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Computing forces with quantum Monte Carlo
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We present a simple and stable quantum Monte Carlo approach for computing forces between atoms
in a molecule. In this approach we propose to use as Monte Carlo estimator of the force the standard
Hellmann–Feynman expression~local force expressed as the derivative of the total potential energy
with respect to the internuclear coordinates!. Invoking a recently introduced zero-variance principle
it is shown how the infinite variance associated with the Hellmann–Feynman estimator can be made
finite by introducing some suitably renormalized expression for the force. Practical calculations for
the molecules H2 , Li2 , LiH, and C2 illustrate the efficiency of the method. ©2000 American
Institute of Physics.@S0021-9606~00!31330-7#
p
em
-
ta
n

l-
no

th
re
e
o

nt
he

v-
ow

i
os

nd

o
a

ed

rgy
te
en-
C,
d to
’’
t

the
rn,
e
ct
an
tly
is is
y.
u-

ount
c-
nc-

the
are
ve
e-
its
be-

-

ce
ion
ve
I. INTRODUCTION

Over the recent years quantum Monte Carlo~QMC!
methods have become more and more successful in com
ing ground-state properties of atomic and molecular syst
~see, e.g., Refs. 1–3!. However, the vast majority of applica
tions has been limited to the calculation of the ground-s
total energy. Although this is clearly a most important qua
tity, other properties~dipole moments, forces, polarizabi
ities, etc.! are also of primary interest. In theory, there is
difficulty for computing such quantities within a QMC
framework. However, in practice, the convergence of
Monte Carlo calculations is much more slower and, the
fore, much more computationally demanding than the cas
the energy. Thus, only a limited number of calculations
properties can be found in the literature. The fundame
point allowing very efficient and accurate calculations of t
energy~compared to other properties! is the existence of a
so-called ‘‘zero-variance’’ property for this special obser
able. To understand this point, let us first briefly recall h
the energy is computed with QMC. In short, the energy
expressed as a simple average over some suitably ch
distribution

E05^EL&, ~1!

where the bracketŝ• • • & denote the statistical average a
EL is a local function defined as

EL~x!5HcT /cT , ~2!

and usually referred to as the local energy. Here,H denotes
the Hamiltonian under consideration andcT a trial wave
function. The distribution for the average defines the type
quantum Monte Carlo calculation performed. In variation
Monte Carlo~VMC! schemes, the distribution is construct

a!Electronic mail: assaraf@sissa.it
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to be proportional tocT
2 and Eq.~1! is nothing but an esti-

mate of the standard quantum-mechanical variational ene
associated with the trial wave function. In diffusion Mon
Carlo ~DMC! schemes, the stochastic rules employed to g
erate configurations are essentially similar to those of VM
except that a new step—a branching process—is adde
pass from the VMC distribution to the so-called ‘‘mixed
distribution given byf0cT , where f0 denotes the exac
ground-state wave function. In that case, Eq.~1! realizes an
exact estimate of the energy. From expression~1! it is clear
that the statistical error on the energy is directly related to
magnitude of the fluctuations of the local energy. In tu
such fluctuations depend on the ‘‘quality’’ of the trial wav
function. The closer the trial wave function is to the exa
one, the smaller these fluctuations are. In the limit of
exact trial wave function the local energy becomes stric
constant and the statistical error vanishes completely. Th
the result which is known as the ‘‘zero-variance’’ propert
In practice, this property is of great importance: very acc
rate calculations can be performed with a reasonable am
of computer time only if accurate enough trial wave fun
tions are at our disposal. When no particular trial wave fu
tion is used@cT51 in the preceding formula,~1!# the local
energy reduces to the total potential energy. In this case
statistical error on the energy is very important since the b
potential fluctuates enormously. Introducing a trial wa
function can be viewed as defining a ‘‘renormalizing proc
dure’’ applied to the bare potential in order to reduce
fluctuations. Of course, such a process is allowed only
cause both the bare potential~the total potential energy! and
the renormalized one~the local energy! have the same aver
age.

Very recently, we have generalized this zero-varian
property to any observable defined on the configurat
space.4 DenotingO some rather arbitrary observable we ha
shown that it is possible to constructin a systematic waya
renormalized observableÕ verifying:
8 © 2000 American Institute of Physics
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4029J. Chem. Phys., Vol. 113, No. 10, 8 September 2000 Forces with quantum Monte Carlo
^Õ&5^O& ~3!

and

s2~Õ!,s2~O! ~4!

wheres2(A) represents the variance of operatorA

s2~A![^~A2^A&!2&. ~5!

When usingÕ instead ofO as estimator of the observabl
the convergence of the calculations can be improved s
the statistical error on a finite Monte Carlo sample is direc
proportional to the variance of the quantity to be averag
As we shall see later, the renormalized observable depe
on two auxiliary quantities,H̃ andc̃ which play a role simi-
lar to that played byH andcT in the renormalized version o
the bare potential, Eq.~2!. Some preliminary classical an
quantum Monte Carlo calculations on simple systems h
shown that very important reduction of the computatio
effort can be achieved by using this general zero-varia
principle.4 In the present paper we apply this idea to t
problem of calculating forces between atoms in molecu
The calculation of forces is known to be a very difficult ta
for QMC methods.3 Some calculations limited to very sma
molecules ~typically H2 and LiH! have been reported.5,6

However, their extension to bigger systems is essentially
realistic. Note that very recently Filippi and Umrigar ha
presented a new method for computing forces.7 Their method
is based on a special transformation coordinates and a c
lated sampling approach. Here, we follow a quite differe
route. It is shown that forces can be computed in a v
natural way by using the standard Hellmann–Feynman~HF!
theorem. More precisely, the force is computed as the a
age of the local force, a quantity defined as the gradien
the potential energy with respect to the internuclear coo
nates. In previous works~see, e.g., discussion in Ref. 3! such
a possibility was excluded because of the uncontrolled
tistical fluctuations associated with the bare force~infinite
variance!. Here, it will be shown that with the help of th
generalized zero-variance principle, the pathological par
the force responsible for the infinite variance can be remo
exactly in a simple and general way. Once this is achieve
is possible to perform stable calculations of the forces
using standard variational and diffusion Monte Carlo me
ods. The first applications presented here illustrate the a
racy and efficiency of the method.

II. METHOD

To compute forces between atoms in a molecule we t
advantage of the Hellmann–Feynman theorem. Accordin
this theorem the average force defined as

^Fq&[2¹qE0~q! ~6!

is given by the expectation value of the gradient of the
tential ~local force!

^Fq&5
*dx f0

2~x,q!Fq~x,q!

*dx f0
2~x,q!

, ~7!

with
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
ce
y
d.
ds

e
l
e

s.

ot

re-
t
y

r-
of
i-

a-

f
d
it
y
-
u-

e
to

-

Fq~x![2“qV~x,q!. ~8!

In these formulasq represents the set of the 3Nnucl nuclear
coordinates (Nnucl being the number of nuclei!, V the total
potential energy operator of the problem,E0(q) the total
ground-state energy for a given molecular geometry, andf0

the corresponding ground-state wave function.
As remarked by a number of authors, one of the ma

difficulties in computing forces by QMC via formulas~7!
and~8! is the presence of uncontrolled statistical fluctuatio
~see, e.g., Ref. 3!. Indeed, the variance of the Hellmann
Feynman estimator of the force is infinite. This is a simp
consequence of the fact that at short electron-nucleus
tancesr, the local force behaves asF;1/r 2, so that^F2&
5`. Various solutions to this problem have been propos
A common idea consists in introducing some sort of cut
when the electrons approach the nuclei.6 However, by doing
this a systematic error is introduced. In addition, to cont
this error is a very tricky problem since any extrapolati
procedure~cutoff going to zero! is ill-defined.

To escape from this difficulty we propose to replace t
standard expression of the local forceFq(x) by a ‘‘renormal-
ized’’ expression, F̃q(x), having the same average b
smaller fluctuations. It should be emphasized that the
crease in fluctuations will be dramatic here since, in contr
with the bare expression, the renormalized version will ha
now finite fluctuations. Let us give the explicit expressio
for the renormalized quantities. We shall consider two d
ferent cases. The first case corresponds to variational M
Carlo ~VMC! calculations. The distribution of walkers i
configuration space,p(x) is given by

pVMC~x!;cT
2~x!. ~9!

The second case corresponds to calculations within the
fusion Monte Carlo~DMC! approach. In that case the distr
bution employed is the so-called mixed distribution given

pDMC~x!;cT~x!f0~x!. ~10!

In the variational case and for a particular componentq we
consider the following renormalized expression:

F̃q~x!5Fq~x!1F H̃c̃

c̃
2

H̃cT

cT
G c̃

cT
, ~11!

whereH̃ is some rather arbitrary auxiliary Hermitian oper
tor and c̃ an arbitrary auxiliary function~supposed to be
square-integrable!. Note that the choice of the auxiliar
quantities depends on the particular componentq considered.
BecauseH̃ is Hermitian we havêcTuH̃uc̃&5^c̃uH̃ucT& and
it is an elementary exercise to check that the average valu
the bare and renormalized expressions over the VMC dis
bution ~9! are identical

^F̃q&5^Fq&. ~12!

Note that this result requires that both the trial function a
its first derivatives are continuous over the whole configu
tion space. These conditions are fulfilled by the trial wa
functions used in VMC schemes. Now, regarding the va
ances we have the following expression:
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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s2~ F̃q![^~ F̃q2^F̃q&!2&

5s2~Fq!12^Fq DH w&1^DH2 w2&, ~13!

where, for the sake of simplicity, we have used the followi
notations:

DH[F H̃c̃

c̃
2

H̃cT

cT
G ~14!

and

w[
c̃

cT
~15!

Now, let us show that, from an arbitrary auxiliary functio
c̃, we can always construct a renormalized expression h
ing a smaller variance. For that we consider the multipli
tive constant ofc̃, denoted herea, as a variational param
eter. Minimizing the variances2(F̃,a) with respect toa we
get the following optimal value:

aopt52^Fq DH w&/^DH2 w2& ~16!

and, therefore,

s2~ F̃,aopt!5s2~F !2^F DH w&2/^DH2 w2&, ~17!

In general, the quantitŷF DH w& will not be equal to zero.
As a consequence, equation~17! shows that, whatever th
quality of the auxiliary functionc̃ chosen, the use of th
optimized prefactor~16! always leads to a decrease of t
statistical fluctuations. Clearly, this gain in variance can
small but let us emphasize that it is a systematic gain.
course, this is only by choosing appropriate auxiliary fun
tions that large gains can be expected.

In the case of a diffusion Monte Carlo scheme the s
tionary distribution, Eq.~10!, is no longer known analytically
since it involves the unknown exact wave function which
stochastically sampled, and our general procedure wh
supposes the knowledge of the distribution cannot be rea
applied to. However, in the particular case of the mixed d
tribution, a renormalized expression can still be defined.4 A
natural choice is

F̃q~x!5Fq~x!1FHc̃

c̃
2E0G c̃

cT

, ~18!

whereE0 is some unbiased estimator of the exact grou
state energy. In this case also, it is quite easy to verify
the averages of the bare and renormalized estimators ove
mixed distribution~10! are equal

^F̃q&5^Fq&. ~19!

It should be emphasized that this result is valid only if t
wave functionf0 and its first derivatives are continuous e
erywhere. This is true for the exact solution of the proble
However, in general it will not be the case for the appro
mate solution obtained with a fixed-node diffusion Mon
Carlo calculation. We shall return to this important point
the next section.
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To make the connection with the variational case,
mark that the latter expression can be rewritten as

F̃q~x!5F̃q
VMC~x!1@EL2E0#w , ~20!

where EL represents the local energy function associa
with the trial wave functioncT , Eq. ~2!, andF̃q

VMC(x) is the
variational Monte Carlo expression of the renormaliz
force, Eq.~11!. Note that the correction between the VM
and DMC estimators in formula~20! consists of a product o
two quantities, namelyEL2E0 and w. The quantityEL

2E0 has a vanishing average and its statistical fluctuati
are in general much smaller than those ofw. Accordingly, it
is quite efficient to introduce a centered version of the va
ablew. Indeed, it can be easily shown that the fluctuations
the product are in this way greatly reduced. Our final vers
of the DMC force used in our calculations is therefore

F̃q~x!5F̃q
VMC~x!1@EL2^EL&#@w2^w&#. ~21!

Finally, it should be noted that the force calculated accord
to the preceding formulas are not exact since the DMC d
tribution is the mixed distribution instead of the exact on
This point is discussed later.

Now, in order to illustrate the method we consider t
case of a diatomic moleculeAB consisting of an atomA
~nucleus chargeZA) located at (R,0,0) and an atomB
~nucleus chargeZB) located at the origin. Note that the gen
eral case corresponding to an arbitrary number of nuclei d
not involve particular difficulties. It can be obtained b
straightforward generalization of what is presented belo
For a diatomic molecule we have the following expression
the force:F5(F,0,0), with

F~x!5
ZAZB

R2
2ZA (

i 51

Nelect ~xi2R!

ur i2Ru3
, ~22!

whereNelect is the total number of electrons andr i represents
the position of electroni. The second term on the right-han
side of Eq.~22! is responsible for the infinite variance con
tribution. Let us now show that this contribution can be e
actly removed. In what follows we shall write the auxiliar
function as

c̃~x!5QcT, ~23!

whereQ is some arbitrary function. Using this form it can b
verified that the simplest form forQ canceling the pathologi-
cal part of the bare force is the following:

Q5ZA (
i 51

Nelect ~xi2R!

ur i2Ru
. ~24!

Finally, we get for the renormalized force in the variation
case@Eq ~11!#:

F̃~x!5
ZAZB

R2
2“Q•“cT /cT , ~25!

with a similar expression in the DMC case@see Eqs.~18! and
~20!#. It can be checked that this latter expression has no
finite variance.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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As already mentioned the QMC calculations presen
here are done at two different levels of approximation. Fi
we present variational Monte Carlo calculations of the for
The average of the force is then obtained as

^F &VMC5
*dx cT

2~x!F~x!

*dx cT
2~x!

, ~26!

wherecT is the trial wave function, andF represents here
either the bare force,F5F, Eq.~7!, or the renormalized one
F5F̃, Eq. ~11!. We also consider averages over the mix
distribution as obtained in a diffusion Monte Carlo schem

^F &mixed5
*dx f0~x!cT~x!F~x!

*dx f0~x!cT~x!
, ~27!

wheref0 is the exact wave function. Here,F is given either
by Eq. ~7! or by Eq. ~18!. In order to get a more accurat
approximation of the unbiased exact force, correspondin
the densityf0

2, we shall also have recourse to the followin
‘‘hybrid’’ formula:

^F &.2^F &mixed2^F &VMC . ~28!

This formula is constructed so that the first-order contrib
tions in the differencef0(x)2cT(x) for the quantities
^F &mixed and^F &VMC compensate exactly~see, e.g., Ref. 3!.
From a practical point of view, expression~28! is particu-
larly interesting. Both quantities involved can be straightf
wardly computed in routine DMC and VMC calculation
Note that in principle it is also possible to get an exact e
mate of ^F & but it requires some more elaborate sche
involving some kind of forward-walking.3,8 We shall not
consider here such calculations, but let them for future p
lication.

III. A FEW REMARKS REGARDING THE PRACTICAL
IMPLEMENTATION

As seen in the preceding section we use both VMC a
DMC approaches in our actual computations. Regard
variational Monte Carlo no particular difficulties arise.
practice, the main weakness of the VMC approach lies in
fact that the average force obtained according to Eq.~26! is
quite dependent on the trial wave function used. This is p
ticularly true sincecT is optimized in order to improve the
total electronic energy but not its derivatives with respec
the internuclear coordinates. However, as illustrated by
practical calculations presented below~see Table II!, com-
bining DMC and VMC calculations of the force according
the hybrid formula, Eq.~28!, seems to represent a simple b
accurate solution to this problem.

Let us now consider the specific difficulties associa
with DMC calculations. In order to avoid the famous ‘‘sig
problem’’ for fermions9 all calculations presented here a
done using the stable but approximate fixed-node~FN!
method. In this approach the Schro¨dinger equation is solved
separatelyin each nodal domain~or ‘‘pocket’’ ! where cT

has a definite sign. When the trial wave function satisfies
tiling property10,11 all nodal domains are equivalent and r
lated by the permutational symmetry. When this is not
case, energies associated with each nodal domain can b
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
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ferent and the FN solution corresponds to the eigensolu
defined in the domain corresponding to the lowest ener
Without entering more into the details of the fixed-node a
proach~for that, see, e.g., Refs. 12 and 3! we just remark that
a most important point with FN calculations is that th
sampled fixed-node solution displays in general some
continuous derivatives at the nodes~zeroes ofcT). Because
of that, some mathematical care is necessary when integ
ing quantities~energy, derivatives of the energy, etc.! that are
defined over the entire configuration space; in other wor
the various nodal domains must be properly connected
first example illustrating this remark is the problem of t
validity of the Hellmann–Feynman~HF! theorem in fixed
node QMC calculations, a point which has raised some
cussion very recently.13–15Due to the presence of the disco
tinuity at nodes the HF theorem is not true in general in t
case. It can be shown that the theorem is valid only when
derivative of the total fixed-node energy with respect to
coordinateq is done without changing the nodes of the tr
wave function when varyingq.14 However, since in the
present work no finite difference expressions for the fixe
node energy are used, this point is in fact of no practi
importance. Let us just mention that the average force
tained in our fixed-node DMC calculations corresponds
the Hellmann–Feymnan force we would obtain by perfor
ing such finite differences fixed-node calculations with t
nodes kept fixed.

A second example of difficulties, which is here of fun
damental importance, concerns the validity of the equa
between the bare and renormalized expressions, Eq.~19!. To
clarify this point let us have a closer look at the condition w
would like to fulfill. Using expression~18! the condition can
be written as

^F̃&2^F&5^f0
FNu

~H2E0
FN!c̃

cT
ucT&50, ~29!

where E0
FN is the fixed-node energy. DenotingV a nodal

domain of the fixed-node solution we can write

^F̃&2^F&5E
V

dx f0
FN~H2E0

FN!c̃ . ~30!

Now, decomposingH under its kinetic and potential part
and invoking Green’s formula this quantity can be rewritt
as an integral over the nodal hypersurface

^F̃&2^F&52
1

2E]V
~f0

FN¹¢ c̃2c̃¹¢ f0
FN!dW S. ~31!

From this expression it is seen that a nonzero bias may
deed appear in a fixed-node calculation of the renormali
force. Clearly, a simple way of removing this bias is to u
auxiliary functions c̃ having the same nodes ascT and,
therefore, the same nodes asf0

FN . The actual simulations
presented below fulfill this condition.

Finally, let us end this section with some words abo
the nature of the errors introduced. Since the exact nodes
not known there is some difference between the exact
fixed-node functions
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Total energies in variational Monte Carlo@E0~VMC!# and diffusion Monte Carlo@E0~DMC!# with the trial wave functions employed here
Ec

VMC(%) andEc
DMC(%) are the percentages of correlation energy recovered in VMC and DMC.s2~VMC! is the variance of the local energy in VMC. Bon

lengths are in Bohrs and energies in Hartree atomic units. Statistical uncertainties on the last digit are indicated in parentheses.

Molecule E0~HF! E0 E0~VMC! s2~VMC! Ec
VMC(%) E0~DMC! Ec

DMC(%)

H2 (R51.4) 21.133 63 21.174 475 21.172 80~7.7! 0.0050~1! 95.8~2! 21.174 45~6.7! 99.9~2!
LiH ~R53.015! 27.987 28.070 21 28.055 54~26! 0.070~2! 82.37~3! 28.067 57~70! 96.8~8!
Li2(R55.051) 214.871 52 214.9954 214.9429~46! 0.196~1.2! 57.6~4! 214.9910~3.7! 96.4~3!

C2 (R52.3481) 275.4062 275.923~5! 275.581~2.9! 1.088~6! 33.8~6! 275.854~5.2! 87~1!

aFrom experimental data analysis.
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df[f0
FN2f0 , ~32!

wheref0 andf0
FN are the normalized exact and fixed-no

solutions. The fixed-node bias can be evaluated as

^f0
FNuFuf0

FN&2^f0uFuf0&52^dfuFuf0&1O~df2!.
~33!

In other words, the fixed-node bias forF is of order 1 indf
in contrast with the FN bias on the energy which is of ord
2 in the same quantity. Finally, it is easy to see that the b
on the mixed average, Eq.~27!, is of order O(cT2f0

FN)
1O(df) while the bias on the ‘‘hybrid’’ estimator, Eq.~28!,
is of orderO@(cT2f0

FN)2#1O(df).

IV. RESULTS AND DISCUSSION

We present a number of variational Monte Carlo~VMC!
and diffusion Monte Carlo~DMC! calculations for the di-
atomic molecules H2 , LiH, Li 2 , and C2. Standard imple-
mentations of the VMC and DMC methods have been u
and will not be detailed here. For some general presenta
of these approaches the interested reader is referred fo
ample to Refs. 1, 3, and 16. As already indicated in
preceding section all DMC calculations have been do
within the fixed-node approach. Numerical experience sho
that the fixed-node error on the energy resulting from
approximate location of the trial nodes is rather small wh
good enough trial wave functions are used. As we shall
later, this will also turn out to be true when calculatin
forces. In order to remove the short-time error all DMC c
culations have been systematically performed with differ
time-steps and extrapolated to zero time-step. Regarding
trial wave function we have chosen a standard form cons
ing of a determinant of single-particle orbitals multiplied b
a Jastrow factor

cT5D↑D↓ exp(
a

(
^ i , j &

U~r ia ,r j a ,r i j !, ~34!

where the sum overa denotes a sum over the nuclei an
(^ i , j & a sum over the pair of electrons. Here, the functionU is
chosen to be

U~r ia ,r j a ,r i j !5s~xi j !1p(a)~xia!1c1xia
2 xj a

2

1c2~xia
2 1xj a

2 !xi j
2 1c3xi j

2 ~35!

with

xi j 5
r i j

11bsr i j
, xia5

r ia

11bar ia
,
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p(a)~x!5p1
(a)x1p2

(a)x21p3
(a)x31p4

(a)x4.

bs can take two different values depending on the spin of
pairs of electrons considered. The different parameters of
trial wave function have been optimized using the correla
sampling method of Umrigaret al.17 The total energies ob
tained at the variational and DMC levels are presented
Table I.

The calculations have been done at the experime
bond lengths. The quality of our trial wave functions is go
since a non-negligible part of the correlation energy is rec
ered at the variational level. Note that more sophistica
trial wave functions could be used~see, e.g., Ref. 18!.

At the heart of the zero-variance principle employ
here is the choice of the auxiliary quantitiesH̃ and c̃. Ex-
actly in the same way as for the total energy we need
construct some optimal choice guided by a zero-varia
equation. In the case of the energy the zero-variance equa
is nothing but the usual Schro¨dinger equation

EL~x!5HcT /cT5^EL&, ~36!

and the optimal choice~zero-variance! for cT is cT5f0 .
Here, the ideal zero-variance condition is written as

F̃q~x!5^Fq&. ~37!

In the variational case, using expression~11! this equation
can be written as

F H̃2
H̃cT

cT
G c̃52@ F̃q~x!2^F̃q&#cT . ~38!

In the DMC case, we have

@H2E0#c̃52@ F̃q~x!2^F̃q&#cT . ~39!

In this latter case we just need to construct an ‘‘accura
solution of this equation. In the variational case we ha
more freedom since the auxiliary operatorH̃ is also to be
chosen. Here, in order to demonstrate the feasibility and
simplicity of the approach we will consider the simple
choice possible for the auxiliary quantities. Regarding
auxiliary operator we will just chooseH̃5H. Regardingc̃
we choose the minimal form required to get a finite varian
of the force, namelyQ as given by~24!. Note that using such
forms for the auxiliary quantities there are no free parame
left. Our results are presented in Table II. Before discuss
these results let us first look at the convergence of the v
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Forces at the experimental bond lengths~atomic units! for the four diatomic molecules considered

^F&VMC and^F&mixed are the standard forces obtained with VMC and DMC.^F̃&VMC,mixed are the same quantitie

obtained with the ‘‘renormalized’’ expression of the force, Eq.~18!. ^F̃& is the ‘‘hybrid’’ estimator combining
the VMC and DMC results, Eq.~28!. Statistical uncertainties on the last digit are indicated in parenthese

Molecule ^F&VMC ^F̃&VMC ^F&mixed ^F̃&mixed ^F̃&

H2 (R51.4) 0.06~7! 20.0047~1.5! 20.0034~10! 20.0041~3.6! 20.0035~5!
LiH ( R53.015) 20.037~12! 20.0263~2! 20.03~2! 20.0125~9! 20.0013~11!
Li2 (R55.051) 20.8~4! 20.196~1.8! 20.2~2! 20.096~2.5! 20.004~4!

C2 (R52.3481) 2~3! 20.101~22! 1.~4! 20.05~2! 20.00~4!
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ous estimators. Typical behaviors are shown in Figs. 1 an
Calculations are VMC calculations of the force~at experi-
mental length! for the two larger molecules treated her
namely Li2 and C2.

Both figures show the convergence of the estimators
the bare and renormalized forces, respectively, as a func
of the simulation time~a quantity proportional to the numbe
of Monte Carlo steps!. In both cases the difference betwe
the two curves obtained is striking. In the case of the b
force the estimator of the force converges with a lot of d
ficulty. The fluctuations are very large and at some pla
‘‘jumps’’ in the curves are observed. These jumps cor
spond in the simulation to some configurations where
electron approaches a nucleus. Their location and their m
nitude are very dependent on the sequence of random n
bers and initial conditions used. In fact, there is no hope
obtain a converged value of the bare force in a finite sim
lation time ~whatever its length be!. This behavior is of
course related to the infinite variance of the estimator. T
second curve associated with the renormalized force,
~11!, has an entirely different behavior. In sharp contr
with the bare case the convergence is now reached very
ily. At the scale of the figure the fluctuations of the cur
have almost disappeared.

Table II summarizes the various calculations we ha
performed. All calculations have been done at the exp
mental bond lengths, the expectation values of the force
therefore expected to be very close to zero.

The bare VMC and DMC values presented are repor
as given by the output of our program. However, as j
remarked they have to be considered with a lot of cauti
Indeed, the values are not and cannot be converged du
the infinite variance. Consequently, the values quoted
give a very rough estimate. Their actual values depe
strongly on the initial conditions and on the series of rand
numbers used. In contrast, the renormalized value are
fectly well-defined and the estimate of the average and of
statistical error are converged. At the variational level
average values of the renormalized forces are significa
different from zero. These values depend on the choice of
trial wave function. The mixed estimators are less depend
In our calculations the results display a systematic e
about 2 times smaller than the variational ones. Combin
both sets of values and using formula~28! to remove as
much as possible the dependence on the trial function
obtain very accurate estimates of the forces~column ^F̃&).
Except for the molecule H2 for which very small statistica
 2010 to 130.120.228.223. Redistribution subject to A
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errors have been obtained, our estimates of the force
essentially exact (.0) within error bars. Note that in the
three cases where a fixed-node error on the result is expe
~LiH, Li 2 , and C2) no significant bias on the results is ob
served. As already remarked in the introduction there
very few results to compare with in the literature. Regard
H2 we can cite the work by Reynoldset al.5 At the equilib-
rium distance, they obtained for the force a value
0.0009(24). Note that within statistical errors our~slightly
biased! result is compatible with this value. However, o
statistical error is about 5 times smaller. In the case of L
we get a much more accurate value than the one given
Vrbik and Rothstein,6 namely F50.12(16). Quite remark-
ably, our statistical error is about two orders of magnitu
smaller. Comparisons with the very recent results obtai
by Filippi and Umrigar7 are not easy because the quantit
calculated are different. In their work the authors present
error in the bond lengths obtained in their correlated DM
calculations and not the force like in the present work.
order to make some quantitative comparisons it is neces
to compute the dependence of our results on the distance

FIG. 1. Convergence of̂F&VMC and^F̃&VMC as a function of the simulation
time ~proportional to the number of Monte Carlo steps! for the Li2 molecule
at the equilibrium geometry,R53.015.
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define some estimate of the equilibrium distance. Suc
study is out of purpose here and is let for future investi
tion. Finally, let us emphasize that the auxiliary functi
used here is the simplest form allowing the reduction of
variance of the local force to a finite value. Clearly, mo
general and sophisticated forms for the auxiliary funct
can be introduced and optimized. There is no doubt that
nificantly smaller errors on the computed forces can
achieved.

In summary, we have presented a simple and stable
proach for computing forces within a QMC scheme. To
that, we propose to use the Hellmann–Feynman theorem
re-express the force as a standard local average of the g
ent of the potential. The force is computed approximat
using standard variational Monte Carlo and fixed-node dif
sion Monte Carlo approaches. To remove as much as
sible the dependence of the results on the trial wave fu
tions we resort to the commonly used ‘‘hybrid’’ estimat
combining both VMC and DMC results. In order to suppre
the unbounded statistical fluctuations associated with the

FIG. 2. Convergence of̂F&VMC and^F̃&VMC as a function of the simulation
time ~proportional to the number of Monte Carlo steps! for the C2 molecule
at the equilibrium geometry,R55.051.
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cal force we apply to this observable a generalized ze
variance property. In practice, this idea is implemented
replacing the bare local force by some renormalized exp
sion depending on some auxiliary quantities. A simple p
cedure to construct the renormalized force~choice of auxil-
iary quantities! is presented. As emphasized, it is a gene
procedure: It can be performed without practical difficu
for an arbitrary molecular system. Introducing the simpl
form possible for the renormalized force~minimal form, no
free parameters! and using standard forms for the trial fun
tions we get very satisfactory results for some simple
atomic molecules. Applications to bigger systems and ca
lations away from the equilibrium geometry are now und
investigation.
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