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This paper presents systematic developments in the previously initiated line of research
concerning a quantum Monte Carlo (QMC) method based on the use of a pure diffusion
process corresponding to some reference function and a generalized Feynman—-Kac path
integral formalism. Not only mean values of quantum observables, but also response properties
are expressed using suitable path integrals involving the diffusion measure of the reference
diffusion process. Moreover, by relying on the ergodic character of this process, path integrals
may be evaluated as time-averages along any sample trajectory of the process. This property is
of crucial importance for the computer implementation of the method. As concerns the
treatment of many-fermion systems, where the Pauli principle must be taken into account, we
can use the fixed-node approximation, but we also discuss the potentially exact release-node
procedure, whereby some adequate symmetry is imposed on the integrand (of the generalized

Feynman-Kac formula), associated with a possibly refined choice of the reference function.

I. INTRODUCTION

This paper deals with the treatment of the time-indepen-
dent Schrodinger equation using a Monte Carlo method. Es-
sentially, the purpose of this method is to obtain values of
observables pertaining to the lowest eigenstate (s) of any giv-
en symmetry type. The “‘observables” are the usual quantum
averages associated with the eigenstate under consideration
(e.g., energy, dipole moment,...) or response properties
which are usually written as second-order perturbation ex-
pressions (e.g., static and dynamic polarizabilities).

Monte Carlo methods have been used with success in
treating many-body boson systems.'~® Unfortunately, due to
the Pauli principle requirements for fermion systems, atoms
and molecules are much less easy to manage. A basic reason
for this is the nonconstant sign of Fermi wave functions, a
property which implies unavoidable numerical difficulties.
Nevertheless, for about 15 years specific Monte Carlo
schemes for dealing with molecular systems have been devel-
oped. A few approaches have resulted’~'* and very accurate
results for total energies on systems involving a number of 2—
10 electrons have been obtained.®'*"!” Further methodolog-
ical developments are presently under investigation, particu-
larly to calculate excited state energies and ground state
properties other than energy.'®

The basic common idea of these different approaches,
called quantum Monte Carlo (QMC) methods, rests on the
similarity between the time-dependent Schrédinger equa-
tion in imaginary time and a generalized diffusion equation.
These methods have important advantages:

(i) The exact resolution of the Schridinger equation
within the statistical errors due to the finite simulation time
(no “truncation error” as occurs unavoidably in the frame-
work of variational methods due to the use of finite basis
sets).

(ii) The computational complexity of the code increases
slowly with the number of particles. An increase proportion-
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al to n® at most is expected for fermionic problems with two-
body potentials as explained in Ref. 9 (see note 20) for sys-
tems of given density. However, if we consider systems with
a density increasing with n such as atoms with higher and
higher Z, then a more rapid increase of the computation time
as a function of n could happen.’®

(iii) Memory requirements remain perfectly bounded
(as opposed to the very fast increase of memory required in
variational approaches).

(iv) The short and simple codes are very well suited for
vector computing and more specifically for multitasking
proper.

A new quantum Monte Carlo method is presented here.
We have developed the line of investigation initiated by Soto
and Claverie?® aiming at the design of a Monte Carlo method
based on the use of a generalized Feynman-Kac formula
applied to a pure diffusion process. More precisely, we have
further extended here the previous generalized Feynman—
Kac (GFK) formula®*?! into a so-called full generalized
Feynman-Kac (FGFK) formula. The former (GFK) for-
mula expresses as a functional integral the matrix elements
of the (imaginary-time) evolution operator exp( — tH) and
thus gives access essentially to energy eigenvalues of H.
Now, the latter (FGFK) formula expresses matrix elements
of operator products such as

exp( — 7, H)A4, exp( — 7,H)A, A, exp( — 7, H),
where 27+ '7, =t and the 4,’s are g scalar multiplicative
operators. This enables us to evaluate not only mean values
of such operators 4; (so-called “first-order” properties in
perturbation-theoretic language), but also n-time “quantum
correlation functions™ (in terms of the Heisenberg picture,
cf. e.g., Ref. 22), which are related to response properties:
e.g., for n = 2 we get second-order response properties such
as polarizabilities (static and dynamic as well). These var-
ious matrix elements involve the evolution operator
exp( — tH) with ¢ arbitrary but fixed. They will be ultimate-
ly evaluated as suitable time-averages over sample trajector-
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ies for a long enough simulation time 7 (theoretically we
should take the limit 7— + oo for fixed #). The clear distinc-
tion between ¢ and T'is of overwhelming importance and will
be emphasized at appropriate places below.

The underlying stochastic process (with respect to
which our functional integrals are defined) is a pure diffu-
sion process, associated with some reference function @ §:
no branching is involved, in contrast with most proposals of
quantum Monte Carlo schemes presented so far.”*'* Some
connection with these methods can be established by notic-
ing that their branching term plays a role which is analogous
with the role played in our own approach by the “Feynman-—
Kac integrand” exp{ — f ¥, [X(s)]ds} which appears in
the FGFK formula (cf. Sec. III). This point has been no-
ticed by Ceperley and Alder [see their Eq. (11)] and Pol-
lock and Ceperley?® [see Eq. (AS5) in their Appendix A].
Details about the correspondence with our present formal-
ism are provided in the Appendix. Another point which de-
serves to be mentioned is the fact that in previous Monte
Carlo methods the simulation time T is also the imaginary
time appearing in the evolution operator. In our notation
this amounts to putting # = 7. We shall see below how the
possibility of distinguishing ¢ and 7" may be advantageous,
especially in order to keep variance under control.

As recalled above, a serious challenge for all Monte
Carlo methods is the treatment of many-fermion systems
due to the specific constraints imposed by the Pauli princi-
ple. We therefore paid due attention to this problem, and we
discuss several ways of solving it.

The full mathematical details are reported elsewhere in
previous papers.”’ However, in order to make the present
paper self-contained, all that is necessary to understand the
theory is briefly recalled at each appropriate place.

The contents of this paper are as follows. In Sec. II we
present the basic similarity transformation which permits
mathematically connecting the quantum formalism with the
stochastic processes. The essential idea is to associate a diffu-
sion process with some given reference function ¢ {¥ (to
which a “reference Hamiltonian” H © is also associated).
Section III is devoted to the presentation and derivation of
the full generalized Feynman-Kac formula alluded to
above. In Sec. IV we describe how this FGFK formula can
be used for expressing quantum observables (mean values
and response properties). In Sec. V we give an outline of the
theoretical algorithm (further details concerning its com-
puter implementation are deferred to a companion paper).
Section VI deals with the Pauli principle requirements and
with some directions for treating this problem. Finally, Sec.
VII presents some conclusions and perspectives.

Ii. DIFFUSION PROCESS ASSOCIATED WITH AN
ARBITRARY REFERENCE FUNCTION

We are interested in the nonrelativistic quantum prob-
lem of N particles interacting via a potential ¥ (x) (x denotes
the 3N space-coordinates r,,r,,....,r v ). For the sake of simpli-
city atomic units will be used throughout the paper and the
same electronic mass m, = 1 is chosen for the N particles.
The Hamiltonian operator is written

H= —{V2+ V. (2.1)

Following previous authors®* this Hamiltonian operator H
may be changed through a similarity transformation into the
Fokker—Planck operator L of a diffusion process. With ¢,
denoting an arbitrary eigenstate of H and E, the associated
energy, it can be proven after simple algebra that?°

@ (B, —H)l/p, =L, (2.2)
where L is a Fokker—Planck operator:
L=19V*—V(b.) 2.3)

The ““drift” vector b and the diffusion coefficient & are giv-
en by

b="Vep,/p, (2.4a)
g =1. (2.4b)
From equality (2.2) it follows the expression of the eigen-
functions and eigenvalues of the Fokker—Planck operator L:
Lo.p:. = (E;, — E )@ (2.5)

In this last expression (E, @, ) are the eigensolutions of the
usual eigenproblem, namely

Hp, =E, @, (2.6a)
but with the unusual boundary conditions
@ =0 atany point where ¢, =0. (2.6b)

Because of these possibly unusual boundary conditions, it is
clear that the previous eigensolutions may differ from the
usual ones. As a particular case, if @, is chosen to be the
nodeless bosonic ground state, ¢, no extra boundary condi-
tions are introduced (since @, does not vanish at finite dis-
tances) and the previous eigenvalues E, are the usual eigen-
values of H obtained from the usual boundary conditions.
This possible modification of the spectrum due to the nodal
hypersurfaces of @, is responsible for the so-called “fixed-
node” approximation (for more details see Sec. VI dealing
with the Pauli principle). In addition, note that the wave-
function @, is now a ground state in the new eigenvalue prob-
lem (2.6). From equality (2.5) we deduce that the station-
ary probability density p(x) of the diffusion process (which
is defined as the eigenfunction of L corresponding to the zero
eigenvalue) is nothing but the probability density associated
with the wave function, namely

p(x) =@i(x). 2.7

Now, it is possible to generalize this construction, that
is, to associate a diffusion process with any arbitrary func-
tion. The generalization rests on the fact that any given func-
tion can always be considered as an eigenstate of a Hamilto-
nian built from it. We decided to note as @ {* this arbitrary
function and H ©’ the associated Hamiltonian. The expres-
sion of H @ in terms of the function ¢ {* is given by

HO = _ %VZ + VO, (2.8a)
where
VO =EP +1Vp/p”. (2.80)

Throughout the paper, the function @ {* will be called “ref-
erence function” and H @ “reference Hamiltonian.” In or-
der to avoid any risk of confusion, the superscript (0) will
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always be used to label quantities related to H ®. Note that
only derivations have to be performed to determine H © and
that the constant E {*’ in Eq. (2.8b) may be chosen arbitrar-
ily. Now, we can apply to this Hamiltonian H ‘© the similar-
ity transformation exactly in the same way as done in Eq.
(2.2). We get the following basic relations:

POEP —HM /g™ =L, (2.9)

where L @ is the “reference” Fokker-Planck operator

L® =12 V> —V(b) (2.10)
with

b=VgP/ps, (2.11a)

D=1 (2.11b)

Of course, if the reference function @ $*° is chosen to be one of

the eigenstates of H and E {* the corresponding energy, we
are led to the previous particular case where H ® = H.

Finally, let us now present a fundamental relation de-
rived from the basic similarity transformation (2.9). A sta-
tionary diffusion process is entirely determined by its transi-
tion probability density defined as

PO (xpt) = (ple | x), (2.12)

where L ‘¥ is the Fokker~Planck operator of the diffusion
process. Note that we use a bracket enclosing the condition-
ing variable x instead of a simple bar as usual. Now, from Eq.
(2.9) we get

POy =9 1)/ O (%) G O (x i),
(2.13)

where G @ (x,y;t) is the quantum time-dependent Green’s
function (in imaginary time) defined as

GO (xyt) = (x|e“”(°)| »). (2.14)

The fundamental relation (2.13) between the quantum
Green’s function of H ‘© and the Green’s function of L (®,
i.e., the transition probability density of the process, will per-
mit us to express quantum quantities related to H ¢’ in terms
of suitable averages pertaining to the diffusion process and
conversely. However, we are interested in quantum proper-
ties related to H and not to H ‘©’ and, except for a few very
simple systems for which eigenstates of H are known, these
two Hamiltonians will be different. The aim of the next Sec-
tion is to present a possible way of escaping from this diffi-
culty using a so-called “full generalized Feynman-Kac for-
mula.”

Ii. THE FULL GENERALIZED FEYNMAN-KAC
FORMULA

Let us decompose the Hamiltonian into two parts:
H=H® 1V, 3.1)

where H @ is the reference Hamiltonian built from the refer-
ence function ¢ §” and ¥, the “perturbing” potential de-
fined as the difference H — H ‘. From Egs. (2.1) and (2.8)
we get the expression of the perturbing potential in terms of
the reference function:

V,=V—VO=V_E® _\Vp/p®.  (32)
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The usual Feynman-Kac formula expresses the quan-
tum time-dependent Green’s function (in imaginary time)
in terms of a functional integral®*2¢:

G(x’y;t) = f

Q(x, —t/2;9,t/2)
t/2

Xexp[—f V,[X(s)]ds| D*X, (3.3)
—t/2

where Q(x, — t /2;p,t /2) denotes the set of continuous tra-
jectories starting from x at time — ¢ /2 and ending at y at
time £ /2. In this formula V, is defined by H = — }V* + V,,
which is of the form (3.1) with H (¥ = — {V? (free-particle
Hamiltonian). The functional measure D "X is the usual
Wiener measure. It is well known that it can be reinterpreted
as a diffusion measure, namely the diffusion measure asso-
ciated with the free Brownian process (see e.g., Sec. 1.3.1in
Ref. 27, see also Ref. 28). Note that this later process is the
diffusion process obtained from the similarity transforma-
tion (2.9) with H @ = —1V?, ¥ =1land E§” =0.
Glimm and Jaffe (Sec. 1.3 in Ref. 27) have given a first
generalization of this formula. Using the decomposition

H= — iV’ 4+ 1x* — 1+ V,(x), (3.4)

they derived a generalized Feynman-Kac formula written in
the form:

G(xy;t) = J

Q(x, — t/2;p,t/2)
(/2

Xexp [ —f v, [X(S)]ds] DSX.  (3.5)
—t2

In their derivation they introduced explicitly a diffusion pro-
cess associated with the harmonic oscillator (the Ornstein—
Ulhlenbeck process) which corresponds in our language to
the diffusion process obtained from the similarity transfor-
mation (2.9) with H @ = — V> 4+ Ix* — L@ =77
and E {® = 0. In formula (3.5) above, we denote as D %*X
the diffusion measure associated with the diffusion process
built from the Gaussian reference function®’ (the super-
script GJ in D 9°X stands for Glimm and Jaffe).

A generalization of this approach has been made by Soto
and Claverie* to the more general case of an arbitrary non-
perturbed Hamiltonian H , thus encompassing the two
previous trivial cases of the free particle (Feynman-Kac for-
mula with H ® = — 1V?) and of the harmonic oscillator
(Glimm and Jaffe with H ¥ = — 1¥? + 1x? — 1). This gen-
eralized Feynman-Kac formula corresponding to
H=H® 4V, is written

G(x,p;t) = f

Q{x, —t/2;3,t/2)

t/2 @
X exp [ —f v, [X(s)]ds] D? X, (3.6)
—1/2

where the measure D *® X is the diffusion measure?® asso-
ciated with the diffusion process built from the reference
function @ .

We shall now derive a very general formula including all
the previous ones and allowing to evaluate all quantum mean
values we are interested in. This formula is written
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I, 4, (Llensty)
=({foQle” (h+1/2)(H — Eé°’)A e (5 ) (H—E®)

XAy Age™ /27 OEE) oo 00)
= fIX(—1t/2)]
Q(—t/2;t/2)

XA, [X(1)]..4, [X(2,)]g[X(2/2)]

t/2 )
X exp [ -—f v, [X(s)]a’s]D"’o D, ¢ 3.7)
—tr2

with — t/2 <t,<t,...<t, <t /2. The A;’s are g scalar multi-
plicative operators and f, g two arbitrary functions verifying

fﬁp %dx < 0 and fgcp %dx < 0.

O ( —t/2;t /2) is the set of continuous trajectories defined in
the time interval ( — ¢ /2,t /2).

Proof
Let us note 7=t +1t/2, 7To=1t,—lyuTipy
=t — Ty =1/2— 1
R(0)=E(()0)—H(0) (38)
andI=1I, , (Gt,...0,).
We then have
I=(fp@le™ ™ A M T,
X..dge'es R T Vol gg ()
Using the usual following Trotter formula
et P= lim [e?"eP/"]" (3.9)
n— + co
J

I = lim J- H H dX P fo X1 X e P X EY) H ¢o(0)(X(J))

n— + j=1i=0

[
XH <X(J)IA]’X(J+1)> H p(O)(X(q+1)]X(i-;z-l),eq+l)e
j=1

The A,’s are scalar multiplicative operators, we then have
(I)IA |X(.I+ l)) _6(X(J) —X((,j+ 1))Aj(X(()j+ 1)).
(3.12)

Inserting Eq. (3.12) into the expression of I and integrating
over X {7 (forj=1to gq), we get, after the change of nota-

tion X (/) = X P;
+1n—1 .
I= lim dX (P dX @+ fX§D)
n— + o Jj=1i=0
q g+1in—1
N — x D
XHAj(X(()J+l))g(X’(‘q+l)) H H e~ 9 XixD
j=1 j=1i=0

we obtain

I = lim (f¢50)|[ee,R(O)e_e.VP]nAl

n— +

X..A, [e+® @
X..A, [e“'*'R

e_€i+lyp]nAi+l
€q+1 p] |g¢(0) ,

where €, = 7,/n.
Introducing the spectral resolution of operator X, name-
ly

1=de|X>(X| (3.10)

between each operator involved in the above matrix element
we get

g+1 2n

H H dX(])(f¢(0)|X(l)>

j=1i=0

I = lim

R-+ 4+ o0

g+ 12n—
XL Gl DKL e AL

j=l i=0
X H (X214, X+ PNX 5" Plgps™),
j=1

where 17", means II?_, with steps of size m.
Using relatlons

— &V .
<Xi(£—)]‘e “ plxlgi)z)

=8(X (D, —XDy)e” 9K, (3.11a)
X2l x (2,
_¢(0)(X(1))/¢(0)(X(1) )P(O)(XU)]X,(.J..)“f ),
(3.11b)

where relation (3.11b) results from Egs. (2.13), (2.14), and
(3.8), and after integrating over variables X {/, , (fori=0
ton —1landj=1tog + 1), we obtain

(X(i+l)) 2n—2,2

0 —gV(x! Py
H p( )(X(j)]X,(_'{_)z,Ej)e S etk ix2

g V(X EHD) 1

i+2 (g+ 1) (0)
PPy X5 lepe”).

(O)Z(X(l)) H Hp(o)(X(J)]X'(i)“ )

J=1i=
In the last formula and below, we use the convenient identi-
ty:
XWD=x+D
Using the fundamental property for stationary Markovian
processes, namely

(forj=1togq).

pr(tO) (Xystgees Xsly)

—P(O)(X ) H P(o)(X] i+ 1ofie —1),

i=1

(3.13)
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where p{* is the n-time probability density of the diffusion

n

process, we get

q :
1= tim [0 T g e

n— 4 i=1
e 9 i
j=1 i=0
XD 41y o1 (XD, — /25X 8+ V.1 /2)
I v gy @+ 3
X dXPdxe+h. (3.14)
AL

This expression is symbolically written as:

f FIXC— /D) 14,1 X () 1.4, [X(,)]
QC—1/2;¢72)

t/2 ©
xXglX(t/2)]exp [ —J- V,[X(s)lds|D*° X
—t/2

QE.D.
We give to this equality the name of “full generalized Feyn-
man-Kac (FGFK) formula.”

At this point, it is interesting to notice that the full gen-
eralized Feynman—Kac formula (3.7) is essentially based on
the possibility of expressing the diffusion measure D #°X (as-
sociated with the exact eigenstate ¢, of H) in terms of the

diffusion measure D ""(’O)X (associated with the reference
function @ () through a suitable “relative density”” (the so-
called Radon-Nikodym derivative: see Chap. I11, Sec. 12 in

Ref. 29), which can be noted D*X /D ®%” X. This relative
density (pertaining to function space!) is actually given (ex-
cept for a normalization constant) by the “Feynman-
Kac integrand” in the long time  limit
lim,_ ., . exp{ — /", V,[X(s)]ds}. The normalization
factor actually appears explicitly in the expressions for oper-
ator mean values derived in the next section.

Now, it is of crucial importance to remark that the diffu-

sion measure, D 285'¢ , involved in the path integrals may be
chosen ergodic. A diffusion measure is said to be ergodic
when any sample trajectory is recurrent in space. A theorem
due to Has’minskii*® shows that integrability of the station-
ary density p‘@ (x), i.e., f p@(x)dx < o, is a sufficient con-
dition for ergodicity. Accordingly, if the reference function
@ § has been chosen such that p® (x) = @ §»?is integrable
(and from now on it will be always the case), the following
ergodic property may be invoked to evaluate functional inte-
grals:

f FIXC=1/2)] T] 4 [X ) 1glX(t/2)]
Q(—t/2;t/2)

i=1

t/2 ©)
X exp [ —f v, [X(s)]ds]D‘P0 X
—t/2

= lim
To + o

T
LTJ fIXO(—t/24+7)]
(o]

X [T 4 [X O +1]glX @ /24+7)]

i=1

t/2 + 71
X exp [ — f V,[X©(s) ]ds]df, (3.15)
—t/2+7

where X ‘©(s) denotes an arbitrary sample trajectory of the
diffusion process.

It must be emphasized that in the basic formula (3.7)
(and in the formulas derived from it) we only have the time
parameter ¢ and functional integrals, the simulation time T
appears only when these functional integrals are expressed
as time-averages over sample trajectories according to the
previous formula (3.15). Once this is done these formulas
would exhibit 7— + oo, while ¢ remains fixed, and, there-
fore, the distinction between 7" and f remains perfectly clear.

We can now discuss with more detail the connection
with other Monte Carlo methods based on the use of a
branching term. The “trial wave function” ¥, introduced in
these methods corresponds exactly to our reference function
@ &,%" and accordingly the pure “drifting-diffusion” part of
their process would be identical with our own diffusion pro-
cess. Our Fokker-Planck equation (with drift term
Vo {2/@ §) is actually identical with the evolution equa-
tion of the branching-diffusion process [see, e.g., Eq. (6) in
Ref. 9] when the branching term is removed. Adding the
branching term modifies the process and thus generates a
new measure in function space (space of trajectories). In-
stead of directly sampling this new functional measure, as
has been done in most previous work, it would be conceiv-
able to use a Feynman-Kac type formula applied to the ref-
erence (pure drifting-diffusion) process. This second alter-
native has precisely been noticed by Ceperley and Alder [see
their Eq. (11) in Ref. 14] and by Pollock and Ceperley {see
their Appendix A, notably Eq. (AS5) in Ref. 23]. It must be
emphasized, however, that the branching-diffusion process
is not identical with the pure diffusion process correspond-
ing to the exact state @y, if only because the former has the
stationary density @q¥r, while the latter has the stationary
density @ 3. In the Appendix, we present further discussion
concerning the connection between the various approaches
and, more specifically, between the possibly associated
Feynman-Kac type formulas.

IV. EXPRESSIONS OF QUANTUM MEAN VALUES AND
RESPONSE PROPERTIES USING THE FGFK FORMULA

A. Energy
Taking 4, = 1, for i = 1 to ¢ in the FGFK formula, we
obtain

1) = (fpPle™ 5 gp @)

= FIX(—1t/2)1g[X(t/2)]

Q(—t/2;t/2)

/2 )
X exp [ —f v, [X(s)]ds]D“’o X. 4.1
—t/2

We now introduce on the left- and right-hand sides of opera-

—_ — (0) » . . . .
tore "%~ F°7 the resolution of the identity associated with

the spectral resolution of H, namely
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1=3 lg:){g:]. (4.2)
The summation sign 2; here is a shorthand notation which
may represent either a discrete summation or a continuous
integration. This notation will be used throughout the paper.
Using the orthogonality relation

(@il@r) =64 (4.3)
we obtain
I0) =3 (S8 lp ) @ilep e ESED  (4.4)

From Eq. (4.4) it is then easy to derive that

J

- /2)(H— E§® — (2~ t)(H—E®
I (ttl)_<f¢(0)| 6 +1/2)( 0 )Ae t/ 6H)( h) )I

=f fIX(—1/2)]14 [X(1, )]g[X(t/z)]exp[ f
Q(—t/25t/2)

E =E® — lim 1/t

I—- + o

X log FIX(—1t/2)]1g[X(t/2)]

Q(—1/2;t/2)

t/2 @
X exp [ —f v, [X(s)]ds]D"’° X, (4.5)
—t/2

where E, is the energy associated with the lowest state @i,
having nonzero overlap with the functions fp {* and g §*.

In actual fact more sophisticated schemes to extract the
exponent of the leading real exponential will be considered in
numerical calculations (see companion paper).

B. Expression of quantum averages

Taking4, =Aand 4, = ... =4, = 1 in the FGFK for-
mula, we obtain

(0)>

V,[X(s) ]ds]D »x, (4.6)

—t/2

By inserting the spectral expansion by Eq. (4.2) at each side of the three operators into the quantum matrix element we get

_ RO /2 — _
Litt) =Y (felp e le T PHETED 10 @ 14 @ M gile ™ T EED 16 (0,180 O

i k.1

=e BT E o010 Vg, lgp O

(fp&”le: ) @ |d o) (i |gp &

X [(¢io|A g, + D

Lk

i> ik > iy

taking 4 = 1 in the last equality we obtain

(fo e ) @, lgp &)

(foVlo ) @i lgp &

— (B — Ep) ——; [(E—E) + (Ek—E,p]]

1) = e~ "5 F o Ol V(o g9 &) [1+ >

finally we find
I (5t)
im
t~+w I(1)

={p.|4|p.) Vel —t/2,t/2]

or

S e, ) e, lgp &

Sac— i/ FIXC~ /D14 [X(1) 1g[X(2 /2) Jexp { — 572 ,, ¥, [X(5)1ds}D* X

—HE;—E;)
. : ]

(¢7io |4 |¢io) = lim

I— + o

C. Second-order mean values

(4.7)

Sac—rtrm SIX(— t/2)]g[X(t/2)]exp{ - ftfzz/z Vp [X(S)]dS}D‘p(()O)X

Weapply the FGFK formula to the case 4, = 4, 4, = B. Using the same kind of arguments as in the both previous cases it

is easy to be convinced that the following matrix element:

Lip (52,8,) = (fp §¥le
may be written in the form

— (4 + :/z)(H_E{,"))Ae_ (6 — t.)(H—E(‘,O’)Be— (8/2 — 1) (H — Eé°’>|g¢ )
0

e B TEON fo 010, Mg, lgp & [Z (@i, | @) @i |B |, e~ 7 Eem B

o~ 2N E—E) + (E,—E)) (fp 9 )@ 8 &

+Xe

i>iy
m> g,

We now extract the following quantity:

(fole, )@, lgp )

|3 @l1e0@uiBlpne s -wnr]],
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Can(1) =3 (@, |4 | @i B @, e ™55,
k

where 7 =, — t,, in a way similar to that used for obtaining (g, |4 |@, ) in the previous derivation [Eq. (4.7)]. We thus

obtain

Sac—irum FIX(—1/2)14 (X (1)) 1B [X (¢, + 7)1g[X (2 /2) Jexp { — §'7%, VP[X(S)]ds}D""(’O)X

Cpp(r)= lim
t— + o

From the Laplace-transform of C,; (7) one obtains

+®
j[CAB(T)]':J e~ “"Cyp(T)dr
0

_s (@, 410 ) {0 |B @)

¥ o+ (E.—E)

Now, we can consider for example the dynamic dipole

polarizability tensor A(w) at frequency @ for an atomic or

molecular system, which is given by the second-order per-
turbation formula®?:

(4.9)

Aw)=2 Y wﬁﬂﬂ (4.10)

““o E2,—0o?
where E,, = E, — E, and p,o = {@:|pt|po) denotes the
matrix elements of the dipole operator p = X£;_, ¢;r; and ®
denotes the tensor product. Now, as remarked, e.g., by Tang
and Karplus,®® Eq. (4.10) may be written as

A(w) =A" (@) + A" (—w), (4.11)
where
Kro ® Ko
At (w) = —_— 4.12)
kzaézo  + Eko
This last quantity may be evaluated with
L[Cap(r) = (4)(B)]
- (@, 14 @) (P B |gp,,) ’ (4.13)

KFi o+ E —E,
where A = B = p. Of course, the subscript i, used in Eq.
(4.13) for labeling the fermionic quantities corresponds to
the subscript O appearing in the standard Egs. (4.10)-
(4.12).

It must be emphasized here that all the formulas just
derived (for energy, mean values, and second-order proper-
ties) are expressed in terms of one and same diffusion mea-
sure (corresponding to the reference function @ §*). Only
the integrand changes from one functional integral to the
other. Moreover, according to the ergodic property (3.15),
these functional integrals may be reformulated as time-aver-
ages of the corresponding integrands over any given sample
trajectory of the diffusion process (associated with @ §).
This use of one and the same trajectory for evaluating all
quantities of interest is a very appealing feature, and deserves
to be contrasted with the situation encountered in previous
QMC methods.”*® As a general rule, these methods intro-
duce a branching process designed for generating a cloud of
points asymptotically distributed according to the density
@Y (where ¢ denotes the exact eigenfunction of H and ¢,

Sac— e SIX(—1t/2)1g[X(t/2) Jexp{ — 22, ¥, [X(S)]ds}D¢‘(’°)X

Vitel —t/2¢72[.  (4.8)

—
the so-called trial function). Now, such a density enables one
to evaluate exactly the mean value of the energy, or more
generally of any observable 4 commuting with H, but gives
only an approximate mean value for other observables.'® If
an exact mean value is wanted, a modified procedure has to
be used in order to generate the exact density @ 2. In the same
way that in the previous Sec. III, we emphasize that our
formulas (4.5), (4.7), and (4.8) involve only the time pa-
rameter 7 and functional integrals; only when expressing the
latter integrals as time-averages [Eq. (3.15) ] we would get a
simulation time T systematically involved in a limit
T— 4+ o tobe performed for each value of z. Then formulas
(4.5), (4.7), and (4.8) would give rise to a double limit
t— + o [T— + oo ]. It is a priori allowed neither to inter-
change these two limits nor to collapse them into a single
limit by putting ( = T) —» + «. Any such changes should
be carefully justified. An illustrative and important case
where even the collapse of the two limits is not justified will
be encountered in the release-node treatment of the fermion
problem (see Sec. VI).

Finally, as far as we know, no procedure aiming at eval-
uating second-order properties seems to have been proposed
in the framework of these previous QMC methods, and our
procedure offers in this respect an important potential ad-
vantage.

V. THEORETICAL ALGORITHM

We present here the basic ideas of the algorithm. The
main steps are:

(i) Choose some suitable reference function @ §*’ from
which the reference diffusion is built [see Egs. (2.9)-
(2.11)].

(ii) Using the stochastic differential equation (SDE)
associated with the reference diffusion process®* generate
through a step-wise procedure (with a time step A¢) a sto-
chastic trajectory X‘?(¢#). The SDE is written

dX(t) =b[X()]dt+ ZVdW, (5.1)

where W is the multidimensional Wiener process and b, &
are given by Egs. (2.11).

(iii) According to formula (3.15), evaluate the desired
functional integrals as time-averages over the stochastic tra-
jectory X (¢).

In actual fact, it is appropriate to introduce, instead of a
single very long trajectory, a set of shorter trajectories be-
cause the corresponding set of mean values enable us to
evaluate the variance using standard statistical methods.>
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VI. THE PAULI PRINCIPLE AND ITS CONSTRAINTS
A. General framework

The quantum mechanics of fermionic systems with a
spin-free Hamiltonian can be formulated independently of
spin functions or spin operators. The requirements of the
Pauli principle are then expressed as follows: among eigen-
functions of H only those belonging to irreducible represen-
tation (IR) of the symmetric group S(N) (where N is the
number of particles) with a Young diagram containing at
most two columns are allowed. These states are referred to as
the fermionic states. Moreover, for each of these allowed
representation there corresponds a well-defined total spin .S
for the system. Further explanations concerning the formu-
lation of the Pauli principle in a spin-free formalism may be
found elsewhere (a convenient reference is the textbook by
Landau and Lifshitz,*® see also Hamermesh®” and Mat-
sen®®).

In Sec. IV above, the expressions of quantum mean val-
ues and response properties have been given for the lowest
state (which was denoted as ¢, ) having nonzero overlap
with fp § and g §». Now, by choosing the functions f, g,
and @ such that the space-functions ¢, =fip > and
¢, =g & belong to the desired IR, it is possible to deter-
mine quantum observables for the lowest fermionic state
corresponding to a given total spin. The construction of such
space-functions ¢ corresponding to a given type of symmetry
is easily done (see, e.g., Chap. 7 in Ref. 37). Let us give here
the most common choice for ¢°*°:

N/2+S
S (T ppersy) =det( H u,-(l',-))

i=1
N/2—S

H uf(ri+N/z+s)), (6.1)

X det (
i=1

where {u, } is a set of (N /2 + S) different one-electron orbi-

tals, N the number of electrons, and .S the total spin deter-

mining the desired type of symmetry.

B. Some practical procedures

1. Fixed-node approximation (FNA)
In this approach, we take

and we introduce the symmetry into the diffusion process

through the reference function g {*:

¢7(()0)=¢f=¢g =4.

According to its symmetry properties, such a reference func-
tion @ §» must have some nodal hypersurfaces. These nodal
hypersurfaces, where the drift b= Vg (/¢ §» is infinite,
are seen as infinite barriers for any sample trajectory. The
diffusion process is then decomposed into a juxtaposition of
subprocesses in subdomains delimited by the nodal hyper-
surfaces of the reference function @ . Now, as rightfully
pointed out by Klein and Pickett,*° the full nodal hypersur-
face of any space-function ¢ obeying the Pauli principle re-
quirement cannot be completely determined by these sym-
metry requirements. In actual fact, the full nodal

(6.3)
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hypersurface of any continuous function ¢(r,,...,ry) of 3N
variables is obviously of dimension (3N — 1) and bifurcates
the 3N-dimensional space. In contrast, the symmetry re-
quirements determine only subhypersurfaces of lower dimen-
sion (3N — 3) embedded in the full nodal hypersurface of
#.%° We shall denote these subhypersurfaces as exchange or
symmetry nodal hypersurfaces. The subset (also of dimen-
sion 3N — 1) of the full nodal hypersurface, which comple-
ments the symmetry nodal hypersurface, will be referred to
for definiteness as peculiar nodal hypersurface. For example,
in the case of the lowest triplet state of helium-like systems,*°
the full nodal hypersurface (of dimension 6 — 1 = 5) is de-
fined by |r,| = |r,|, while the symmetry nodal subhypersur-
Jace (of dimension 6 — 3 = 3) is defined by r, =r,. Now,
the exchange (symmetry) nodes are exact by their very de-
finition (i.e., they may be taken identical for the exact solu-
tion @, of the Schrodinger equation and for the reference
function @ {’ = ¢): thus, they correspond to correct (but
unfortunately incomplete) boundary conditions. In con-
trast, since the peculiar nodal hypersurface of ¢ has no rea-
son to coincide with the exact peculiar nodal hypersurface
(of the exact function @, ) it will impose to the eigenfunc-
tions of the Schrodinger Hamiltonian some wrong boundary
conditions (i.e., boundary conditions different from those
pertaining to the original problem of solving the genuine
Schrodinger equation, where the only condition imposed to
the eigenfunctions is in general vanishing at infinity ). Conse-
quently, the eigenvalues of the Schrodinger operator modi-
fied in this way will be somewhat different from those of the
genuine Hamiltonian H, and some bias will be accordingly
introduced. This is the well-known fixed-node approxima-
tion (see, e.g., Ref. 9).

2. Projection methods

In this case the reference function @ § is chosen node-
less and the symmetry is introduced via the functions fand g:

f=¢/98, (6.4a)
8=0,/9. (6.4b)

Since no extra boundary conditions are imposed to the eigen-
functions of the Schrodinger operator, the requirements
concerning the Pauli principle are fulfilled here without any
approximation.

We have distinguished two versions of the projection
method:

(i) Simple projection (SP) method. In order to reduce
the perturbing potential ¥, the reference function ¢ is
chosen as close as possible to the bosonic ground state ¢, of
H. In particular, no built-in structure akin to the exact wave
function @, is introduced into ¢ §*.

(i) Release-node projection (RNP) method. In this ap-
proach we use a more refined choice of the reference func-
tion. Choosing a symmetry-adapted ¢ close to the wave
function @, and introducing a nonvanishing “connecting
piece” function, noted cpf(x), we construct the reference
function in the following way:

9" =4l
@ §¥ = cpf(x)

when |¢| > ¢, (6.52)

otherwise, (6.5b)
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where € is a threshold value. Continuity of @ §’ and its first
derivative is imposed at the points where @ §* = €. This con-
struction is illustrated in Fig. 1.

In these projection methods, and in contrast to the
fixed-node approach, the product

fIX(—t72+m)]glX(t/2+7)]

may change sign. This change occurs when the trajectory
goes through nodal surfaces of ¢ an odd number of times in
the time interval ( — ¢t /2 + 7, t /2 4+ 7). Note that our re-
lease-node projection method is essentially similar to the so-
called nodal relaxation method of Ceperley and Alder (see
Secs. III B and IV in Ref. 14).

C. Further remarks concerning the exact projection
methods

1. Choice of ¢, f, and g

Let us consider for definiteness the problem of evaluat-
ing I(t) given by Eq. (4.1):

I = f FIXC=t/2)1glX /)]
Q(—t/2;t/2)

1 /2 o
X exp [ - f v, [X(s) ]ds]D 7%, (6.6)
—t/2
Numerical difficulties are essentially due to the non constant
sign of £ [X( —¢/2)] g[X(z/2)]. We shall therefore write
where I, (¢) and I_(¢) are the contributions coming respec-
tively from the positive and negative values of the product
fIX(—1/2)] g[X(2/2)], namely
1
I, (t)=f —{IfIxX(=t/2)]
Q(—t/2002) 2

XglX(t /D1 £ FIX(—1/2)1g[X(/2)1}

1/2 (0)
X exp [ —f v, [X(s)]ds]D"’0 X. (6.8)
—t/2
b T
X, X

[{e}]
(bm 1
[
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Using | fg| = | f||g|, we can also [according to Eq. (4.1)]
express I, (t) as follows:

.= [ (flePle™ = glo ™)

+ (fpPleT T E e ] (69)
We can now apply to each matrix element the same proce-
dure as used in obtaining Eq. (4.4):

—H{H—E®
(1@ 81e™" 75 llglp 6

—_ g
= (110 @0) (@ollgle Oye ™ EEED 4o

»

(6.10a)
(fpPle™ " 1gp )
—t(E; — ((’0)
=<f¢30)|¢;0)(¢;0|g¢7((,°’)e E,—E )+...’
(6.10b)

where @, is the lowest state belonging to the symmetry type
imposed by fand g. Note that in the previous matrix element
(6.10a) the expansion actually begins with the bosonic
ground state @, of H, since | f|@ & and |g|@ §* are nonnega-

tive everywhere, as is ¢,. Let us denote for brevity:

—HH—E
[fp 081 (1) = (fpdle ™ ™5 lgp ).

(6.11)
We can rewrite Eq. (6.9) as
I, 0 =H[12lep 110
+ [fos e 10}, (6.12)

We now notice the remarkable fact that 7 (z) and I_(2),
like J(z) itself, depend only on ¢, = fip {” and ¢, = gp §*,
and not on f, g, and @ §” separately. Consequently, the
choice of @ §* is not directly crucial at this stage, since it is
always possible to compensate it through a suitable choice of

f and g in such a way as to get prescribed functions

FIG. 1. Comparison between the
fixed-node (FN) method and the re-
lease-node projection (RNP) method.
In both cases, the behavior of the refer-
ence function @ §” in the neighbor-
hood of the node X,, is pictured. The

continuous line —  represents
> - @ (X). In the RNP case, the dashed
Xn X X line - - - represents |$|(X).
FN method RNP method
© © b wnen|®|>E
(x)= Ox)  (X)
° cpfix) otherwise
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¢, =rfp&” and ¢, = gp V. At this stage, it therefore ap-
pears convenient to proceed in two steps for our discussion:

(i) Choice of ¢, and ¢, (in actual practice, we generally
take 8, = 4, = ¢).

(ii) Once ¢, and ¢, have been chosen, what role is left
for the choice of ¢ {7

As concerns the choice of ¢, and 4, it must first be
emphasized that 7 (¢) and 7_ (¢) contain unavoidably non-
zero contributions from the unwanted bosonic states. These
contributions are actually identical, since they are provided
by the matrix element [|¢/|, |§,]](¢), common to both
I,(t) and I_(z). The other matrix element [¢,, ¢, ] (#)

= I(¢) contains no such bosonic contribution, according

precisely to the ad hoc choice of ¢, and ¢, . According to Eqs.
(6.10), it now appears that ¢, and ¢, should be chosen so as
to maximize the overlap integrals {(¢/|@, ) and {@, |¢,),
while also minimizing the overlap integrals {|¢,||@;,, ) and
(@1, I§¢ ). From these requirements, taking ¢, = ¢, = ¢
close to the desired (fermionic) state g, looks like a reason-
able choice.

Once ¢, and ¢, have been so chosen, 1, (#) and I_(¢)
are determined, and the choice of @ {’ now concerns the
variance (for any given simulation time) in the Monte Carlo
estimation of 7 (¢) and I_ (¢). Thus, the release-node pro-
jection method consists in choosing @ {* close to |@, |, and
S =gclosetosign (@, ), while the simple projection method
chooses ¢ {° close to the bosonic ground state @,. Numerical
experiment (see Ref. 14 and part II of the present work) so
far indicates that the RNP method indeed exhibits lower
variance.

2. On the role played by the distinction between the
evolution time parameter t and the simulation time T

We are now in a position to discuss in a precise manner
the difficulties associated with the Pauli principle require-
ments alluded to in the Introduction. As emphasized by oth-
er authors (see, e.g., Refs. 8, 14, and 41), the fermionic quan-
tity of interest is obtained as the difference of two (bosonic
type) larger quantities which have the same order of magni-
tude. This is a typically unfavorable situation from the nu-
merical point of view. More precisely, in our formalism, the
desired fermionic quantity is 7(¢), and the two bosonic quan-
tities are I (¢) and J_(¢) [see Eq. (6.7)]. Then, according
to Egs. (6.9) and (6.10) we have, for large #:

Lo () ~I_ () ~[| fip OLulgp 1 ] (1) ~e ™ B~ B,

(6.13a)

1) = [ fp e O] () ~e B 50 (6.13b)
hence

I/, () ~ e "Fm®) (6.14)

te +

Now the Monte Carlo simulation will provide the values
of I (¢) and I_(¢) with some statistical uncertainty (stan-
dard deviation) leading to a relative error of the form (for
large T')

81, (/1. (1)~C, (T2, (6.15)

where T denotes the simulation time, while C, () and
C_(¢) areindependent of T (and in general increase with #).
Since we have no reason to assume that the errors 67, and
61 _ are correlated, the error 81 should be of the same order
of magnitude, and consequently the relative error pertaining
to I(¢) would be of the form

SI/I~C(t)T ~ /2" Ea— B (6.16)

According to this formula, in order to keep 61 /I under con-
trol, it appears essential to vary ¢ and T independently. No-
ticeably, when ¢ increases, it will become necessary, sooner
or later, to have T increasing much faster. Any method in
which ¢ and T are (possibly in an implicit way) taken of the
same order of magnitude will fail to meet this requirement
and will therefore become useless for large enough values of
t=T. Such a method will be able to work for not too large
values of =~ T, and under the condition that C(¢) is small
enough. Since C(¢) gives the (relative) variance for 7= 1,
we may expect to reduce it by improving the choice of the
reference function @ (. Apparently, the situation just de-
scribed corresponds to the previous Monte Carlo proce-
dures,®!* where the simulation time 7 is also the evolution
“imaginary” time ¢. In actual fact, a discussion similar to the
above one has been given by Kalos*? in the framework of the
Green’s function Monte Carlo method. This can be seen by
comparing his Eq. (14) with our Eqs. (6.7) and (6.13).
Kalos’s Eq. (14) involves only one parameter n, proportion-
al to the total simulation time (that we denote T), a situation
which reflects the implicit relationship ¢ = T By contrast, in
our procedure, ¢t and 7 remain perfectly distinct, which in
principle offers the possibility of correctly evaluating 7(¢) for
fixed t by making T large enough. Now, in order to obtain
theenergy E, , the straightforward procedure corresponding
to formula (4.5) requires large values of #. This could result
in a demand for unrealistically large values of the simulation
time 7. However, we could then still resort to more sophisti-
cated procedures using only values of 7(¢) for a set of values
of ¢ restricted to some reasonable interval (see the Padé-
integral procedure in the companion paper).

VII. CONCLUSION

A basic feature of the Monte Carlo method developed in
the present work is the definition of a reference diffusion
process associated with some reference function @ §”, with
the crucial property that the Fokker—Planck operator L (©
of this process is connected through a similarity transforma-
tion with some reference Hamiltonian H ¢* itself easily de-
fined from ¢ {*. By relying on this connection between L
and H ‘, we showed that it is possible to express in an easy
and systematic way quantum properties pertaining to any
Hamiltonian H = H‘® + ¥, in terms of functional inte-
grals (involving the “perturbing” potential ¥, ) making use
of the diffusion measure associated with the reference diffu-
sion process. Its simple and systematic character makes this
approach quite attractive. Thus, to our knowledge, the possi-
bility of easily obtaining expressions for response properties
(beyond usual mean values) is a specific advantage of our
approach over the other Monte Carlo methods. Needless to
say, this possibility is also a very attractive feature with re-
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spect to standard methods based on the use of basis sets,
since the evaluation of response properties then implies the
introduction of basis sets augmented with suitable “polariza-
tion” functions (with little assurance concerning the quality
of the resuits, beyond the simplest systems).

Similarly, it has been possible to discuss in a natural way
some “hierarchy” of solutions concerning the problems
posed by the Pauli principle requirements for many-fermion
problems. First, as is the case in other Monte Carlo schemes,
we could define a so-called fixed-node approximation,
whereby approximate eigenfunctions of the Hamiltonian H
are obtained, subject to the constraint that they vanish along
the nodes of the reference function ¢ {*’. But in order to give
to the Monte Carlo approach its full power, it is of course
essential to go beyond this approximation, and we therefore
examined a theoretically rigorous procedure for getting ac-
cess to eigenspaces belonging to some prescribed symmetry
type. As done in previous work (see, e.g., Refs. 8 and 14) we
further considered two variants for this procedure, based on
different choices for the reference function ¢ §. The first
choice is a mere “bosonic” ground state, with no built-in
structure akin to the desired symmetry type. The second
choice, although being everywhere strictly positive (as it
must), is required to remain close to |¢|, where ¢ is some
function belonging to the desired symmetry type, and, as far
as possible, close to the desired exact function (in order to
reduce the perturbing potential ¥,). The latter choice, of
course, looks more attractive than the former one, but ade-
quate checking of both variants remains to be done.

In a companion paper, the computer implementation of
the method will be considered in more detail. We shall de-
scribe a few illustrative examples, namely one-dimensional
systems first, and then some simple systems of chemical in-
terest (atoms and the H, molecule).
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APPENDIX

In this Appendix, we present the rigorous relationship
existing between our generalized Feynman-Kac formula
and quite similar formulas written down without explicit
derivation by Pollock and Ceperley [formula (AS) in Ref.
23] and Ceperley and Alder [formula (11) in Ref. 14].

For that purpose we start from our basic FGFK for-
mula (3.7) with4, =1,i=1to¢:

—«H~E)
(fp&le™ 75 1gp )

= FIX(—1/2)1g[X(2/2)]

Q(—1/2;t/2)

t/2 ©)
X exp [ —J Vl,[X(s)]ds]D"’o X.
2

—t/

(A1)

Choosing f =6, /¢ and g = 8,/ §* we get
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(rle="™|r')
e_,E(()o)

- 8.1X(—1/2)15,
P mM@ ") -[1(—:/2;:/2) [X( ]

t/2

xixa/mlen |- [ v, xeas]prx

—t/2

(A2)

Note that (r|e~“#|r') is the usual time-dependent Green
function (or density matrix ). Using notations from Refs. 14
and 23 and the time-shifting invariance of the functional
integral, equality (A2) may be rewritten in the form

—BE®

P = @)

X f 8,1X(0)15, [X(B)]
Q0,8

B (0)
Xexp{—J- V;,[X(s)]ds]D"’0 X. (A3)
0

Now, we express the previous functional integral under its
constructive form, namely

lim | dX,-dX, 8, (X,)8, (X,)

n— + «
Xp)  (Xo,0:X,A8; - X, ,nAB)
xexp| —A8 S V. (X,
exp[ Aﬂi; » (X)) (Ad)

with AB = B /n. Integrating over X, and X,, using Eq.
(3.13) and the property p'® = @ {2, lead to the following
expression for p(r,r',5):

o @@
prr ) =e 0 20 () L de,- dX,_,

PO) ne+ o

Xp P (r1X,A8) - p (X, _, ]r',AB)

Xexp [ —Aﬂi v, (X)) |-

i=1

(AS)

Equality (2.13) gives
(0)

¢70 (l' ) eﬂEéo) 0) ;
s P (l',l' ,ﬂ ) s

@6 (r)
where p'® is the time-dependent Green function (or density
matrix) associated with H < = H — V. Equality (A5) be-
comes

pOrlr' g =

p(rr'B) =p®(r,rB) lim |dX,--dX,_,

n— + o

><p‘°’(r]X1,A/3) o p (X, _, ]r'\B)
pO(rlr'B)

pAc AR (A6)

i=1

X exp [ — A8

Now, using Eq. (3.13) and the definition of the conditional
probability densities, namely
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Poin+p Xt 3 Xl 12Xy 1oty 137 X ol i)
=P n(Xustys" "Xy nilp 4 n)/Pp (X5 3 X,00,);
(A7)
the infinitesimal probability
PO r1X,,A8) - p O (X, _, 1r,.AB) dX
pO(rIr'p)
may be rewritten as

—1
o £0x 81X, 08+ X, _ 08" )dxl--~dxn_1,

n

codX,

(A8)

which leads to a conditioned measure over the space of tra-
jectories, namely the measure associated with the drifting
random walks satisfying the boundary conditions X(0) =r
and X( B) =r'. The corresponding functional integral has
been denoted - )prw by Pollock and Ceperley. Finally,
using this notation we have

p(rr',B) =p®(r,r'p)

8
><<exp [ —J; V,,[X(s)]ds])DRw. (A9)

This formula coincides with formulas (11) in Ref. 14 and
(AS5) in Ref. 23. In conclusion, expression (AS5) of Ref. 23
appears to be a particular case of our more general FGFK
formula.
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