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The potential energy curve of the F2 molecule is calculated with Fixed-Node Dif-

fusion Monte Carlo (FN-DMC) using Configuration Interaction (CI)-type trial wa-

vefunctions. To keep the number of determinants reasonable (the first and second

derivatives of the trial wavefunction need to be calculated at each step of FN-DMC),

the CI expansion is restricted to those determinants that contribute the most to the

total energy. The selection of the determinants is made using the so-called CIPSI ap-

proach (Configuration Interaction using a Perturbative Selection made Iteratively).

Quite remarkably, the nodes of CIPSI wavefunctions are found to be systemati-

cally improved when increasing the number of selected determinants. To reduce the

non-parallelism error of the potential energy curve a scheme based on the use of

a R-dependent number of determinants is introduced. Numerical results show that

improved FN-DMC energy curves for the F2 molecule are obtained when employing

CIPSI trial wavefunctions. Using the Dunning’s cc-pVDZ basis set the FN-DMC

energy curve is of a quality similar to that obtained with FCI/cc-pVQZ. A key ad-

vantage of using selected CI in FN-DMC is the possibility of improving nodes in a

systematic and automatic way without resorting to a preliminary multi-parameter

stochastic optimization of the trial wavefunction performed at the Variational Monte

Carlo level as usually done in FN-DMC.
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I. INTRODUCTION

Fixed-Node Diffusion Monte Carlo (FN-DMC) and its diverse variants[1, 2] are conside-

red as accurate approaches for evaluating ground-state properties of molecules. Although

it is certainly true for total energies, such a statement can be questioned when considering

the (very) small energy differences involved in quantitative chemistry (atomization energies,

energy variations along a chemical reaction path, forces viewed as infinitesimal energy diffe-

rences, excitation energies, etc.), particularly for large systems. Although several sources of

error make FN-DMC simulations non-exact, only the fixed-node error should be considered

as truly fundamental, that is, conditioning the practical limitations of the method. Other

errors include the statistical error due to a finite number NMC of Monte Carlo steps, the

time-step error resulting from the use of a finite time-step τ for propagating and branching

walkers, and possible bias resulting either from a fluctuating finite population M of walkers

or a finite projection imaginary time t when working at constant population size. However,

in all cases such errors can be controlled and estimated through extrapolation techniques

involving only one single parameter (that is, NMC → +∞, τ → 0, and M or t→ +∞). The

error resulting from the use of a not-truly random number generator should also be added

to this list but numerical experience has shown that its impact is generally (much) smal-

ler than statistical fluctuations provided a sufficiently � good �pseudo-random generator is

employed.[3] In sharp contrast, the fixed-node error is much more challenging since, up to

now, no simple and systematic scheme involving only a finite number of parameters exist

for building up the exact (3N −1)-dimensional (N , number of electrons) nodal hypersurface

that would suppress the fixed-node error. In FN-DMC the shape of the nodes are implicitly

introduced via the trial wavefunction ΨT used for propagating walkers. During the Monte

Carlo simulation walkers are diffused (free Brownian motion) and moved deterministically

using the drift vector, ∇ΨT/ΨT . Wherever ΨT = 0 the drift diverges and walkers are pushed

away from the nodal variety, thus imposing additional boundary conditions for the wavefunc-

tion (mathematically it means that the Schrödinger equation is solved stochastically with

the additional condition that the solution vanishes wherever ΨT vanishes). Common wisdom

about nodes is that the more the salient physical/chemical features of the exact wavefunction

are injected into the trial wavefunction the better nodes should be. Thus, an intense activity

has been developed to introduce and test various functional forms for ΨT taking into ac-
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count important aspects of the wavefunction : Use of several more or less sophisticated forms

for Jastrow-type prefactors describing local electron-electron (in particular, r12 → 0 CUSP

conditions) and electron-electron-nucleus interactions,[4] use of various multi-determinantal

forms for introducing static (CASSCF-type wavefunctions)[5],[6] or static/dynamic correla-

tion effects (Valence Bond,[7–9] multi-Jastrow[10], Configuration Interaction,[11], etc.), use

of geminal forms,[12, 13] backflow terms,[14] etc. Once the trial wavefunction form has been

chosen a last step consists in optimizing stochastically the many parameters of ΨT by mini-

mizing the variational energy, its variance, or a combination of both.[15] Depending on the

system treated, this optimization may play an important role since the mixing of various

terms of different origins may destroy the initial coherence of each wavefunction component

and, thus, the nodal quality (e.g., re-optimization of the Kohn-Sham or Hartree-Fock mo-

lecular orbitals in presence of the Jastrow term). A convenient feature of the fixed-node

approximation is the variational property, EFN
0 ≥ E0 (equality for exact nodes), allowing a

quantitative criterion for nodal quality.

Numerical experience for various molecular systems ranging from simple atoms and di-

atomics to bigger systems including hundreds of electrons has shown that fixed-node DMC

total energies obtained from available trial wavefunctions are (very) accurate, the fixed-node

error representing typically a small fraction of the total correlation energy (down to a few

percents in the best cases). Unfortunately, such a good precision is still insufficient to lead

to reliable energy differences known to represent only a tiny fraction of the total correlation

energy (typically, smaller or much smaller than 1%). As a consequence, and similarly to all

known ab initio approaches aiming at reaching chemical accuracy (including the most accu-

rate highly-correlated wavefunction approaches) the quality of FN-DMC results for energy

differences is tightly dependent on the level of error cancellation occurring when subtracting

total energy components calculated separately (here, compensation of fixed-node errors).

Solving this problem is a major challenge faced by present FN-DMC approaches and moti-

vates the search for better trial wavefunctions with better nodes and/or better procedures

for optimizing and/or building accurate nodal hypersurfaces.

In this work, we present our first FN-DMC study of a full potential energy curve using

our very recently proposed trial wavefunction[16] based on a perturbatively selected confi-

guration interaction expansion (the so-called CIPSI algorithm[17, 18]). Our first application

to the ground-state energy of the oxygen atom using the truncated determinantal expansion
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generated by CIPSI has led to the lowest fixed-node energy so far (to the best of our know-

ledge) for this atom [99.4(1)% of the correlation energy recovered]. Applications to bigger

systems are presently under way and appear to systematically lead to better nodes.[19, 20]

An important feature of these applications is that the determinantal expansion built during

the deterministic CIPSI selection process is used as it comes, no re-optimization of deter-

minantal weights and molecular orbitals is performed. It is a particularly attractive feature

since the usual many-parameter stochastic optimization step is thus avoided and to define a

simple and automatic procedure (based on a purely deterministic algorithm) for optimizing

nodes of arbitrary molecular systems is much simplified. The aim of the present study is

to investigate on the case of the F2 molecule how the good results obtained on single-point

calculations generalize or not when calculating potential energy curves. The various aspects

conditioning the method : choice of the basis set, dependence on the number of determi-

nants kept in the CI expansion, and coherence of the fixed-node error as a function of the

internuclear distance (reducing the non-parallelism error) are investigated.

The contents of this paper is as follows. In Section II a few words about the Fixed-

Node Diffusion Monte Carlo method employed here are given. In Section III, the CIPSI

algorithm used for building the selected configuration interaction expansion is presented. In

Section IV CIPSI and FN-DMC results for the F2 ground-state potential energy curve and

the corresponding spectroscopic quantities are presented in detail. The role played by the

number of determinants selected and the coherence of the fixed-node error as a function of

the internuclear distance are investigated. Finally, the main ideas and results of this work

are summarized in Sec. V

II. THE FIXED-NODE DIFFUSION MONTE CARLO

In this work the Fixed-Node Diffusion Monte Carlo (FN-DMC) method -the standard

quantum Monte Carlo electronic-structure approach for molecules- is employed. For a de-

tailed presentation of its theoretical and practical aspects, the reader is referred to the

literature, e.g [1, 21, 22]. Here, we just recall that the central quantity of such approaches is

the trial wavefunction ΨT determining both the magnitude of the fixed-node error through

its approximate nodes as discussed in the introduction and the quality of the statistical

convergence (good trial wavefunctions = small statistical fluctuations). In the present case
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let us remark that the molecule is sufficiently small and the trial wavefunction sufficiently

good to obtain statistical errors much smaller than fixed-node ones. Thus, in practice, we

will only be concerned with the problem of reducing as much as possible the fixed-node

bias. The computational cost of FN-DMC is almost entirely determined by the evaluation

at each Monte Carlo step of the value of ΨT and its first (drift vector) and second deriva-

tives (Laplacian needed for the local energy). In view of the very large number of MC steps

usually required (typically at least millions and often much more) to be able of computing

such quantities very rapidly is essential.

In the present work, as presented in detail in the following section the trial wave function

will be obtained from a truncated configuration interaction expansion, that is, a finite sum of

determinants. Typically, the size of the expansion considered will range from a few thousands

up to a few hundred thousands of determinants. As a consequence, some care is required

when computing such expansions to keep the computational cost reasonable. The calculation

of the Laplacian of the wave function and the drift term involves the computation of the

inverse of the Slater matrices corresponding to each determinant. At first glance, the CPU

cost is expected to be proportional to the number of determinants Ndets involved in the

expansion of the trial wavefunction. Actually, it is not true since in the spin-free formalism

used in QMC (Ref. [23] and also [1, 21, 22]) each Slater determinant expressed in terms of

spin-orbitals decomposes into a product of two determinants, each of them corresponding to

a given occupation of a set of purely spatial molecular orbitals. In practice, only two inverse

Slater matrices (one of each spin) are computed with an O(N3) algorithm. All the other

matrices are built usingO(N2) Sherman-Morisson updates.[24] Therefore, the computational

cost scales as O(N2
α×
√
Ndets) where Nα is the number of α electrons and Ndets is the number

of determinants (products of α and β determinants).

III. PERTURBATIVELY SELECTED CONFIGURATION INTERACTION

In multi-determinantal expansions the ground-state wavefunction |Ψ0〉 is written as a

linear combination of Slater determinants {|Di〉}, each determinant corresponding to a given

occupation by the Nα and Nβ electrons of N = Nα + Nβ electrons among a set of M spin-

orbitals {φ1, ..., φM} (restricted case). When no symmetries are considered the maximum

number of such determinants is
(
M
Nα

)(
M
Nβ

)
, a number that grows factorially with M and N .
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The best representation of the exact wavefunction in the entire determinantal basis is the

Full Configuration Interaction (FCI) wavefunction written as

|Ψ0〉 =
∑
i

ci|Di〉 (1)

where ci are the ground-state coefficients obtained by diagonalizing the Hamiltonian matrix,

Hij = 〈Di|H|Dj〉, within the orthonormalized set, 〈Di|Dj〉 = δij, of determinants |Di〉.
As well known, the main problem with FCI is the exponential increase of the wavefunction,

leading to unfeasible calculations except for small systems. However, an important feature

of FCI expansion is that a vast majority of determinants have negligible coefficients due to

their unphysical meaning and, in practice, only a tiny fraction of the FCI space is expected

to be important.

To avoid handling the prohibitive size of the expansion one may try to select determinants

by order of excitations with respect to the Hartree-Fock (HF) reference determinant, e.g. by

taking all single and double excitations (CISD), triple and quadruple (CISDTQ) etc. but,

here also, we are faced with the problem of handling a formidable number of determinants.

For example, in the case of a CISD calculation the expansion size is about (Nα +Nβ)2n2
virt

where nvirt is the number of virtual orbitals (unoccupied orbitals in the HF determinant),

while for CISDTQ this size is of order (Nα + Nβ)4n4
virt. However, in both cases we are still

managing unnecessarily a great number of determinants having a negligible weight in the

expansion.

A natural idea to make such CI wavefunction much more compact (in practice, a most

important property for DMC calculations) is to select among the FCI expansion only those

determinants that contribute in a non-negligible way to the total energy. Such an idea and

similar ones have been developed by several groups during the last decades (see, among

others [17, 18, 25–31]). Here, we shall employ an approach close to that introduced by

Huron et al.[17] and Evangelisti et al.[18] Referred to as the CIPSI method (Configuration

Interaction using a Perturbative Selection done Iteratively) it is based on a selection process

constructed by using a perturbative estimate of the energy contribution of each determinant

to a reference wave function built iteratively. More details can be found in [17, 18]. Starting

from this idea we have implemented a CIPSI-like algorithm to build compact trial wave

functions to be used in FN-DMC calculations.
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In its simplest form, the multi-determinant wavefunction is iteratively built as follows :

• Step 0 : Start from a given determinant (e.g. the Hartree-Fock determinant) or set of

determinants, thus defining an initial reference subspace : S0 = {|D0〉, ...}. Diagonalize H

within S0 and get the ground-state energy E
(0)
0 and eigenvector :

|Ψ(0)
0 〉 =

∑
i∈S0

c
(0)
i |Di〉 (2)

Here and in what follows, the superscript on various quantities is used to indicate the

iteration number.

Then, do iteratively (n = 0, ...) :

• Step 1 : Collect all different determinants |Dic〉 connected by H to |Ψ(n)
0 〉, namely

〈Ψ(n)
0 |H|Dic〉 6= 0 (3)

• Step 2 : Compute the second-order change to the total energy resulting from each

connected determinant :

δe(|Dic〉) = − 〈Ψ(n)
0 |H|Dic〉

2

〈Dic |H|Dic〉 − E(n)
0

(4)

• Step 3 : Add the determinant |Di∗c 〉 associated with the largest |δe| to the reference

subspace :

Sn → Sn+1 = Sn ∪ {|Di∗c 〉}

• Step 4 : Diagonalize H within Sn+1 to get :

|Ψ(n+1)
0 〉 =

∑
i∈Sn+1

c
(n+1)
i |Di〉 with E

(n+1)
0 (5)

• Go to step 1 or stop if the target size Ndets for the reference subspace has been reached.

Let us denote |Ψ0〉 the wavefunction issued from the previous selection process and E0

its variational energy. In all what follows, |Ψ0〉 will be referred to as the CIPSI reference
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wavefunction and E0 the variational CIPSI energy. Having constructed a zero-th order wa-

vefunction, an improved estimate of the FCI energy can be obtained by adding to the

variational energy the second-order correction, EPT2

EPT2 = −
∑
i∈M

〈Ψ0|H|Di〉2
〈Di|H|Di〉 − E0

. (6)

where M denotes the set of all determinants not belonging to the reference space and connec-

ted to the reference wavefunction |Ψ0〉 by the Hamiltonian H (single and double excitations).

Finally, the total energy obtained is given by

E0(CIPSI) = E0 + EPT2. (7)

In this work, this latter energy will be referred to as the full CIPSI energy.

At this point a number of remarks are in order :

i.) Although the selection scheme is presented here for computing the ground-state

eigenvector only, no special difficulties arise when generalizing the scheme to a finite number

of states (see, e.g.[18])

ii.) The decomposition of the Hamiltonian H underlying the perturbative second-order

expression introduced in step 2 is given by

H = H0 + 〈Dic |H|Dic〉|Dic〉〈Dic |

where H0 is the restriction of H to the reference subspace. This decomposition known as the

Epstein-Nesbet partition[32, 33] is not unique, other possible choices are the Møller-Plesset

partition[34] or the barycentric one,[17] see discussion in [18].

iii.) Instead of calculating the energetic change perturbatively, expression (4), it can be

preferable to employ the non-perturbative expression resulting from the diagonalization of

H into the two-dimensional basis consisting of the vectors |Ψ(n)
0 〉 and |Dic〉. Simple algebra

shows that the energetic change is given by

δe(|Dic〉) =

[〈Dic|H|Dic〉 − E0(Ndets)]

[
1−

√
1 +

4〈Ψ(n)
0 |H|Dic 〉

2

[〈Dic |H|Dic 〉−E0(Ndets)]
2

]
2

(8)
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In the limit of small transition matrix elements, 〈Ψ(n)
0 |H|Dic〉, both expressions (4) and (8)

coincide. In what follows the non-perturbative formula will be used.

iv.) In step 3 a unique determinant is added at each iteration. Adding a few of them

simultaneously is also possible, a feature particularly desirable when quasi-degenerate

low-lying determinants are showing up. In the applications to follow this possibility has

been systematically used by keeping at each iteration all determinants associated with an

energetic change whose absolute value is greater than a given threshold.

v.) The implementation of this algorithm can be performed using limited amount of

central memory. On the other hand, the CPU time required is essentially proportional to

Ndetsn
2
occn

2
virt where nocc and nvirt are the number of occupied and virtual molecular orbitals,

respectively.

IV. APPLICATION TO THE F2 MOLECULE

In this section calculations of the potential energy curve of the F2 molecule both at the

deterministic CIPSI and stochastic Fixed-Node DMC levels are presented. In subsection

(IV A) we first present and discuss the results obtained with CIPSI. The dependence of the

variational and full CIPSI energy curves on the number of selected determinants and on

the basis set (Dunning’s cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ) is analyzed. Following the

standard implementation of CIPSI, the number of determinants selected is kept constant

along the potential energy curve ; this approach is referred to as � CIPSI at constant number

of determinants �. In subsection (IV B) FN-DMC results using CIPSI reference functions

as trial wavefunctions are presented. To quantify the overall quality of the energy curves

obtained either by CIPSI or FN-DMC we introduce in subsection (IV C) the definition used

here for the non-parallelism error measuring the degree of non-parallelism between the com-

puted and exact curves. Results for CIPSI and FN-DMC curves are given. To decrease the

non-parallelism error without increasing the basis set size and, thus, the number of deter-

minants that would make DMC calculations not feasible in practice, we propose a strategy

based on the use of CIPSI reference functions with a variable number of determinants along
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the energy curve. For each geometry, the CIPSI selection process is stopped for a number

of determinants leading to a given value of EPT2, Eq.(6) common to all nuclear distances ;

this approach presented in subsection (IV D) is referred to as � CIPSI at constant EPT2 �.

FN-DMC results obtained with such trial wavefunctions are presented in subsection (IV E).

Finally, a graphical summary of the potential energy curves obtained here at various levels

of approximation is presented in subsection (IV F).

A. CIPSI at constant number of determinants

In figure 1 variational CIPSI energy curves for increasing numbers of selected determi-

nants are presented. The curves have been drawn from the energy values calculated at 27

interatomic distances. Interpolation between points is made using standard cubic splines.

The number of determinants is kept constant along the potential energy curve. The atomic

basis set used is the Dunning cc-pVDZ (VDZ) basis set.[35] For all basis sets considered in

this work, CIPSI calculations are done with the molecular orbitals obtained from a minimal

Complete-Active-Space Self-Consistent-Field (CASSCF) calculation (two electrons in two

orbitals) ; no re-optimization of the molecular orbitals is performed. In addition, the core

electrons are kept frozen. The curves of Fig. 1 are obtained by stopping the CIPSI iterative

process for a number of determinants Ndets= 5 102, 103, 5 103, 104, 5 104, 7.5 104, and 105.

At the scale of the figure the 500- and 1000-determinant energy curves are not yet conver-

ged to the full CI. In both cases a fictitious dissociation barrier at intermediate internuclear

distances is observed. This artefact associated with the lack of convergence of the multi-

determinantal expansion disappears for larger numbers of determinants. A convergence of

the whole curve at the kcal/mol level is reached for a number of determinants between 5 104

and 7.5 104. Using the cc-pVDZ basis set (24 atomic orbitals) the size of the FCI space is

about 1012 determinants (1s orbitals frozen and no symmetry taken into account). The rapid

convergence of variational CIPSI energy curves for such a large size illustrates the benefit

of considering selected CI instead of more conventional CI schemes based on the use of full

subspaces corresponding to multi-excitations of increasing order (all single-, all single- and

double-, etc.) whose sizes become rapidly too large. Here, a CISD calculation (all single-

and double- excitations) leads to a subspace size of about 2 104, while all SDTQ excitations

(CISDTQ) generate about 109 determinants.
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Figure 2 shows the full CIPSI energy curves obtained by adding to each variational

energy the second-order perturbation energy correction, Eq.(6). The improvement of the

convergence in the number of determinants is striking. At about 5 103 determinants the

convergence of the whole energy curve is reached with chemical accuracy (∼ 1. kcal/mol).

At 105 determinants, the full CIPSI curve is expected to be an accurate estimate of the

exact nonrelativistic full valence CI-VDZ potential energy curve. To quantify this latter

aspect we report in Table I our CIPSI energies together with the values of Bytautas et al.

[36] calculated with the Correlation Energy Extrapolation by Intrinsic Scaling (CEEIS)

approach. The CEEIS energies are believed to coincide with the exact FCI values with an

accuracy of about 0.3 mEh. At the experimental equilibrium distance we also report the

total energies obtained by Cleland et al. using i-FCIQMC[37]. The 13 internuclear distances

of Table I are those considered by Bytautas et al.. At the VDZ level the differences between

CIPSI and CEEIS values are very small. Around the equilibrium energy the maximum error

between them is about 0.2 mEh and is slightly larger at larger distances with a maximum of

about 0.4 mEh. At the equilibrium distance both CIPSI and CEEIS values almost coincide

with the i-FCIQMC results.
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Figure 1: cc-pVDZ basis set. Convergence of the variational CIPSI energy as a function of the

number of selected determinants. Inset = blow up of the equilibrium region.
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−199.12

−199.04

−198.96

−198.88

−198.80
E

n
er

g
y

(a
.u

.)
500

103

5 103

104

5104

7.5 104

105

1.301.351.401.451.501.551.60
−199.102

−199.100

−199.098

−199.096

−199.094

Figure 2: cc-pVDZ basis set. Convergence of the full CIPSI energy as a function of the number

of selected determinants. Inset = blow up of the equilibrium region.

Figures 3, 4, 5, and 6 present the results obtained with the greater cc-pVTZ (VTZ)

and aug-cc-pVTZ (AVTZ) basis sets. The numbers of atomic orbitals are now 60 and 92,

respectively. The sizes of the Full CI space are much increased, about 1020 and 1023 for

the cc-pVTZ and aug-cc-pVTZ basis sets, respectively. As expected, the greater the Hilbert

space is, the slower the convergence of the energy curves is. At the variational level, the

convergence at the chemical level with VTZ, Fig.3, is attained for a number of determinants

of about 105. With AVTZ, Fig. 5, this level of convergence is not reached even with 105

determinants. As for the VDZ basis set, the convergence is greatly enhanced when the second-

order perturbative correction is added up. The full CIPSI-VTZ energy curve is converged

with a maximum error of about 1. kcal/mol for about 2 104 determinants, Fig.4. As seen

from Table I the errors with respect to the accurate values of Ref. [36] are small. Around

the equilibrium distance the error is of order 1. mEh and about two times larger in the

long-distance regime. The convergence of the full CIPSI with the largest AVTZ basis set is

still satisfactory and is obtained here at the kcal/mol level with a number of determinants
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greater than 4 104 determinants. Once again, we emphasize that obtaining such good quality

FCI curves with a number of determinants representing only a tiny fraction of the whole

Hilbert space is particularly remarkable (fractions of about 10−7, 10−15, and 10−18 for the

VDZ, VTZ, and AVTZ basis sets, respectively).
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−199.30

−199.15

−199.00

−198.85

−198.70

−198.55

E
n

er
g
y

(a
.u

.)

500

103

5 103

104

5 104

7.5 104

105

1.301.351.401.451.501.551.60
−199.274
−199.272
−199.270
−199.268
−199.266
−199.264
−199.262
−199.260

Figure 3: cc-pVTZ basis set. Convergence of the variational CIPSI energy as a function of the

number of determinants in the reference wave function. Inset = blow up of the equilibrium region.
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Figure 4: cc-pVTZ basis set. Convergence of the full CIPSI energy as a function of the number

of determinants. Inset = blow up of the equilibrium region.
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Figure 5: aug-cc-pVTZ basis set. Convergence of the variational CIPSI energy as a function of

the number of determinants. Inset = blow up of the equilibrium region.
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Figure 6: aug-cc-pVTZ basis set. Convergence of the full CIPSI energy as a function of the number

of determinants. Inset = blow up of the equilibrium region.
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R in Å CIPSI-VDZ CEEIS-VDZb i-FCIQMC-VDZc CIPSI-VTZ CEEIS-VTZb i-FCIQMC-VTZc CIPSI-AVTZ

1.14 -199.007 16 -199.007 18 - -199.212 7 -199.213 4 - -199.228 3

1.20 -199.048 02 -199.048 11 - -199.252 2 -199.253 0 - -199.267 9

1.30 -199.084 94 -199.085 10 - -199.286 3 -199.287 0 - -199.302 1

1.36 -199.095 18 -199.095 17 - -199.294 2 -199.295 0 - -199.310 2

1.41193a -199.099 28 -199.099 20 -199.099 41(9) -199.296 5 -199.297 2 -199.297 7(1) -199.312 3

1.50 -199.099 77 -199.099 81 - -199.293 5 -199.294 4 - -199.309 5

1.60 -199.095 08 -199.095 10 - -199.285 2 -199.286 1 - -199.301 2

1.80 -199.080 90 -199.080 90 - -199.266 2 -199.267 6 - -199.281 8

2.00 -199.069 07 -199.068 82 - -199.252 7 -199.254 3 - -199.267 4

2.20 -199.061 84 -199.061 65 - -199.245 3 -199.247 1 - -199.259 4

2.40 -199.058 06 -199.058 23 - -199.241 7 -199.243 6 - -199.255 6

2.80 -199.055 52 -199.055 77 - -199.239 3 -199.241 2 - -199.252 3

8.00 -199.055 06 -199.055 45 - -199.238 4 -199.240 8 - -199.250 0

Atomic limit F+F

VDZ VTZ AVTZ

CIPSI, this work -199.055 53 -199.241 1 -199.255 9

i-FCIQMC -199.055 44(8)c -199.241 0(2)c -

Table I: Total nonrelativistic ground-state energies calculated using CIPSI (core electrons frozen).

Basis sets= cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ. For VDZ and VTZ results are compared with

the values of Bytautas et al. [36] and those of Cleland et al. [37] at the experimental distance.

Energy in hartree.

a Expt. equilibrium distance

b Ref. [36]

c Ref. [37]

In figure 7 a comparison of the CIPSI energy curves with those obtained by more standard

approaches using the VDZ basis set is presented. The CASSCF(2,2) potential energy curve

is plotted in the upper part of the figure. Due to the absence of dynamical correlation
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contributions, CASSCF values are much too high in energy. However, as it should be the

energy curve displays a correct dissociation behavior, the large-distance energy converging

to the sum of HF energies of the two fluorine atoms. Note that the Hartree-Fock curve

is not given here since at this level of approximation the F2 molecule is not even bound.

The Coupled-Cluster curve (green line) using single and double excitations gives much more

satisfactory results. In the equilibrium geometry region, CCSD energies are close to CIPSI

results but still slightly higher. However, at large separations the CCSD curve dissociates

with a large error of about 0.5 a.u with respect to the FCI-VDZ atomic energies. This latter

atomic limit is drawn on the figure as a horizontal line. As seen the variational CIPSI energy

curve almost dissociates toward the exact value (error of about 0.013 a.u. at R = 4Å a small

but discernible quantity on the figure) while the full CIPSI energy curve is in full agreement

with the FCI atomic limit (indistinguishable on the figure).
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Figure 7: cc-pVDZ basis set. Comparison of CIPSI results with CASSCF (upper part) and CCSD.

The exact FCI (F+F) dissociation limit is given.

To get a more quantitative view of the dependence of the CIPSI potential energy curves

on the number of determinants selected, we report the results obtained for the three basic
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spectroscopic quantities : The equilibrium distance, Req, the dissociation energy D0, and the

second derivative k at Req (curvature), a quantity directly related to the harmonic frequency.

Data for the VDZ, VTZ, and AVTZ basis sets are given in Table II In this work, an accurate

approximation of the exact non-relativistic, infinite nuclear masses, potential energy curve

of the fluorine molecule has been built from data given in Refs.[38, 39]. From R = 1.14Å to

R = 2.4Å total energies are reconstructed from the non-relativistic contributions of Table

IV in [38], while for the long-range regime, from R = 2.8Å to 8Å, the data used are taken

from Table V of [39]. The (F+F) dissociation limit is calculated using the atomic value of

Davidson et al. in [40]. Note that the maximum error in the total energy curve resulting

from these data is expected to be much smaller than the millihartree, a precision sufficient

for our needs. To get the spectroscopic quantities, an accurate fit of the energies calculated

at 26 interatomic distances via a 10-parameter generalized Morse potential representation

has been performed. In the case of the VDZ basis set we also report an accurate estimate

of the VDZ dissociation energy obtained from the i-FCIQMC energy calculation of Cleland

et al.[37]. The value of 45.00(11) a.u reported in the table is a distance-corrected value

that we have obtained by adding to the value of 43.87(11) a.u from Ref.[37] calculated

at the experimental equilibrium distance of R = 1.4119Å, the correction needed to shift

to the minimum of the VDZ energy curve at R = 1.463Å. As expected, CASSCF values

for the three spectroscopic quantities are of low quality. With the biggest AVTZ basis set,

the CASSCF dissociation energy is less than one-half (28.4 mEh) of the exact value, the

equilibrium distance is much too large, and the curvature too small. Using the VDZ basis set

variational CIPSI results give an equilibrium distance and curvature essentially converged

between 104 and 5104 determinants. In contrast, the dissociation energy is still varying from

104 (D0= 41.9 mEh) to 105 determinants (D0= 43.97 mEh). At the full CIPSI level, the

convergence of the dissociation energy is much better but still slightly decreasing. The value

for 105 determinants is 45.17 mEh, to be compared with the corrected value of 45.00(11)

mEh of Ref. [37]. We also report the spectroscopic quantities obtained from the CEEIS data.

The agreement with our own data is excellent, thus confirming that at the VDZ level (see,

Table I) the results obtained with CIPSI are of a quasi-FCI quality. Upon increasing the

basis to the larger cc-pVTZ and aug-cc-pVTZ basis sets, the spectroscopic quantities are

significantly improved. The size of the Hilbert spaces greatly increasing, the convergence is

slowed down. At the VTZ level, the CIPSI dissociation energy is still varying (decreasing)
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up to 5 104 determinants, the value obtained with the largest calculation being D0 = 57.6

mEh. Compared to the VDZ value of 44.1 mEh this value is much improved (exact value of

62.35 mEh). As it should be, the equilibrium distance is reduced and the curvature increased

as a result of the deepening of the well. The comparison with CEEIS data is also very good,

except for the dissociation energy which we found about 1.mEh larger with CIPSI (57.6 and

56.7). This difference clearly results from the increase as a function the distance of the CIPSI

error with respect to the quasi-FCI (CEEIS) results : At R=1.41193 the error is 0.7 mH and

2.4 mH at R=8. At the AVTZ level the CIPSI dissociation energy for 105 determinants is

found to be 60.0 mEh. However, because of the increase of the CIPSI error with distance

just discussed in the AVTZ case, this value must be taken with lot of caution and is very

likely overestimated by one or two millihartrees. This is confirmed by the fact that using the

CEEIS data of Bytautas et al., [38] with the larger VQZ basis set the dissociation energy

(expected to be larger than with AVTZ) is 59.8 mEh.
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VDZ basis set

CASSCF CIPSI : Variationala/Fullb CEEISc i-FCIQMCd

Ndets 2 5 103 104 5 104 7.5 104 105

Req 1.531 1.465/1.460 1.464/1.460 1.463/1.462 1.462/1.463 1.463/1.463 1.460 -

D0 22.1 40.9/45.7 41.9/45.6 43.8/45.3 44.39/45.22 43.97/45.17 45.14 45.00(11)

k 0.43 0.73/0.78 0.75/0.78 0.77/0.77 0.78/0.76 0.76/0.76 0.80 -

VTZ basis set

CASSCF CIPSI : Variational/Full CEEIS

Ndets 2 5 103 104 5 104 7.5 104 105

Req 1.469 1.410/1.412 1.409/1.415 1.418/1.417 1.418/1.419 1.418/1.417 1.416

D0 26.5 56.8/61.0 49.8/58.6 52.9/57.6 49.8/58.6 54.14/57.6 56.7

k 0.63 1.067/1.132 1.062/1.092 1.037/1.079 1.062/1.092 1.030/1.079 1.075

AVTZ basis set

CASSCF CIPSI : Variational/Full CEEIS

Ndets 2 5 103 104 5 104 7.5 104 105

Req 1.463 1.405/1.413 1.392/1.414 1.415/1.418 1.418/1.419 1.418/1.419 -

D0 28.4 59.6/66.4 57.5/63.8 52.1/60.2 54./60.0 54./60.0 -

k 0.66 1.158/1.151 1.108/1.117 1.013/1.078 1.03/1.073 1.03/1.073 -

Infinite basis set (Exact)

Req 1.412

D0 62.35e

k 1.121

Table II: Spectroscopic constants from variational and full CIPSI as a function of Ndets and of

the basis set employed. Req in Å, D0 in millihartrees, and k in hartree/Å2. Spectroscopic constants

(X = Req, D0, and k) presented as X1/X2 where X1 and X2 are the values obtained from the

variational and full CIPSI energy curves, respectively. For comparison, the CASSCF, exact non-

relativistic, and the corrected near-FCI value of Cleland et al. (see, text) are also given.

a Spectroscopic data obtained from the variational CIPSI energy curve.

b Spectroscopic data obtained from the full CIPSI energy curve, Eq.(7)

c [36]

d [37]

e Value taken from Table IV of Bytautas et al. [38] and corresponding to the estimated nonrelati-

vistic full valence CI dissociation energy (no core correlation).
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At this point it would be desirable to increase further the basis set by considering higher

cardinal numbers (QZ, 5Z, etc.). However, our purpose being to avoid to handle exponentially

increasing Hilbert spaces, we shall now turn our attention to FN-DMC methods.

B. FN-DMC with CIPSI at constant number of determinants

We present all-electron FN-DMC calculations of the potential energy curve using CIPSI

reference wavefunctions as trial wavefunctions. All FN-DMC simulations presented in this

section have been performed by running first a CIPSI calculation at constant number of

determinants and, then, using as trial wavefunction the CIPSI reference wave function as it

is. We emphasize that no preliminary multi-parameter stochastic optimization of the trial

wavefunction has been performed, the CASSCF molecular orbitals are kept unchanged for all

distances and calculations, the determinantal coefficients are those issued from CIPSI, and

no Jastrow prefactor has been employed (we just impose the electron-nucleus cusp conditions

at very short distances). In this way all calculations may be performed in a fully automatic

way : i) Choose a target number of determinants and of Monte Carlo steps, ii) run CIPSI,

and then iii) run FN-DMC.

The convergence of the FN-DMC energy curve as a function of the number of determinants

for the cc-pVDZ basis set is presented in figure 8. For the sake of comparison, the DMC

curve obtained from CAS(2,2) nodes is also reported. Total energies have been calculated

for interatomic distances of 1.35, 1.40, 1.428, 1.45, 1.50, 1.55, 1.60, 2.10, 2.40, and 4.00

Å. The statistical error on FN-DMC/CIPSI energies using 1 000 and 5 000 determinants

is typically 0.002 a.u. For 10 000 determinants a slighter larger value of about 0.003 a.u

is obtained. To better estimate the dissociation energy (see, below) the energy values at

the distances of 1.428 and 4. have been computed using more statistics (Monte Carlo runs

ten times longer). Quite remarkably, FN-DMC/CIPSI energies are found to systematically

decrease for all interatomic distances as the number of selected determinants is increased

Said differently, the nodes of the CIPSI wavefunctions are systematically improved upon

iterations (reduction of the fixed-node error). A similar property has been observed for the

oxygen atom[16] and, also, for bigger atoms and molecules.[19, 20] To understand the origin

of this remarkable mathematical property is not simple. However, a heuristic argument

can be given as follows. When the total energy is lowered (the criterion used during the
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CIPSI selection process) the wavefunction is dominantly improved in the neighborhood of

its maxima (regions contributing the most to the energy). In particular, the localization of

such maxima is expected to be improved. Now, the positions of the maxima and zeroes of a

wavefunction being intimately correlated (as any solution of a wave-like equation), we can

also expect an improved localization of the nodes. As seen on the figure the convergence of

the FN-DMC energy curve is approximately reached for 5 103 determinants, a result coherent

with the convergence of the variational CIPSI energy curve at roughly the same number of

determinants, Fig.1. Note that handling a few thousands of determinants in FN-DMC (the

trial wavefunction and its derivatives are to be computed at each Monte Carlo step) is still

feasible in practice.

In Table III the FN-DMC spectroscopic quantities (Req, D0, k) obtained with CAS(2,2)

and CIPSI/VDZ nodes for increasing numbers of determinants are presented. The values

and error bars have been obtained by fitting a set of 20 energy curves using a 10-parameter

generalized Morse potential representation. Each of these curves is obtained from different

realizations of the statistical noise. For D0 we also give the value obtained by directly compu-

ting the difference ∆E between total FN-DMC energies at the equilibrium geometry and at

the large-distance value of R=4 Å. Spectroscopic quantities are essentially converged within

error bars for 5 103 determinants. However, due to the magnitude of statistical fluctua-

tions, to extract accurate values of the equilibrium distances and curvatures is impossible.

Using CIPSI nodes, typical values are Req= 1.43(3) and k =1.0(4). Error bars are clearly

too large to allow any detailed analysis. In contrast, the situation is more satisfactory for

the dissociation energy. Coherent values with small enough statistical errors are obtained

either from the statistical fit of the energy curves or the direct calculation of the energy gap.

Using 104 determinants the FN-DMC dissociation energy obtained is 55.2(12) mEh, a clear

improvement with respect to the value of 41.9 mEh corresponding to the trial wavefunction

(see, Table II) Finally, remark that results obtained with FN-DMC/CIPSI-VDZ are of a

comparable quality to those obtained at the variational CIPSI/VDZ level (see, Table II)

To improve the quality of the results beyond FN-DMC/CIPSI-VDZ, a natural solution

is to increase the size of the basis set. However, such a strategy is doomed to failure since

the number of determinants necessary to build converged nodes is expected to increase too

rapidly. For example, in the case of the VTZ basis set for which the variational energy was

found to converge around 5 104 determinants, a similar number of determinants should be



25

expected to get accurate enough nodes. From a computational point of view, this situation

is clearly not favorable to FN-DMC. In what follows, we want to avoid to follow this path

and, instead, propose an alternative strategy based on the improvement of the global shape

of the energy curve instead of on the search for increasingly precision for total energies.
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Figure 8: FN-DMC with CIPSI-VDZ nodes. Convergence of the FN-DMC energy curve as a

function of the number of determinants selected in the trial wavefunction
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Exact CAS-nodes 103-det nodes 5 103-det nodes 104-det nodes

Req 1.412 1.434(8) 1.419(15) 1.424(26) 1.428(20)

D0 62.0a 48.3(7)/∆E=48.3(10) 59.6(13)/∆E=59.0(6) 56.9(16)/∆E=56.5(13) 55.2(12)/∆E=55.9(18)

k 1.121 1.0(2) 1.6(6) 1.1(5) 1.0(4)

Table III: FN-DMC spectroscopic quantities computed with CAS(2,2) and CIPSI-VDZ nodes

(number of determinants = 103, 5 103, and 104). Values of (Req, D0, k) and error bars obtained

from a statistical distribution of 20 different energy curves fitted with a generalized Morse po-

tential. In the case of D0, the dissociation energy directly obtained from the energy gap is also

given. Equilibrium distances in Å, dissociation energies in millihartrees, and energy curvatures in

hartree/Å2

a Value taken from Table IV of Bytautas et al. [38] and corresponding to the estimated non-

relativistic full CI dissociation energy including the contribution of the core correlation (present in

FN-DMC).

C. Quantifying the non-parallelism error

Along a potential energy curve -more generally a potential energy surface (PES)- the

physical/chemical nature of the wavefunction is known to change dramatically. Thus, one of

the critical issue of any electronic structure approach is its ability of treating with a similar

precision the various regimes of the wavefunction (so-called “balanced” description of the

PES). For chemical/physical purposes to get accurate estimates of absolute total energies

is known not to be of great interest ; instead, we need to accurately calculate the variation

of the total energy (energy gradient) along a reaction path. To quantify such an aspect it is

usual to introduce a quantity (the so-called non-parallelism error) measuring the degree of

non-parallelism of the computed curve with the exact curve. This quantity being heuristic

in nature, several definitions are possible. Here, the non-parallelism error, ∆, is defined as

follows. Denoting {Ei}i=1,N a set of N approximate total energies computed with a given

method for N geometries, ∆ is defined as

∆ =

√√√√ 1

N

N∑
i=1

[Ei − (Ei
ex + d̄)]2, (9)
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where Ei
ex are the exact energies and d̄ the average distance between the exact and the

approximate curve

d̄ =
1

N

N∑
i=1

|Ei − Ei
ex| (10)

Roughly speaking, ∆ can be viewed as a measure of the variations of the computed curve

with respect of the exact one, once the exact curve has been shifted upward by the average

distance between the two curves. As it should be, ∆ vanishes when the two curves are exactly

parallel and increases as a function of the difference between the overall global shape of the

two PES.

Table IV reports the values obtained for ∆ at the various levels of approximation discussed

up to now as a function of the number of determinants. To calibrate our data, the CASSCF-

VDZ value, ∆ = 0.02371, is given. At the CIPSI-VDZ level, the values corresponding to

the variational and full CIPSI calculations are found to converge to the value ∆ ∼ 0.011.

As discussed above, a quasi convergence to the FCI curve being obtained, this value should

be considered as the non-parallelism error of the FCI-VDZ curve. As expected, using the

larger VTZ basis set decreases the error. The value found for ∆ is about 0.0035, a definite

improvement with respect to the VDZ basis set. Calculating the energy curve with FN-DMC

using CIPSI-VDZ reference function is also expected to decrease the non-parallelism error.

The value obtained at this level is, ∆ ∼ 0.0028, a value slightly smaller than the one found

with the purely deterministic CIPSI-VTZ approach.

Number of determinants 2 102 5 102 103 5 103 104 5 104 105

CASSCF-DZ 0.0265

CASSCF-TZ 0.0204

Variational CIPSI-VDZ 0.0050 0.0065 0.0080 0.0125 0.0122 0.0116 -

Full CIPSI-VDZ 0.0071 0.0087 0.0093 0.0110 0.0110 0.0112 -

Variational CIPSI-VTZ 0.0054 0.0072 0.0092 0.0108 0.0101 0.0056 0.0047

Full CIPSI-VTZ 0.0095 0.0065 0.0060 0.0039 0.0038 0.0038 0.0038

FN-DMC/CIPSI-VDZ 0.0021 0.0029 0.0020 0.0027 0.0028 - -

Table IV: Non-parallelism error of the variational CASSCF curves, the variational and full CIPSI

curves, and the FN-DMC curve with CIPSI-VDZ nodes.
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To reduce further the non-parallelism error without increasing the basis set, an approach

aiming at describing in a more coherent way the different regions of the potential energy

curve is proposed in the following section.

D. CIPSI at constant EPT2

Stopping the iterative CIPSI process at a given number of determinants identical for

all geometries does not insure a coherent description of the energy curve. To construct a

wavefunction of comparable quality in each region (short interatomic distances, equilibrium

region, intermediate regime, and near-dissociation limit), it is natural to consider expansions

involving a variable number of determinants as a function of the interatomic distance. This

point is clearly illustrated on Fig.1 where the intermediate region between R = 2Å and 2.5Å

is poorly described with a CIPSI-VDZ wavefunction having a small number of determinants.

For 5 102 and 103 determinants, a spurious local maximum is observed, this artefact disap-

pearing for larger numbers of determinants. In contrast, in the equilibrium regime where

the wavefunction is known to have a much less marked multi-configurational character, no

qualitative change for the energy curve is observed when passing from a (very) small to a

large number of determinants. Fig.2 shows that after adding the second-order correction to

the variational CIPSI energy, all curves become much better-behaved and in particular no

spurious maxima are observed. As already pointed out, this result shows that EPT2 repre-

sents most of the remaining difference between the variational CIPSI and FCI energies. It

thus motivates us to consider the magnitude of EPT2 as an indicator for evaluating the diffe-

rence between the CIPSI multi-determinantal wavefunction and the FCI solution. The new

strategy is then as follows : At a given geometry the CIPSI iterative process is stopped when

a target value for the second-order contribution is reached and not when a fixed number of

determinants is obtained. The target value is chosen identical along the PES and the FCI

limit is recovered when this value is decreased down to zero. When EPT2 represents a good

estimate of the difference between the variational CIPSI and FCI energies, the variational

CIPSI curve obtained with the variable number of determinants is expected to be almost

parallel to the unknown FCI one. Of course, when higher-order corrections EPTN (N > 2)

are present, some deviation from the FCI curve is expected. Remark that some work with a

similar idea has been done previously by Persico et al.[41]. The difference with the present
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work is that the norm of some approximate first-order perturbed wavefunction was consi-

dered instead. We believe that using directly an energetic criterion is more natural in this

context.

To illustrate how using a constant number of determinants along the potential energy

curve can induce distortion in the quality of the reference function, we present in Fig. 9 the

second-order perturbative correction calculated from the CIPSI-VDZ reference wavefunction

including 103 determinants as a function of the interatomic distance. In the intermediate

region where the bond is about to be broken (around 2.2 Å) the perturbative correction

is bigger that for any other geometries and more determinants are needed to produce a

wavefunction of similar quality.
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Figure 9: EPT2 as a function of the interatomic distance for CIPSI-VDZ wavefunctions with 103

determinants. Basis set= cc-pVDZ

In figure 10 the number of determinants needed along the energy curve to impose a

constant value of EPT2 of -0.05 hartree is plotted. It is approximately the value obtained when

considering a fixed number of 103 determinants, see Fig.9. As it should be a non-constant

value of the number of determinants is observed with a maximum in the intermediate region.
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Figure 10: Number of determinants required to impose a value of EPT2 of -0.05 hartree as a

function of the interatomic distance. Basis set=cc-pVDZ

The potential energy curves obtained using this scheme are presented in Fig.11 for a

value of EPT2 of -0.05 hartree. The variational CIPSI energy curve obtained with a va-

riable number of determinants (upper curve), the full CIPSI curve obtained by adding the

constant perturbative contribution of -0.05, and the FCI one accurately approximated by the

105-determinant curve presented in Fig.2 are plotted. Remarkably, the FCI and full CIPSI

curves are almost identical. It means that higher-order perturbative contributions beyond

the second-order are small. Their largest contributions lie in the equilibrium region but do

not exceed 0.005 a.u. Imposing a constant EPT2 thus leads to a full CIPSI curve close to

the FCI one and then to a variational CIPSI energy curve almost parallel to the FCI one.

Note also that the spurious maximum observed when using a constant small number of

determinants is no longer present.
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Figure 11: Potential energy curves obtained by imposing a constant value EPT2 of -0.05 hartree.

Figure 12 presents the full CIPSI curves obtained with EPT2=-0.2,-0.1,-0.05,-0.02, and

-0.01 (atomic units). As seen on this figure, the various curves, except for the largest value

of EPT2 of -0.2, almost coincide with the FCI curve at the scale of the figure.
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Figure 12: Convergence of the full CIPSI energy curve for various values of constant EPT2.

In table VI, the convergence of the dissociation energy, equilibrium distance, second-

derivative, and non-parallelism error for the variational and full CIPSI energy curves as a

function of EPT2 is reported. A first remark is that the spectroscopic values obtained from the

variational and the full CIPSI curves at constant EPT2 are almost identical (in contrast with

CIPSI at constant number of determinants, see Table II). Of course, it is expected since the

difference between the variational and full CIPSI energies is imposed to be constant. Note

that the (very) small differences observed are because imposing a strict constant value of

EPT2 is not possible due to the integer character of the number of determinants. A second

remark is that the convergence of the spectroscopic quantities as a function of the number

of determinants (for each EPT2 an estimate of the average number of determinants along the

energy curve is given in parentheses) is more rapid than when using CIPSI with a constant

number of determinants, thus illustrating the efficiency of the constant EPT2 CIPSI approach.
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CIPSI : Variational/full

EPT2(a.u.) Req D0 k ∆

-0.2 (∼ 1.6 102 dets) 1.458/1.458 57.5/57.3 0.82/0.83 0.009/0.009

-0.1 (∼ 5 102 dets) 1.450/1.451 50.0/51.0 0.83/0.82 0.009/0.009

-0.05 (∼ 1.1 103 dets) 1.455/1.454 49.2/48.6 0.81/0.82 0.010/0.010

-0.02 (∼ 3.5 103 dets) 1.459/1.459 44.6/45.5 0.78/0.78 0.011/0.011

-0.01 (∼ 2 104 dets) 1.460/1.460 44.0/43.9 0.78/0.78 0.011/0.011

-0.008 (∼ 3.5 104 dets) 1.461/1.461 43.8/43.7 0.77/0.77 0.011/0.011

CIPSI 105 detsa 1.463/1.463 43.97/45.17 0.76/0.76 0.011/0.011

i-FCIQMC 45.00(11)

Exact NR 1.412 62.35 1.121 0.

Table V: Basis set =cc-pVDZ. Convergence of the spectroscopic quantities and non-parallelism

error with CIPSI at constant EPT2 as function of EPT2. For each EPT2, results obtained from the

variational and full CIPSI energy curves are given. Equilibrium distance in Å, dissociation energy

in millihartree, and curvature in hartree/Å2.

a See Table II

E. FN-DMC with CIPSI at constant EPT2

FN-DMC energy curves obtained from CIPSI-VDZ reference wavefunctions at constant

EPT2 are presented in Fig.13. Corresponding spectroscopic values and non-parallelism errors

are reported in Table VI. To compare with, FN-DMC values using a constant number of

104 determinants are also given (taken from Table III). FN-DMC spectroscopic quantities

using trial wavefunctions at constant EPT2 systematically improve when decreasing EPT2

from -0.2 a.u. to -0.05 a.u. For this latter value, results are much improved with respect to

FN-DMC values at constant number of determinants : The error in the dissociation energy

is greatly reduced from 6.7 to 2.2 mEh, the equilibrium distance and curvature are found of

comparable quality and, the non-parallelism error is significantly reduced to 0.0018, the best

value obtained in this work. However, for the smaller value EPT2=-0.02 results deteriorate

and become close to those obtained with FN-DMC with a fixed number of determinants.
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This result is of course expected since in the limit of a vanishing value for the second-order

energy correction, the CIPSI algorithm at constant EPT2 reduces to the standard one.
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Figure 13: FN-DMC energy curves for several values of EPT2 (VDZ basis set)

EPT2(a.u.) Req D0 k ∆

-0.2 (∼ 1.6 102 dets) 1.442 50.1(4) 0.839 0.0045

-0.1 (∼ 5 102 dets) 1.433 56.7(5) 1.190 0.0031

-0.05 (∼ 1.1 103 dets) 1.431 59.7(6) 1.131 0.0018

-0.02 (∼ 3.5 103 dets) 1.429 56.0(13) 1.125 0.0028

104 nodes 1.428 55.3 1.117 0.0030

Exact 1.412 62.0 1.121 0.

Table VI: Basis set=cc-pVDZ. FN-DMC spectroscopic values and non-parallelism errors using

CIPSI-VDZ trial wavefunctions at constant EPT2. Equilibrium distance in Å, dissociation energy

in millihartree, and curvature in hartree/Å2.

In Fig.14 the FN-DMC dissociation energies obtained for the different values of EPT2 are
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plotted. Two regimes are clearly observed. For EPT2=-0.2 a.u.,-0.1 a.u, and -0.05 a.u, the

dissociation energy increases almost linearly as a function of the second-order correction (see,

dashed line of the figure). Quite remarkably, when extrapolating the results (via a simple

quadratic extrapolation) to vanishing EPT2, a dissociation energy close to the exact value of

62.0 mEh is obtained. In the second regime corresponding to small values of EPT2 the curve

reaches a maximum somewhere between -0.02 a.u. and -0.05 a.u. and, then, decreases down

to a value at EPT2 =0 close to the FN-DMC result obtained above with the quasi-FCI trial

wavefunction (55.3 mEh). The existence of these two regimes is particularly striking and is

interpreted here as follows. In the first regime corresponding to large values of EPT2, the

determinants entering first the CIPSI expansion are those having a large coefficient in the

exact wavefunction expansion. These determinants are typically associated with the multi-

reference character of the system (static correlation contributions). In the second regime,

many more determinants of much smaller weights enter the expansion. Their role is to

build up dynamical correlation effects or, equivalently, to better describe the small-distance

details of the electron-electron interaction. Determinants contributing to the first regime are

expected to be weakly dependent on such small-distance details and, thus, on the quality

of the basis set. This could be the reason why in the large-EPT2 regime the dissociation

energy extrapolates to the exact value independent on the basis set. In sharp contrast, at

smaller EPT2 the numerous determinants with small weights that enter in the expansion to

describe the local details of the wavefunction are much more basis-set dependent. Thus, in

this regime the behavior of the curve is expected to be strongly dependent on the specific

basis set employed.
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Figure 14: FN-DMC/VDZ dissociation energies obtained for different values of EPT2

F. Graphical summary : F2 curves at various levels of approximation

In figure 15 the main results of this work are summarized by showing on the same graph

the various energy curves obtained. For the sake of clarity, each energy curve has been

shifted down by the constant leading to a dissociation toward the exact (infinite basis)

nonrelativistic atomic limit.
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Figure 15: F2 potential energy curves using the various approaches presented in this work. Com-

parison with the estimated exact nonrelativistic curve. Each energy curve has been shifted down

to impose at large distance the exact atomic limit.

All curves are located between the poor-quality CASSCF curve (upper curve) and the

estimated exact nonrelativistic fixed nucleus curve (lowest solid line). For the sake of clarity,

energy curves obtained with deterministic calculations are represented by solid lines, while

dashed lines are used for FN-DMC energy curves. CIPSI energy curves using the VDZ,

VTZ, and AVTZ basis sets are represented by the three curves (solid lines) between the two

extreme CASSCF and exact curves. As discussed above, these curves are almost converged

in number of determinants and may be considered as a good approximation of the full CI

limit in each case. Increasing the basis set has a clear important impact on the quality

of the results. With the largest aug-VTZ basis set, the energy curve obtained is the best

one, except for the FN-DMC curve obtained with a CIPSI-constant EPT2 trial wavefunction

which is the most accurate energy curve calculate in this work. With the larger QZ basis set

results continues to improve (not done here, our objective being not to increase indefinitely

the basis set). The corresponding energy curve at a quasi FCI level is given in [36] and
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is found to be of a similar quality the our best FN-DMC-DZ curve. The three FN-DMC

curves are represented using a dashed line. By increasing order of quality, they correspond

to using i.) the CASSCF nodes ii) the CIPSI/VDZ nodes, and iii) the CIPSI/VDZ nodes

at constant EPT2. Using CASSCF nodes the FN-DMC energy curve is much improved with

respect to the variational curve obtained with the CASSCF wavefunction. Roughly speaking

it is of quality of the quasi-FCI curve obtained with the VDZ basis set. Now, taking CIPSI-

VDZ nodes DMC results are improved to a quality typical of a FCI-VTZ calculation. Only

when considering a nodal construction based on a variable number of determinants in a

CIPSI-VDZ framework, DMC results surpass the quality of a FCI-AVTZ calculations. Let

us emphasize that the preceding conclusions are essentially based on an overall quality as

measured by the non-parallelism error. When having a closer look at the overall shape of

the curves it is clear that the improvement for the two best curves are not uniform. When

comparing the two best calculations, the near FCI-AVTZ and DMC/VDZ constant EPT2

curves, it is clear that the latest is much better near the equilibrium geometry. However, in

the intermediate region, it is no longer true and the FCI calculation performs better thanks

to its large number of determinants. The latter remark illustrates the fact that there is still

some for improving the evolution of the nodes in this intermediate region.

V. SUMMARY

In this work we have investigated the quality of the F2 potential energy curves cal-

culated with Fixed-Node DMC using FCI-type expansions as trial wavefunctions. Multi-

determinantal CI wavefunctions have been constructed with the CIPSI method that selects

iteratively the determinants contributing the most to the wavefunction, as determined by

first-order perturbation theory. A major advantage of CIPSI is to keep limited the expansion

size since only those multiple-particle excitations that contribute the most in each sector

of excitations (single, double, triple etc.) are considered. Quantitatively, to obtain CIPSI

energy curves converged to FCI with an accuracy of the millihartee for the three basis sets

used here (Dunning’s cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ) requires a number of determi-

nants of at most several tens of thousands (see, Figures 1,2,3,4,5, and 6). It is remarkable

that such convergence is possible with a number of determinants representing only a tiny

fraction of the whole Hilbert space : About 10−7, 10−15, and 10−18 for the VDZ, VTZ, and
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AVTZ basis sets, respectively. In practice, having compact wavefunctions is essential for

DMC since the trial wavefunction and its derivatives need to be computed at each Monte

Carlo step (potentially, billions of such steps may be performed).

The Fixed-Node Diffusion Monte Carlo calculations have been performed using CIPSI

wavefunctions directly as they come from the output of the CI program. No Jastrow factor

has been employed (apart from the exact electron-nucleus cusp condition imposed at very

small distances) and no stochastic many-parameter optimization of the trial wavefunction

in a preliminary VMC calculation has been performed. From a practical point of view, we

emphasize that it is an important aspect since it greatly facilitates the implementation of

fully automated QMC codes. This is certainly an important prerequisite to allow large-scale

diffusion of stochastic approaches beyond the limited community of QMC experts. Remar-

kably, in all cases considered the fixed-node error is found to systematically decrease when

increasing the number of selected determinants (see, Fig.8). The control of the fixed-node

error is thus made simpler : When the convergence of the FN curve as a function of the

number of determinants is approximately reached, a nodal structure not too far from the

best one attainable within the given atomic basis set can be expected. However, having in

mind to treat large molecular systems, it is not realistic to rely on the systematic increase

of the basis set to improve nodal structures. We have thus proposed an alternative strategy

based on the construction of coherent nodes along the PES instead of very accurate nodes

independently for each geometry. For a not too large basis set, it makes a major difference

since the multi-reference character of the wavefunction known to change considerably along

the PES is much better taken into account and the overall quality of the energy curves

is improved (smaller non-parallelism errors). The main idea is to avoid using a common

number of selected determinants at each geometry leading to an unbalanced description of

the PES but, instead, to consider determinantal expansions having a geometry-dependent

length. In practice, it is implemented by stopping the CIPSI selection process once the

second-order estimate of the energy correction between the variational CIPSI and FCI

energies has reached some target value, independent on the geometry. Using such trial

wavefunctions, we have verified that improved FN-DMC energy curves are obtained, thus

confirming that the nodal structure is better described along the PES. However, more

work is needed to investigate how such results generalize to more complex molecular systems.
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