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We have described in part I of this work the theoretical basis of a quantum Monte Carlo
method based on the use of a pure diffusion process and of the so-called full generalized
Feynman-Kac (FGFK) formula. In this second part, we present a set of applications (one-
dimensional oscillator, helium-like systems, hydrogen molecule) with the purpose of
illustrating in a systematic way the various aspects pertaining to the practical implementation
of this method. We thus show how energy and other observables can be obtained, and we
discuss the various sources of biases occurring in the different procedures (notably the so-
called short-time approximation pertaining to the generation of the sample trajectories of the
diffusion process, and the numerical integration pertaining to the evaluation of the “Feynman—
Kac factor”). After having thus considered the case of the genuine “bosonic” ground state, we
illustrate the various proposals for dealing with some ““relative” ground state (namely the
lowest state belonging to some prescribed symmetry), one of the most important cases being
obviously the physical ground state of many-fermion systems (owing to the Pauli principle
requirements). More specifically, we consider the so-called fixed-node approximation (FNA ),
on one hand, and two variants of a potentially exact procedure, the so-called simple projection

(SP) and release-node projection (RNP) methods, on the other hand. Finally, some
perspectives concerning future developments are outlined.

I. INTRODUCTION

In paper I,' we have shown how quantum mechanical
properties can be expressed in terms of functional integrals
using our full generalized Feynman-Kac (FGFK) formula.
More precisely, these functional integrals involve in their
integrand the operators corresponding to the desired obser-
vables, and make use of the functional measure correspond-
ing to a pure diffusion process, which is itself associated in a
simple way with some reference function denoted ¢ .

When ¢ {* is chosen to be square integrable (which is
always the case in our applications), this associated diffu-
sion process is ergodic (recurrent, actually), and according-
ly the functional integrals may be rigorously expressed as
time-averages along any single sample trajectory (or any fin-
ite number of sample trajectories) of the process. From the
practical point of view, this feature sharply contrasts with
the situation encountered when dealing with the Feynman
path integral (in imaginary time) or the Wiener integral
(involved in the usual Feynman-Kac formula). Indeed, in
the two latter cases, no ergodic property holds, and conse-
quently the numerical evaluation of the functional integrals
would require summing over an unlimited number of trajec-
tories.

As concerns the generation of the trajectories them-
selves, we use the Langevin equation associated with the dif-
fusion process, with a suitable time discretization. In earlier
stages of our work, we contented ourselves with a constant
time step, but later on we were led to improve our procedure
by using a variable time step, noticeably for avoiding so-
called “overshooting” effects (see e.g., Ref. 2) near hyper-
surfaces where the drift vector of the Langevin equation be-
comes infinite.
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An important problem consists in evaluating quantities
pertaining to the lowest state belonging to some prescribed
symmetry type, rather than the “absolute” lowest state only.
Perhaps the most important special case is that of N-fermion
systems (with N> 2), since the Pauli principle requires that
the physical states belong to some restricted set of represen-
tations of the permutation group, thereby excluding the ab-
solute (bosonic) ground state, which belongs to the (fully
symmetric) identity representation. In order to illustrate the
various possibilities of treating this problem, we put into ap-
plication the three procedures examined in part I, namely
the simple projection (SP) method, the fixed-node approach
(FNA), and the release-node projection (RNP) method.

The contents of the paper are as follows. In sec. II, we
consider several one-dimensional problems of increasing
complexity with the purpose of illustrating in a stepwise way
the essential properties of the method and its different ver-
sions. More specifically, we consider first (Sec. II A) for H©
a harmonic oscillator Hamiltonian and we take H = H'©
(i.e., ¥, = 0); this case will enable us to check some basic
features of the algorithms (noticeably the so-called short-
time approximation). Then (Sec. II B), using the same H ©
but now V, = x? (so that H is still harmonic), we can study
the error due to the numerical integration of the “Feynman—
Kac factor” exp{ — s ¥, [X(s)]ds}. InSec. I C, we consid-
er as total Hamiltonian: H = — Id */dx* + jx* + x*, but we
now study successively fwo choices for @ 5, from which we
build two different reference Hamiltonian H ©’s, with corre-
sponding potential ¥,’s having qualitatively different mag-
nitudes (varying like x* or x?, respectively for x| = + o).
We also introduce here the use of the Padé-integral trans-
form for extracting the first excitation energies from a set of
sampled values of 7(z), the matrix element of the “evolution
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operator” (in imaginary time) exp( — ¢H). In Sec. II D we
consider (for the same Hamiltonian H as in Sec. II C) the
problem of obtaining the lowest state of some prescribed
symmetry (odd parity here) different from the one of the
genuine ground state (even parity here). For that purpose,
we introduce the simple projection (SP) method and the
fixed-node approximation (FNA), which turns out to be
exact in this case. Finally, in Sec. II E we return to the har-
monic oscillator Hamiltonian, but we now focus our atten-
tion on the second excited state ¢,, whose “peculiar nodes”
are not imposed by any symmetry (see part I). We can then
study a genuine case of fixed-node approximation, and also
the release-node projection (RNP) method for reaching the
exact result. It must be emphasized that the cases treated in
Secs. II D and II E illustrate the methods which will be nec-
essary for dealing with the N-fermion systems (N> 2). In
Sec. III, we describe our first applications to the simplest
atomic and molecular systems. In Sec. III A we deal with
bosonic ground state properties (energies and mean values of
other observables) for two-electron systems: helium atom
and helium-like ions and the hydrogen molecule. These
cases enable us to illustrate efficient choices of ¢ §* (from
which result nontrivial # ” and ¥, operators). In Sec. III B,
we consider, as a preliminary step towards the study of V-
fermion systems, the problem of obtaining the energy of the
lowest helium triplet, both with the simple projection and
fixed-node approach (which can still be made exact here).
Finally we present in Sec. IV some perspectives about the
treatment of larger systems, concerning the evaluation of
energies, mean values of other observables, and response
properties.

Il. ONE-DIMENSIONAL SYSTEMS
A. Harmonic oscillator

The Hamiltonian is written

1d*> 1,
o r X2
2dx* 2

According to the general theory presented in part I, the
Hamiltonian is decomposed into two parts:

H=H" 47V, (2.2)
where H © is the so-called reference Hamiltonian built from
a given reference function @ {” and ¥, the perturbing poten-
tial defined as the difference H — H ©. In this simple case,

the reference function may be chosen as the exact ground
state @, of H, namely

@O (x) = @o(x) =e %72 (2.3)

2.1)

The perturbing potential ¥, which is expressed in terms of
the reference function as [see Eq. (3.2) of part I]

V,=V—E — Vo "/p, (2.4)

where V is the potential energy of H and E {* an arbitrary
constant, becomes hqre

V,=1/2-EQ. (2.5)
Note that the arbitrary reference energy £ § may be chosen
so that ¥V, = 0.

Now, the full generalized Feynman-Kac (FGFK) for-

mula permits to express the following matrix element of the
(imaginary-time) evolution operator exp( — tH):

I = (fe Pl "5 1gp ) (2.6)
as a functional integral [see Eq. (4.1) of part I]. Using the
ergodic property of the reference diffusion process built from
@ &2 [cf. Eq. (3.15) of part I], this functional integral may
be expressed as a time-average over the stochastic trajector-
ies of this process. In the present case where ¥, =0, we
obtain

I(t) = lim

T
if fIXO(=t/2+47)]
T +w T 0
Xg[XO(t/2 + 7)]dr, Q.7

where X © (s5) denotes an arbitrary trajectory of the reference
diffusion process. It must be pointed out that the ergodic
property may be invoked here since @ § has been chosen
square integrable (cf. Sec. III of part I).

On the other hand, using the well-known equality

@, (n) = @o(n)(2"n)) ~V2H, (x), (2.8)

where H, (x) are the Hermite polynomials, and choosing
the functions f and g as follows

flx) =g(x) = (2"n))~V?H, (x), (2.9)
the matrix element [Eq. (2.6) ] takes on the simpler form

It =e (2.10)
and from Eqs. (2.10) and (2.7) we obtain the basic equality

—t(E,— E§)

T
e..x(E,,—I':x‘f”)= lim _1__f LH"[X(O)(——I/2+T)]
T-+o T Jo 2"n!

XH, [XOt/2 + 7)]dT. 2.11)

Then, by evaluating numerically the right-hand side of Eq.
(2.11) above, the excited energies of the system can be calcu-
lated.

As concerns the construction of the arbitrary stochastic
trajectory X ©(s), a discretized form of the stochastic differ-
ential equation (SDE), suitable for computer simulation, is
introduced (see e.g., Ref. 3, Sec. 3.6)

X(t+4 A1) =X(1) + b[X()]At + (AD)'2p,  (2.12)

where the %’s denote successive samples of a Gaussian ran-
dom variable with zero mean and variance 1. The drift func-
tion b(x) above may be evaluated from the general expres-
sion of the drift vector given in terms of the reference
function [see Eq. (2.11a) of part I]:

b=Vp?/p . (2.13)

Using expression (2.3) for the reference function, we obtain
b(x) = —x. (2.14)

As a second step, the numerical integration involved in
the right-hand side of Eq. (2.11) is performed over the sto-
chastic trajectory X' (s) for large but finite 7. In fact, by
using a suitable updating scheme, the two operations (con-
struction of the trajectory and integration) are performed
simultaneously.

The numerical realization has put three points into evi-
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dence: (1) The pseudorandom generator used for generating
Gaussian numbers must have a very good quality in order to
prevent the apparition of biases and artificial oscillations in
the results. (2) The statistical fluctuations are significantly
decreased when a large number of trajectories starting from
points distributed according to the stationary probability
density p©@(x) = @ §¥? are used, rather than a single one
only. Furthermore, by decomposing this set of trajectories
into a few subsets (typically about ten) and by evaluating the
functional integral independently for each of these subsets, it
is possible to obtain an evaluation of the variance using stan-
dard statistical methods.* (3) Time-discretization of the
SDE (with a time step Az) introduces a systematic bias in the
results: this is the well-known ‘“‘short-time approximation”
(see, e.g., Refs. 2 and 5). More precisely, by using the discre-
tized form [Eq. (2.12)] of the SDE, the exact transition
probability density p®(x]y,At) corresponding to the exact
continuous form of the SDE is approximated by the follow-
ing transition density:

P Qren (X1AD)

= (2mAt) " V%exp{ — [y — x — b(x)At 1> /2At }.
(2.15)

In the particular case of the diffusion process associated with
the Gaussian reference function (2.3) (the so-called “Orn-
stein—Uhlenbeck” process) p®(x]y,At) is exactly known
(see e.g., Sec. 5.3 of Ref. 3):

PO(x]p,Af) = [m(1 — 2]~ 1/2

xexp[ — (y —yx)*/(1 — )],
where ¥ = exp( — Ar).

As it must be, the two expressions [Egs. (2.15) and
(2.16) ] coincide when At goes to zero. Thus, in the special
case under consideration, we can avoid the short-time ap-
proximation by generating the stochastic trajectories from
the transition probability [Eq. (2.16)] instead of Eq.
(2.15).

In Table I, results for some of the lowest excited energies

(2.16)

TABLE L First excited energies for the harmonic oscillator.*

E, E, E,
Biased results®
Ar=0.04 1.518(7) 2.54(2.6) 3.58(6)
At =0.03 1.514(8) 2.53(3) 3.55(7.5)
Ar=10.02 1.510(9) 2.51(3.3) 3.51(11)
Ar=0.01 1.504(15) 2.50(5.4) 3.45(17)
Nonbiased results®
Ar = 0.04 1.499(7) 2.50(2.6) 3.52(6)
Exact results
1.5 2.5 35

* Calculations have been performed using 100 trajectories (divided in 10
subsets of 10 trajectories each for the purpose of evaluating the standard
deviation, and hence the confidence interval corresponding to some pre-
scribed level of accuracy). 500 000 elementary time steps have been used
for each trajectory. Energies are derived from formula (2.11) witht = 0.4.
Statistical uncertainties (99% confidence interval) are indicated in paren-
theses.

®Using Eq. (2.15).

°Using Eq. (2.16).

are presented. Expressions (2.15) and (2.16), above, for the
transition probability density have been used to generate tra-
jectories. The bias resulting from the short-time approxima-
tion appears clearly. The improvement resulting from the
removal of this approximation is clearly evidenced when us-
ing the exact transition probability density. As concerns the
biased results, no procedure of extrapolation to Az = 0 has
been used since the statistical fluctuations are of the same
order of magnitude as the biases. Results for Az = 0.01 may
be considered as satisfactory.

B. Harmonic oscillator with a harmonic perturbation

The Hamiltonian is written

e — L4 Lo (217)
2.dx* 2
The reference function and energy are chosen as follows
P8 (x) =e 7, (2.18a)
EP =1 (2.18b)
Using Egs. (2.4), (2.2), and (2.18), we thus obtain
HO= ——l—ii+—1—x2 (2.192)
2dx* 2 '
V, =Ax% (2.19b)

In this example, we use a high-quality generator of pseu-
dorandom numbers, a large number of trajectories (about
100) and the exact transition probability density {no short-
time approximation). We are then in a position to test the
numerical effectiveness of our generalized Feynman-Kac
formula [Eq. (4.1) of part I] in a case where the perturbing
potential ¥, is not zero. Using as usual the ergodic property,
the quantum matrix element (2.6) (with f=g = 1) may be
rewritten as

1 T /24T
I(t) = lim —J exp[—f Vp[X‘O’(s)]ds]dT.
T-+w T Jo —t/247

(2.20)

Now, if we want to extract the ground state energy E, of
H, the following formula valid for large but finite 7 could be
used [see Egs. (4.4) and (4.5) of part I]:

—%logl(z)

1
=E,— EQ ——Tlog @ $21@o) | + O(e ™). (2.21)

In actual fact, the error O(1/¢) due to the second term may
be very easily suppressed by considering the slope of log /(¢)
at infinity:
— [log I(2,) —log I(2,) 1/ (2, — ;)
=E,—E® +0(™ ") 5>t (2.22)
which now involves, for large ¢, and ¢,, an exponentially
small error.
On the other hand, using the eigensolutions for H © and
H, that is, respectively,
[¢ 5‘0) (.X) = 1,-—1/4(271”!) - l/an (x)e — x%/2
EQPC=n+12

(2.23a)
(2.23b)

and
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{¢" (x) =61)1/1117_—-1/4(2'1'1!)—l/ZEI'l (wllzx)e——wx’/Z with @ = (l + u)llz

E,=((+1/2)o

and inserting these expressions into the expanded expression
for I(z) in terms of the complete set of eigenstates of H given
in Eq. (4.4) of part I, it is possible to obtain after a few
algebric manipulations the analytical value of 7(¢):

—t/2(w—1)

1/2
I(t) = f,a) e

22— (o —1\" _2,,,,,,]
X[l+n§=:1 2™n! (w+1) ¢ '
(2.25)
The numerical realization (with A = 1, i.e., @ = 3"/?)
shows the existence of a bias for () when At =0.2 (see
Table IT). This bias is due to use of a finite Riemann sum for
evaluating the integral f V, ds appearing in Eq. (2.20).
However, as we can see in Table I, it seems that this bias is
very small compared with previous biases due to the short-
time approximation.

C. Quartic osclllator. Evaluation of the ground state
energy £,

The Hamiltonian is written
(2.26)

In this example we illustrate a basic feature of the meth-
od namely, the importance of choosing a “good” reference
function @ (. As already noticed above, if @ $* were chosen
as the exact function ¢,, the perturbing potential defined by
Eq. (2.4) would be zero (E §¥ is arbitrary and may be cho-
sen so that ¥, = 0) and the variance would vanish. In the

general case, the numerical experience has shown that the

(2.24a)
(2.24b)

V,=x'+}—EQ. (2.28)
By contrast, in the second case, the behavior for |x| - + oo
of the exact eigenfunction g, is incorporated into @ §*. The

asymtotic form of @, is easily deduced from the asymtotic
form of the Schrodinger equation. We obtain:

<Po(x)| e 213 18P (2.29)
X{— + «
Consequently, our second choice will be
¢7(()0)(.X) =e—2"’/3 |x|? (2.30)
and from Eq. (2.4) above it then follows that
V,=>+2"%x| —E{. (2.31)

With this choice, the quartic part of ¥, has been removed.
The ground state energy E, has been evaluated using the two
forms for @ § and for different values of the time step At.
Results are displayed in Table III. The important point is
that with the expression (2.30) for @ §°, the variance is actu-
ally smaller than with the expression (2.27). From now on,
this strategy of variance reduction will be systematically
used.

From the expanded form [Eq. (4.4)] of part I it is clear
that J(¢#) may be written in the following form:

I() =3 ce ™ (2.32)

TABLE III. Ground state and second excited state energies for the quartic
oscillator.

: .. . N Ey
importance of the statistical fluctuations is directly related °
to the “importance” of this perturbing potential. Two cases First choice for ¢ {®
have been treated here. In the first one, we make the natural Ar=0.01° 0.8037(20)
choice: Second choice for g {*¢
) _ ,—x*2 Art=0.1 0.8199(5)
=e 2.27
Po 2271 i oos 0.8156(6)
which leads to At=0.05 0.8114(7)
At =0.025 0.8079(8)
TABLE II. Harmonic oscillator with a harmonic perturbation.® Extrapolation® 0.8037(10)
Exact’ 0.80377
E, Excited energies®
QMC (Ar=0.02) 0.8660(14) £, E,
Exact® 0.86603 QMC 0.8033(30) 5.18(2)
I(t=3) Exact’ 0.80377 5.179
QMC: *Energy is derived from formula (2.22) with 7, = 4 and ¢, = 3. Calcula-
At=02 0.3227(4) tions have been performed using 1000 trajectories with 75 000 elementary
At=0.1 0.3214(4) time steps for each trajectory.
At =0.075 0.3213(4) ®Expression (2.27).
Exact® 0.32131

* Calculations have been performed using 100 trajectories, 500 000 elemen-
tary time steps for each trajectory. Energy is derived from formula (2.22)
with £, = 9 and ¢, = 8. Statistical uncertainties are indicated in parenthe-

ses.
®From formula (2.24b).
¢ Calculated from formula (2.25).

¢Using Eq. (2.16).

9Expression (2.30).

© A least-squares fit to a straight line has been performed.

fReference 15.

£ A Padé z-transform analysis of /() has been done with 40 regularly sam-
pled values I(;) with ¢, ranging from O to 4. The calculation has been
performed using 100 trajectories, 200 000 elementary time steps for each
trajectory and Ar = 0.1.
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The expression (2.22) enables us to extract the smallest ex-
ponant 4, using the behavior of I(¢) for large . Now, we
would like to extract more information about 7(z). More
precisely, we are faced with the general problem of the analy-
sis of functions expressed as sum of real exponentials. We
used here the Padé-integral transform method recently de-
veloped.® This method enables us to evaluate excited ener-
gies. However, the main point appears to be the possibility to
perform an analysis of I(#) without using large values of ¢.
The importance of such a possibility has been already em-
phasized in part I (Sec. VI C 2). A Padé-z transform analy-
sis of I(¢) has been performed here. Results are displayed in
Table I1I.

D. Quartic oscillator. Evaluation of the first excited
energy £,

The first excited energy E, of the quartic oscillator may
be viewed as the ground state energy of the odd symmetry
subspace. Since this subspace is not the symmetry subspace
of the genuine ground state E,, this example may be consid-
ered as a model problem for illustrating the constraints due
to the Pauli principle requirements (see part I, Sec. VI).
Two of the procedures designed for dealing with such a situ-
ation are presented here.

1. Simple projection (SP) method

Two projection functions f and g are used in order to
impose the odd symmetry. We have chosen the simplest
form, namely

f(x)=g(x)==x. (2.33)
In order to avoid the short-time approximation the Gaussian
nodeless reference function @  defined in Eq. (2.27) is
chosen. Now, using the odd character of the functions f @ §*
and g @ {7, the expanded form [Eq. (4.4)] of part I for I(t)
reduces to the following form:

+o _ _ g
I =3 [(n@L|u, M  Fxt 7500 (2.34)
k=0

where half of the terms (corresponding to even levels) have
disappeared. In fact, due to the numerical nature of the eva-
luation of I(¢), the scalar products {ng {*’|@,; ) could be not
exactly zero. Then, residual exponentials associated with
even levels may appear with a small amplitude. The numeri-
cal experience has shown that such amplitudes were small
enough so that no practical trouble results when performing
the analysis of I(#). As usual, using the ergodic property we
write

I(t) = lim

T— 4+

t/2 4+ 1
Xexp[ - f X @4 (s)ds]df.

—t/2+T

T
LTJ X0t 241X 247)
0

(2.35)

Now, an important point related to the numerical eva-
luation of the quantity above must be pointed out. By using
expression (2.27) for @ {», we have built a reference diffu-
sion process with a stationary density p”(x) = @ §¥? strong-
ly peaked with a symmetric shape around zero. Accordingly,
the trajectory will go through zero very often and the sign of

theproduct X @( — ¢ /2 + 7)X9(¢ /2 + 7) will change rap-
idly. Moreover, the values of the position at two very differ-
ent times being almost independent (the correlation func-
tion of the diffusion process falls exponentially as a function
of time) the sign of the previous product will change with a
very high rate for large . The consequence is a large increase
of variance in calculations when non small values of ¢ are
considered, a situation which contrasts sharply with the one
encountered in the calculations for which f=g = 1. With
such variances for large ¢, formula (2.22), which requires
two large values of t for evaluating E|, is inadequate, and the
Padé-integral transform method for analyzing 7(¢) becomes
essential. We have performed a Padé-z transform analysis of
I(t). The results are displayed in Table IV and show a rela-
tively important variance in this approach.

2. Fixed-node (FN) method

In this approach, no problems related to some change of
sign as in the expression (2.35) occur since no projection
functions are used. The symmetry requirements are directly
introduced into the reference function. Here @ ¥ must be
odd and is chosen as follows:

P& = xe= 2RI, (2.36)

Note that in this particular one-dimensional case the node of
the exact solution @, is known and consequently the fixed-
node procedure actually introduces no approximation.

At this point, it seems important to make a practical
remark concerning the use of a variable time step scheme for
calculations involving a reference function endowed with
nodal hypersurfaces. Let us be more precise. The discretized
form of the SDE with Az 520 enables us to generate sucessive
points on a trajectory through finite jumps but not infinitesi-
mal ones as would be required by the exact continuous SDE.
A finite jump may lead the current point to the other side of a
nodal hypersurface (through essentially the free diffusion
part of the SDE) or very far in a domain of very low proba-
bility when the drift vector becomes too large (the “over-
shooting” effect near the nodes). In order to avoid the im-
portant biases associated with these two artificial effects
which disappear for really infinitesimal time steps, we used a
variable time step scheme. When the magnitude of the drift

= Xxe

TABLE IV. First excited energy E, of the quartic oscillator.

I. Simple projection (SP) method *

QMC 2.74(2)

Exact® 2.738
II. Fixed-node approach (FNA)®

QMC (Ar = 0.005) 2.738(4)

Exact® 2.738

® Calculations have been performed using 1000 trajectories, 20 000 elemen-
tary time steps for each trajectory with Az = 0.1. A Padé z-transform anal-
ysis of J(#) has been done with 30 regularly sampled values I(¢;) with ¢,
ranging from O to 3.

*Reference 15. .

¢ Calculations have been performed using 100 trajectories, 500 000 elemen-
tary time steps for each trajectory. Energy is derived from formula (2.22)
with t, = 2.5and ¢, = 2. Statistical uncertainties are indicated in parenthe-
ses.
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becomes too important (larger than some threshold value),
we take At such that the product |b|A¢ remains small
enough. Thus, the trajectory is slowed down near nodal sur-
faces and large jumps are avoided. Now, the variance be-
comes sufficiently low to permit the use of formula (2.22) to
obtain E,.

Results are displayed in Table IV and it clearly appears
that the fixed-node (FN) method (Sec. II D 2) actually per-
forms better than the simple projection (SP) method (Sec.
IID1).

E. Harmonic oscillator. Evaluation of the second
excited energy £,

In the previous example illustrating the fixed-node ap-
proach, we used a reference function having the right sym-
metry and the exact node of the solution. Unfortunately, the
complete nodal hypersurfaces of exact solutions for more
complex systems are generally not known. For atoms or
molecules we will use a reference function having the desired
symmetry [i.e., belonging to the corresponding irreducible
representation of the symmetric group S(V) ] but approxi-
mate nodes. At this point, it must be emphasized that, due to
the degeneracy of the physical ground state (the “exchange”
degeneracy), there is not a single nodal hypersurface asso-
ciated with the ground state but a (continuous) set of such
surfaces. “Approximate” means here that the nodal hyper-
surface of @ § does not belong to this set. A fixed-node ap-
proach with approximate nodes leads to approximate results
and in order to remove this approximation the release-node
projection (RNP) method presented in part I is examined
here. To evaluate the second excited energy of the one-di-
mensional harmonic oscillator is a simple model problem
which gives us the opportunity to introduce in a simple way
the main features of this RNP method. In this model prob-
lem, the exact solution is known:

@2(x) = 27" V(20 — e,
E2 = 5/2.

(2.37a)
(2.37b)

J

P& (x) = |[2x* — (1 +d) Je= 7|

PP (x) =cpf(x) =A(x +x,)’ +B(x +x,)> +C(x £ x,) + D xe( Fx, —€,Fx, +€),

where + x, denote the two nodes of the function (2.39a)
above. Note that, instead of using a threshold value for the
reference function as we did in part I, we directly define here
the interval where the connecting piece function is used.
Both procedures are essentially equivalent and € now plays
a role similar to that of the quantity € introduced in part I.
The coefficients (4, B, C, D) are determined so that the
reference function and its first derivative are continuous at
the points F x, — € and F x, + €'. Expressions of the co-
efficients (4, B, C, D) in terms of (d, €') are then given as
solutions of a linear system of four equations.

As already noticed, @, is not the lowest eigenfunction in
the subspace of even symmetry. Consequently the first non-
vanishing component of I(2), namely

@52 1@o) (Polep ) xe™ "“F E& could be important
enough to trouble the analysis (in particular if large values of

1. Fixed-node (FN) method

As a first step, we consider a fixed-node approach where
the reference function @ §* has the right symmetry (here
@ ¥ must be an even function) and approximate nodes. The
reference function is chosen as follows:

@& (x) =22 — (1+d)]e™7, (2.38)
where d is related to the “distance” between approximate
nodes and exact ones.

Now, the fixed-node ground-state energy E; " can be
evaluated for different values of 4 using, as usual, formula
(2.22) and using the variable time step procedure required
by the existence of nodes for @ * (see Sec. II D 2 above).
Results for E"(d) are displayed in Table V and illustrate
very clearly the existence of the fixed-node approximation.
We may notice that the values of E £~ (d) lie below the exact
energy E3N(0). At first sight, this result could appear con-
tradictory with the so-called ““variational principle for fixed-
node process” considered by Reynolds et al.” and by Ceper-
ley.” The contradiction disappears, however, when we notice
that the above variational principle was derived for the fol-
lowing specific situation: (1) to consider the lowest state
belonging to some prescribed type of symmetry and (2) to
use a reference function belonging to this type of symmetry,
so that its nodes are invariant under the corresponding sym-
metry operations. Failure to fulfill these conditions invali-
dates the proof. In our present case, assumption (1) is not
fulfilled, since the lowest even state is E, rather than E,.

2. Release-node projection (RNP) method

Now, we want to remove the fixed-node approximation
by using the RNP procedure described in our part I. A non-
vanishing third-order polynomial is chosen as “connecting
piece” function cpf(x). The reference function is written

x¢(Fx, —€,Fx, +€), (2.39a)

(2.39b)

|
t are used) and this situation would require the use of the

Padé-integral transform to evaluate E,. This complication
does not occur in the case of atoms or molecules where the
true wave function is a lowest state in a given symmetry
subspace. Now, in order not to introduce artificial problems
in this model problem, we have decided to use functions f
and g not only to impose the right symmetry (as it must be in
the general case) but also to impose the orthogonality of
S ¥ and gp ¥ with @,. For that reason we choose

f=g=¢/p (2.40)
which leads to
I(t) = ¢~ "B B, (2.41)

Obviously, in the general case, only the symmetry of the
desired state has to be known even if for convenience we have
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TABLE V. Harmonic oscillator. Evaluation of E,.

I. Fixed-node approximation (FNA)*

d=0.1 2.346(21)
d=0.075 2.401(20)
d=0.05 2.451(16)
d =0.025 2.484(8)
d=0 25

I1. Release-node projection (RNP)®

d=0.1 €=045 2.49(3)
Exact 25

* Calculations have been performed using 50 trajectories, 10 000 elementary
time steps for each trajectory and At = 0.001. Energy is derived from for-
mula (2.22) with ¢, =8 and ¢, = 7.5.

®Calculations have been performed using 50 trajectories, 800 000 elemen-
tary time steps for each trajectory and Az = 0.001. Energy is derived from
formula (2.41) with r = 0.4. Statistical uncertainties are indicated in par-
entheses.

introduced here its analytical expression through the func-
tions f and g. Now, when €’ goes to zero, two phenomena
occur. On one hand, since the value of the reference function
at the points + x, goes to zero with €', passages from one
domain to another one become rare and the variance related
to the change of sign of the integrand decreases. On the other
hand, ¥, (x) in the neighborhood of + x, goes to infinity
when €’ goes to zero and the sampling of this domain, repon-
sible for the removal of the nodes, becomes more and more
difficult (we try to sample rare events associated with a high
value of ¥, or, equivalently, we attempt to sample a § func-
tion!). Therefore some compromise has to be found. We
present in Fig. 1 the curve giving the variance of calculations
versus €. Clearly an optimal choice for € may be found in
such an approach. The energy for d = 0.1 is presented in
Table V. The difference E IN — E, being recovered, we con-
clude that the RNP works for this simple case.

4 STANDARD DEVIATION
05 |
o4 |
03 L
0.2 |
ot |
EI
0.0 IR DN TR TR BN N B -
02 03 0.4 0 0.6

FIG. 1. Standard deviation of the energy as a function of the threshold pa-
rameter € appearing in the RNP method. These values have been obtained
for rather short runs. In order to obtain an accurate value of the energy, a
100 times longer run has been performed for the value € = 0.45 which gives
the optimal choice of the reference function. The corresponding result is
prest;nted in Table V (the standard deviation is actually divided by about
100'/2 = 10).

Ill. SIMPLE ATOMIC AND MOLECULAR SYSTEMS

Molecules are represented in the framework of the
Born-Oppenheimer approximation. The potential energy of
the molecule is written as

V=3 1ry =3 Z,/ria+ Y Z,Z5/7.,
i>j ha a>p

where r,, = |r, — r,|. Roman indices label electronic co-

ordinates and Greek indices label nuclear coordinates. Z,, is

the charge number of nucleus a.

3.1

A. Bosonic properties

The purpose of this first subsection is to evaluate energy
and observables pertaining to the ground state of two-elec-
tron systems. Since no constraints are introduced by the
Pauli principle for two-electron systems (see Sec. VI of part
I), this ground state is the nodeless mathematical ground
state of the Hamiltonian. This is the reason why the proper-
ties evaluated in this subsection may be viewed as bosonic
properties.

1. Helium-like systems

Before treating helium-like systems, let us give a general
expression of a nodeless reference function suitable for an
arbitrary atomic system:

P& =exp| Y a7 + za,.jr,.j]. (3.2)

ia i<j

The important point is that this expression includes all the
cusp conditions. Note that such a representation has been
already discussed in detail in the framework of previous
QMC methods (see, e.g., Ref. 5). Obviously, for atomic sys-
tems with more than two electrons, this function can be used
only in the SP method where a nodeless reference function is
needed (see Sec. VI B 2 in part I). The coefficients a,, are
chosen in order to reduce as much as possible the perturbing
potential ¥,. Let us now evaluate the two basic quantities of
our algorithm, namely the perturbing potential ¥, and the
drift vector b. The perturbing potential is evaluated as usual
from formula (2.4). After a few algebric manipulations we
obtain

Vv, = z 1/r; — z Z,/r,

i>j

+ Y Z,Zs/rp
a>p

~E — S 20/~ S au/n,

i>f

-1 2 8,853 (Vi7:, ) (Virg)
2 a,Bi

— Z a,;a,, (V7. ) (V.ry)

ijFha
_i aijaik(virij)'(v,-r.-k)- (3.3)
2 ijE Lk #i
Let us introduce the directional vectors
u; =4v.ry, (3.4a)
W, = —Z,V,r,. (3.4b)

Choosing coefficients a; and a,, such that
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(3.5a)
(3.5b)

the Coulomb singularities may be entirely suppressed. Final-
ly, we have

a; =a; =4

aka = —‘Za,

1
Vo= Z,Zg/rep —EQP — > z U, U,
a>p iLa,B

1

i.i;'}a T2 R
Now, ¥, is a nonsingular bounded function expressed as a
sum of bounded scalar products. At this point, it seems ap-
propriate to mention that this result illustrates clearly the
necessity of including explicit interelectronic coordinates
when a good approximate wave function is wanted. In par-
ticular, as noticed by a few authors (see, e.g., Ref. 8), the
poor convergence of CI expansions is mainly due to the ab-
sence of such r;-dependent terms in the wave function. Now,
a major advantage of all Monte Carlo schemes appears in the
possibility of using correlated wave functions without deal-
ing with the complicated integrals that occur in variational
methods.

(3.6)

u,:,- 'llik.

<¢0|r% + 1’% lpo) = li

1107

The expression for the drift vector is derived from Eq.
(2.13):

b = (b;,b,,....by) (3.7a)
with
b, = Z u, + z u;. (3.7b)
a JEi

For two-electron systems, energy and mean value (r} + r3)
have been evaluated using expression (3.2) for the reference
function. The constant time step scheme have been used
since @ {¥ is nodeless and calculations have been performed
for different values of the elementary time step Af ranging
from At = 0.02 to Az = 0.12. For each quantity evaluated, a
quasiparabolic behavior for the curve representing this
quantity vs Az has been obtained. We therefore systematical-
ly performed a least-squares fit to a parabola to determine
the extrapolated value at Az = 0. We give in Table VI the
results concerning the He atom (Z = 2) and the Be* * ion
(Z=4).

As concerns the calculation of the quantity (r} + 73 ),
the formula (4.7) of part I is written here:

I— + o

and using the ergodic property this formula may be rewritten as

(@ol + 13 |@o) = lim

1
o (B +R)X —§'2,, V,[X(s)1ds] D"
m Joccwmn (04 XNl = §Zip VIXOIBIDT Xy 3o (38
Sac= iz exp[ —f‘—/zr/z v, [X(s)]ds]D% X
lim %IK B+ ) XOU + D ]exp[ — 2557 - V, [X V() )ds]dr
T+ oo
(3.9)

t— + o

T + o

Results after extrapolation are given in Table VI. It is
important to note that E,and {7} + r2) are evaluated simul-
taneously from the same realization of the process (i.e., from
the same set of stochastic trajectories).

2 H,; molecule

The potential energy of the molecule is
V=1/r,—V/r, —1/rig —1/ry, — 1/r,5 + 1/R,
(3.10)

where R is the internuclear distance. Two different reference
functions have been used, namely

PP =e? ulr)u(ry) (3.11a)
With u(ri)=e—§’iA+e“§’iB (3.11b)

and

9 =exp[ —ry —rp] +exp[ —ry —riz].
(3.12)
The first case corresponds to the usual molecular orbital
point of view well suited for the equilibrium geometry while
the second choice, where @ § is written as a symmetrized
product of atomic wave functions, is supposed to be better
for large values of R.
In order to illustrate the simplicity of the procedure for

lim LTI(T exp[ — "2 507, V, [X9(s)1ds]dr

{
evaluating different quantities pertaining to the same eigen-
state, we have evaluated from the same basic set of trajector-
ies, not only the energy but also 15 mean values correspond-
ing to multiplicative operators. We have simply chosen the
same operators considered by Kolos and Wolniewicz’® in

TABLE VI. Helium-like systems. Ground state properties.”

He Be* ™
E,
SCF —2.8617 —13.6113
QMC —2.903 8(10) — 13.655(11)
“Exact” value —2.903 72* —13.6556°
R +17)

QMC 2.37(2) 0.464(2)
Exact value 2.386 9° 0.464 14°

* Calculations have been performed using 400 trajectories, 40 000 elemen-
tary time steps for each trajectory. Energies are derived from formula
(2.22) with ¢, = 10 and ¢, = 9. Mean values are derived from formula
(3.9) with £/2 =15 and ¢, = 0. Each quantity has been extrapolate to
At = 0. All quantities are given in atomic units and statistical uncertainties
are indicated in parentheses.

®Reference 16.

¢ Reference 17.

9 Reference 18.
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their benchmark calculations concerning the H, molecule.
In order to appreciate the powerful simplicity of the Monte
Carlo approach, it must be pointed out that, for each such
observable 4, we have just to insert in the program the eva-
luation of 4[X(#)] and to calculate the corresponding accu-
mulator (which, in the present case, amounts merely to in-
serting in the computer program one single statement per
observable!). Calculations have been performed for two val-
ues of R corresponding to the two choices of ¢ . Results
are displayed in Table VII, and are very satisfactory.

B. Fermionic properties

In this subsection, the first excited energy E, of the heli-
um atom is evaluated. The corresponding eigenstate ¢, is
antisymmetric in the exchange of electron labels and corre-
sponds to the ground state of the antisymmetric representa-
tion. In Sec. II D we have shown that the different methods
to evaluate properties of the lowest state in a given symmetry
subspace do work for simple one-dimensional cases. Here,
the aim is to illustrate the validity of those different proce-
dures for atomic and molecular systems.

1. Simple projection (SP) method

We choose
¢(()o)=exp[ —2r = 2r, + 4] (3.13)
and
f=g=4[(1=r)e" — (1 —r)e]. (3.14)
TABLE VII H, molecule. Ground state pro;.aertic:s.'l
R=14° R—4°

QMC Exact® QMC Exact®
E, —1.175¢1.7) - 1.1745 —1.0167(7) —1.01637
(rah 0.587(2.6) 0.5874 0.263(1.5) 02630
(r1z) 2.169(9)  2.1690 433(15) 4327
(#) 5.63(4.5) 5.632 20.6(1.3) 20.569
(ry) 1.550(6) 1.5499 2.86(1.3) 2.863
rh 0.908(4) 0.9128 0.610(3.5) 0.6136
) 3.04(2) 3.036 10.79(8.5) 10.815
(rors) 2.71(2) 2.704 6.68(2.3)  6.663
(rary)  2.33(15) 2321 6.57(3) 6.551
(riams)  239(15)  2.385 9.82(3) 9.806
(2,2,) —0.156(5.5) —0.1596 —3.39(6) —3.392
(x,x,) —0.055(3.5) —0.0551 —0.039(4.5) —0.038 4
() 1.02(2) 1.023 4.74(4) 4.708
(x?) 0.76(2) 0.762 1.05(1.5) 1.054
(@) 2.55(4) 2.546 6.85(5.5) 6.815
[9} 0.9(1) 0.91 1.3(1.5) 1.38

® Calculations have been performed using 50 trajectories and about 10° ele-
mentary time steps for each trajectory with Az = 0.01. Energies are de-
rived from formula (2.22) with ¢, = 20 and ¢, = 19. Each mean value is
derived from formula (4.7) of part I with 7 /2 = 10and ¢, = 0. @ denotes
the electric quadrupole moment of the molecule defined as
Q= R?—2(3(z%) — (#*)). All quantities are given in atomic units and
statistical uncertainties are indicated in parentheses.

"Reference 9.

“Using Eq. (3.11) for ¢ {*’ with @ = 0.56 and £ = 1.285.

4Using Eq. (3.12) for ¢ {®.

As it must be, fp § and g@ §* are antisymmetric in the ex-
change of electron labels. Moreover, by using the atomic
orbital model, fand g have been choosen such that fp {* and
g@ §» have a maximum overlap with @,. This last point sim-
plifies the analysis of I(#) as sum of real exponentials by
giving an important weight to the first nonvanishing expo-
nential associated with E,.

As already noticed in Sec. II D 1, the nonconstant sign
of f and g prevents any attempt to use formula (2.22) for
calculating E,. Thus a Padé-z transform analysis must be
performed. A very predominant real exponential associated
with E; appeared and then the first Padé approximant® was
sufficient to extract E,. The results are displayed in Table
VIIIL

2. Fixed-node (FN) approach

In this case, the complete nodal hypersurface of ¢, is
known (its equation is 7, = r,).'"!! However, even if there is
no fixed-node approximation here, the aim is to verify that
our scheme works for atomic systems.

The following reference function is chosen:

(1 —r))e e (3.15)

and the same algorithm as in Sec. II D 2 is used. Conclusions
are identical with those obtained in this previous case: due to
the constant sign of the integrand, the variance is markedly
smaller than in the previous (SP) method, and formula
(2.22) for evaluating the energy may be used. The variable
time step procedure permits to avoid undesirable effects. Re-
sults are displayed in Table VIII.

¢(()O) — (1 _rl)e—-—r,e—Zr,_

IV. CONCLUSIONS

While part I of the present work was devoted to the
theoretical description of our Monte Carlo method, the pur-
pose of the present part II was to consider with some detail
the various practical and numerical aspects pertaining to its
computer implementation.

It appeared convenient to organize the discussion
around three main points:

(1) The convergence problem (time-length of each

TABLE VIIL. First excited energy E, of the helium atom (triplet state).

I. Simple projection (SP) method®

QMC — 2.175(10)
Exact® —2.1752

I1. Fixed-node (FN) method®

QMC —2.175(3)
Exact® —2.1752

® Calculations have been performed using 400 trajectories, 15 000 elemen-
tary time steps for each trajectory. A Padé z-transform analysis of I(¢) has
been done with about 30 regularly sampled values I(¢;) with ¢; ranging
from 0 to about 3. Four calculations with Az = 0.04, 0.03, 0.02, and 0.01
have been done and a least-squares fitting to a parabola was performed to
extrapolate to Az =0.

®Reference 17.

°Calculations have been performed using 50 trajectories, 100 000 elemen-
tary time steps for each trajectory with Az = 0.01. Energy is derived from
formula (2.22) with z, = 40 and ¢, = 36. Statistical uncertainties are indi-
cated in parentheses.
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sample trajectory, number of such trajectories, choice of the
reference function @ §).

(2) The sources of systematic biases: the quality of the
random number generator, the time-discretization error in
the generation of the sample trajectories (the so-called
“short-time approximation”) and the time-discretization
error pertaining to the evaluation through a finite Riemann
sum of the integral appearing as the exponent in the Feyn-
man-Kac factor [see, e.g., Eq. (3.7) of part I].

(3) The specific problems related to the problem of ob-
taining states belonging to some prescribed symmetry, the
most important case corresponding to the Pauli principle
requirements in many-fermion systems.

We have first treated a number of one-dimensional ex-
amples [involving harmonic (x*) and quartic (x*) poten-
tials] in order to illustrate the various points listed above and
to propose some solutions when necessary. As a conclusion
of this first step, we found it is possible to keep under control
all the above listed sources of error. Second, with the purpose
of moving towards the study of more interesting physical
systems, we considered the simplest (two-electron) atomic
and molecular systems, namely helium-like systems (He,
Be* *) and hydrogen molecule. For these systems, our re-
sults are of comparable quality with those obtained within
the framework of the other QMC methods (see, e.g., Refs. 5
and 12-14). We did not content ourselves with the (bo-
sonic) ground state energy, since this would not at all be a
typical representative for many-electron atomic and molecu-
lar systems, where the Pauli principle becomes really in-
volved: we also considered the lowest triplet state (antisym-
metric space function) as a model of the symmetry
requirements to be taken into account for these larger sys-
tems. On the other hand, we also evaluated a number of
observables other than the energy, in order to illustrate how
easily such evaluations can be performed in the framework
of the present Monte Carlo method.

As concerns the perspectives for future developments,
two steps may appropriately be distinguished. A first step
would rely (as many previous Monte Carlo computations
did) on the fixed-node approximation for evaluating energy
and observables (including now, response properties). Ac-
cording to the experience borrowed from other QMC com-

putations, we may expect that such calculations could be
achieved with reasonable accuracy for systems having a
number of electrons ranging up to about ten. The second
step, would consist in applying to many-electron systems the
release-node projection (RNP) method, the results of which
appeared rather encouraging for the one-dimensional sys-
tem to which it was applied in the present work. Investiga-
tion concerning these two steps is presently in progress.
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