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Abstract
In this work we present a detailed study of the fermion Monte Carlo algorithm
(FMC), a recently proposed stochastic method for calculating fermionic
ground-state energies. A proof that the FMC method is an exact method is
given. In this work the stability of the method is related to the difference
between the lowest (bosonic-type) eigenvalue of the FMC diffusion operator
and the exact Fermi energy. It is shown that within a FMC framework the lowest
eigenvalue of the new diffusion operator is no longer the bosonic ground-state
eigenvalue as in standard exact diffusion Monte Carlo (DMC) schemes but a
modified value which is strictly greater. Accordingly, FMC can be viewed
as an exact DMC method built from a correlated diffusion process having
a reduced Bose–Fermi gap. As a consequence, the FMC method is more
stable than any transient method (or nodal release-type approaches). It is
shown that the most recent ingredient of the FMC approach (Kalos M H and
Pederiva F 2000 Phys. Rev. Lett. 85 3547), namely the introduction of non-
symmetric guiding functions, does not necessarily improve the stability of the
algorithm. We argue that the stability observed with such guiding functions is in
general a finite-size population effect disappearing for a very large population
of walkers. The counterpart of this stability is a control population error
which is different in nature from the standard diffusion Monte Carlo algorithm
and which is at the origin of an uncontrolled approximation in FMC. We
illustrate the various ideas presented in this work with calculations performed
on a very simple model having only nine states but a full ‘sign problem’.
Already for this toy model it is clearly seen that FMC calculations are inherently
uncontrolled.
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1. Introduction

In theory quantum Monte Carlo (QMC) techniques [1] are capable of giving an exact estimate
of the energy with an evaluation of the error: the statistical error. Unfortunately, such an ideal
situation is not realized in practice. Exact results with a controlled finite statistical error are
only achieved for bosonic systems. For fermionic systems, we do not have at our disposal
an algorithm which is both exact and stable (statistical fluctuations going to zero in the large
simulation time regime). This well-known problem is usually referred to as the ‘sign problem’.
The usual solution to cope with this difficulty consists in defining a stable algorithm based
on an uncontrolled approximation, the so-called fixed-node approximation [2–7]. In practice,
the fixed-node error on the energy is small when one uses good trial wavefunctions and,
thus, QMC methods can be considered today as reference methods to compute ground-state
energies as shown by a large variety of applications [5, 8–13]. However, the accuracy of the
results is never known from the calculation; it is known only a posteriori, for example by
comparison with experimental data. Exact methods, which are basically transient methods
[14–17] including the nodal release method [14], have been applied with success only to very
specific models (small or homogeneous systems) for which the sign instability is not too severe
(small Bose–Fermi energy gap).

Recently, Kalos and co-workers [18] have proposed a method presented as curing the
sign problem, the so-called fermion Monte Carlo method (FMC). This work makes use of two
previously introduced ingredients, a cancellation process between ‘positive’ and ‘negative’
walkers introduced by Arnow et al [19] and a modified process correlating explicitly the
dynamics of the walkers of different signs [20]. The new feature introduced in [18] is the
introduction of non-symmetric guiding functions. The method has been tested on various
simple systems including free fermions and interacting systems such as the 3He fluid [18, 21].
The results are found to be compatible with the assumption that the method is stable and not
biased. However, this conclusion is not clear at all because of the presence of large error bars.
The purpose of this work is to present a detailed analysis of the algorithm and a definitive
answer to this assumption.

The content of this paper is as follows. In section 2, we give a brief presentation of the
‘sign problem’. The sign instability in an exact DMC approach comes from the blowing up in
imaginary time of the undesirable bosonic component associated with the lowest mathematical
eigenstate of the Hamiltonian (a wavefunction which is positive and symmetric with respect
to the exchange of particles). The fluctuations of the transient energy estimator grows like
et (EF

0 −EB
0 ), where EF

0 is the fermionic ground-state energy (here and in what follows, the
superscript F stands for ‘fermionic’) and EB

0 , the lowest mathematical eigenvalue of the
Hamiltonian (the superscript ‘B’ standing for Bosonic). In section 3, we briefly recall the main
elements of the standard DMC method, the basic stochastic algorithm simulating the
imaginary-time evolution of the Hamiltonian. In section 4, we describe the FMC method
as a generalization of the DMC method and we show that FMC is an exact method, that is,
no systematic bias is introduced. This section is made of two parts. In the first part we
introduce the notion of positive and negative walkers to represent a signed wavefunction in
DMC. This will help us to view the FMC method as a generalization of the DMC method, the
FMC introducing two important modifications with respect to DMC: a correlated dynamics for
positive and negative walkers and a cancellation process for such pairs whenever they meet.

In section 5, we study the stability of the algorithm. We prove that the FMC method
is in general not stable; the fluctuations of the transient estimator of the energy growing
exponentially like et (EF

0 −ẼB
0 ), where ẼB

0 is the lowest bosonic-like eigenvalue of the generalized
diffusion process operator associated with FMC whose expression is given explicitly. It
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is shown that FMC is more stable than the standard nodal release DMC method because
ẼB

0 > EB
0 . In section 6, we illustrate our theoretical results using a toy model, a ‘minimal’

quantum system having a genuine sign problem (two coupled oscillators on a finite lattice).
The different aspects of the FMC method are highlighted in this application. In the case of
non-symmetric wavefunctions introduced recently in [18] it is shown that, in contrast with
DMC where the population control error decays linearly as a function of the population size,
the FMC decay displays a much more slower power law. As a consequence, one needs a
very large population of walkers to remove the control population error and to observe the
instability of FMC. Let us emphasize that observing such a subtle finite population effect for
a genuine many-fermion system is actually impossible. Here, to illustrate this important point
numerically, we have been led to consider a very simple system having only a few states. For
this system, a large population of walkers—eventually much larger than the dimension of the
quantum Hilbert space itself—can be considered. The results obtained in that regime confirm
our theoretical findings, in particular the fact that the stability of the algorithm presented
elsewhere [18] is only apparent. As an important conclusion, we emphasize that the FMC
control population error is an uncontrolled approximation for realistic fermion systems.

2. Fermion instability in quantum Monte Carlo

We consider a Schrödinger operator for a system of N fermions:

H = − 1
2∇2 + V (R), (1)

where we note R = (r1, . . . , rN) the 3N coordinates of the N particles in the three-dimensional
space. In this expression, the first term is the kinetic energy (∇2 is the Laplacian operator in
the space of the 3N coordinates). The second term, V , is the potential. DMC techniques are
based upon the evolution of the Hamiltonian in imaginary time. We express this evolution
using the spectral decomposition

e−t (H−ET ) =
∑

i

e−t (Ei−ET )|φi〉〈φi |, (2)

where φi are the (normalized) eigenfunctions of H,Ei are the corresponding eigenvalues
and ET is a so-called reference energy. The fundamental property of operator (2) is to filter
the lowest eigenstate φ0. To understand how it works, we consider the time evolution of a
wavefunction f0(R):

|ft 〉 ≡ e−t (H−ET )|f0〉 (3)

and calculate the overlap with an eigenstate φi

〈φi |ft 〉 = e−t (Ei−ET )〈φi |f0〉. (4)

From this expression it is easily seen that the component on the lowest eigenstate φ0 is growing
exponentially faster than the higher components. In DMC methods the function ft is generated
using random walks. For t large enough the lowest eigenstate

ft ∼ e−t (E0−ET )φ0 (5)

is produced. This asymptotic behaviour makes DMC an accurate method for computing the
properties of φ0, in particular the energy E0. Unfortunately, for fermionic systems the physical
ground state φF

0 , which is antisymmetric with respect to the exchange of particles, is not φ0, but
some ‘mathematically’ excited state because φ0 is positive and symmetric for a Schrödinger
operator (bosonic ground state). For the sake of clarity, we shall denote from now on this
bosonic ground state as φB

0 and its energy, EB
0 . The necessity of extracting an exponentially
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small component to evaluate EF
0 or any fermionic property is at the origin of the fermion

instability in quantum Monte Carlo.
We now give a quantitative analysis of this instability. Since the asymptotic behaviour of

ft is not useful to compute the fermionic energy, we consider the transient behaviour of the
evolution of ft . Basically, exact methods [14] filter φF

0 by projecting the transient behaviour
of ft on the antisymmetric space. Introducing the antisymmetrization operator A, one obtains
the physical ground state for t large enough:

A|ft 〉 ∼ e−t (EF
0 −ET )φF

0 , (6)

since the components of ft over the higher antisymmetric eigenstates are decreasing
exponentially with respect to the component on φF

0 . In practice, the fermionic energy EF
0

is calculated using an antisymmetric function ψT and using the fact that, at large enough t,
one has

EF
0 = 〈ψT |H |ft 〉

〈ψT |ft 〉 , (7)

up to an exponentially small correction. In the long-time regime the stochastic estimation of
the RHS of equation (7) is unstable. In essence, the signal, the antisymmetric component of
ft , decreases exponentially fast with respect to ft , equation (5). The signal-over-noise ratio
behaves like e−t (EF

0 −EB
0 ) and, thus, an exponential growth of the relative fluctuations of the

DMC estimator, equation (7), appears.
Now, let us give a more quantitative analysis by writing this estimator and evaluating the

variance. In a standard diffusion Monte Carlo calculation, the time-dependent distribution ft

is generated by a random walk over a population of walkers {Ri}. Formally, ft is given in the
calculation as an average at time t over Dirac functions centred on the walkers and weighted
by some positive function ψG:

ft (R) = 1

ψG(R)

〈∑
i

δ(R − Ri )

〉
. (8)

In this expression, 〈· · ·〉 denotes the average over populations of walkers {Ri} obtained at the
given time t. The function ψG is usually called the importance or guiding function. Replacing
ft in (7) by its expression (8), the estimator of the energy reads for large enough t:

EF
0 =

〈∑
i

HψT

ψG
(Ri )

〉
〈 ∑

i
ψT

ψG
(Ri )

〉 . (9)

In practice, both numerator and denominator are computed as an average over the NS walkers
produced by the algorithm at time t. As a consequence, the energy is obtained as

EF
0 = N

D
≡

1
NS

∑NS

i=1
HψT

ψG
(Ri )

1
NS

∑NS

i=1
ψT

ψG
(Ri )

. (10)

The ratio N
D is an estimator of the energy for NS large enough, when the numerator and

denominator have small fluctuations around their average. Now, let us evaluate the fluctuations
of this ratio in the limit of a large population NS :

σ 2

(
N
D

)
=

〈(
N − EF

0D
)2〉

〈D〉2
. (11)
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Here, we have used the hypothesis that the fluctuations of the denominator and the numerator
are very small. Using the fact that N and D are statistical averages over independent random
variables with the same distribution, one obtains

σ 2

(
N
D

)
= 1

NS

〈[ (H−EF
0 )ψT

ψG
(Ri )

]2〉
〈
ψT

ψG
(Ri )

〉2 . (12)

We can replace these averages by integrals over the distribution ftψG, equation (8),

σ 2

(
N
D

)
= 1

NS

〈 [(H−EF
0 )ψT ]2

ψG

∣∣φB
0

〉〈
ψG

∣∣φB
0

〉
〈
ψT

∣∣φF
0

〉2 e2t (EF
0 −EB

0 ) ∝ 1

NS

e2t (EF
0 −EB

0 ), (13)

which confirms quantitatively that the statistical error grows exponentially in time. Let
us emphasize that this problem is particularly severe because the Bose–Fermi energy gap,
�B–F ≡ EF

0 − EB
0 , usually grows faster than linearly as a function of the number of particles.

In practice, one has to find a trade-off between the systematic error coming from short
projection times t and the large fluctuations arising at large projection times.

3. The diffusion Monte Carlo method

The FMC method is a generalization of the well-known DMC method. Presenting this
algorithm is a useful preparation for the following section about fermion Monte Carlo. The
DMC method generates the function ft following the imaginary time dynamics of H:

ft ≡ e−t (H−ET )f0, (14)

where f0 is a positive function. The imaginary time dynamics is produced by iterating many
times the short-time Green function e−τ(H−ET ), where τ is a small time step. The distribution
ft ′ at the time t ′ ≡ t + τ is then obtained from ft as follows:

ft ′ = e−τ(H−ET )ft , (15)

where the density ft is sampled by the population of walkers {Ri}. Using the Dirac ket
notation, ft given by equation (8) is rewritten as

ft = 1

ψG

〈∑
i

|Ri〉
〉

, (16)

where ψG is some positive function, the so-called guiding function. Let us show how the
density ft ′ is generated from the distribution (16). Replacing in (15) the function ft by the
RHS of (16) one has

ft ′ = e−τ(H−ET ) 1

ψG

〈∑
i

|Ri〉
〉

(17)

=
〈∑

i

e−τ(H−ET ) 1

ψG

|Ri〉
〉

(18)

= 1

ψG

〈∑
i

eτL|Ri〉
〉

, (19)
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where we have introduced the operator

L ≡ −ψG(H − ET )
1

ψG

. (20)

For a Schrödinger Hamiltonian (1) the operator L takes the form

L = −ψG(H − EL)
1

ψG

− (EL − ET ) (21)

= 1

2
∇2 − ∇[b.] (22)

−(EL − ET ), (23)

where we have introduced the so-called drift vector

b ≡ ∇ψG

ψG

(24)

and the local energy of the guiding function ψG:

EL ≡ HψG

ψG

. (25)

The operator L is the sum of the so-called Fokker Planck operator (22) and a local operator
(23). Using this decomposition, the vector eτL|Ri〉 appearing in the average (19) can be
rewritten for small enough time step τ as follows:

eτL|Ri〉 = eτ[ 1
2 ∇2−∇[b.]] (26)

× e−τ(EL−ET )|Ri〉. (27)

The action of eτL on |Ri〉 is sampled as follows. The short-time dynamics of the Fokker Planck
operator (26) is performed by the way of a Langevin process:

R
′µ
i = R

µ

i + b
µ

i τ +
√

τη
µ

i , (28)

where µ runs over the 3N coordinates (three space coordinate for each fermion), and η
µ

i are
independent Gaussian random variables centred and normalized:〈

η
µ

i ην
j

〉 = δµνδij . (29)

The averaged Langevin process (28) is equivalent to apply the short-time dynamics of the
Fokker Planck operator (26):

〈|R′
i〉〉 = eτ[ 1

2 ∇2−∇[b.]]|Ri〉. (30)

The factor

wi ≡ e−τ(EL(Ri )−ET ) (31)

being a normalization term, called the branching term. The new walker R′
i is duplicated

(branched) a number of times equal to wi in average. This process is a birth–death process
since some walkers can be duplicated and some can be removed. The population of walkers
fluctuating, one has to resort to control population techniques [22–24]. With these two
processes, diffusion and branching a new population of walkers {R′

i} is produced, representing
in average the desired result:〈∑

i

|R′
i〉

〉
=

〈∑
i

eτL|Ri〉
〉

. (32)
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From (19) and (32) one can see that the distribution ft ′ is sampled by the new population of
walkers {R′

i} according to (16)

ft ′ = 1

ψG

〈|R′
i )〉. (33)

In summary, by iterating these two simple operations, namely the Langevin and branching
processes, the DMC method allows us to simulate the imaginary time dynamics of the
Hamiltonian, thus producing a sample of ft , equation (16). Various properties of the system
can be computed from this sample, e.g. ground-state bosonic energies [2, 3, 25], excited-state
energies [16, 17] and various observables [26–32].

For the vast majority of the DMC simulations on fermionic systems, only an approximation
of the exact fermionic ground-state energy is computed, namely the so-called fixed-node energy
[3, 5, 8, 33–35]. In a fixed-node DMC calculation the guiding function is chosen as ψG = |ψT |
where ψT is some fermionic antisymmetric trial wavefunction. With this choice, the guiding
function vanishes at the nodes (zeroes) of the trial wavefunction and the drift vector diverges.
As a consequence, the walkers cannot cross the nodes of ψT and are confined within the nodal
regions of the configuration space. It can be shown that the resulting DMC stationary state is
the best variational solution having the same nodes as ψT . In other words, the ‘fixed-node’
energy obtained from the RHS of (9) or (10) is an upper bound of the exact Fermi energy,
EFN

0 > EF
0 [33, 34]. Note that, in practice, EFN

0 is in general a good approximation of the true
energy [8, 35].

In the present work, we are considering ‘exact’ DMC approaches for which the exact
fermionic energy calculated from expression (9) is searched for. As discussed in the previous
section, such exact DMC calculations are fundamentally unstable. A famous example of an
exact DMC approach is the nodal release method of Ceperley and Alder [14, 34]. Basically,
nodal release methods are standard DMC methods where the fixed-node distribution (sampled
with a standard fixed-node DMC) is chosen as initial distribution f0. In exact methods
the guiding function ψG is strictly positive everywhere, so that the walkers can cross the
nodes of the trial wavefunction. Exact Fermi methods are efficient in practice only when
the convergence of the estimator is fast enough, that is, when it occurs before the blowing
up of fluctuations, equation (13). In practice, two conditions are to be satisfied. First, the
fixed-node wavefunction φFN

0 must be already close enough to the exact solution φF
0 . For this

reason the choice of the trial function ψT (quality of the nodes of ψT ) is crucial. Second, the
Bose–Fermi gap, �B–F = EF

0 −EB
0 , which drives the asymptotic behaviour of the fluctuations,

equation (13), must be small. The quantity EF
0 −EB

0 depends only on the Hamiltonian at hand;
there is no freedom in the nodal release method to modify the asymptotic behaviour. We will
define in the following section the fermion Monte Carlo method (FMC) as a generalization of
the DMC method and show in sections 5 and 6 that, in contrast with the nodal release method,
the FMC method can improve substantially the asymptotic behaviour, equation (13).

4. The FMC method

4.1. Preliminary: Introducing positive and negative walkers in DMC

In fermion Monte Carlo a dynamics on a signed function ft is performed. In what follows,
we show that DMC can be easily generalized to the case of a signed distribution ft and, thus,
FMC can be viewed as a simple generalization of DMC. If ft carries a sign, it can be written
as the difference of two positive functions,

ft = f +
t − f −

t , (34)
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both satisfying the following equations of evolution:

f +
t = e−t (H−ET )f +

0 (35)

f −
t = e−t (H−ET )f −

0 . (36)

To sample these expressions, two independent DMC calculations can be carried out. The
positive part f +

t is then sampled by a population of walkers
{
R+

i

}
(called ‘positive’ walkers).

The distribution f +
t is related to

{
R+

i

}
as in equation (16)

f +
t = 1

ψ+
G

〈∑
i

∣∣R+
i

〉〉
, (37)

and the negative part is similarly sampled by a population of ‘negative’ walkers
{
R−

i

}
:

f −
t = 1

ψ−
G

〈∑
i

∣∣R−
i

〉〉
. (38)

Note that we consider here the general case where the guiding functions associated with the
positive and negative walkers, ψ+

G and ψ−
G , are different. Finally, the dynamics of positive and

negative walkers is described by the DMC-like diffusion operators:

L± ≡ −ψ±
G(H − ET )

1

ψ±
G

(39)

= 1

2
∇2 − ∇[b±.] (40)

−(
E±

L − ET

)
, (41)

where the drift vectors are given by

b± ≡ ∇ψ±
G

ψ±
G

, (42)

and the local energies of the guiding functions ψ±
G by

E±
L ≡ Hψ±

G

ψ±
G

. (43)

In actual calculations, two Langevin dynamics on the positive and negative walkers are
performed

R
′µ±
i = R

µ±
i + b

µ±
i τ +

√
τη

µ±
i (44)

and positive and negative walkers are branched according to their respective weight:

W±(
R±

i

) ≡ e−τ(EL
±(R±

i )−ET ). (45)

4.2. The detailed rules of FMC

In a few words, the FMC method is similar to a DMC method on a signed function, except that
the positive and negative walkers are correlated and can annihilate whenever they meet. The
Langevin processes are correlated in such a way that positive walkers and negative walkers
meet as much as possible. We will see in the following section that the cancellation procedure
is at the origin of an improved stability of the algorithm. In this section, we give a complete
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description of the algorithm and show that this algorithm does not introduce any systematic
bias.

In FMC, the guiding functions ψ+
G and ψ−

G are not arbitrary; they are related under any
permutation P of two particles as follows:

ψ+
G(R) = ψ−

G(P R). (46)

Various choices are possible for the guiding functions. Here, we consider the form proposed
by Kalos and Pederiva [18], namely

ψ±
G =

√
ψ2

S + c2ψ2
T ± cψT , (47)

where ψS is a symmetric (Bose-like) function, ψT an antisymmetric trial wavefunction and
c some positive mixing parameter allowing to introduce some antisymmetric component into
ψ±

G .
Having in mind this choice for the guiding functions we will show how the two DMC

processes over the two populations of walkers
{
R+

i

}
and

{
R−

i

}
can be replaced by a diffusion

process over a population of pairs of walkers
{(

R+
i , R−

i

)}
. We first show how the DMC process

can be modified to maintain as many positive and negative walkers during the simulation. In
the DMC dynamics, the branching terms associated with the positive and negative walkers are
in general different. As a consequence, the number of positive walkers N+

S , can be different
from the number of negative walkers N−

S . At time t the DMC density ft reads

ft =
〈

N+
S∑

i=1

1

ψ+
G

∣∣R+
i

〉 − N−
S∑

i=1

1

ψ−
G

∣∣R−
i

〉〉
. (48)

This formula is obtained by introducing in equation (34) expressions (37) and (38) for f +
t and

f −
t , respectively. If N+

S and N−
S are different, we will replace ft (48) by a new function gt

sampled with an equal number of positive and negative walkers. Such an operation does not
introduce any bias if the antisymmetric components of the future evolution of ft and gt are
identical. Indeed, only the antisymmetric component of ft contributes to the estimator of the
energy, equation (7). At time t ′ > t the two densities are given by

ft ′ = e−(t ′−t)(H−ET )ft (49)

gt ′ = e−(t ′−t)(H−ET )gt . (50)

Let us write that the antisymmetric components of ft ′ and gt ′ must be equal:

A e−(t ′−t)(H−ET )ft = A e−(t ′−t)(H−ET )gt . (51)

Using the fact that the antisymmetrization operator A commutes with the evolution operator
and regrouping all the terms one finally finds

e−(t ′−t)(H−ET )A(ft − gt ) = 0. (52)

This condition is satisfied whenever A(ft − gt ) = 0. The important conclusion is that one
can replace ft by any function gt such that the difference gt − ft is orthogonal to the space of
antisymmetric functions. Let us now show how this property can be used to impose a common
number of walkers in the positive and negative populations.
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Let us consider the case where there are more positive walkers than negative walkers,
N+

S > N−
S . In this case one can subtract from ft , equation (48), the following vector:

1

ψ+
G

∣∣R+
i

〉
+ P

1

ψ+
G

∣∣R+
i

〉
, (53)

where R+
i is a positive walker and P is a two-particle permutation. Such an operation is allowed

since the application of the antisymmetrizer to the vector (53) gives zero [a direct consequence
of A(1 + P) = 0]. Now, because of equation (46) the vector (53) can also be written as

1

ψ+
G

∣∣R+
i

〉
+

1

ψ−
G

P
∣∣R+

i

〉
. (54)

Subtracting this vector from ft removes the contribution 1
ψ+

G

∣∣R+
i

〉
from (48) and adds the

contribution 1
ψ−

G

P
∣∣R+

i

〉
to (48). In other words, the positive walker R+

i has been removed and

the negative walker

R−
i = P R+

i (55)

has been created. Similarly, one can remove a negative walker R−
i and create a positive walker

R+
i = P R−

i . (56)

This possibility of transferring one walker from one population to the other one allows us to
keep an identical number of walkers for the two populations at each step. Now, thanks to this
possibility, we can interpret the two populations consisting of the NS positive walkers R+

i and
the NS negative walkers R−

i (i ∈ [1, . . . , NS]) as a unique population of NS pairs of walkers{(
R+

i , R−
i

)}
. Following this interpretation, the density ft (48) can be then rewritten as an

average over a population of pairs of walkers:

ft =
〈

NS∑
i=1

(
1

ψ+
G

∣∣R+
i

〉 − 1

ψ−
G

∣∣R−
i

〉)〉
, (57)

and the energy can be computed as a ratio of averages performed on the population of pairs:

EF
0 =

〈∑
i

(
HψT

ψ+
G

(
R+

i

) − HψT

ψ−
G

(
R−

i

))〉
〈∑

i

(
ψT

ψ+
G

(
R+

i

) − ψT

ψ−
G

(
R−

i

))〉 , (58)

where equation (7) has been rewritten by replacing ft using equation (57). Now, everything is
in order to detail the short-time dynamics of FMC. The FMC dynamics consists of three steps
(Langevin, branching and cancellation steps).

(i) Langevin step. The Langevin processes (44) are simulated as in DMC, except that the
Gaussian random variables of the positive and negative walkers are no longer independent.
The positive walker R+

i and the negative walker R−
i are moved according to equation (44):

R
′µ±
i = R

µ±
i + b

µ±
i τ +

√
τη

µ

i

±
, (59)

where η
µ

i

± are Gaussian centred random variables verifying〈
η

µ

i

±
η

µ

j

±〉 = δij . (60)

Such a move insures that the density of positive and negative walkers obey the Fokker
Planck equation:〈∣∣R′

i

±〉〉 = eτ( 1
2 ∇2−∇[b±.])

∣∣R±
i

〉
. (61)
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However, the Gaussian random variables are no more independent; they are correlated
within a pair

c
µν

i ≡ 〈
η

µ+
i ην−

i

〉 
= 0. (62)

Different ways of correlating positive and negative walkers can be considered. We shall
employ here the approach used in [18, 20] which consists in obtaining the vector η−

i ,
representing the 3N coordinates ην−

i , from η+
i by reflexion with respect to the hyperplane

perpendicular to the vector R+
i − R−

i :

η−
i = η+

i − 2

(
R+

i − R−
i

) · η+
i(

R+
i − R−

i

)2

(
R+

i − R−
i

)
. (63)

This relation between the Gaussian random variables makes the move deterministic along
the direction R+

i − R−
i . Such a construction insures that the walkers within a pair will

meet each other in a finite time (even in large-dimensional spaces). This aspect will
be illustrated numerically in the last section. Formally, the two correlated Langevin
processes can be seen as one Langevin process in the space of pairs of walkers:(

R+
i
′
, R−

i

′) = (
R+

i , R−
i

)
+

(
b+(R+

i

)
, b−(

R−
i

))
τ +

√
τ
(
η+

i , η−
i

)
, (64)

where η+
i and η−

i are related via (63).
(ii) Branching step. As we have already noticed, the branching of the negative and the positive

walker is different within a pair:

w+
i ≡ e−τ(E+

L(R+
i )−ET ) 
= w−

i ≡ e−τ(E−
L (R−

i )−ET ). (65)

Taking into account their respective weights, the two walkers of a pair give the following
contribution to the density ft :

w+
i

1

ψ+
G

∣∣R+
i

〉 − w−
i

1

ψ−
G

∣∣R−
i

〉
. (66)

If for example w+
i > w−

i , this vector can be written as

w−
i

[
1

ψ+
G

∣∣R+
i

〉 − 1

ψ−
G

∣∣R−
i

〉]
(67)

+
(
w+

i − w−
i

) 1

ψ+
G

∣∣R+
i

〉
. (68)

This density is the sum of two contributions. The first contribution, equation (67), comes
from a pair of walkers

(
R+

i , R−
i

)
and carries the weight w−

i . The second, equation (68),
comes from a single positive walker R+

i and carries the weight w+
i − w−

i . This single
walker R+

i can be replaced by a pair as follows. First, this single walker can be replaced
by two positive walkers R+

i with half of the weight, 1
2

(
w+

i − w−
i

)
. One of these two

positive walkers carrying half of the weight can be transferred to the population of
negative walkers by exchanging two particles. Finally, this single walker R+

i can be
replaced by a pair

(
R+

i , P R+
i

)
carrying the weight 1

2

(
w+

i − w−
i

)
. The resulting process

just described is a branching of the pair
(
R+

i , R−
i

)
with the weight w−

i and the creation
of the pair

(
R+

i , P R+
i

)
with the weight 1

2

(
w+

i − w−
i

)
. Of course, if one has w+

i < w−
i ,

then, the pair
(
R+

i , R−
i

)
is branched with the weight w+

i and the pair
(
P R−

i , R−
i

)
is created

with the weight 1
2

(
w−

i − w+
i

)
.
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Both cases, w−
i < w+

i or w−
i > w+

i , can be summarized as follows. The pair of walkers(
R+

i , R−
i

)
is branched with the weight

min
(
w+

i , w
−
i

) = e−τ(max(E+
L,E−

L )−ET ), (69)

and the pairs
(
R+

i , P R+
i

)
and

(
P R−

i , R−
i

)
are created with their respective weights

1

2

(
w+

i − min
(
w+

i , w
−
i

)) = −τ

2

[
E+

L − max
(
E+

L,E−
L

)]
+ O(τ 2) (70)

and
1

2

(
w−

i − min
(
w+

i , w
−
i

)) = −τ

2

[
E−

L − max
(
E+

L,E−
L

)]
+ O(τ 2). (71)

(iii) Cancellation step. The third step is a cancellation procedure performed whenever a
positive and a negative walkers meet. When Ri

+ = Ri
−, the contribution of the pair to

the density can be simplified as follows:[
1 − ψ+

G

ψ−
G

(
R+

i

)] 1

ψ+
G

(
R+

i

)∣∣R+
i

〉
. (72)

If the term in brackets is positive, this contribution comes from one single positive walker
R+

i with multiplicity
[
1 − ψ+

G

ψ−
G

(
R+

i

)]
. One can transform this single walker into a pair of

positive and negative walkers
(
R+

i , P R+
i

)
with the new multiplicity:

1

2

[
1 − ψ+

G

ψ−
G

(
R+

i

)]
. (73)

If the term in brackets is negative, the pair
(
P R+

i , R+
i

)
is drawn and the multiplicity is

given by

1

2

[
1 − ψ−

G

ψ+
G

(
R+

i

)]
. (74)

This is a cancellation procedure because a pair
(
R+

i , R+
i

)
with a multiplicity 1 has been

transformed into a pair with a multiplicity smaller than 1. Note that, when ψ+
G = ψ−

G , the
multiplicities (73) or (74) reduce both to zero. In other words, there is a total cancellation
of the pair whenever the walkers meet. As we shall see in the following section, the
cancellation step is at the origin of the improved stability. The basic reason is that this
procedure removes pairs which do not contribute to the signal but only to the statistical
noise. A rigorous analysis of this point is provided in the following section.

5. Stability of the FMC method

5.1. Criterium for stability

We have just seen that the FMC method is a generalization of the DMC approach, and we
have shown that FMC preserves the evolution of the antisymmetric component of the sampled
density. Now, having shown that FMC is an exact method, it is necessary to study the stability
of the method. For that purpose, we consider the estimator of the energy, equation (58), in the
large-time regime:

EF
0 = N

D
=

1
NS

∑
i

HψT

ψ+
G

(
R+

i

) − HψT

ψ−
G

(
R−

i

)
1

NS

∑
i

ψT

ψ+
G

(
R+

i

) − ψT

ψ−
G

(
R−

i

) , (75)
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where NS is the population size at time t. In the same way as done for the estimator (10),
we can evaluate the variance of EF

0 by supposing that NS is large enough so that both the
numerator and the denominator have small fluctuations around their average:

σ 2

(
N
D

)
=

〈(
N − EF

0D
)2〉

〈D〉2
. (76)

Let us begin with the denominator. Using identity (57), the average of the random variable D
defined in (75) is nothing but

〈D〉 = 1

NS

〈ψT |ft 〉. (77)

Replacing ft by its asymptotic behaviour, equation (6), we finally find that the denominator
of (76) behaves for large t as

〈D〉2 = 1

N2
S

e−2t (EF
0 −ET )

〈
ψT

∣∣φF
0

〉2
. (78)

Now, let us compute the numerator of (76). This numerator can be written as the variance of
a sum of random variables defined over the pairs of walkers

〈(
N − EF

0D
)2〉 =

〈[∑
i 	

(
R+

i , R−
i

)
NS

]2〉
, (79)

where we have introduced the function 	(R+, R−):

	(R+, R−) ≡
(
H − EF

0

)
ψT

ψ+
G

(R+) −
(
H − EF

0

)
ψT

ψ−
G

(R−). (80)

Using the fact that the pairs of walkers have the same distribution and supposing that they are
independent we finally find〈(

N − EF
0D

)2〉 = 1

NS

σ 2
(
	(R+, R−)

)
. (81)

If the pairs of walkers are not independent this expression is only modified by a correlation
factor independent on the time and the population size NS provided that NS and t are large
enough. Finally, up to a multiplicative factor, the variance of the energy estimator has the
following asymptotic behaviour:

σ 2

(
N
D

)
∝ 1

NS(t)
C(t), (82)

where the coefficient C(t) is given by

C(t) = NS(t)
2 e2t (EF

0 −ET ), (83)

and where NS(t), the number of pairs depends on time t due to the birth–death process. In
expression (83) we note that the behaviour of (76) at large times t is related to the value of
EF

0 and the asymptotic behaviour of the number of pairs of walkers NS(t). We can already
understand physically the interest of the cancellation process: this process limits the growth of,
NS(t), the number of pairs of walkers, thus limiting the growth of C(t) (83) and the variance
(82). Let us now precise this criterion more rigorously by evaluating the asymptotic behaviour
of NS(t). For that purpose we introduce the density of pairs 
t

(
R+

i , R−
i

)
; this density obeys

a diffusion equation

∂
t

∂t
= −(DFMC − ET )
t , (84)



1194 R Assaraf et al

where we have introduced the diffusion operator −(DFMC − ET ). We will give its expression
later; for the present purpose we just need the asymptotic behaviour of 
t given by


t = e−t (ẼB
0 −ET )
S, (85)

where 
S is the stationary density of the process, namely the lowest eigenstate of the operator
DFMC, and ẼB

0 is the corresponding eigenvalue. The number of pairs NS(t) behaves as the
normalization of 
t , and consequently grows like e−t (ẼB

0 −ET ). Note that in practice one adjusts
the reference energy ET to ẼB

0 during the simulation to keep a constant population of average
size N̄S along the dynamics. Such a procedure is referred to as a control population technique
[24] and will be discussed later. Finally, the asymptotic behaviour of the variance of the FMC
estimator of the energy is

σ 2

(
N
D

)
∝ 1

N̄S

e2t (EF
0 −ẼB

0 ). (86)

This expression is analogous to (13) except that the lowest energy of the Hamiltonian operator
H has been replaced by the lowest energy of the operator DFMC. In conclusion the stability
of the algorithm is related to the lowest eigenvalue of the FMC diffusion operator, ẼB

0 . It is
clear from (86) that the higher this eigenvalue is, the more stable the simulation will be. In
the following section, we will discuss the allowed values of ẼB

0 . This will prove that FMC is
not a stable method in general, but is more stable than any standard transient method.

5.2. Stability of the fermion Monte Carlo algorithm

In this section, we prove that the lowest eigenvalue of the FMC operator, ẼB
0 , has the following

upper and lower bounds:

ẼB
0 � EF

0 (87)

ẼB
0 > EB

0 (88)

From the expression of the variance, equation (86), one can easily understand the meaning
of these two inequalities. The first inequality indicates that FMC is not a stable method,
the stability being achieved only in the limit ẼB

0 = EF
0 . Note that, even for very simple

systems, this stability is in general not obtained. This important point will be illustrated in the
following section. The second inequality shows that FMC is more stable than any standard
transient DMC method (nodal release method). Indeed, the exponent associated with the
explosion of fluctuations, equation (86), is smaller than in the standard case, equation (13).
Before giving a mathematical proof of these two inequalities, let us first present some intuitive
arguments in their favour. The first inequality, equation (87), takes its origin in the fact that the
signal—the antisymmetric component of ft , equation (6)—is extracted from the population
of pairs of walkers, equation (57), and, consequently, cannot grow faster than the population
of pairs itself, equation (85). The second inequality can be understood as follows. Without
the cancellation process, the FMC method reduces to two correlated DMC algorithms. The
number of walkers grows as in a standard DMC, namely ∼e−(EB

0 −ET )t . The cancellation process
obviously reduces the growth of the population of walkers, equation (85), and, thus, we should
expect that ẼB

0 > EB
0 . Now, let us give some more rigorous proofs. For that purpose we

compare the fermion Monte Carlo operators with and without cancellation process. Without
the cancellation process the FMC diffusion operator reads

D − ET ≡ ψ+
G

(
H + − E+

L

) 1

ψG
+ + ψG

−(H− − E−
L )

1

ψG
− (89)
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− 1

2

∑
µ 
=ν

∂2

∂R+
µ∂R−

ν

[cµν.] (90)

+max
(
E+

L,E−
L

) − ET (91)

+
1

2

[
E+

L − max
(
E+

L,E−
L

)]
e(P R+−R−)·∇−. (92)

+
1

2

[
E−

L − max
(
E+

L,E−
L

)]
e(P R−−R+)·∇+., (93)

where the operators H± are both identical to H, except that H + and H− act on the space of
positive and negative configurations, respectively:

H± ≡ H(R±) = −1

2

∑
µ

∂2

∂R±
µ

2 + V (R±). (94)

The coefficients cµν are real coefficients and will be defined below. To justify that this operator
is the diffusion operator corresponding to FMC with no cancellation process, we need to check
that the short-time dynamics described by

∂
t

∂t
= −(D − ET )
t (95)

is indeed realized via the two first steps of the FMC algorithm (Langevin and branching steps).
In the expression of D, the two operators appearing in equation (89) define a Fokker Planck
operator in analogy to equation (40). This operator is the diffusion operator associated with
the Langevin process, equation (64). The term in equation (90) is a coupling term between
the moves of positive and negative walkers taking into account the correlation of the Gaussian
random variables η+

µ and η−
µ . The quantities cµν(R+, R−) introduced in equation (90) are

nothing but the covariance of these variables:

cµν(R+, R−) = 〈
η+

µη−
ν

〉
. (96)

The three last contributions describe the branching processes at work in FMC. One recognizes
in equation (91) the branching of a pair, equation (69). The two following contributions,
equations (92) and (93), correspond to the creation of pairs (R+, P R+) and (P R−, R−), with
the respective weights given by (70) and (71). Note that in equations (92) and (93) the operator
e(P R−−R+).∇+

is written in a symbolic form representing a translation of the vector R+ to P R−,
the action of this operator on the pair (R+, R−) being indeed to create the pair (P R−, R−).

Now, let us prove that the lowest eigenvalue of D is EB
0 (bosonic ground state). For that

purpose, it is convenient to introduce the operator R which transforms a distribution of pairs
of walkers into a distribution of walkers and then to define the following reduced density:

R
t(R) ≡
∫

dR′
[

t(R, R′)
ψ+

G(R)
+


t(R′, P R)

ψ−
G(R)

]
. (97)

The density R
t represents the sum of the distributions sampled by each type of walkers when
the contribution of the other type of walkers is integrated out. Using the explicit expression
of D it is a simple matter of algebra to verify that

RD
t = HR
t. (98)

Using equations (98) and (95), one can also write

∂R
t

∂t
= −(H − ET )R
t, (99)
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which means that the reduced density evolves under the dynamics of H. In other words, the set
of positive and negative walkers sample the same distribution as a standard diffusion Monte
Carlo algorithm. Now, suppose that λS is the lowest eigenvalue of D and 
S the corresponding
eigenstate (the stationary density of the process described by equation (95)):

D
S = λS
S. (100)

Applying R on both sides of this identity and using relation (98) one gets

HR
S = λSR
S. (101)

In other words, the reduced density R
S is a positive eigenstate of H with eigenvalue λS . The
bosonic state being non-degenerate, we can conclude that λS = EB

0 . This ends our proof.
Let us now consider the genuine FMC diffusion operator including the cancellation

process, DFMC. To simplify the notations let us suppose that we are in the symmetric case
for which ψ+

G = ψ−
G = ψG (the common guiding function is symmetric under permutation

of particles). This particular case is much simple because when walkers meet, there is a full
cancellation and no residual branching. From an operatorial point of view the cancellation
step consists in introducing a projection operator, Pc, at each step of the dynamics:

Pc ≡
[

1 −
∫

dR |R+ = R,R− = R〉〈R+ = R,R− = R|
]

, (102)

where |R+, R−〉 denotes the usual tensorial product. The full FMC diffusion operator can thus
be written as

DFMC ≡ PcD. (103)

It is important to realize that the DFMC operator defined via Pc and D (equations (102) and
(93)) represents indeed an equivalent operatorial description of the stochastic rules of FMC
described in section 4.2 (Langevin, branching and cancellation steps). Note also that using
expression (103) of DFMC, we have a simple alternative way of recovering the proof just
presented above that FMC is a bias-free approach. Since this is an important point of this
work, let us present this alternative proof. The action of the projection operator Pc is to remove
from the sample components of the form |R+ = R,R− = R〉 for which the antisymmetric
component of the reduced density is zero:

AR|R+ = R,R− = R〉 = A
1

ψG(R)
(|R〉 + |PR〉) = 0. (104)

In other words one has the following algebraic identity:

ARPc = AR. (105)

In the general case where ψ+
G 
= ψ−

G , the cancellation procedure still corresponds to define
a new operator written as in equation (103) with Pc satisfying the same identity as in (105).
Applying AR to the LHS and RHS of equation (84), one has

∂AR
t

∂t
= −ARDFMC
t = −A(H − ET )R
t. (106)

This equation indicates that the evolutions of the antisymmetric component of the reduced
density under the dynamics of DFMC and H are identical. This confirms that the energy
estimator, equation (57), or any observable estimator not coupling directly positive and
negative walkers, is not biased. In the case of the energy, the estimator can be written as
a function of the reduced density as follows:

EF
0 = 〈ψT |HR
t 〉

〈ψT |R
t 〉 . (107)
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Let us now turn back to our discussion of the stability of FMC. For that, we need to
compare the lowest eigenvalue ẼB

0 of DFMC and, EB
0 , the lowest eigenvalue of H. Now, it is

clear from the definition of Dc, equation (103), that the following relation holds:

ẼB
0 > EB

0 . (108)

Indeed, the action of Pc present in the definition of Dc, equation (103), consists in removing
positive coefficients within the extradiagonal part of D. As well known, a consequence of
such a matrix (or operator) manipulation is to increase the energy of the lowest eigenvalue of
the matrix. Expressed in a more physical way, the cancellation process reduces the growth of
the population of pairs: e−(ẼB

0 −ET )t < e−(EB
0 −ET )t .

To summarize, we have shown that FMC reduces the instability of fermion simulations.
The signal-over-noise ratio decreases as e(ẼB

0 −EF
0 )t , where ẼB

0 is the lowest eigenvalue of the
FMC operator, DFMC. Because of inequality (108), this ratio decreases slower in FMC than in
any standard transient DMC or nodal release methods. We have shown that the cancellation
process is at the origin of this improvement; however, as we shall see in the following section,
the cancellation process is efficient (i.e., we have a small difference ẼB

0 − EF
0 ) only if the

correlation between walkers described by the coupling terms cµν is introduced. This feature
is important, particularly in high-dimensional spaces where the probability of meeting and
cancelling becomes extremely small for independent walkers. As a result, the correlation
of positive and negative walkers is a fundamental feature of FMC. The quantitative effect of
the correlation on the stabilization of the algorithm is not easy to study theoretically and to
optimize in the general case. In the following section we will give a numerical illustration, for
a simple system, of the interplay between cancellation and correlation (via the cµν parameters),
and also of the role of the choice of the guiding functions, ψ+

G and ψ−
G .

6. Numerical study

6.1. The model: 2D-harmonic oscillator on a finite grid

In this section, we study the FMC method on a very simple model on a lattice. For this model it
is possible to calculate EF

0 (fermionic ground-state energy), EB
0 (bosonic ground-state energy)

and ẼB
0 the lowest eigenvalue of the FMC operator by a standard deterministic method (exact

diagonalization). The results obtained for this simple model will provide us a well-grounded
framework to interpret the fermion Monte Carlo simulations. The second motivation is that,
using such a simple model, it is possible to study the limit of a large number of walkers, large
with respect to the dimension of the Hilbert space considered. This possibility turns out to be
essential to better understand the FMC algorithm.

Our model is based on the discretization of a system describing two-coupled harmonic
oscillators

H = −1

2

(
∂2

∂x2
+

∂2

∂y2

)
+ V (x, y), (109)

with

V (x, y) = 1
2x2 + 1

2λy2 + xy. (110)

In the following we shall take λ = 2. Now, we define the discretization of this model on a
N × N regular grid (N odd). A grid point Ri i ∈ (1, . . . , N2) has the following coordinates:

Ri ≡
((

−N

2
+ k − 1

)
δx,

(
−N

2
+ l − 1

)
δy

)
k ∈ [1, . . . , N ], l ∈ [1, . . . , N ], (111)
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where

δx = δy = xmax/N. (112)

On this lattice the Hamiltonian has a corresponding discrete representation given by a finite
matrix. The diagonal part of the matrix reads

Hii = 1

δx
2 +

1

δy
2 + V (Ri) i ∈ (1, . . . , N2) (113)

and the off-diagonal part reads

Hij = − 1

2δx
2 or − 1

2δy
2 when Ri and Rj are nearest-neighbours on the lattice

Hij = 0 otherwise.

(114)

This Hamiltonian is symmetric with respect to the inversion P of centre O = (0, 0):

P(x, y) ≡ (−x,−y). (115)

As a consequence, the eigenfunctions are either symmetric or antisymmetric under P. We are
interested in the energy EF

0 of the lowest antisymmetric eigenstate, φF
0 . Even for this simple

system, we are confronted with a sign instability and a genuine ‘sign problem’. Indeed, the
sign of φF

0 for each grid point cannot be entirely determined by symmetry. Symmetry implies
only that φF

0 vanishes at the inversion centre and that the two-dimensional pattern of positive
and negative values for φF

0 is symmetric by inversion. The precise delimitation between a
positive and a negative zones of the wavefunction (analogous to ‘nodal surfaces’ for continuous
systems) is not known.

Let us now introduce the trial functions ψT and ψS . ψT has to be an (antisymmetric)
approximation of φF

0 and ψS some symmetric and positive approximation of the lowest
eigenstate, φB

0 . We have chosen them as discretizations of the exact solutions of the initial
continuous model. To find these solutions we perform a diagonalization of the quadratic form

V (x, y) = 1
2x2 + 1

2λy2 + xy = 1
2k1x̃

2 + 1
2k2ỹ

2. (116)

It is trivial to verify that

k1 = cos2 θ − λ sin2 θ

cos 2θ
k2 = λ cos2 θ − sin2 θ

cos 2θ
tan 2θ = 2

λ − 1
,

with

x̃ = x cos θ − y sin θ (117)

and

ỹ = x sin θ + y cos θ. (118)

If k1 < k2, we choose as trial wavefunction

ψT = x̃ exp

(
−

√
k1

2
x̃2 −

√
k2

2
ỹ2

)
, (119)

while, in the other case, we take

ψT = ỹ exp

(
−

√
k1

2
x̃2 −

√
k2

2
ỹ2

)
. (120)

The lowest (symmetric) eigenstate is chosen to be

ψS = exp

(
−

√
k1

2
x̃2 −

√
k2

2
ỹ2

)
. (121)

Note that, in the limit of a very large system the trial functions, ψT and ψS , reduce to two
exact eigenstates of H; however, this is not the case for finite systems.
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6.2. FMC on the lattice

Before presenting our results, let us say a few words about the implementation of the FMC
on the lattice. The same ingredients as in the continuum case hold, except that in the lattice
case the Langevin process is realized through a discrete transition probability matrix. The
probability for a (positive or negative) walker i to go to j , after a time step τ is

P ±(i → j) ≡ ψ±
G(Rj )

ψ±
G(Ri )

〈Rj |1 − τ
(
H − E±

L

)|Ri〉, (122)

where τ is small enough to have a positive density, namely

τ <
1

Max
[
Hii − E±

L (i)
] . (123)

The local energies are defined as in the continuum, equation (43),

E±
L (R) = Hψ±

G

ψ±
G

(R), (124)

with the same expression for the guiding functions ψ±
G , equation (47),

ψ±
G(R) ≡

√
ψ2

S + c2ψ2
T ± cψT . (125)

Let (i1, i2) represent a given pair of positive and negative walkers
(
R+

i1
, R−

i2

)
. In a standard

diffusion Monte Carlo (no correlation and no cancellation of positive and negative walkers),
the density of pairs of positive and negative walkers 


(k)
i1i2

evolves as follows in one time-step:



(k+1)
i1i2

=
∑
j1j2



(k)
j1j2

P +(j1 → i1)W
+
j1
P −(j2 → i2)W

−
j2

, (126)

where W± is the Feynman–Kac weight, equation (45). To build the FMC algorithm, one first
correlate the two stochastic processes P + and P −, equation (122). The way it is performed
here is the counterpart of the correlation term introduced by Liu et al [20] in the continuum
case, equation (63). With such a choice, the positive and negative walkers of a pair tend to
get closer or to move away in a concerted way. For the lattice case it is done as follows.
The positive walker j1 is connected by P + to a finite number of states jc

1 (here, maximum
five) with probability P +

(
j1 → jc

1

)
. The negative walker j2 is connected to a finite number

of states jc
2 with the probability P −(

j2 → jc
2

)
. The states jc

1 are ordered taking as criterion
the distance to the negative walker j2,

∣∣Rjc
1
− Rj2

∣∣. We do the same for the states ic2 ordered
by their distance with respect to the positive walker. A unique random number uniformly
distributed between 0 and 1 is then drawn and the repartition functions of the two probability
measures, p

(
jc

1

) ≡ P +
(
j1 → jc

1

)
and p

(
jc

2

) ≡ P −(
j2 → jc

2

)
are then sampled using this

common random number. The new pair
(
jc

1 , j c
2

)
is drawn accordingly. Such a procedure

defines a correlated transition probability in the space of pairs

Pc(j1j2 → i1i2) 
= P(j1 → i2)P (j1 → i2), (127)

whose role is to enhance the probability of having positive and negative walkers meeting at the
same site. Note that, by construction, the correlation introduced via Pc does not change the
individual (reduced) densities associated with each type of walker (positive/negative). Now,
let us write explicitly the FMC rules in our lattice case, that is, the one time-step (k → k + 1)

evolution of the density of pairs 

(k)
j1j2

.
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(i) Correlation and branching. The diffusion and branching of an individual pair (j1, j2),
equations (90) and (91), correspond to the following evolution of the density:



(k+1)
i1i2

= 

(k)
i1i2

+
∑
j1j2



(k)
j1j2

Pc(j1j2 → i1i2)Min
[
W +

i1
,W−

i2

]
. (128)

The creation of pairs, equations (92) and (93), can be written as follows:



(k+1)

i1P(i1)
= 


(k)

i1P(i1)
+

∑
j1j2



(k)
j1j2

Pc(j1j2 → i1i2)θ
[
W +

i1
,W−

i2

]∣∣W +
i1

− W−
i2

∣∣/2 (129)



(k+1)

P (i2)i2
= 


(k)

P (i2)i2
+

∑
j1j2



(k)
j1j2

Pc(j1j2 → i1i2)
(
1 − θ

[
W +

i1
,W−

i2

])∣∣W +
i1

− W−
i2

∣∣/2, (130)

where θ(x, y) = 1 if x > y, θ(x, y) = 0, otherwise.
(ii) Cancellation. The cancellation process is done when a positive walker and a negative

walker meet i1 = i2 = i:



(k+1)
ii =

[
1 − min

(
ψ+

G

ψ−
G

(i),
ψ−

G

ψ+
G

(i)

)]



(k)
ii . (131)

If ψ+
G(i) > ψ−

G(i) we have



(k+1)

P (i)i = 

(k)

P (i)i +

[
1 − ψ−

G(i)
/
ψ+

G(i)
]

2



(k)
ii . (132)

If ψ+
G(i) < ψ−

G(i) we have



(k+1)

iP (i) = 

(k)

iP (i) +

[
1 − ψ+

G(i)
/
ψ−

G(i)
]

2



(k)
ii . (133)

Operations (128)–(133) describe the one time-step dynamics of the simulation. At
iteration k, the distribution of pairs 
(k)(i1, i2) is obtained and the transient estimator
of the energy (58) can be computed from

E(k) =
∑

i1,i2



(k)
i1,i2

[
HψT (i1)

ψ+
G(i1)

− HψT (i2)

ψ−
G(i2)

]
∑

i1,i2



(k)
i1,i2

[
ψT (i1)

ψ+
G(i1)

− ψT (i2)

ψ−
G(i2)

] . (134)

This estimator converges to EF
0 when k → ∞.

Now, it is important to realize that the FMC rules just presented have, in principle,
no stochastic character at all. For a finite system the FMC rules can be viewed as simple
deterministic matrix manipulations between finite vectors of the Hilbert space (here, the
multiplications to be performed have been explicitly written). At the beginning of the
simulation (iteration k = 0) some arbitrary starting vector 


(0)
i1,i2

is chosen and, then, iterations
are performed up to convergence. This important remark will allow us to organize our
discussion of the FMC results into two parts. In the first part (section 6.3), we perform
explicitly the matrix multiplications involved, and any stochastic aspect is removed from
the results. Stated differently, this procedure can be viewed as performing a standard FMC
simulation with an infinite number of walkers (the distribution at each point of the configuration
space is exactly obtained, no statistical fluctuations are present). In the second part
(section 6.4), we implement the usual stochastic interpretation of the FMC rules using a finite
number of walkers. This second part will allow us to discuss the important consequences
of the finiteness of the number of walkers and, in particular, the role played by the use of
population control techniques.
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Table 1. Average meeting times 〈T 〉
N

for the correlated and uncorrelated cases in the non-symmetric
case c = 4, equation (125). In this example, xmax = 3, equation (112), and τ = 0.9 τmax, where
τmax is the maximal time-step defined in equation (123).

Linear size N 〈T 〉
N

Uncorrelated cases 〈T 〉
N

Correlated cases

N = 3 2152 (23) 134 (1)
N = 5 2162 (20) 92 (1)
N = 7 2234 (26) 75 (1)
N = 9 2834 (27) 76 (1)
N = 11 3546 (38) 82 (1)
N = 13 4214 (41) 88 (1)
N = 15 94 (1)
N = 17 102 (1)

6.3. FMC using an infinite number of walkers: the deterministic approach

6.3.1. No systematic error: FMC is an exact method. In this section, we verify on our
simple example that the FMC rules do not introduce any systematic error (bias). The energy
expression (134) has been computed by iterating the applications of the elementary operators
defined by (128)–(133). In practice, this corresponds to iterate a matrix GFMC(τ ). The
distribution 
(k+1) at iteration k + 1 is obtained from 
(k) as follows:


(k+1) = GFMC(τ )
(k). (135)

The operator GFMC(τ ) has been applied, a large number of times, to some initial density 

(0)
j1j2

(an N4 component vector, N being the linear size of our lattice), and the energy (134) has been
computed at each iteration k. We have checked that the energy converges to the exact value,
EF

0 , corresponding the lowest antisymmetric state, with all decimal places. We have verified
that this is true for several cases corresponding to N ranging from 4 to 17. For this specific
problem these results confirm numerically that FMC is an exact method.

6.3.2. Meeting time between a positive and a negative walkers. Here, we want to illustrate
quantitatively the fact that the correlation introduced via the probability transition helps greatly
to lower the meeting time between a positive and a negative walkers. The influence of the
choice of the guiding functions (here, parameter c in equation (125)) on the meeting time is also
examined. The meeting time is defined and evaluated as follows. We start with a configuration
consisting of a positive walker located at a corner of the lattice and a negative walker located
at the opposite corner. The positive and negative walkers are moving stochastically with the
transition probability defined in (122). We test the two cases corresponding to uncorrelated
and correlated moves. The average time 〈T 〉 (number of Monte Carlo steps times τ ) before the
walkers meet is computed. Our results are presented in table 1 and are given for different linear
sizes of the grid. In this first case the guiding functions are chosen with a large antisymmetric
component, c = 4. The results indicate clearly that more than one order of magnitude is gained
by correlating the moves of the two stochastic processes. In table 2 the same calculations
are done, except that a symmetric guiding function c = 0

(
ψ+

G = ψ−
G = ψS

)
is employed.

The average meeting time is found to be much lower than in the non-symmetric case, c = 4,
by nearly two orders of magnitude. This is true whether or not the stochastic processes are
correlated. This behaviour of the meeting time as a function of c is not surprising. When c is
large the two functions ψ+

G and ψ−
G are localized in the nodal pockets of ψT . In the large-c

limit ψ+
G is zero whenever ψT is negative, and ψ−

G is zero whenever ψT is positive. In this
limit the overlap between the two distributions ψ+

G and ψ−
G is zero, and we have a similar result
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Table 2. Average meeting times 〈T 〉
N

for the correlated and uncorrelated cases in the symmetric case
(c = 0, symmetric guiding function), equation (125). In this example, xmax = 3, equation (112),
and τ = 0.9 τmax, where τmax is the maximal time-step defined in equation (123).

Linear size N 〈T 〉
N

Uncorrelated cases 〈T 〉
N

Correlated cases

N = 3 3.32 (2) 1.634 (9)
N = 5 5.64 (6) 2.27 (1)
N = 7 7.6 (1) 2.65 (1.6)
N = 9 10.3 (1) 3.32 (2.5)
N = 11 12.95 (8) 4.18 (4)
N = 13 15.7 (1) 4.78 (4)
N = 15 18.5 (2) 5.52 (6)
N = 17 21.6 (2) 6.26 (7)

Table 3. N = 3, reduced Bose–Fermi gap �̃B–F, equation (136), with or without correlation
for different values of c. The average meeting times are also indicated in parentheses. The bare
Bose–Fermi gap, �B–F, is ∼ 0.7695 (here, xmax = 3. and τ = 0.09 τmax).

Value of c Correlated process Uncorrelated process

c = 0 �̃B–F = 0.0366
[ 〈T 〉

N
= 1.634 (9)

]
�̃B–F = 0.1629;

[ 〈T 〉
N

= 3.32 (2)
]

c = 1 �̃B–F = 0.0917
[ 〈T 〉

N
= 6.37 (7)

]
�̃B–F = 0.2540;

[ 〈T 〉
N

= 16.5 (2)
]

c = 2 �̃B–F = 0.1336
[ 〈T 〉

N
= 24.6 (2)

]
�̃B–F = 0.2277;

[ 〈T 〉
N

= 130.5 (5)
]

c = 3 �̃B–F = 0.1026
[ 〈T 〉

N
= 62.9 (3)

]
�̃B–F = 0.1981;

[ 〈T 〉
N

= 627 (3)
]

c = 4 �̃B–F = 0.1092
[ 〈T 〉

N
= 134 (1)

]
�̃B–F = 0.1787;

[ 〈T 〉
N

= 2152 (23)
]

for the probability that walkers meet. From these preliminary results the introduction of non-
symmetric wavefunctions seems to deteriorate the stability; this property will be confirmed in
the following section.

6.3.3. Stability in time of FMC. We know from section 5 that the stability in time is directly
related to the magnitude of the reduced Bose–Fermi energy gap:

�̃B–F ≡ EF
0 − ẼB

0 , (136)

where ẼB
0 is the lowest eigenvalue of the FMC diffusion operator. The greater this gap is, the

faster the signal-over-noise ratio of the Monte Carlo simulation deteriorates; the full stability
being obtained only when this gap vanishes. The ultimate goal of an efficient FMC algorithm
is to reduce the Bose–Fermi gap from its bare value �B–F = EF

0 − EB
0 to a value very close

to zero (ideally, zero). Energies ẼB
0 and EF

0 can be calculated by exact diagonalization of
the fermion Monte Carlo operator, GFMC. In practice, we have chosen here to extract this
information from the large-time behaviour of the denominator of the energy, equation (134).
In this regime the denominator behaves as in equation (78) where the reference energy is
adjusted to keep the number of pairs constant, ET = ẼB

0 :

〈D(t = kτ)〉 ∝ e−(EF
0 −ẼB

0 )t . (137)

The gap EF
0 − ẼB

0 has been extracted from the large-k values of D (t = kτ), a quantity
calculated deterministically by iterating the matrix GFMC. The results for different values of c
are reported in table 3. For both the correlated and uncorrelated processes it is found that the
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Table 4. Comparison between the reduced Bose–Fermi gap, �̃B–F, and the bare Bose–Fermi gap,
�B–F, in the symmetric case (c = 0, symmetric guiding function) as a function of N.

Value of N �̃B–F �B–F Gap ratio

N = 3 �̃B–F = 0.0366 �B–F = 0.7695 �̃B–F
�B–F

= 0.0476

N = 5 �̃B–F = 0.0516 �B–F = 1.0195 �̃B–F
�B–F

= 0.0506

N = 7 �̃B–F = 0.0577 �B–F = 1.1782 �̃B–F
�B–F

= 0.0490

gap increases with c. The minimal gap is obtained for c = 0, that is when the guiding functions
are symmetric ψ+

G = ψ−
G = ψS . This result is easily explained from the fact that there are two

factors which favour the cancellation of walkers. First, as we have already seen, the average
meeting time is minimal when c = 0 since, in this case, the overlap between the functions
ψ+

G and ψ−
G is maximal. Furthermore, a full cancellation between the walkers is precisely

obtained when c = 0. In conclusion, the greatest stability is obtained for a symmetric guiding
function.

In table 4 the gaps obtained at c = 0 for different linear sizes N are reported. This table
shows that, in the limit of large grids, that is for a system close to the continuous model, the
FMC algorithm reduces the gap by a factor ∼20. Such a result corresponds to a huge gain in
the stability since projection times about twenty times larger than in a standard nodal release
method can be used.

6.4. FMC using a finite number of walkers: the stochastic approach

In the previous section the fermion Monte Carlo method has been discussed and implemented
by manipulating the exact fermion Monte Carlo diffusion operator without making reference
to any stochastic aspect (as already mentioned it is formally equivalent to use an infinite
number of walkers). Of course, for non-trivial systems it is not possible to propagate exactly
the dynamics of the FMC operator. Accordingly, a finite population of walkers is introduced
and specific stochastic rules allowing to simulate in average the action of the FMC operator
are defined. Now, the important point is that in practice—like in any DMC method—one does
not sample exactly the dynamics of the FMC operator because of the population control step
needed to keep the finite number of walkers roughly constant [22–24]. This step introduces a
small modification of the sampled diffusion operator which is at the origin of a systematic error
known as the population control error. For a bosonic system, the error on the ground-state
energy behaves as 1

M
(M is the average size of the population) and an extrapolation in 1

M
can be

done to obtain the exact energy. For a fermionic system, as we shall see below, this behaviour
is qualitatively different and, furthermore, depends on the guiding function used. To have a
precise estimate of the mathematical behaviour of the population control error is fundamental
since, in practice, it is essential to be able to reach the exact Fermi result using a reasonable
number of walkers. As we shall see later, this will not be in general possible with FMC.

In this section, the fermion Monte Carlo simulations are performed using equations
(128)–(133) which allow us to propagate stochastically a population of M walkers. The
population is kept constant during the simulation by using the stochastic reconfiguration Monte
Carlo (SRMC) method [23, 24]. In short, the SRMC method is a DMC method in which a
reconfiguration step replaces the branching step. A reconfiguration step consists in drawing M
new walkers among the M previous ones according to their respective Feynman–Kac weight
(for the details, see the references given above).
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Figure 1. N = 3, energy estimator as a function of the projection time (number of iterations K).
Comparison between c = 0 (large fluctuations) and c = 4 (small fluctuations). The exact energy
is EF

0 = 1.868 22 . . .. Number of walkers M = 100. Number of Monte Carlo steps: 4 × 107.

In figure 1 the time-averaged energy defined as

E(K) ≡
∑K

k=1 N (k)∑K
k=1 D(k)

(138)

is plotted as a function of K. In this formula N (k) and D(k) represent the numerator and
denominator at iteration k of the estimator (75) evaluated as an average over the population of
pairs. In figure 2 we plot the time-averaged denominator given by

DK = 1

K

K∑
k=1

D(k). (139)

The time dependence of this quantity is interesting since it can be used as a measure of the
stability of the algorithm [18]. As we have shown above, the algorithm is stable only when
the reduced Bose–Fermi energy gap, �̃B–F = EF

0 − ẼB
0 , is equal to zero. Equivalently, the

denominator (139) must converge to a constant different from zero. In our simulations the
number of walkers was chosen to be M = 100, a value which is much larger than the total
number of states of the system (here, nine states). Of course, such a study is possible only
for very simple systems. As seen in the figures 1, 2 and 3, the results obtained in the case
c = 0 (symmetric guiding function) and c 
= 0 are qualitatively very different. Figure 1 shows
that, within statistical error bars, there is no systematic error on the energy when a symmetric
guiding function is used, c = 0. However, the price to pay is that the statistical fluctuations are
very large. This point can be easily understood by looking at the behaviour of the denominator,
figure 2. Indeed, this denominator vanishes at large times, thus indicating that the simulation
is not stable. In sharp contrast, for c = 4 (non-symmetric guiding functions), the statistical
fluctuations are much more smaller (by a factor of about 40) but a systematic error appears
for the energy. Furthermore, the denominator plotted in figure 2 is seen to converge to a finite
value. The stability observed in the case c = 4 seems to confirm the results of Kalos et al
[18] for non-symmetric guiding functions (c 
= 0). However, the situation deserves a closer
look. Indeed, the existence of this finite asymptotic value seems to be in contradiction with
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Figure 2. N = 3, denominator as a function of the projection time (number of iterations K).
Comparison between c = 4 (upper curve) and c = 0 (lower curve). Number of walkers M = 100.
Number of Monte Carlo steps: 4 × 107.

our theoretical analysis: the denominator should converge exponentially fast to zero, and the
algorithm should not be stable (�̃B–F > 0). In fact, as we shall show now, the asymptotic
value obtained for c = 4 and the corresponding stability results from a population control
error. To illustrate this point, we have computed the average denominator as a function of the
population size M. Results are reported in figure 3. On this plot, we compare the population
dependence of the denominator (139) for c = 4 and for a much smaller value of c = 0.5. The
values of M range from M = 100 to M = 6400. A first remark is that the population control
error can be quite large and is much larger for c = 4 than for c = 0.5. In the appendix it is
shown that the theoretical asymptotic behaviour of the error as a function of M is expected to
be in 1/M . In the c = 0.5 case, the denominator is clearly seen to extrapolate to zero like
1
M

. In the c = 4 case, we can just say that the data are compatible with such a behaviour;
but even for the largest M reported in figure 3 (M = 6400) this asymptotic regime is not
yet reached. Much larger populations would be necessary. This result illustrates the great
difficulty in reaching the asymptotic regime, even for such a simple system having only nine
states. Stated differently, the stability observed when using non-symmetric guiding functions
disappear for a large number of walkers, thus confirming that the stability obtained at finite M
is a control population artefact. Note that a large population control error on the denominator is
not surprising. Indeed, when c 
= 0, the local energies of the guiding functions, equation (43),
have strong fluctuations because ψ±

G is far from any eigenstate of H (ψ±
G contains a symmetric

and an antisymmetric components). In the case of a symmetric guiding function (c = 0),
the distribution of walkers is also symmetric at large times and, thus, the average of this
distribution on the antisymmetric wavefunction ψT must necessarily be zero. Consequently,
in the c = 0 case there is no control population error on the denominator, figure 2.
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An example of the behaviour of the energy as a function of the population size M is
presented in figure 4. Some theoretical estimates of the energy bias dependence on M are
derived in the appendix. Let us summarize the results obtained. When c = 0 (use of a
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symmetric guiding function), the systematic error behaves as in a standard DMC calculation
for a bosonic system:

δE ∝ 1

M
. (140)

However, the statistical fluctuations are exponentially large since the calculation is no longer
stable. Now, when c > 0 the systematic error has a radically different behaviour. For
a population size M the control population error grows exponentially as a function of the
projection time t:

δE ∝ 1

M
et�̃B–F , (141)

where �̃B–F is the reduced Bose–Fermi energy gap. This dependence of the control population
error as a function of the projection time is of course pathological and is a direct consequence
of the use of non-symmetric guiding functions. Now, because of the form (141) it is clear
that a population size exponentially larger than the projection time is necessary to remove
the systematic population control error. In practical calculations, for a given population of
walkers M, one has to choose a finite projection time, t. This time has to be small enough to
have a small finite population control error but, at the same time, large enough to extract the
exact fermionic ground state from the initial distribution of walkers. The best compromise is
easily calculated and leads to the following expression of the systematic error as a function of
the number of walkers (for more details, see the appendix):

δE ∝ 1

Mγ
, (142)

where

γ ≡ �F

�̃B–F + �F
< 1, (143)

and �F is the usual Fermi gap (energy difference between the two lowest fermionic
states).

In figure 4 some numerical results for the c = 4 and c = 0.5 cases are presented. The
numbers of walkers considered are M = 100, 200, 400, 800 and 1600. No data are shown for
the symmetric case, c = 0, because of the very large error bars, see figure 1. The calculations
have been done for the smallest system, N = 3 (recall that the finite configuration space
consists of only nine states) and for very large numbers of Monte Carlo steps (more than
108). As it should be, the systematic errors are found to be larger for the c = 4 case than
for the c = 0.5 case (note that the data corresponding to M = 800 and M = 1600 must not
be considered because of their large statistical noise). The concavity of both curves confirms
our theoretical result, γ < 1, equations (142) and (143). However, it is clear that getting a
quantitative estimate of this exponent is hopeless because of the rapid increase of error bars
as a function of M. The only qualitative conclusion which can be drawn by looking at the
curves is that γc=4 < γc=0.5, in agreement with our formula (143). Finally, let us insist on
the fact that, despite these very intensive calculations for a nine-state configuration space, no
controlled extrapolation to the exact energy is possible.

To summarize, when ψG has an antisymmetric component, the error is expected to
decrease—for M large enough—very slowly as a function of the population size (algebraically
with a (very) small exponent), while in the symmetric case the bias has a much more interesting
1
M

behaviour. However, in this latter case the price to pay is the presence of an exponential
growth of the statistical error. In both cases, and this is the fundamental point, the number of
walkers needed to get a given accuracy grows pathologically. In addition, as illustrated by our
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data for the very simple model problem treated here, the asymptotic regimes corresponding
to the 1/Mγ behaviour appear to be very difficult to reach in practice (very large values of M
are needed).

7. Conclusion and perspectives

The FMC method differs from the DMC method by correlating the diffusion of the walkers and
introducing a cancellation procedure between the positive and the negative walkers whenever
they meet. In this work we have shown that the fermion Monte Carlo approach is exact
but, in general, not stable. FMC can be viewed as belonging to the class of transient
DMC methods, the most famous one being probably the nodal release approach [14, 34].
However, in contrast with the standard transient methods, FMC allows us to reduce in a
systematic way the Fermi instability. The importance of this instability is directly related to
the magnitude of some ‘effective’ Bose–Fermi energy gap, �̃B–F = EF

0 − ẼB
0 , where EF

0 is
the exact Fermi energy and ẼB

0 some effective Bose energy. We have seen that this gap is
intimately connected to the cancellation rate, that is to say, to the speed at which the positive
and negative walkers cancel. We have shown that EB

0 < ẼB
0 < EF

0 , where EB
0 is the standard

bosonic ground-state energy. As an important consequence, the closest the ẼB
0 is from the

exact fermionic energy, the smoother the sign problem is. For the toy model considered, the
reduction obtained for the instability is very large (orders of magnitude). For large-dimensional
systems, there are also strong indications in favour of an important reduction. A first argument
is purely theoretical. In FMC, the walkers within a pair

(
R+

i , R−
i

)
are correlated in such a

way that R+
i − R−

i makes a random move only in one dimension. As a result there is a high
probability that the walkers meet in a finite time even if they move in a high-dimensional
space. The second argument is numerical. As shown by previous authors, the impact of
correlating walkers on the average meeting time is important even for much larger systems
[18, 21].

We have shown that the recent introduction of nonsymmetric guiding functions in FMC
introduces a large systematic error which goes to zero very slowly as a function of the
population size (∼1/Mγ , γ = �F/(�̃B–F + �F) and �F = EF

1 − EF
0 is the usual fermionic

gap). For an infinite number of walkers, this systematic error is removed but the algorithm
recovers the Fermi instability. Moreover, we have shown that using such guiding functions
does not, in general, improve the stability. For a large enough number of walkers, the
simulation can be less stable than the simulation using a symmetric guiding function. Finally,
it is important to emphasize that the conclusion of this work is that the FMC algorithm is not
a solution to the sign problem. However, it is a promising way towards ‘improved’ transient
methods. As a transient method, FMC is expected to converge much better than a standard
nodal release method. We are presently working in this direction.
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Appendix. Population control error in FMC

FMC, like any Monte Carlo method using a branching process, suffers from a so-
called population control bias. This systematic error appears because the branching rules
(creation/annihilation of walkers) are implemented using a population consisting of a large
but finite number of walkers. Nothing preventing the population size from imploding or
exploding, a population control step is required to keep the average number of walkers finite.
A standard strategy to cope with this difficulty consists in introducing a time-dependent
reference energy whose effect is to slightly modify the elementary weights of each walker
by a common multiplicative factor (close to 1) so that the total weight of the population
remains nearly constant during the simulation. This step, which introduces some correlation
between walkers and, therefore, slightly modifies the stationary density, must be performed
very smoothly to keep the population control error as small as possible. In practice, for standard
DMC calculations done with accurate trial wavefunctions and population sizes large enough,
the error is found to be very small, in general, much smaller than the statistical fluctuations. As
a consequence, the presence of a population control bias is usually not considered as critical.
Here, the situation is rather different. In FMC, the use of non-symmetric guiding functions
introduces very large fluctuations of the local energy and the cancellation rules a very small
signal-over-noise ratio for fermionic properties. In this case, it is not clear whether the bias
can be kept small with a reasonable number of walkers.

In this section, we present an estimate of the population control bias in FMC. As we shall
see our estimate shows that the sign problem is actually not solved but attenuated in FMC (an
exponentially large number of walkers is needed to maintain a constant bias as the number of
electrons is increased). The derivation presented in this section is very general: it is valid for
any exact fermion QMC method based on the use of a nodeless bosonic-type reference process
and some projection to extract the Fermi ground state. Accordingly, we have chosen not to
use the specific framework and notations of FMC but, instead, notations of a general DMC
algorithm (transient method). Of course, we do not need FMC to introduce nonsymmetric
guiding functions. The adaptation of what follows to FMC is straightforward.

In quantum Monte Carlo, we evaluate stochastically the following expression for the
lowest eigenstate of energy EF

0 :

Et
F = 〈ψT |H e−t (H−ET )f0〉

〈ψT | e−t (H−ET )f0〉 , (A.1)

where f0 is some positive initial distribution and ψT an approximation of the eigenstate with
energy EF

0 . Here, we deal with a fermionic problem so ψT must be antisymmetric. Expression
(A.1) gives the exact energy EF

0 only when taking the limit t → ∞. In practice for a finite t,
there is a systematic error

�Et
F ≡ Et

F − EF
0 ∝ e−�Ft ≡ e−(EF

1 −EF
0 )t , (A.2)

where EF
1 is the energy of the first excited state in the antisymmetric sector and �F is the

fermionic energy gap. For an exact algorithm with one walker (e.g. pure diffusion Monte
Carlo [36, 37]) one computes the RHS of (A.1) by evaluating the following expression:

Et
F =

〈
HψT

ψG
[R(t)] e− ∫ t

0 ds(EL[R(s)]−ET )
〉

〈
ψT

ψG
[R(t)] e− ∫ t

0 ds(EL[R(s)]−ET )
〉 , (A.3)
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where ψG is the guiding function, strictly positive, with eventually an antisymmetric
component. We have also introduced in this expression, the local energy of the guiding
function:

EL = HψG

ψG

. (A.4)

The integral in (A.3) is done over the drifted random walks going from 0 to t. To simplify the
notations we note (A.3) as follows:

Et
F = 〈htW t 〉

〈ptW t 〉 , (A.5)

where

ht ≡ HψT

ψG

[R(t)] (A.6)

Wt ≡ e− ∫ t

0 dsEL[R(s)] (A.7)

pt ≡ ψT

ψG

[R(t)]. (A.8)

For M-independent walkers Ri one has

Et
F =

〈
1
M

∑
i h

t
iW

t
i

〉
〈

1
M

∑
i p

t
iW

t
i

〉 . (A.9)

In the analysis presented here based on a population of M, the walkers branched according to
their relative multiplicities (the M walkers are therefore no longer independent); one replaces
the individual weight Wi by a global weight [24]:

W̄ t = 1

M

∑
i

W t
i . (A.10)

As a result the energy may be written as

Et
F = 〈h̄t W̄ t 〉

〈p̄t W̄ t 〉 , (A.11)

where

h̄t ≡ 1

M

∑
i

ht
i (A.12)

p̄t ≡ 1

M

∑
i

pt
i . (A.13)

Expression (A.11) is exact when the weights W̄ t are included. A control population error
arises when one does not take into account the weights in expression (A.11). This population
control error is thus given by

�EM
F = 〈h̄t 〉

〈p̄t 〉 − 〈h̄t W̄ t 〉
〈p̄t W̄ t 〉 (A.14)

= 〈h̄t 〉
〈p̄t 〉 − cov(h̄t , W̄ t ) + 〈h̄t 〉〈W̄ t 〉

cov(p̄t , W̄ t ) + 〈p̄t 〉〈W̄ t 〉 , (A.15)
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or, after normalizing W̄ t in such a way that 〈W̄ t 〉 = 1 (for example, by suitably adjusting the
reference energy ET ),

�EM
F = 〈h̄t 〉

〈p̄t 〉 − cov(h̄t , W̄ t ) + 〈h̄t 〉
cov(p̄t , W̄ t ) + 〈p̄t 〉 . (A.16)

This is our basic formula expressing the systematic error at time t resulting from the use of a
finite population. Now, let us evaluate this expression in the large time t and large M regimes.
First, we consider the two denominators appearing in the RHS of equation (A.16). Let us
begin with the denominator of the second ratio:

De ≡ cov(p̄t , W̄ t ) + 〈p̄t 〉. (A.17)

Because this denominator is nothing but the denominator of the RHS of equation (A.3), we can
conclude that De does not depend on the population size M and that it vanishes exponentially
fast:

De = Ke e−(EF
0 −ET )t , (A.18)

where ET is the reference energy, ET = EB
0 for a nodal release-type method, and

ET = ẼB
0 > EB

0 for the FMC method. Let us now look at the other denominator of
equation (A.16)

Da ≡ 〈p̄t 〉. (A.19)

This denominator is the usual quantity evaluated during the simulation. It is an approximate
quantity since it does not include the corrective weights. The asymptotic behaviour of Da

depends on ψG. We distinguish two cases as follows.

(i) If ψG is symmetric (c = 0), the stationary density (t large enough) is symmetric.
Consequently, Da , which is the average of an antisymmetric function, converges to zero
exponentially fast at large times. For M large enough, in a regime where the dynamics is
close to the exact dynamics of the Hamiltonian, we know that the convergence is given
by

Da = Ka(M) e−�̃B–Ft , (A.20)

where the coefficient Ka depends on M in general. This coefficient will be determined
later. From equations (A.20) and (A.18), one can evaluate the error on the denominator

Da − De = (Ka(M) − Ke) e−�̃B–Ft . (A.21)

We also know from the definitions of Da and De ((A.19) and (A.17)) that the difference
Da − De is a covariance of two averages:

Da − De = cov(p̄t , W̄ t ), (A.22)

which, due to the central-limit theorem, behaves as

Da − De = 1

M
C(t), (A.23)

where C(t) is some function of t. Identifying (A.21) and (A.23), one finally obtains a
determination of Ka . Finally, we obtain the following behaviour for the systematic error
on the denominator:

Da − De = cov(p̄t , W̄ t ) ∝ 1

M
e−�̃B–Ft . (A.24)
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(ii) If ψG is not symmetric (c 
= 0), the stationary density has an antisymmetric component
and Da converges to a constant different from zero at large times. Of course, this constant
depends on the number of walkers M. This dependence can be easily found by using the
central limit theorem as before:

Da − De = cov(p̄t , W̄ t ) = K
1

M
. (A.25)

Finally, we have just proved that, when the guiding function is not symmetric, the
asymptotic behaviour of the denominator is Da ∝ 1

M
independent of t. This important

result is in agreement with the numerical data shown in figure 3. Using exactly the
same arguments, the asymptotic behaviour (large M, large t) of the difference of the two
numerators in the RHS of expression (A.16) is found to be the same as Da − De:

Na − Ne = cov(h̄t , W̄ t ) ∝ Da − De. (A.26)

Now, we are ready to write down the expression of the systematic population control error,
�EM

F . For M large enough, �EM
F is well approximated by its first-order contribution in the

1
M

expansion. Here also, we need to distinguish between the nature of the guiding function.

(i) If ψG is symmetric one easily obtains

�EM
F ∝ 1

M
. (A.27)

(ii) If ψG has an antisymmetric component

�EM
F ∝ 1

M
e�̃B–Ft . (A.28)

Let us now evaluate the total systematic error resulting from using a finite time t and a
finite population size M:

�EF
0 = �EM

F + �Et
F, (A.29)

where �Et
F, the systematic error coming from a finite simulation time, is given by

equation (A.2) and �EM
F is the error just discussed. The strategy consists in determining, for

a given systematic error �EF
0 ∼ ε, what is the time t and the number of walkers M one should

consider. The condition for the total systematic error to be of order ε is that both terms in
(A.29) are also of order ε:

�Et
F ∼ ε (A.30)

�EM
F ∼ ε. (A.31)

This is true because no error compensation is present, �Et
F and �EM

F being generally of
the same sign (both positive). Our numerical results on the toy model give an illustration
of this property. From both equations (A.30) and (A.2) one can deduce the simulation time
corresponding to such a systematic error:

t ∼ − ln ε

�F
. (A.32)

In other words, to obtain an error of order ε it is sufficient to stop the simulation at a time t
of order (A.32). Now, let us come to the number of walkers M needed. If ψG is symmetric,
we already know from expression (A.27) that the systematic error does not depend on the
projection time and that the number of walkers M and the systematic error ε are related as
follows:

M ∝ 1

ε
. (A.33)
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If ψG is not symmetric, the equation (A.31) can be easily solved. Replacing in equation (A.31),
�EM

F by its expression (A.28) and using relation (A.32) one finally finds the number of walkers
required to obtain a systematic error ε.

M ∝ ε
− �̃B–F

�F
−1

. (A.34)

Let us make some important comments. First, note that in this formula the dependence on the
guiding function is not included in the exponent, only in the prefactor. Second, this formula
shows that the FMC algorithm reduces the systematic error by lowering the exponent. As
already mentioned, the gap is equal to EF

0 −EB
0 in a standard release node method and equal to

EF
0 − ẼB

0 < EF
0 − EB

0 in FMC. Third, in the zero-limit gap, the 1
M

behaviour of the systematic
error is recovered. This formula shows that the number of walkers needed for a given accuracy,
ε, grows exponentially with respect to the number of electrons. Indeed, although the gap is
indeed reduced by FMC, there is no reason not to believe that it will still be proportional to
the number of electrons. In consequence, the ‘sign problem’ fully remains in FMC.

Finally, let us write the systematic error as a function of the finite population M by
inverting the preceding equation (A.34):

ε ∝ M−γ , (A.35)

where

γ ≡ �F

�̃B–F + �F
. (A.36)

This latter equation illustrates the respective role played by the Fermi gap, �F, and the reduced
Bose–Fermi gap, �̃B–F.
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