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Gutzwiller wave function for a model of strongly interacting bosons
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We study a model of strongly interacting lattice bosons with a Gutzwiller-type wave function that
contains only on-site correlations. The variational energy and the condensate fraction associated with

the variational wave function are exactly evaluated for both finite and infinite systems and compared
with exact quantum Monte Carlo results in two dimensions. This ansatz for the wave function gives the

correct qualitative picture of the phase diagram of this system; at commensurate densities, this system

enters a Mott-insulator phase for large values of the interaction.

Strongly interacting boson systems have been exten-
sively studied for a long time. Apart from the usual A,

transition between the superfluid and the normal liquid at
a given temperature, systems of bosons in an external po-
tential may also undergo a superfluid-insulator transition
at T =0 upon a change of strength in the interaction or
the conditions of the environment. Such a phase transi-
tion has recently been studied in several works for a rnod-
el of strongly interacting lattice bosons interacting with a
repulsive on-site interaction. The model described by the
Hamiltonian

II= g (a;a +H. c. )+—gn;(n; —1)
—t y U

(i,j ) 1

is the focus of the present Brief Report. It describes a
system of M bosons on a lattice with N sites in d dirnen-
sions. This system exhibits a superfluid phase for all
values of the interaction U and noncornrnensurate densi-
ties; i.e., p=M/N not an integer. Indeed, some particles
can always gain kinetic energy at no cost in potential en-

ergy by hopping to sites occupied by a smaller number of
particles. At commensurate densities (i.e., integer p), the
model also exhibits a superfluid phase at small Ult since
the penalty in potential energy is not large enough to
offset the gain in kinetic energy that delocalizes the parti-
cles. However, for large enough interaction, this is no
longer true, and the system is trapped into a Mott-
insulator state. Accordingly, there exist two transitions
from the superfluid phase to the Mott-insulator phase: (i)
when U/t approaches some critical value U, /t at com-
mensurate (integer) densities n, and (ii) when the density

p approaches n, at large on-site repulsion U/t.
A scaling theory of these transitions has been worked

out by Fisher et al. ' They have shown that transition (i)
is in the universality class of the (d +1)-dimensional XY
model, whereas (ii) is described correctly by mean-field

theory in any dimension.
Apart from considerations of universal quantities, the

explicit phase diagram of this system is of interest. These
questions have recently been addressed in exact path-
integral Monte Carlo (PIMC) simulations in both one and
two dimensions. ' More general, if approximate, infor-
mation is provided by mean-field theory, in which the lo-
cation of the phase boundaries can also be determined. A
mean-field-theory treatment of this model has been indi-
cated in the work by Fisher et al. '

In this work we present an exact variational calcula-
tion with a Gutzwiller-type wave function

N N

'P(n[, n2, . . . , n~)= g f(n;)5 y n; —M, (2)
i=1 i=1

for both finite and infinite lattices. This wave function
does not incorporate any information on the geometry or
dimensionality of the lattice and is therefore also mean
field in nature. In particular, it does not include long-
range correlations arising from zero-point phonons:
These must be described by a Jastrow factor of the type
exp[+;&J g(r; rj)] mult—iplying Eq. (2), with g(r) de
caying as r for large r. This term would ensure a
correct behavior of the structure factor S(k) for small k
and hence the correct spectrum for low-energy excita-
tions. However, inclusion of this factor ruins the appeal-
ing feature of Eq. (2), namely, that it leads to an explicit
solution for all values of the interaction U/t and density
p.

We use two variational approaches: a genera/ minimi-
zation with respect to the If (n), n =0, 1, . . . I and a
simplified approach in which f (n) is parametrized ac-
cording to

f(n)- exp( an /2)i&n!—,

and where the optimal parameter a minimizing the ener-
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gy is sought. This parametrization corresponds (in posi-
tion representation) to a wave function with a contact
term %(r„rz, . . . , r~ ) = exp[ —~/2 g; & J. fi(r; —r, ) ] As
we shall see, the two approaches are equivalent for all in-
tents and purposes: They give the same asymptotic be-
havior [ U/t ~ U, /t =d(Qn, +Qn, + 1)2] for com-
mensurate densities p=n, and at U/t= 00 for incorn-
rnensurate densities, and agree closely in the numerical
values for the energy and momentum condensate. As the
critical value U, It (at p =n, ) is approached from below,
there is a second-order phase transition from the
superAuid into a Mott insulator with an energy per parti-
cle, E ——

( U, —U), below the transition and E =0
above it. As the parameterized form of the wave function
is considerably simpler to evaluate for the finite systems
(which we can then compare to the exact numerical cal-
culations), we shall base much of our detailed calcula-
tions on this version.

We are also able to calculate the condensate fraction
associated with the wave function (the Fourier transform
at k =0 of the one-body density matrix), n (k =0). One
obtains n (k =0)—U, —U below the transition and
n (k =0)=0 above it. For incommensurate densities the
condensate fraction is strictly positive for any value of U,
demonstrating that the system is always superfiuid. We
given an explicit formula for n (k =0) as a function of the
density p.

We have in addition performed high-precision simula-
tions of the two-dimensional model (d =2) using a zero-
temperature diffusion Monte Carlo scheme [it is for this
reason that we use a canomcal formulation in Eq. (2)].
This allows us to compare the variational energy (at finite
N) with the exact energy at all values of the parameters,
especially away from the critical point where the solution
is expected to be accurate. The exact energy for a system

I

(4)

This can be written as

(%~%)=f expNg(f, A),1 (5)

g(f, A, )=— iAp—+ln g fi(n)exp(iA. n)
n=0

Similarly, we find, for the potential and kinetic energies,

Ek;„

~%) =N f exp[Ng(f, A. )]
~ dX

—~ 2'

E „(f,A, )

Ek;„(f,A. )

with

U gn(n —1)f (n)exp(iAn)
E „(f,A. )=-

gf (n) exp(iAn )

and

with 16 bosons (p= 1, d =2), e.g., is found to be off by
about 20% at U/t =6, by 5% at U/t =4, and by 1.5%
at U It =2. The critical interaction U, /t =6+4V2
—11.66 (at density p= 1, in two dimensions) compares
well with the value of U, /t-8. 5 found in a previous
work from two-dimensional PIMC simulations.

We now present the calculations for this model. The
norm of the wave function is given by

[ gi/n + 1f (n)f (n + 1)exp(iAn )]2
E„;„(f, A, ) = dt exp(iA—),

[ gf (n) exp(i An )]

For the given wave function, the condensate fraction is
proportional to the kinetic energy per particle. We find
that n (k =0)= —1/(dN)Ek;„

For finite systems the integrals [Eqs. (5) and (7)] have
to be calculated explicitly. In the N ~~ limit, of course,
the integrals are given by the values of the integrands at
their saddle point A, , which is located at A. =O, provided
that p= g„=onf (n}/g„f(on} [cf. Eq. (6)]. Under
this condition [and considering properly normalized wave
functions g„" cf (n) = 1], the energy per particle is

given by

of the parameters f (n), n =0, . . . , oo, by solving for
BE/Bf (n)=0 (under the constraints stated above). This
can easily be done by iteration.

Equation (10) can also be solved asymptotically in the
limit U/t~U, /t, for commensurate densities n„and
U/t ~ oo (for incommensurate densities). In fact, we can
show that a self-consistent ansatz for f (n} close to the
transition is given by f (n, )=i/1 —2e and f(n, +1}=We
with e « 1 and f (n, +2) « i/e, etc. In this limit the en-

ergy [Eq. (10)] reduces to

E= ——g v'n + 1f (n)f (n +1)dt

n=O

2 E= — E(1 —2e)( +n, +Qn, + 1)
nc

+ [2e+n, (n, —1}].U

2n,
U+ g n(n —1)f (n) .
2p o

(10)

From this equation we can now obtain the optimal values

A simple derivation of E with respect to e shows that
the probability e to have n, +1 particles on one site van-

ishes at the critical interaction U, It =d ( Qn,
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+Qn, +1) . Close to the transition (b =U, /t —Ult),
the energy is given by

Q2
E(b, }=

4n, U,
(12)

For U & U, we find that Ez;„=0,E~„=U/2(n, —1).
Our complete results for the commensurate case p= 1

are presented in Figs. 1 —3. In Fig. 1 we show the evolu-
tion of the probability to have a site occupied by n parti-
cles, f (n), with U/td for n =0, 1,2, 3,4 [cf. Eq. (10)].
Note that f (n) quickly becomes extremely small for
n 3.

In Fig. 2 we show the energy per particie of the system
as a function of the variational parameter K for different
values of the interaction ( U/td = 1,3, 5, 7) for a finite lat-
tice with size N =16 [from Eq. (7)] and for the infinite
lattice [from Eqs. (8) and (9)]. The optimal value of the
Parameter, K pt is marked also. The variational energy
E(a, , ) is on this scale indistinguishable from the one
given by the more general E[ [f (n )], ,].

The inset in Fig. 2 gives the value of K pt as a function
of U, as determined numerically, both for the finite and
infinite systems, where it diverges as lr,~,

—ln( U, I
t —U/t)

Figure 2 contains one more important piece of infor-
mation. The horizontal lines underneath each curve for
the finite system give the exact value of the ground-state
energy for the corresponding two-dimensional (2D} sys-
tem (with N=16), as determined with a pure-diffusion
Monte Carlo method. For example, we find a ground-
state energy per particle of E = —0.511+0.002 at
Ult =6 (in 2D), whereas the variational energy is
E„„=—0.401 for the optimal solution If(n)] and
E„„=—0.388 for the wave function parametrized ac-
cording to Eq. (3). The agreeinent of the variational ener-

gy with the exact solution is good, considering the simpli-
city of the wave function.

In Fig. 3 we show the values of the momentum conden-
sate for this case of p= 1, both for the finite case N =16
and in the infinite system and compare them to the exact
superfluid density at N =16 (cf. Ref. 2). The numerical
calculation of the momentum condensate, although in
principle possible, has not been carried out for this mod-
el, in contrast to the (more interesting) superfluid density.

N = l6

FIG. 2. Variational energy (scaled by the dimension of the
lattice ) E/d vs variational parameter a at density p=1 for
U/td =1,3,5, 7 (from below). N = 00 (solid line, solid circles)
and X=16 (dashed hne, open circles). The exact ground-state
energies for N = 16 in two dimensions are indicated by horizon-
tal lines. The inset gives the optimal values of the variational
parameter, a',~„as a function of U/td for both N = 16 and 00 ~

As is well known, ' there is no direct relationship be-
tween the two quantities away from the small-U/t re-
gion, where the agreement is excellent. In general, the
fact that n (k) & 0 only allows us to conclude that the trial
wave function describes a superfluid. For N= ee, n(k)
goes to zero as ( U, —U)/4dtn, at the transition into the
insulating state. In two dimensions the transition takes
place at an interaction strength of U, /t =11.66, which
compares well with the exact value from the PIMC simu-
lations, which yield U, /t —8.5. The critical exponent, of
course, coincides with the mean-field one and cannot be
expected to coincide with that ( -0.669) predicted by the
scaling theory of Fisher et al. '
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FICr. 1. Probability f (n) of a site to be occupied by n parti-
cles vs interaction U/td for n =0, 1,2, 3,4.

FIG. 3. Variationally calculated values of the momentum
condensate n (k =0) vs interaction (scaled by the dimension)
Ultd for density p=1. N = 00 (solid line) and N =16 (dashed
line). Also shown are the exact values of the superAuid density

p, /p for the system with N = 16 in 2D.
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FIG. 4. Variational energy E/d vs K at density p=0.75 for
U/td =1,3,5,7,9 (from below). N= ~ (solid line, solid circles)
and N =16 (dashed line, open circles). The exact ground-state
energies for N = 16 in two dimensions are indicated by horizon-
tal lines. The inset gives the optimal values of the variational
parameter, K pt as a function of U/td at N = ao for densities

p =0.75,0.85,0.95.

U(n, —1)(2p —n, )
Epot(x)~

2p

n, (n, —p)[p —(n, —1)]
E„;„(~)~ dt—

P

(13)

(14)

Complete results for the incommensurate case p=0. 75
are given in Fig. 4. In the main picture we show again
the energy per particle as a function of the variational pa-
rameter K for diff'erent values of the interaction
(U/td =1,3, 5, 7, 9) for a finite lattice with size N =16
and for the infinite lattice. The optimal value of the pa-
rameter, K, „and the exact ground-state energies for

At a general incommensurate density p
(n, —1&p&n, ) and U/t = ~, we can again perform an
asymptotic analysis with a self-consistent ansatz
f(n, —1)=a and f(n, )=(1—a )'~. A calculation
analogous to the one presented for the commensurate
case now yields

FIG. 5. Variationally calculated momentum condensate
n (k =0) vs density p.

N =16 (in 2D) are also marked. The inset in Fig. 4 gives
the value of K pt as a function of U/td for the infinite sys-
tem ( the asymptotic behavior is a.——ln[2d(1 —p)]
+ ln(U, —2d)).

Finally, we show in Fig. 5 the variationally calculated
momentum condensate n (k =0) at U/t = oo as a func-
tion of p at N= co. From Eq. (14) we can see that
n (k =0)=n, (n, —p)[p —(n, —1)]/p. For large values of
the density (n, —1 &p & n„with n ~ ~ ), the momentum
condensate is therefore given by the formula
n(k =0)-(n, p)[p (n—, —1)—], with a Pnite maximum
value of n (k =0)=—,

' for p=n, —
—,
'.

In conclusion, we have given a complete treatment of
the problem of strongly interacting lattice bosons in
terms of a Gutzwiller variational wave function. It will
be interesting to see whether this approach can be ex-
tended successfully to provide a suitable starting point
for calculations on more difficult problems, such as the
one of disordered bosons. '

J.P.B. wants to thank P. Nozieres for discussions on
the problem on interacting bosons. '
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