chosen to be wall time limit, which is convenient in grid environ-
ments with various types of processors. When the stopping condition is reached,
if the same job is sent again to the queuing system, it will automatically con-
tinue using the last walker positions and random seeds, and use the previously
computed blocks to calculate the running averages. Note that between two sub-
sequent simulations, there is no constraint to use the same number or the same
types of processors.



3 Computational Strategy and Details

A quantum Monte Carlo study has been performed on the Lis molecule. The
choice of such a system allowed us to consider a Full Configuration Interaction
(FCI) wave-function as the trial wave function, i.e. a virtually exact solution of
the Schrodinger equation in the subspace spanned by the gaussian orbital basis.
We remind that the computational cost of the FCI problem scales combinatori-
ally with the number of basis functions and electrons and, therefore high quality
FCI wave functions are practically impossible to be obtained for much larger
systems.

3.1 The Q5Cost common data format

Due to the inherent heterogeneity of grid architectures, and due to the necessity
of using different codes, a common format for data interchange and interoper-
ability is mandatory in the context of distributed computation. For this reason
we have previously developped a specific data format and library for quantum
chemistry[10], and its use for single processor and distributed calculations has
already been reported[11]. The Q5Cost is based on the HDF5 format, a charac-
teristic that makes the binary files portable on a multiple platform environment.
Moreover the compression features of the HDF5 format are exploited to reduce
significantly the file size while keeping all the relevant information and meta-
data. Q5Cost contains chemical objects related data organized in a hierarchical
structure within a logical containment relationship. Moreover a library to write
and access Q5Cost files has been released[10]. The library, built on top of the
HDF5 API, makes use of chemical concepts to access the different file objects.
This feature makes the inclusion on quantum chemistry codes rather simple and
straightforward, leaving the HDF5 low level technical details absolutely trans-
parent to the chemical software developer. Q5Cost has emerged as an efficient
tool to facilitate communication and interoperability and seems to be particu-
larly useful in the case of distributed environments, and therefore well adapted
to the grid.

3.2 Computational Details

All the preliminary FCI calculations have been realized on a single processor by
using the Bologna FCI code.[12],[13] The code has been interfaced with Mol-
cas[14] to get the necessary one- and two-electron molecular integrals. The FCI
computations considered in the present work involved up to 16,138 symmetry
adapted and partially spin adapted determinants. All the communications be-
tween the different codes has been assured by using the Q5Cost format and li-
brary [10]. In particular a module has been added to the Molcas code to produce
a Q5Cost file containing the information on the molecular system and the atomic
and molecular (self consistent field level) integrals. The Q5Cost file has been di-
rectly read by the FCI code, and the final FCI wave function has been added to
the same file in a proper and standardized way. The actual QMC=Chem input



has been prepared by a Python script reading the Q5Cost file content. Before
running the QMC calculation on the grid an equilibration step was performed
(i.e., building “good” starting configurations, Xg, for walkers) by doing a quick
variational QMC run (see, Refs.[1] and [2]) in single processor mode.

QMC computations have been run on the EGEE grid over different com-
puting elements and in a massively parallel way. Typically for each potential
energy curve point we requested to use 1000 nodes, obtaining at least about 500
tasks running concurrently. Once the job on each node was completed the results
were retrieved and the output file was produced by the post-processing script
to obtain the averaged QMC energy. Due to the inherent flexibility of the QMC
implementation the fact of having different tasks on different nodes terminating
after different number of blocks did not cause any difficulty as the output file
was produced independently from the computation phase. Moreover, the failure
or the abortion of some tasks did not impact significantly on the quality of the
results.

4 Results and Grid Performance

Our results for the potential energy curve of the Lis molecule are presented in
Figure 3 (graphical form) and Table 1 (raw data and error bars). Results are
given for a set of 31 inter-nuclear distances. Let us emphasize that the data
are of a very high-quality and the energy curve presented is, to the best of our
knowledge, the most accurate energy curve ever published. To illustrate this
point, let us mention that the dissociation energy defined as D, = E(Req) —
E(R = o0) is found to be here D, = —0.0395(2) a.u. in excellent agreement with
the experimental result of D, = —0.03928 a.u., Ref.[15]. A much more detailed
discussion of these results and additional data will be presented elsewhere[16].

For this application only 11Mb of memory per Fortran process was needed to
allow the computation of the blocks. This feature is twofold. First, it allowed our
jobs to be selected rapidly by the batch queuing systems as very few resources
were requested. Second, as the memory requirements are very low, the code was
able to run on any kind of machine. This allowed our jobs to enter both the
32-bit (x86) and 64-bit (x86_64) queues.

4.1 Grid Performance

A typical analysis of the grid performance can be seen on Figure 4. Here we
report the number of queued, running and executed tasks as a function of time
for the submission of a parametric job of 1000 tasks.

One can see that after a very limited amount of time (less than one hour)
almost half of the tasks were in a running status. Correspondingly the number
of queued tasks undergoes a very rapid decay, indicating that a consistent per-
centage of the submitted tasks did not spend a significant amount of time in
the queue. This feature is a consequence of the very limited amount of resources
requested by the job, and by the fact that virtually all the queues could be used,
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Table 1. Quantum Monte Carlo energies (atomic units) as a function of the Li-Li
distance (atomic units). Values in parenthesis correspond to the statistical error on the
two last digits.

Distance (a.u.) Energy (a.u.)|Distance (a.u.) Energy (a.u.)
2.2 14.81854(44) 5.2 ~14.99491(29)
2.4 -14.85192(36) 5.4 -14.99431(30)
2.6 -14.87861(36) 5.6 -14.99279(30)
2.8 -14.90269(37) 5.8 ~14.99090(30)
3.0 -14.92195(35) 6.0 -14.99018(32)
3.2 -14.93861(38) 6.4 -14.98541(26)
3.4 -14.95324(37) 6.8 -14.98088(29)
3.6 -14.96428(38) 7.2 ~14.97804(29)
3.8 -14.97320(38) 7.6 -14.97281(28)
4.0 -14.98250(29) 8.0 -14.96984(28)
4.2 -14.98629(27) 10.0 -14.95951(27)
44 -14.99016(30) 12.0 -14.95747(15)
4.6 -14.99285(29) 14.0 -14.95624(12)
4.8 -14.99358(29) 16.0 -14.95606(14)
5.0 -14.99479(29) 18.0 -14.95569(17)

5.051 -14.99492(17) ... .
100.0 —14.95539(11)

and should therefore be ascribed to the high flexibility of our approach. Corre-
spondingly the number of running tasks experiences a maximum at about one
hour. It is also important to notice the high asymetry of the peak, indicating
that while the maximum amount of running tasks is achieved quite rapidly, the
high efficiency (number of running tasks) is mantained for a considerable amount
of time before a degradation. The number of completed tasks too experiences a
quite rapid increase. After about four hours the numbers of running tasks re-
mains constant and quite low, and consequently a small variation is observed on
the number of completed tasks. The decayng of the number of running job is
due to the fact that a vast majority of tasks have been completed achieving the
completion of the desired number of blocks. The remaining jobs (about 50) can
be abscribed to tasks running on very slow processors and so requiring a greater
amount of time to complete the blocks, moreover in some cases some of the jobs
could be considered as ”"ghost” i.e. labelled as running although being stalled.
After 9 hours the job was cancelled since the desired precision level had been
achieved, even if only about 700-800 tasks were actually completed. The overall
process required on average about 1000 CPU hours for each geometry equivalent
to about 40 days of CPU time. It is also noteworthy to comment the distribution
of the CPU time per block for each task (Figure 5), this difference reflects the
fact that some tasks have been performed on slower nodes. Again this asymetry
did not influence the final result since the final statistics were performed on the
total amount of blocks.
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Fig. 5. Histogram of the CPU time per block. This figure shows the heterogeneity of
the used processors.

5 Conclusions

An efficient grid implementation of a massively parallel quantum Monte Carlo
code has been presented. The strategy employed has been presented in detail.
Some test applications have been performed on the EGEE-III grid architecture
showing the efficiency and flexibility of our implementation. As shown, our ap-
proach enables to exploit the computational power and resources of the grid for
the solution of a non-trivial N-body problem of chemistry. It must be empha-
sized that the very important computational gain obtained here has concerned
the simulation of the Shrédinger equation for a single fixed nuclear geometry
(single point energy calculation). This is in sharp contrast with the common
situation in computational chemistry where parallelism is not used (or partially
used) for solving the problem at hand (algorithms are in general poorly par-
allelized) but rather for making independent simulations at different nuclear
geometries (trivial parallelization based on different inputs). We believe that the
quantum Monte Carlo approach which is based on Markov chain processes and
on the accumulation of statistics for independent events can represent an ideal
test bed for the use of grid environments in computational chemistry. Finally,
we note that the combination of grid computing power and of the QMC ability
to treat chemical problems at a high-level of accuracy can open the way to the
possibility of studying fascinating problems (from the domain of nano-sciences
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to biological systems) which are presently out of reach.
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