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We present a new Monte Carlo method based upon the theoretical 
proposal of Claverie and Soto. (1) By contrast with other Quantum Monte 
Carlo methods used so far, (2 8) the present approach uses a pure diffusion 
process without any branching. The many-fermion problem (with the 
specific constraint due to the Pauli principle) receives a natural solution in 
the framework of this method: in particular, there is neither the fixed-node 
approximation not the nodal release problem which occur in other 
approaches (see, e.g., Ref. 8 for a recent account). We give some numerical 
results concerning simple systems in order to illustrate the numerical 
feasibility of the proposed algorithm. 

O U T L I N E  OF T H E  M E T H O D  ~1) 

Following previous authors, (9) a rather arbitrary Schr6dinger 
Hamiltonian H ~~ may be changed through a simple transformation into 
the infinitesimal generator L ~~ of a diffusion process, namely 
Ll~176162176 0 H~~ b~m), where E(o ~ and ~b(o ~ denote, respectively, the 
energy and eigenfunction of the (mathematical) ground state of H m) (this 
process was also introduced by Nelson, ~1~ but in a quite different perspec- 
tive). The operators L ~~ and E(o~ m) are similar; consequently, the 
quantum-mechanical Green's function of H ~~ is closely related with the 
Green's function of L m), namely the transition probability density of the 
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diffusion process: hence, the possibility of relating quantum-mechanical 
quantities of interest with suitable averages (amenable to computer 
simulation) pertaining to the diffusion process. Through its n-time 
probability densities, this process defines a measure on the set of sample 
paths (function space), and this measure defines a functional (path) 
integral, which generalizes the Wiener functional integral. Then we consider 
a Hamiltonian H = H (~ + V and using the diffusion process associated with 
H (~ we have, for a broad class of operators V, a generalized Feynman-Kac 
formula(~): 

I(t) = (ftb~o~ e - t ~ / -  ~~176 [g~b~o ~  = I f * [ ) ( ( 0 ) ]  g [ ) ( ( t ) ]  

x exp [ - f ~  V[X(s)]ds]D14t~ (1) 

wherefand  g are two arbitrary functions such that S f(~(o ~ dx < +o0 and 
g(q~o~ +oo (it is appropriate to mention here a related work by 

Pollock and Ceperley, CltJ see especially their Appendix A). The diffusion 
process associated with H (~ is ergodic as soon as the density (~b(0~ 2 is 
integrable, choosing H (~ = H - V  endowed with this property, averages 
over paths can be evaluated through time-averaging along any sample path 
X(~ of the diffusion process 

f*[J((0)]  g[J((t)] exp [ - f o  V[J((s)] ds] DI~~ 

= Tlimo~ T f / f *  [J((~ g[J~(~ + t)] exp I - - f /+~ vl-~?(~ ds] d~ 
(2) 

The right-hand side of this equation can be evaluated numerically from the 
computer-simulated trajectory X(~ and, according to the generalized 
Feynman-Kac formula we get a numerical evaluation of the function I(t), 
whose analytical expression in terms of the spectral expansion of H writes 

I ( t )=  (f~b(o~ e -~(~/- ~~ IglOo ~ = ~  (f#0~ ~i)(~,1 g#o ~ 
i 

• exp[ - ( E i -  E~o ~ t] (3) 

Ei and ~b i denote the eigenvalues and eigenfunctions of H, respectively. The 
spectrum of H can thus be obtained by analyzing I(t) into a sum of real 
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exponentials. Extracting the leading exponential exp[-(E0-E~o ~ t] can 
be done by considering the behavior of I(t) for t --* ~ .  We also performed a 
more complete analysis by resorting to an original procedure, (~2) namely 
the Pad6-Laplace (or Pad6 z transform) method. The essential idea is to 
apply to the function I(t) a suitable integral transform (namely Laplace or 
z transform for the case of analysis into exponentials), and to get an 
analytical (rational) representation of this transform in terms of Pad6 
approximants, which are in turn decomposed into partial fractions, which 
give the desired decomposition. 

According to the Pauli principle, the physical states belong to any one 
of the representations of the symmetric group whose Young diagrams have 
at most two columns. If we denote by P the projection operator 
corresponding to the subspace of eigenfunctions to be selected, we just 
have to choose f and/or g such that P]fqkto~162 ~ and/or 
P Igqk~o ~ = [g~6(o ~ then the amplitudes of the exponentials corresponding 
to levels excluded by the Pauli principle vanish. We present an example 
(see (c) below) of this symmetry-adapted procedure (lowest state of odd 
parity for the anharmonic oscillator), which illustrates the possibility of 
dealing with the physical ground state of systems with more than two fer- 
mions. 

EXAMPLES PRESENTED 

(a) Some low excitation energies of the harmonic oscillator, using 
only the knowledge of the ground state wave function (check that L ~~ and 
E~o ~ - H  (~ have the same spectrum) 

(b) Energy of the mathematical (or "bosonic") ground state (which 
is physical for systems involving at most two fermions) for the quartic 
anharmonic oscillator and for the helium atom (preliminary results) 

(c) Energy of states belonging to some prescribed symmetry type (as 
mentioned above, this is needed if we want to get states fulfilling the Pauli 
principle for more than two fermions): states of odd parity with respect to 
the change x / - x  (essentially the lowest one), for the quartic anharmonic 
oscillator 

DISCUSSION OF SOME COMPUTATIONAL ASPECTS OF THE 
METHOD 

(a) Since the method is fully of Monte Carlo type (no preliminary 
computation of a trial wave function as is required in the methods using 
the fixed-node approximation), exact results may in principle be expected, 
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within the statistical error due to the finite simulation time; noticeably, 
memory requirements remain perfectly bounded. 

(b) The Monte Carlo simulation program is very short (about 400 
Fortran statements presently) and it may be readily adapted to any kind of 
system, since the only requirement is the explicit knowledge of the 
additional potential V-= H -  H (~ Noticeably, it should be possible to deal 
with a full molecular Hamiltonian (including "nuclear motion"). 

(c) The amount of computation is expected to increase slowly with 
the number n of particles (roughly like n 2 when two-body interaction 
potentials are involved). 

(d) Besides the problem of using a large enough simulation time T 
(in order to reach convergence of the time average), we put into evidence 
three possible sources of error in the method: 

(1) insufficient quality of the pseudo-random number generator--thus, 
the standard congruential generator using 31-bit integers was actually 
not sufficient (too-short period) and we had to implement a generator 
using larger integers (up to 56 bits), accordingly having a larger 
period. 

(2) Systematic error in generating the sample trajectory of the diffusion 
process--due to the use of a finite step A t in the numerical solution of 
the stochastic differential equation (this defect is analogous to the so- 
called "short-time approximation" discussed by previous authors, 
Refs. 2-8, in connection with other Monte Carlo methods based upon 
branching diffusion processes). This error can be suppressed com- 
pletely by using the exact transition probability (corresponding to the 
used time-step At), whenever it is available. 

(3) The error pertaining to the numerical evaluation of the integral over 
the potential V in (1) or (2)--due to the use of a finite step At' in the 
numerical integration procedure (in actual practice At' has to be some 
multiple of the time-step At considered above). 

Due to the possibility of eliminating the error (2) and of reducing 
the errors (1) and (3) to a negligible amount, it is possible to keep 
under control each one of these sources of error separately, and this 
opens the way to the designing of numerical procedures with optimal 
efficiency. 

(e) Not surprisingly, there is a price to pay for all these advantages; 
namely, the amount of computation appears rather large for the small 
systems considered so far. But here it must be emphasized that the method 
is very well-suited for vector computing and more specifically for multi- 
tasking proper: indeed, instead of generating a single sample trajectory over 
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a total time T, it is possible to generate simultaneously N trajectories over a 
time T/N, and to take the mean value of the N results thus obtained. We 
feel that this feature provides one of the most  promising lines of  develop- 
ment for Monte Carlo methods such as the one considered here. 
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