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et simulations numériques pour les fermions fortement corrélés”

Octobre 2000

1



SOMMAIRE

I Présentation du document 5
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A Les méthodes Monte Carlo quantique en quelques mots . . . . . . . . . . 33
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I. PRÉSENTATION DU DOCUMENT

Ce document est organisé de la manière suivante. Dans une première partie (Section II)

je présente la synthèse de mes travaux. Dans le cadre de cette habilitation, j’insiste plus

particulièrement sur les travaux effectués après ma thèse. J’ai été amené à diriger ou à co-

diriger un certain nombre d’étudiants en mâıtrise, DEA ou thèse. J’en donne la liste dans la

Section III. La liste complète de mes travaux publiés se trouve dans la Section IV. Comme

je le soulignerai dans mon projet de recherche les méthodes Monte Carlo quantique (MCQ)

appliquées à l’étude de la structure électronique des molécules sont à un moment important

de leur développement: elles deviennent en effet compétitives vis à vis des méthodes ab

initio plus traditionnelles [Density Functional Theory (DFT) et/ou méthodes Hartree-Fock

+ traitement de la corrélation électronique]. Afin d’illustrer ce point important je consacre

la Section V à une discussion des “Méthodes Monte Carlo quantique en Chimie Théorique”.

J’y présente les méthodes MCQ en quelques mots, je discute ensuite les difficultés théoriques

et pratiques, et je donne enfin l’“Etat de l’Art” concernant les applications. Dans la dernière

partie (Section VI), je présente mon projet de recherche. Enfin, pour faciliter l’accès à mes

résultats principaux je fournis en fin de document (Section VII) une copie de mes papiers

les plus significatifs.
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II. SYNTHÈSE DE MES TRAVAUX

L’essentiel de mon activité de recherche porte sur le développement et l’application

de méthodes nouvelles pour la résolution de l’équation de Schrödinger (problème à N-

corps quantique). Les problèmes que j’ai abordés sont les suivants. Etude de la structure

électronique des atomes et des molécules: calcul des énergies totales, des énergies de liaison,

des observables autres que l’énergie (moments dipolaires, valeurs moyennes diverses), des

propriétés dynamiques (polarisabilités multipolaires, coefficients de van der Waals, etc..);

détermination des forces intermoléculaires; calcul des spectres ro-vibrationnels (énergies de

point-zéro, excitations fondamentales), et, finalement, étude des propriétés électroniques

ou magnétiques des systèmes étendus modélisés par des Hamiltoniens effectifs (modèle de

Hubbard, modèle de Heisenberg, etc..).

Le point fort de mon activité concerne les approches stochastiques connues sous le nom de

méthodes Monte Carlo quantique (quantum Monte Carlo, QMC). Cependant, j’ai également

utilisé et développé la plupart des méthodes usuelles pour le traitement du problème à N-

corps quantique. En Chimie Théorique, il s’agit principalement des méthodes dites ab initio

que j’ai utilisées pour le calcul des forces intermoléculaires par méthode de perturbation à

symétrie forcée (Symmetry Adapted Perturbation Theory, SAPT). En matière condensée,

j’ai eu recours aux méthodes dites de Diagonalisation Exacte (méthode de Lanczòs), aux

méthodes du groupe de renormalisation basée sur la matrice-densité (DMRG), aux méthodes

Monte Carlo quantique à température finie (Path Integral Monte Carlo), et aux méthodes

Monte Carlo classiques -algorithmes locaux et non-locaux- pour les systèmes de spins. Enfin,

chaque fois que cela est possible, j’essaye d’analyser les résultats numériques à l’aide de

solutions exactes connues ou construites pour l’occasion (système d’oscillateurs exactement

intégrable, systèmes à faible nombre d’electrons, ansatz de Bethe) ou de modèles effectifs à

fort pouvoir prédictif: méthodes du groupe de renormalisation perturbatif ou bosonisation

pour les systèmes d’électrons à une dimension.

A. Rappel de mes travaux de thèse

Réf: Voir papiers A et B en Annexe.

Dans un premier temps il me semble utile de rappeler brièvement le point essentiel de

ma thèse. Pendant cette période nous avons développé une approche originale de résolution

de l’équation de Schrödinger par méthode stochastique. Au centre de cette approche est
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l’expression de la solution de l’équation de Schrödinger sous la forme d’une intégrale fonc-

tionnelle à la Feynman (intégrale de chemin). Plus précisément, nous avons généralisé la

formule de Feynman-Kac (FK) définie sur un processus stochastique Gaussien (diffusion

libre) à une nouvelle formule basée sur un processus non-Gaussien définie à partir d’une

fonction d’onde d’essai pour l’état fondamental. Dans cette dernière formule, l’intégrand

usuel e−
∫

V , où V est le potentiel total et où l’intégrale est prise le long d’un chemin, est

remplacé par un nouvel intégrand “écranté” de la forme e−
∫

EL où EL est un potentiel

construit à partir de la fonction d’essai, EL = HψT/ψT (le potentiel V correspond au cas

particulier, ψT = 1). En effectuant ce changement de mesure fonctionnelle, les trajectoires

browniennes libres de la formule de FK sont remplacées par des trajectoires browniennes dans

un champ de dérive extérieur dépendant de la fonction d’essai (terme dit de dérive). Grâce

à cette formule généralisée des simulations numériques précises sont possibles. En effet, si

ψT est choisie suffisamment “proche” de la solution exacte, les fluctuations de l’intégrand,

e−
∫

EL, le long des trajectoires browniennes peuvent être rendues suffisamment faibles pour

permettre la convergence du calcul numérique de l’intégrale fonctionnelle dans un temps

réaliste. Pendant ma thèse j’ai illustré sur des exemples simple la faisabilité pratique d’une

telle approche (He, H2, systèmes d’oscillateurs 1D très simples). Il est important de noter

que dans un contexte plus général une telle méthode doit être vue comme une variante

des méthodes dites méthodes Monte Carlo quantique (quantum Monte Carlo, QMC). Sans

entrer dans les détails (pour cela voir partie V) la méthode QMC la plus répandue est

la méthode dite Diffusion Monte Carlo, DMC. Développée d’une manière indépendante de

notre approche, elle contient en fait les mêmes ingrédients: utilisation d’une fonction d’essai

ψT , définition d’un mouvement brownien avec terme de dérive, définition du même potentiel

écranté HψT/ψT , appelé “energie locale”, et calcul de valeurs moyennes statistiques. La

seule différence importante réside dans le traitement de l’intégrand de Feynman-Kac. Dans

notre approche, il s’agit d’un poids “porté” le long des trajectoires. Dans les approches dites

DMC ce terme est traité par l’intermédiaire d’un processus de mort-naissance (terme dit de

“branching”) simulé à l’aide de rêgles de création/disparition appliquées à une population

assez grande de répliques du système. A chaque pas Monte Carlo chaque configuration est

supprimée ou dupliquée un certain nombre de fois proportionnel en moyenne à l’amplitude

du poids de FK local. On peut montrer que les valeurs moyennes obtenues sont essentielle-

ment les mêmes. Notre approche, qui n’introduit pas de processus de branching, est connue

sous le nom de méthode “Pure Diffusion Monte Carlo”, PDMC. Notons que, contrairement

à la méthode DMC, la méthode PDMC est parfaitement bien définie mathématiquement

(le processus avec branchement ne conserve pas la probabilité totale et ceci pose un cer-
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tain nombre de difficultés théoriques). Cette propriété nous a permis de généraliser assez

facilement la méthode PDMC à des situtations variées (voir plus loin). Contrairement aux

méthodes avec branchement, le nombre de marcheurs utilisé est constant (à la limite on peut

n’utiliser qu’un seul marcheur) et aucun biais associé au contrôle de population n’existe.

Malheureusement, la méthode PDMC n’est pas parfaite. A grands temps de projection

[temps imaginaire t qui permet d’extraire les quantités exactes grâce à l’opérateur e−tH ] les

fluctuations statistiques peuvent crôıtre de manière incontrôlée. Toutefois, si l’on dispose

d’une fonction d’essai d’une qualité suffisante on peut montrer que ce problème ne pose pas

de difficultés pratiques (la convergence en temps est atteinte très vite) et la méthode PDMC

apparâıt comme la méthode de choix (pas de biais systématique et contrôle des fluctuations

statistiques). De nombreuses applications ont été menées au laboratoire et par d’autres

groupes dans le monde en utilisant cette approche. Néammoins, quand la fonction d’onde

n’est pas de qualité suffisante les fluctuations statistiques croissent trop vite et la méthode

PDMC devient inefficace. Cette difficulté est particulièrement présente dans les simulations

des modèles de la matière condensée. En effet, il est très difficile de construire des fonctions

d’essai de qualité constante lorsque la taille du système étudié augmente (problème de con-

sistence en taille, “size-consistency”). Il est alors imperatif d’avoir recours aux méthodes

DMC avec branchement qui, elles, demeurent stables mais sont biaisées.

B. Depuis la thèse

Après ce rappel concernant mon travail de thèse je résume mes différentes contributions

depuis cette époque.

1. Propriétés dynamiques

Réf: Voir papiers E, J et O en Annexe.

Comme je viens de le mentionner dans la partie précédente, la méthode PDMC est d’une

grande souplesse mathématique. Ceci nous a permis de l’étendre facilement au calcul de

propriétés autres que l’énergie. Notre contribution essentielle dans cette direction a été le

calcul des propriétés dynamiques. Nous avons montré comment il était possible d’écrire les

termes de perturbation Rayleigh-Schrödinger à un ordre quelconque, sous la forme de fonc-

tions de corrélations à N -point (cumulants) du processus stochastisque sous-jacent (variante

stochastique du fameux “linked-cluster theorem”, [1], [2]). Ce formalisme a été appliqué au
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problème du calcul des polarisabilités atomiques et moléculaires et des coefficients de van der

Waals [1], [2], [3], [4]. Ces quantités, dont la connaissance est importante dans de nombreuses

applications en optique et en matière condensée, sont difficiles à évaluer avec les méthodes

traditionnelles. Par exemple, dans le cadre de notre formalisme, les polarisabilités dipolaires

peuvent se réécrire sous la forme d’une intégrale temporelle de la fonction de corrélation

à deux points de l’opérateur dipolaire le long des trajectoires browniennes. Contrairement

aux méthodes traditionnelles de la physique moléculaire qui reposent sur une évaluation

explicite du terme de perturbation du second-ordre correspondant, notre méthode ne fait

intervenir aucune représentation des états excités ou du continuum. C’est évidemment un

point très intéressant. Nous avons effectué des calculs systématiques pour l’atome d’Hélium

et la molécule d’hydrogène (polarisabilités multipolaires statiques et dynamiques). Nous

avons également évalué les coefficients de van der Waals régissant l’interaction des différentes

espèces à longues distances. Nos résultats, qui ont été comparés aux meilleurs résultats de

la littérature, sont excellents. Pour des quantités comme les polarisabilités multipolaires

dynamiques (dépendant de la fréquence du champ extérieur), certains de nos résultats sont

les seuls disponibles. Nous avons également appliqué ces idées au problème du calcul des

forces intermoléculaires par méthode de perturbation. Ce travail est présenté dans la par-

tie suivante consacrée aux forces intermoléculaires. Malheureusement, l’extension de ces

résultats à des systèmes à grand nombre d’électrons n’est pas facile, à cause du fameux

“problème du signe” inhérent aux simulations Monte Carlo quantique pour les fermions

(voir la sous-section 3: “Problème du signe pour les fermions”).

2. Forces intermoléculaires

Réf: Voir papiers D,E,N en Annexe

Une connaissance précise des forces intermoléculaires est essentielle pour les simula-

tions de la matière condensée. Deux classes de méthode sont employées pour déterminer les

champs de force: les méthodes supermoléculaires qui calculent l’interaction comme différence

des énergies totales des espèces en interaction et les méthodes perturbatives qui décomposent

l’énergie d’interaction sous la forme d’une série de termes de perturbation dans le potentiel

intermoléculaire (formalisme SAPT, Symmetry-Adapted Perturbation Theory). Les défauts

et les avantages des deux méthodes sont bien connus. J’ai essentiellement travaillé sur la

seconde approche qui a un contenu plus physique car l’énergie d’interaction est effectivement

petite et un calcul de perturbation est naturel. De plus, cette méthode permet de construire
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de manière cohérente des représentations simplifiées de qualité pour le champs de force [5].

Dans un calcul SAPT l’énergie d’interaction est décomposée en une somme de contributions

qui, à leur tour, sont décomposées en une composante champ moyen (Hartree-Fock) et une

composante résiduelle due à la corrélation électronique intramonomère. En pratique, les

calculs sont généralement limités au premier ordre complet (électrostatique et contribution

d’échange du premier ordre) et au deuxième ordre Rayleigh-Schrödinger (termes d’induction

et de dispersion), les contributions étant calculées au niveau Hartree-Fock. Nous avons

développé une méthode originale pour évaluer les termes d’échange du second-ordre dans le

cadre des méthodes ab initio sur base au niveau Hartree-Fock [6]. En accord avec d’autres

groupes nous avons trouvé que ces contributions sont loin d’être négligeables. Des calculs

ont été effectués pour plusieurs dimères par liaison hydrogène fortement ou faiblement liés

[7]. Des comparaisons systématiques avec la méthode supermoléculaire et la méthode mixte

(calcul supermoléculaire Hartree-Fock + énergie de dispersion calculée par perturbation)

ont été effectuées. Afin d’avoir une description complète de l’interaction, il est nécessaire

d’évaluer l’effet de la corrélation électronique intramonomère sur les composantes de per-

turbation, ainsi que l’importance des composantes d’ordre supérieur à deux. En utilisant

le formalisme Monte Carlo quantique présenté précédemment (voir sous-section 4: “Pro-

priétés dynamiques”) nous avons pu évaluer pour la premìere fois ces contributions dans le

cas de l’interaction He-He [4]. Les résultats ont mis en valeur le rôle important joué par la

corrélation intra-atomique et le troisième ordre de perturbation. Nous avons montré que,

dans la région d’équilibre, le développement de l’énergie d’interaction limité au troisième

ordre est suffisant pour représenter correctement l’interaction. Au-delà de l’application par-

ticulière à l’interaction He-He, cette étude met en lumière dans un système non-trivial le rôle

respectif de chacune des contributions intervenant dans une liaison de type van der Waals.

C’est évidemment un point très important pour la compréhension générale des liaisons de

ce type.

3. Problème du signe pour les fermions

Réf: Voir papiers F,I en Annexe

Nous avons proposé deux méthodes pour atténuer le fameux “problème du signe” pour

les fermions (pour une présentation de ce problème, voir la section “Méthodes Monte Carlo

quantiques en quelques mots” de la partie V).

Première tentative: Accélération de la convergence des estimateurs en fonction du “temps
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de projection” [8]. Dans ce travail nous avons adapté l’algorithme de Lanczòs à nos données

Monte Carlo. Il en résulte une convergence bien plus rapide de l’estimateur de l’énergie (et

des autres estimateurs). Nous avons appliqué cette approche au cas de la molécule LiH.

Malheureusement, nous nous sommes rendus compte que la méthode n’était bien condi-

tionnée que si le bruit statistique sur les éléments de matrice calculés était suffisamment

petit. L’augmentation exponentielle de l’erreur statistique pour les fermions est trop bru-

tale pour que cette méthode soit vraiment efficace pour les systèmes de taille importante

(notons cependant que cette méthode est maintenant utilisée par plusieurs groupes dans le

contexte des simulations des modèles effectifs de la matière condensée théorique)

Deuxième tentative: Application de la méthode du maximum de l’entropie aux données

Monte Carlo quantiques [9]. Cette approche permet en principe un contrôle rationnel (à

partir de principes généraux de statistique, approche dite “Bayesienne”) de l’effet du bruit

statistique sur les données pures. Son application à la molécule LiH (à la distance d’équilibre)

nous a permis de calculer une des valeurs les plus précises de la littérature pour l’énergie

totale de cette molécule. Une fois encore, le caractère exponentiellement croissant de l’erreur

statistique pour les fermions limite les possibilités pratiques de cette approche pour les

systèmes plus gros.

4. Spectres ro-vibrationnels

Réf: Voir papier C en Annexe

Il est important de rappeler que les méthodes Monte Carlo quantiques peuvent être

appliquées à tout problème décrit par une équation de type Schrödinger. Nous avons ainsi

appliqué notre méthode générale de résolution de l’équation de Schrödinger au problème de la

détermination du spectre ro-vibrationnel des molécules [10]. Pour cela nous avons généralisé

notre formalisme au calcul des excitations fondamentales d’un système de vibrateurs anhar-

moniques couplés de manière quelconque (aucune approximation, régime non perturbatif).

Nous nous sommes concentrés sur les excitations fondamentales qui sont les excitations les

plus intenses dans l’infrarouge, et qui sont celles que mesurent les expérimentateurs. Afin de

déterminer ces excitations nous avons introduit un ansatz pour leurs hypersurfaces nodales.

Nous avons illustré le fait remarquable que cet ansatz semble donner essentiellement la solu-

tion exacte pour des problèmes réalistes. Nous avons appliqué cette approche à des systèmes

modèles et à des systèmes d’intérêt physique (molécule CO adsorbée sur une surface de Pal-

ladium). A l’occasion de ce travail nous avons découvert un certain nombre de propriétés
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topologiques des régions nodales des fonctions d’onde (voir sous-section suivante).

5. Propriétés des noeuds des fonctions d’onde

Réf: Voir papier H en Annexe

Dans ce travail nous avons voulu comprendre la validité de l’ansatz que nous avons

proposé pour les hypersurfaces nodales des fonctions d’onde des excitations fondamentales

d’un ensemble d’oscillateurs couplés arbitrairement [11]. Notre hypothèse de travail est que

le nombre de sous-volumes nodaux est toujours égal à deux pour ces états excités particuliers.

Nous avons donné un ensemble d’arguments généraux qui semblent montrer que ceci est vrai

dans le cas où les oscillateurs peuvent être découplés à l’aide d’un seul paramètre, ce qui est

généralement possible avec des oscillateurs réalistes. Dans le cas d’oscillateurs plus généraux,

nous avons pu construire explicitement un contre-exemple ne vérifiant pas notre hypothèse.

Ce contre-exemple est non trivial et n’a pu être obtenu qu’en ayant recours à un programme

de calcul symbolique (MAPLE). Le problème général des conditions précises de validité de

notre ansatz reste encore ouvert.

6. Meilleures fonctions d’onde d’essai

De nombreux efforts ont été produits pour développer des fonctions d’onde d’essai de

qualité. Les fonctions d’onde utilisées sont essentiellement monoconfigurationnelles. Nous

avons effectué une étude portant sur l’utilisation de fonctions d’onde multiconfigurationnelles

dans l’approche dite des noeuds-fixés (fonctions d’onde issues du programme MOLPRO).

Les résultats obtenus sont bons, mais un peu décevants. En effet, de cette étude ne ressort

pas un critère bien défini qui nous permettrait de sélectionner efficacement les configura-

tions à retenir dans la simulation (nos résultats sont présentés dans la publication [12]).

Je pense que des formes beaucoup plus physiques pour ces fonctions peuvent encore être

exploitées. Une première contribution dans ce sens a été effectuée lors d’un travail ex-

ploratoire que j’ai mené avec une étudiante de deuxième cycle (Séverine Zirah), [13]. Nous

avons étudié les résultats obtenus avec des formes issues de calculs de type valence-bond

(VB) pour des petites molécules (LiH et Li2). Les fonctions VB sont très attrayantes. Elles

ont l’avantage d’être à la fois compactes et très physiques (description des structures de

Lewis). Elles permettent une “lecture” simple des processus en jeu. Notons, en passant,

que contrairement aux approches sur base, la non-orthogonalité des orbitales ne pose pas
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de problèmes techniques particuliers pour les méthodes Monte Carlo. Afin de bien décrire

chacune des composantes de la fonction VB (structures neutres et ioniques) et de bien

séparer les différents effets, nous avons introduit un terme de Jastrow différent pour chacune

d’elles. Nos résultats sont intéressants : après optimisation des paramètres il est possible

de “lire” sur les paramètres associés à la corrélation électronique dynamique les diférents

types de réorganisation électronique qui ont lieu pour chacune des contributions physiques.

Malheureusement, avec ces formes VB les fluctuations statistiques restent encore trop im-

portantes (les structures VB contiennent la bonne information globale, mais pas les détails).

Je crois que ce type de fonction d’onde mérite d’être réexaminé dans un formalisme où les

fluctuations statistiques inessentielles de haute énergie (électrons de coeur) sont évacuées par

d’autres moyens (utilisation de pseudo-potentiels ou, mieux, du principe de zéro-variance

discuté dans la sous-section 8: “Principe de zéro-variance généralisé”).

7. Méthode de reconfiguration stochastique

Réf: Voir papier T en Annexe

Comme je l’ai expliqué précédemment (Sous-section II.A), la méthode PDMC est une

méthode très générale et d’une très grande souplesse. Malheureusement, à grands temps de

projection [temps imaginaire t qui permet d’extraire les quantités exactes grâce à l’opérateur

e−tH ] les fluctuations statistiques peuvent crôıtre de manière incontrôlée. En collaboration

avec Anatole Khelif, mathématicien à Paris VII, nous avons regardé en détail les fondements

mathématiques des algorithmes QMC de type Diffusion Monte Carlo, avec et sans branche-

ment [14]. Dans un premier temps, nous avons étudié le comportement à grands temps de

projection de la méthode PDMC. Nous avons montré rigoureusement que la “probabilité

effective” associée à un état, telle qu’elle est construite par la méthode PDMC, ne converge

pas vers une valeur déterministe quand le temps de projection tend vers l’infini. Notre

analyse mathématique conclut donc à ce qu’on a appelé la “divergence du PDMC”. Notons

que ce mauvais comportement à grands temps est une chose connue dans la communauté,

souvent sous le vocable “explosion de la variance”, mais aucune preuve rigoureuse n’en avait

été donnée. Insistons sur le fait que malgré cette difficulté, et comme nous l’avons déjà

dit, la méthode reste malgré tout une méthode précieuse lorsque des fonctions d’onde de

qualité suffisante sont disponibles (en particulier, ceci est le cas pour les molécules). Après

ce premier résultat nous avons essayé de construire un algorithme Diffusion Monte Carlo

qui concilie les avantages des méthodes avec et sans branchement, c’est à dire qui soit sta-

14



ble, comme l’approche DMC, et non-biaisé, comme l’aproche PDMC. Nous avons montré

que c’était possible et nous avons élaboré une méthode mixte qui emprunte des élements

aux deux approches. En quelques mots, la méthode consiste à effectuer un calcul de type

PDMC, non pas avec un seul marcheur ayant un poids individuel wi (poids de Feynman-

Kac), mais avec une population de M marcheurs ayant un poids total donné par la moyenne

des poids individuels. Comme les fluctuations du poids total sont beaucoup plus faibles

que les fluctuations des poids élémentaires (méthode PDMC standard) le temps de projec-

tion à partir duquel le mauvais conditionnement de la méthode apparâıt, est rejeté à des

temps beaucoup plus grands. Afin de récupérer le résultat exact on montre qu’un terme

supplémentaire analogue au terme de branchement doit être introduit. C’est l’étape dite de

reconfiguration stochastique de la population de marcheurs. Aux étapes usuelles de diffusion

et de dérive des M marcheurs, on rajoute une étape supplémentaire consistant à choisir M

nouveaux marcheurs parmi les M marcheurs constituant la population courante avec une

probabilité donnée par pi = wi/
∑M

j=1wj (certains marcheurs sont donc choisis plusieurs

fois, d’autres ne sont pas choisis). Utilisant ces deux ingrédients fondamentaux (PDMC

pour une population de marcheurs, reconfiguration de la population) nous avons proposé

une méthode optimale qui minimise les fluctuations statistiques (méthode DMC dite avec

reconfiguration stochastique optimale). Cette méthode optimale est construite de manière

à ce que l’algorithme tende à la fois vers la méthode DMC et la méthode PDMC, quand

le nombre de marcheurs tend vers l’infini et/ou les poids individuels deviennent constants.

Il est important de souligner que la méthode de reconfiguration n’est en fait pas nouvelle.

L’idée fondamentale a été proposée il y a plus d’une quinzaine d’années par Hetherington

[15] et semble avoir été oubliée. Très récemment (en 1998) Sorella et collaborateurs l’ont

réintroduite et appliquée à quelques problèmes de la matière condensée. Pour notre part,

nous avons développé notre algorithme indépendamment. Notons cependant que, comme

nous l’avons montré, notre algorithme est plus général et plus efficace, il constitue une

version optimale des approches de type reconfiguration stochastique.

8. Principe de zéro-variance généralisé

Réf: voir papiers S,U en Annexe

Les méthodes Monte Carlo quantique présentent une propriété dite de variance-zéro pour

l’énergie. Disposant d’une fonction d’onde d’essai approchée, notée ψT , l’énergie est évaluée

comme valeur moyenne d’une quantité appelée “énergie locale” sous la forme
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< E >=
1

N

N∑
i=1

EL[x(i)] (1)

où l’énergie locale est donnée par:

EL ≡ HψT/ψT (2)

et {x(i)}i=1,N représente un ensemble de N tirages Monte Carlo de configurations du système

avec une distribution qui peut différer d’une méthode QMC à l’autre (pour une présentation

plus détaillée se reporter à la section V.A “Méthodes Monte Carlo quantiques en quelques

mots”). Le point important est que les fluctuations statistiques sur l’estimateur de l’énergie

[formule (1)] dépendent directement des fluctuations de l’énergie locale, Eq.(2). Pour un

nombre de pas MC fixé N (et donc un effort numérique donné) plus la fonction d’onde

d’essai est “proche” de la fonction d’onde exacte inconnue plus les fluctuations statistiques

(et donc l’erreur finale sur notre estimateur) sont faibles. A la limite d’une fonction d’essai

exacte l’estimateur ne fluctue plus du tout. Cette propriété est la propriété dite de variance-

zéro. Elle joue un rôle fondamental pour calculer avec précision les énergies totales de

systèmes complexes.

Dans ce travail nous avons étendu la propriété de variance-zéro à n’importe quelle ob-

servable physique du système. Soit O une observable quelconque, on a montré qu’il est

toujours possible de construire une observable Õ dite “renormalisée” qui possède la même

valeur moyenne:

< O >=< Õ > (3)

mais dont les fluctuations peuvent être beaucoup plus faibles que celles de O [16].

L’observable renormalisée peut être construite assez simplement. Elle dépend essentielle-

ment d’une fonction que l’on a appelée “fonction auxiliaire”. On a montré qu’il existe une

équation qui détermine complétement cette fonction. La solution exacte correspond à une

annulation totale des fluctuations (principe de zéro-variance généralisé).

Il est important de souligner que notre principe de zéro-variance est en fait très général et

s’applique à tout type d’algorithme Monte Carlo. La seule condition requise est l’existence

d’une densité stationnaire connue. Nous avons appliqué cette idée à quelques calculs Monte

Carlo classiques (algorithme de Metropolis standard pour le modèle d’Ising) et quantiques

(méthode DMC pour l’atome Hélium) Nous avons montré sur ces exemples simples qu’il est

possible de gagner un à plusieurs ordres de grandeur en temps de calcul.

La première application réaliste, c’est à dire pour un problème réellement difficile, a con-

cerné le calcul des forces par méthode Monte Carlo quantique. Un des objectifs centraux
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de la chimie théorique est la prédiction des structures spatiales des édifices moléculaires

(géométrie d’équilibre correspondant à l’annulation des forces) et à la structure des forces

internes entre atomes en fonction de la géométrie (calcul des modes propres, dynamique des

noyaux, etc.). Toute méthode de calcul électronique se doit donc d’être capable d’évaluer

avec précision non seulement les énergies totales et les propriétés élémentaires (distribution

des charges, moments multipolaires, etc.) mais aussi les forces entre atomes au sein d’une

molécule. Jusqu’à ce jour, et malgré des efforts importants, le calcul des forces par méthode

Monte Carlo quantique est resté un problème très difficile. Notons que très récemment,

Filippi et Umrigar ont proposé un formalisme QMC pour les forces, qui semble donner pour

la première fois des résultats stables pour quelques molécules diatomiques [17]. Néammoins,

leur formalisme -basé sur un principe d’échantillonnage corrélé et une transformation spéciale

de coordonnées- ne permet pas de converger vers le résultat exact et il n’est pas encore très

clair comment contrôler cette erreur. En utilisant le principe de variance-zéro il est possi-

ble de proposer une méthode simple et très stable de calcul des forces. Plus précisément,

grâce à la fonction auxiliaire liée au principe de variance-zéro, il est possible de diminuer de

manière drastique les fluctuations associées à la force locale (∂V
∂R

). La diminution obtenue

est très importante car la variance associée à la force nue est en fait infinie! (au voisinage

d’une collision électron-noyau f ∼ 1/r2 où r est la distance entre particules et < f 2 >= ∞).

Le principe de variance-zéro permet sans difficulté de ramener cette variance infinie à une

quantité finie. La figure suivante présente l’amélioration spectaculaire obtenue pour le cal-

cul de la force à la distance d’équilibre de la molécule C2 [18]. En abscisse, j’ai porté une

quantité proportionnelle au nombre total de pas Monte Carlo effectués (et donc à l’effort

numérique). La courbe principale avec de grandes fluctuations correspond à un calcul stan-

dard avec la force nue (non-renormalisée). On observe une très mauvaise convergence en

fonction du temps de simulation et, surtout, la présence de discontinuités importantes liées

à l’apparition de configurations électroniques comprenant des rapprochements d’électrons et

de noyaux (variance infinie). En pratique, il n’y a aucun espoir de faire converger un tel

calcul. La deuxième courbe obtenue avec une expression renormalisée pour la force montre

un comportement extrêmement satisfaisant. A l’échelle de la figure la courbe est en fait

totalement convergée. Insistons sur le fait que les deux calculs sont faits de front et que le

deuxième calcul convergé ne nécessite pas d’effort numérique supplémentaire par rapport au

premier.
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FIG. 1. Convergence en fonction du temps calcul (nombre N de pas Monte Carlo pour chaque

marcheur) de l’estimateur de la force F (R) à la distance d’équilibre pour la molécule C2. La courbe

associées aux grandes variations correspond à l’utilisation d’un estimateur “nu”(non-renormalisé)

de la force, la courbe convergée à un estimateur “renormalisé” (utilisation du principe de vari-

ance-zéro).

9. Etude des modèles effectifs de la physique du solide

Je me suis également intéressé aux propriétés des électrons dans les solides. De manière

générale, il s’agit de déterminer la nature de l’état fondamental du système, l’existence ou

non de transition de phase à température nulle, ainsi que les propriétés thermodynamiques.

Nous nous intéressons plus particulièrement au régime dit de corrélation forte pour les

électrons (répulsion coulombienne grande devant la largeur de bande), régime pertinent pour

les nouveaux supraconducteurs à haute température critique. Les Hamiltoniens utilisés pour

modéliser les systèmes considérés sont les Hamiltoniens effectifs de la physique du solide:

modèle de Hubbard à une ou plusieurs bandes, modèles de spins de Heisenberg, etc. Au-delà

de l’intérêt évident du problème en soi (comprendre le mécanisme à l’origine de la supra-

conductivité à haute température critique), il est important de souligner que le problème

fondamental qui consiste en la détermination des propriétés de l’état fondamental d’un en-

semble d’électrons dans un régime non-perturbatif, est tout à fait similaire à celui rencontré
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pour les atomes et les molécules (problème à N-corps quantique). Il est donc important

de développer et de confronter les techniques utilisées dans les deux domaines. Je présente

maintenant plusieurs applications réalisées.

10. Modèle de Hubbard en dimension infinie

Réf: Voir papier L en Annexe

Dans ce travail nous nous sommes intéressés au modèle de Hubbard lorsque la dimension

spatiale D tend vers l’infini [19], [20], [21]. Cette limite, qui peut parâıtre au premier abord

assez académique, est en fait très féconde. En effet, elle permet de simplifier énormément

le problème tout en conservant une partie de la richesse de comportements issue de la

corrélation électronique. Notons que cette limite de dimension infinie est également utilisée

en physique moléculaire depuis quelques années. Nous avons développé une méthode orig-

inale pour la résolution des équations du modèle de Hubbard en dimension infinie. Nous

avons étudié la transition de Mott à demi-remplissage (transition métal-isolant due à la

corrélation) et la possibilité d’apparition de la supraconductivité dans un modèle de Hub-

bard à deux bandes (par exemple, une bande d pour les atomes de cuivre et une bande

p pour les oxygènes dans CuO). Notre méthode est maintenant utilisée couramment par

différents groupes travaillant sur les modèles sur réseau en dimension infinie.

11. Modèle de paires unidimensionnel.

Réf: Voir papier P en Annexe

Il s’agit d’une seconde application portant sur un modèle d’électrons décrivant

l’appariement de paires d’électrons de spins opposés sur un même site [22]. L’intéret de

ce modèle est qu’il décrit la formation de paires d’électrons d’extension spatiale très faible,

une des caractéristiques originales des paires impliquées dans les nouveaux supraconduc-

teurs. Ce modèle a donné lieu ces dernières années à une controverse sur la nature de l’état

fondamental à demi-remplissage et à faible intensité de saut des paires sur le réseau. Cer-

tains auteurs ont prédit un comportement assez conventionnel, d’autres prédisent l’existence

d’une phase exotique. Afin de comprendre l’origine de cette controverse, nous avons mis en

œuvre plusieurs techniques. Nous avons effectué des calculs de diagonalisations exacts par
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méthode Lanczòs, avec des conditions aux limites variées afin de comprendre comment le

système répond à une perturbation, et également des calculs basés sur la méthode dite du

groupe de renormalisation numérique utilisant la matrice densité [DMRG, White (1991)].

Cette dernière méthode est extrêmement puissante et permet de calculer l’état fondamental

d’un système 1D étendu avec grande précision. En utilisant toutes nos données et en faisant

appel aux prédictions à tailles finies des systèmes critiques (invariance conforme) nous avons

montré que les effets de taille finie pour le modèle de paires sont très singuliers, et que le

modèle ne semble pas présenter de phase exotique. De plus, dans le cadre de la théorie

de Luttinger pour les fermions unidimensionnels nous avons proposé un scénario expliquant

pourquoi certains auteurs ont cru déceler une phase exotique dans ce modèle.

12. Modèle de Hubbard sur les hypercubes. Quelques résultats exacts.

Réf: Voir papier Q en Annexe

Dans ce travail nous avons présenté un certain nombre de résultats exacts pour le modèle

de Hubbard usuel défini sur les hypercubes [23], [24]. L’hypercube à D dimensions est

défini comme l’ensemble des 2D sites de coordonnées 0 ou 1 dans les D directions d’espace.

En D=1 il s’agit d’un segment à deux sites, en D=2 du carré usuel, en D=3 du cube (8

sommets), etc. Le modèle de Hubbard est un modèle central de la matière condensée. Il

contient les éléments minimaux requis pour décrire la compétition qui existe entre la tendance

à la délocalisation des électrons (énergie cinétique) et la localisation due à la répulsion

électronique (effet de l’interaction). De plus, c’est un candidat potentiel pour l’existence

d’une phase supraconductrice d’origine purement électronique sans couplage extérieur (type

phonons). Bien sûr, ce dernier point est controversé et reste à vérifier. De nombreux travaux

ont été effectués ces dernières années pour comprendre les différentes phases de ce modèle.

Très peu de résultats exacts sont connus. Essentiellement, il existe la célèbre solution de

Lieb et Wu en dimension 1 [25] et quelques résultats quasi-exacts en dimension infinie [26].

Pour les dimensions intermédiaires de nombreux calculs numériques ou approximations plus

ou moins contrôlées ont été présentées, mais il n’existe pratiquement pas de résultats exacts.

En utilisant les très grandes propriétés de symétrie des hypercubes nous avons pu obtenir

plusieurs résultats intéressants pour les systèmes à faibles remplissages. Dans le cas de

deux électrons nous avons présenté la solution analytique complète du modèle. Nous avons

montré que le spectre de l’Hamiltonien (22D niveaux d’énergie) est constitué d’une partie

composée de niveaux indépendants de l’interaction coulombienne et d’une partie non-triviale
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dépendante de l’interaction. Chaque niveau, ainsi que sa dégénérescence, a été calculé.

Au-delà des propriétés énergétiques, nous avons également donné une expression exacte

sous forme explicite de la fonction de Green à une particule du modèle. Cette fonction

permet de calculer les propriétés dynamiques les plus importantes du modèle. Finalement,

en introduisant un formalisme de variables de spin adapté aux remplissages plus importants,

nous avons pu montrer comment le modèle de Hubbard peut se réécrire sous forme d’un

Hamiltonien de spin assez simple tenant compte des symétries de l’hypercube. Dans le cas

du remplissage (N↑ = N,N↓ = 1) nous avons montré que l’espace de Hilbert associé à la

partie “dure” du problème (dépendant de l’interaction) peut être dans certains cas réduit

de manière très importante.

13. Modèle de Hubbard SU(N) unidimensionnel.

Réf: Voir papier R en Annexe

Dans ce travail nous avons présenté une étude très complète du modèle de Hubbard

“SU(N)” à une dimension [27]. Ce modèle est une généralisation très simple et très naturelle

du modèle de Hubbard usuel. Au lieu de considérer deux types d’électrons (“up”,“down” ou

électrons α et β) ayant une symétrie SU(2) dans l’espace de spin, nous avons généralisé au cas

de N types ou “couleurs” avec une symétrie SU(N). Nous savons, grâce à la solution exacte

par ansatz de Bethe de Lieb et Wu [25], que pour le cas usuel N = 2 et à demi-remplissage,

il n’y a pas de transition métal-isolant pour une valeur non-nulle (U 6= 0) de l’interaction

coulombienne. A U = 0 les électrons libres forment un métal parfait, et dès que l’interaction

est branché le système devient isolant. Nous avons montré que pour le cas N > 2 ceci n’est

plus vrai. Nous avons démontré qu’il existe une transition de Mott métal-isolant à demi-

remplissage (un “électron” par site) à une valeur non nulle [Uc ∼ π
2

N2−4
N−1

sin π
N

]. Ceci est un

résultat remarquable: les systèmes possédant une transition métal-isolant provoquée par la

compétition subtile entre la délocalisation électronique (phase métallique) et l’interaction

sont actuellement énormément étudiés. Ce modèle représente à mon avis le système le plus

simple et le moins artificiel qui possède une telle transition. Il s’agit d’un cas d’“école”

qui devrait être beaucoup étudié dans la suite. Pour démontrer l’existence d’une telle

transition nous avons confronté deux types d’approches complémentaires pour les systèmes

électroniques unidimensionnels. Le cadre théorique dans lequel nous nous sommes placés est

l’approche par bosonisation pour les fermions 1D. En collaboration avec deux spécialistes

de ce type d’approche (P. Azaria et P. Lecheminant) nous avons pu prédire non seulement
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l’existence de cette transition mais aussi nombre de prédictions qualitatives et quantitatives

sur le comportement en fonction de l’interaction U et du nombre de couleurs N de plusieurs

quantités physiques. L’approche par bosonisation est une approche extrêmement puissante.

Elle permet de donner un contenu physique aux excitations collectives de basse-énergie et

à leurs interactions. Malheureusement, bien qu’il s’agisse intrinsèquement d’une méthode

non-perturbative, il subsiste un aspect perturbatif dans l’évaluation de certains paramètres

caractérisant l’Hamiltonien effectif de basse-énergie (paramètres dits de Luttinger). Afin de

contrôler totalement le scénario de la théorie, il est impératif d’estimer ces paramètres de

manière non-perturbative et indépendante. C’est ce que nous avons fait en étudiant par

méthode Monte Carlo quantique le comportement basse-énergie de systèmes finis de taille

croissante (jusqu’à 32 sites). Sans entrer dans les détails, nous avons pu montrer d’une

manière extrêmement convaincante que le scénario prévu par la bosonisation est tout à fait

correct. L’évolution de l’Hamiltonien effectif basse-énergie est compatible avec une phase

métallique à petites valeurs de U et une phase isolante à grands U . De plus, nous avons

pu localiser de manière très précise la valeur critique de l’interaction où la transition a

lieu. Dans le cas SU(3) on trouve par exemple Uc ∼ 2.2 et Uc ∼ 2.8 pour SU(4). No-

tons qu’à l’occasion de ce travail nous avons proposé plusieurs améliorations importantes

pour les approches Monte Carlo quantique sur réseau. Une des améliorations les plus no-

tables a été de montrer qu’il était possible d’intégrer exactement l’évolution temporelle du

système quand celui-ci est bloqué dans une configuration donnée. Ceci permet de réduire

de siginificativement les fluctuations statistiques des calculs, particulièrement à grands U

où la répulsion coulombienne limite l’espace de phase des électrons. Cette amélioration est

de portée tout à fait générale pour les systèmes sur réseau (matrice Hamiltonienne finie).

Un autre point important a été de montrer comment calculer les paramètres de Luttinger

de l’Hamiltonien effectif basse-énergie. Dans la littérature ces paramètres sont en général

calculés par diagonalisation exacte (méthode de Lanczòs). Malheureusement, de tels calculs

sont limités à de petites tailles pour des châınes finies. En introduisant des Hamiltoniens

intermédiaires appropriés nous avons montré comment calculer exactement ces paramètres

dans une formalisme Monte Carlo quantique. En particulier, nous avons trouvé un procédé

pour s’affranchir des termes oscillants, liés aux conditions aux bords “twistés”, qui sont si

difficiles à calculer par méthode Monte Carlo.
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14. Modèle de Hubbard bosonique à deux dimensions

Réf: Voir papier G en Annexe

Dans ce travail nous nous sommes intéressés au problème des systèmes de bosons en

interaction forte modélisés par un Hamiltonien de Hubbard sur réseau bidimensionnel [28].

A température nulle, il est connu que deux types de transition de phase, connectant une

phase supefluide et une phase isolant de Mott, existent pour ce modèle. A densité entière

constante, une première transition apparâıt lorsque le paramètre de répulsion du modèle

approche une valeur critique. A répulsion suffisamment grande, on observe également une

transition quand la densité passe par des valeurs entières. Ce problème a été étudié dans

le cadre d’une approximation variationnelle de type Gutzwiller. On a montré qu’il est

alors possible de décrire de manière analytique la transition superfluide-isolant de Mott

du système. Cet ansatz pour la fonction d’onde reproduit correctement le diagramme de

phase du système. Des calculs Monte Carlo quantique nous ont également permis d’étudier le

comportement de la densité superfluide du système au-delà de l’approximation de Gutzwiller.

15. Systèmes de spin classiques

Réf: Voir papier M en Annexe

Dans cette étude [29], [30] nous nous sommes intéressés aux propriétés thermodynamiques

des systèmes de spin représentés par des modèles effectifs de type Heisenberg. Différentes

techniques Monte Carlo ont été appliquées ou développées pour comprendre la nature du

fondamental et des transitions de phase de ces systèmes. Une de nos premières applications a

concerné le modèle d’Heisenberg bidimensionnel. Dans ce modèle de base de la physique des

systèmes de spin, nous avons illustré comment le calcul de la raideur de spin (spin-stiffness)

pouvait être un outil précieux pour la compréhension de la nature de l’état fondamental

et de ses excitations. La raideur de spin est reliée à la réponse du système de spins à

une rotation des spins de bords (twist). La manière dont la raideur de spin évolue avec la

taille du système est directement liée aux types d’excitations élémentaires présents dans le

système. Nous avons vérifié avec très grande précision que la raideur de spin suit exactement

le comportement prévu par le groupe de renormalisation appliqué à un modèle décrivant le

système comme un ensemble d’ondes de spin en interaction. Afin d’obtenir ces résultats,

nous avons proposé de simuler le modèle à l’aide d’une méthode de Monte Carlo non-locale
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(adaptation de l’algorithme de Swendsen-Wang), c’est à dire une méthode qui construit

des agrégats de spins de taille importante à basse température (suppression du phénomène

de “ralentissement critique” au voisinage d’une transtion de phase continue). Nous avons

montré qu’il est essentiel d’utiliser une telle approche pour obtenir des résultats raisonnables.

Un deuxième développement entrepris a été de généraliser ces résultats aux systèmes de

spins frustrés [30]. La physique des spins frustrés est riche et donne lieu à de nombreuses

polémiques. En particulier, le rôle des excitations topologiques est mal compris. Afin d’en

étudier les effets nous nous sommes proposés de comparer les prédictions des modèles effectifs

basse-energie des systèmes frustrés bidimensionnels (modèle σ-nonlinéaire) aux simulations

numériques dans les cas avec et sans topologie. Nous avons montré qu’une fois encore à basse

température les prédictions du groupe de renormalisation sont en accord avec les données.

A des températures intermédiaires, nous avons mis en valeur les effets provoqués par les

défauts. Il est important de souligner qu’ il est bien connu que la simulation des systèmes

classiques frustrés à l’aide d’algorithmes non-locaux est difficile. Nous avons proposé une

généralisation de ces algorithmes qui permet de conserver les performances des systèmes

non-frustrés.
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A. Thèses de doctorat
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1989. Jury: M. Allavena (Paris), M. van der Avoird (Hollande), M. Caffarel (Paris),

J.P. Daudey (Toulouse), C. Lhuillier (Paris), J.L. Rivail (Nancy).
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Bond”, Juin-Juillet 1998.

28



IV. LISTE DES PUBLICATIONS

(1) M. Caffarel and P. Claverie, “Treatment of the Schrödinger Equation Through a Monte

Carlo Method Based upon the Generalized Feynman-Kac Formula”, J. Stat. Phys. 43, 797

(1986).
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V. MÉTHODES MONTE CARLO QUANTIQUE EN CHIMIE THÉORIQUE

A. Les méthodes Monte Carlo quantique en quelques mots

Ramenées à leur plus simple expression, les méthodes Monte Carlo quantique consistent

à faire évoluer une population de marcheurs à l’aide d’un ensemble de règles probabilistes

et à évaluer les valeurs moyennes quantiques au moyen d’estimateurs statistiques appropriés

sur l’ensemble de toutes les positions obtenues pour les marcheurs. Par marcheur on entend

un point x dans l’espace de configuration complet du système. Par exemple, si on considère

une molécule comprenant N électrons, il s’agira de l’ensemble des 3N coordonnées spatiales

x = (r1, ..., rN) des électrons (on suppose ici les noyaux fixes, mais on peut également traiter

les noyaux). Dans la littérature on parle de marcheurs, de répliques, de points, voire de psip

(ψ particles). Notons que les degrés de liberté de spin n’apparaissent pas explicitement mais

sont pris en compte en imposant l’antisymétrie sous l’échange des coordonnées spatiales des

électrons α et β séparément. Les règles stochastiques définissent les “règles du jeu” de la

simulation. On peut définir plusieurs ensembles de règles et plusieurs sortes d’estimateurs

qui donnent les mêmes valeurs moyennes. Cette variété de choix explique les nombreuses

variantes QMC existant dans la littérature. Pour ne citer que les principales: Diffusion

Monte Carlo, Pure Diffusion Monte Carlo, Projector Monte Carlo, Green’s function Monte

Carlo, Lattice Green’s function Monte Carlo, etc.

Afin de clarifier la situation on peut définir deux grandes classes de méthodes Monte

Carlo quantique: les méthodes Monte Carlo dites variationnelles (Variational Monte Carlo,

VMC) et les méthodes Monte Carlo dites “exactes”. Signalons qu’il existe aussi des ap-

proches Monte Carlo dites à température finie permettant d’évaluer les moyennes thermo-

dynamiques (Path Integral Monte Carlo, World-line MC, etc.) mais je n’en parlerai pas ici.

1. Méthodes Monte Carlo variationnelles

Dans ce type d’approches on se propose de calculer les valeurs moyennes quantiques

associées à une fonction d’onde d’essai ψT (x,p) supposée connue et donnée sous forme

analytique. Ici, x représente l’ensemble des coordonnées spatiales et p un jeu de paramètres

permettant de faire varier la fonction d’essai. Par exemple, dans le cas de l’énergie on cherche

à évaluer l’énergie variationnelle suivante:

EV (p) =

∫
dxψT (x,p)HψT (x,p)∫

dxψT (x,p)2 (4)
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Cette expression peut facilement se réécrire sous la forme:

EV (p) =<< EL(x,p) >> (5)

où le symbole << ... >> représente la valeur moyenne définie relativement à la densité de

probabilité de présence associée à ψT :

π(x,p) = ψT
2/

∫
dxψT

2 (6)

et

<< ... >>=
∫
dx π(x,p)... (7)

Dans la formule (5) la quantité moyennée est appelée “énergie locale”. Elle est définie par

l’expression:

EL(x,p) ≡ HψT (x,p)/ψT (x,p) (8)

Cette quantité joue un rôle central dans les méthodes MC quantique. C’est une fonction

locale (elle ne dépend que du point courant x) et qui est homogène à une énergie. Lorsque

la fonction d’essai est exacte, elle se réduit à l’énergie exacte. Si on est capable de construire

un ensemble de configurations qui se distribuent dans l’espace avec la densité π, alors un

estimateur de l’énergie est donné par la valeur moyenne arithmétique des valeurs de l’énergie

locale:

EV (p) = lim
P→∞

1

P

P∑
i=1

EL[x(i)]. (9)

Construire des configurations dans un espace de grande dimension qui soient distribuées

selon une densité non-triviale -mais donnée analytiquement- est un problème bien connu des

simulations. Pour cela on a recours à l’algorithme de Metropolis ou à l’une de ses variantes

[1], [2]. Les règles du jeu sont alors les suivantes:

1ere règle: Etape de déplacement. Pour un marcheur donné siué en x on propose une

nouvelle position y à l’aide d’une densité de probabilité de transition choisie préalablement,

p(x → y).

2eme règle: Etape d’acceptation-refus. La nouvelle position y est acceptée avec proba-

bilité q(x,y) donnée par:

q(x,y) = Min[1, π(y)p(y → x)/π(x)p(x → y)] (10)

34



Dans le cas où la position y est refusée, on considère que la nouvelle position est donnée par

x (on fait du “sur place”).

On peut montrer que, quelle que soit la configuration initiale de la population de

marcheurs et quelle que soit la probabilité de transition choisie, pourvue quelle soit ergodique

-une condition assez simple à réaliser [2]- l’ensemble des positions successives construites avec

ces règles simples se distribuent selon la densité π (pour une démonstration mathématique,

voir mes notes de cours [2]).

Afin d’accélérer l’échantillonnage de l’espace de configuration, on choisit une probabilité

de transition qui admet comme distribution stationnaire une densité proche de π. De plus,

il faut que cette densité soit facile à échantillonner. La solution communément utilisée a la

forme suivante:

p(x → y, τ) = [
1√
2πτ

]
3N

exp [−(y − x − b(x)τ)2

2τ
] (11)

où τ joue le rôle d’un pas de temps et b est un vecteur appelé vecteur dérive (“drift vector”)

et qui est donné par

b = ∇ψT/ψT . (12)

On peut montrer que, dans la limite d’un pas de temps infinitésimal, cette probabilité de

transition admet ψ2
T comme densité stationnaire. De plus, elle s’écrit comme un produit

de 3N gaussiennes indépendantes (une gaussienne pour chaque coordonnée) et est donc

très facile à échantillonner. La partie “diffusive” de la probabilité de transition permet

aux marcheurs de visiter l’ensemble des configurations possibles du système; la partie dite

“déterministe” associée au vecteur dérive permet, quant à elle, de “pousser” les marcheurs

vers les régions de grande probabilité (échantillonnage selon l’importance ou “importance

sampling”).

Ce premier exemple simple de méthode Monte Carlo quantique permet d’appréhender

les aspects essentiels des méthodes stochastiques. Les règles à appliquer sont simples et très

faciles à programmer sur machine. Les quantités à calculer sont locales et il n’y a pas de

calculs d’intégrales à effectuer. L’essentiel de l’effort numérique consiste à évaluer la dérivée

première (vecteur dérive) et seconde (énergie locale) de la fonction d’essai. L’avantage prin-

cipale de ces méthodes est donc de permettre le calcul des valeurs moyennes associées à

une fonction d’onde variationnelle de forme a priori quelconque. Ceci est évidemment un

avantage important par rapport aux méthodes ab initio plus traditionnelles définies à partir

d’un développement de la fonction d’onde restreint à des produits de fonctions à un électron

et qui nécessitent le calcul de nombreuses intégrales élémentaires.
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2. Méthodes Monte Carlo exactes

Dans cette partie je montre comment s’affranchir de l’approximation variationnelle ,

c’est à dire calculer les quantités exactes du système. Différentes règles du jeu permettent

d’atteindre cet objectif. Nous présentons ici les deux principales approches:

α. Méthode introduisant un poids dans les valeurs moyennes: Pure Diffusion Monte Carlo

Cette méthode est l’approche que j’ai plus particulièrement développée pendant mon

travail de thèse [3], [4], [5], [6]. Sans entrer dans les détails on peut montrer qu’en utilisant

les mêmes règles que précédemment, et au prix de l’introduction d’ un produit de poids

élementaires dans les moyennes, on peut construire des estimateurs pour les propriétes ex-

actes. Par exemple pour le cas important de l’énergie totale, on a la formule suivante:

E0 =
EL[x(1)] + EL[x(2)]w[x(2)] + EL[x(3)]w[x(2)]w[x(3)] + EL[x(4)]w[x(2)]w[x(3)]w[x(4)] + ...

1 + w[x(2)] + w[x(2)]w[x(3)] + w[x(2)]w[x(3)]w[x(4)] + ...

(13)

où le poids w(x) est donné par:

w(x) = exp [−τ(EL(x) − ET )] (14)

où ET est une énergie de référence arbitraire et les x(i) représentent la suite des configura-

tions engendrées. La formule précédente pour l’énergie est l’analogue de la formule (9). Le

cas variationnel est obtenu en prenant les poids tous égaux à un, w = 1. Notons, qu’en

pratique, la formule (13) précédente est loin d’être optimale, nous n’entrerons pas dans ce

genre de considérations ici.

β.Méthode avec processus de mort-naissance (branching): Diffusion Monte Carlo

La méthode QMC la plus populaire est certainement la méthode dite Diffusion Monte

Carlo où le poids w est introduit dans les règles probabilistes plutôt que dans les estimateurs

comme précédemment. Pour ce faire, on rajoute aux règles 1. et 2. du cas variationnel une

nouvelle étape qui consiste à détruire ou faire un certain nombre de répliques des marcheurs

en fonction du poids local w (processus dit de branching). En pratique:

3eme règle: Etape de branching. Pour chaque marcheur le nombre de copies effectué est

pris égal à:

m ≡ int(w + η) (15)
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où η est un nombre aléatoire uniforme compris entre 0 et 1.

Notons que dans cette approche où le nombre de marcheurs n’est plus constant il est

nécessaire d’introduire une étape de contrôle de population (il faut éviter que le nombre total

de marcheurs diverge ou s’annule...). Ceci peut être réalisé assez simplement de différentes

manières, nous n’entrerons pas dans ces détails. Le point important est qu’on peut démontrer

que la nouvelle densité stationnaire obtenue avec cette étape de branchement supplémentaire

est maintenant égale à:

π∗(x) = ψT (x)φ0(x)/
∫
dxψT (x)φ0(x) (16)

au lieu du carré de la fonction d’onde d’essai comme dans le cas variationnel ou la méthode

PDMC. Ici, φ0(x) représente la fonction d’onde exacte inconnue. En prenant la moyenne de

l’énergie locale sur cette nouvelle densité on obtient un estimateur très simple de l’énergie

exacte:

E0 =<< EL>>π∗ = lim
P→∞

1

P

P∑
i=1

EL[x(i)] (17)

Nous venons de donner les éléments-clefs des méthodes Monte Carlo quantique. Il nous

suffiront pour la suite. Pour une présentation complète on peut se reporter par exemple à

[7], [8], ou [9]. Faisons toutefois quelques remarques importantes:

• Il existe une propriété dite de variance-zéro pour l’énergie totale. Plus la fonction

d’essai est “proche” de la fonction d’onde exacte, plus les fluctuations de l’énergie

locale sont faibles. A la limite d’une fonction d’essai exacte, le résultat exact est obtenu

quel que soit le nombre de pas Monte Carlo. La conséquence de cette propriété est

qu’il est extrêmement important d’utiliser les “meilleures” fonctions d’essai possibles

pour réduire l’effort numérique. Notons également que nous avons très récemment

généralisé cette propritété de variance-zero au calcul de n’importe quelle observable

physique. (voir section II.B.8, “Principe de zéro-variance généralisé”).

• Nous avons présenté dans ce qui précède des estimateurs pour l’énergie totale. On

peut également écrire des expressions analogues pour toutes les propriétes autres que

l’énergie (observables, forces, polarisabilités, etc.), même si leur calcul n’est pas tou-

jours aussi facile que celui de l’énergie.

• Nous avons limité notre présentation au calcul des propríetés de l’état fondamental.

En théorie, les états excités peuvent également être abordés. En pratique, les calculs

sont en fait beaucoup plus instables que pour l’état fondamental.
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• Il existe deux sources de biais systématiques dans les calculs: l’approximation à temps

court Eq.(11) associée au choix d’un pas de temps τ non-infinitésimal, et l’erreur de

contrôle de population dans le cas des méthodes avec branching. La première erreur

peut être supprimée en utilisant une version un peu plus sophistiquée des méthodes

DMC (méthodes Green’s function MC, [10]). On peut également, et c’est la solution

généralement adoptée, faire plusieurs calculs avec des valeurs différentes du pas de

temps et extrapoler à zéro. En ce qui concerne l’erreur de contrôle de population on

peut également réduire l’erreur en prenant des populations suffisamment grandes et

en extrapolant à population infinie (en pratique, cette erreur décrôıt très vite avec le

nombre de marcheurs).

• Les approches Monte Carlo quantique sont extrêmement bien adaptées au calcul sur

ordinateur. On peut très facilement vectoriser ou paralléliser les codes (simplement en

considérant des marcheurs indépendants sur des processeurs indépendants). De plus,

les besoins en mémoire centrale sont extrêmement limités. Ce sont des méthodes de

simulation assez idéale du point de vue informatique.

Avant de terminer cette partie il est important de discuter le traitement pratique des

contraintes résultant du principe de Pauli pour les électrons.

3. Contraintes associées au principe de Pauli: le problème du signe

Le fait que les électrons soient des fermions et donc obéissent au principe de Pauli im-

plique que la fonction d’onde électronique ait des propriétés d’antisymétrie bien spécifiques

par rapport aux échanges d’électrons. Dans un formalisme purement spatial, comme celui

présenté ici, on peut montrer que la fonction d’onde doit être antisymétrique dans l’échange

des coordonnées spatiales des électrons de même spin (sans contrainte particulière pour les

électrons de spin différents). Une telle contrainte implique que pour plus de deux électrons

la fonction d’onde ait un signe non-constant. Dans un calcul variationnel ceci ne pose au-

cune difficulté particulière: la densité π donnée par l’équation (6) est positive et peut être

construite sans difficulté particulière. En revanche, dans le cas des méthodes exactes la

densité stationnaire π∗ = ψTφ0, Eq. (16), n’a plus un signe constant puisqu’en général les

domaines de l’espace de configuration (domaines nodaux) où la fonction d’onde d’essai et la

fonction d’onde exacte ont le même signe, diffèrent. Deux grandes classes d’approche ont été

proposées pour résoudre cette difficulté. Elles correspondent aux deux solutions naturelles
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qui s’offrent à nous: soit introduire le signe dans les estimateurs comme un poids, soit in-

corporer le signe directement dans le processus stochastique lui-même.

α.Signe dans les estimateurs: les méthodes exactes mais instables

En théorie, il n’y a aucune difficulté à tenir compte de l’antisymétrie de la fonction

d’onde exacte en l’introduisant dans les estimateurs à l’aide d’un projecteur. Pour cela il

suffit de prendre comme fonction d’essai une fonction essentiellement égale à la valeur absolue

d’une fonction fermionique et d’introduire le signe fermionique dans les estimateurs. Sans

entrer dans les détails, on parle alors soit de méthodes “transientes”(transient methods),

soit de méthodes avec “relâchement des nœuds” (nodal-release methods). En opérant de

la sorte aucune erreur systématique n’est introduite. Malheureusement, en pratique, de

telles approches sont très difficiles à faire converger. La raison fondamentale réside dans le

fait qu’à grands temps de simulation la partie positive et la partie négative des estimateurs

signés deviennent essentiellement égales, et c’est la différence exponentiellement négligeable

qui nous intéresse! Comme l’erreur statistique est proportionnelle à la somme, et non à la

différence des parties positives et négatives, le rapport signal sur bruit devient excessivement

mauvais. Plus précisement, on peut montrer que l’erreur statistique crôıt exponentiellement

avec le temps calcul T de la manière suivante:

δE = c
exp [K(E0F −E0B)T ]√

T
(18)

où c et K sont deux constantes positives et E0F et E0B sont respectivement les énergies fon-

damentales fermioniques (celle qui nous intéresse) et bosoniques (essentiellement, l’énergie

qui correspondrait à des électrons qui auraient tous le droit de se condenser dans le niveau le

plus bas). On peut également montrer que la différence ∆E = (E0F − E0B) qui commande

l’exposant de l’exponentiel crôıt également très rapidement avec le nombre de particules!

Ce problème sévère est connu sous le nom de “problème du signe”. En trouver une solution

est considéré comme un des problèmes les plus importants de la physique numérique. Re-

marquons tout de même qu’une telle formule ne signifie pas que tout calcul exact pour des

électrons soit désespéré. Elle signifie seulement, qu’à ce jour, tout algorithme QMC exact

est intrinsèquement instable. Des procédés astucieux ont été développés pour amoindrir les

difficultés liées au problème du signe et des calculs “exacts” sur des systèmes réalistes ont

pu être menés à bout malgré ces difficultés. Nous reviendrons sur ce point dans la section

suivante:“Monte Carlo quantique en Chimie Théorique: où en est-on?”).
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β.Signe dans le processus: approximation des nœuds fixés (fixed-node QMC)

Afin de contourner la difficulté du signe dans les estimateurs il est naturel d’essayer

de construire des règles probabilistes qui incorporent directement l’antisymétrie. Ceci peut

être réalisé très simplement en utilisant l’algorithme usuel présenté précédemment et une

fonction d’onde d’essai correctement antisymétrisée. Le point nouveau par rapport au cas

d’une fonction d’essai à signe constant est que les lieux (hypersurfaces) où la fonction d’essai

s’annule (on parle des zéros ou des nœuds de la fonction d’onde) deviennent des barrières in-

franchissables pour les marcheurs (le terme de dérive donné par l’équation (12) correspond à

un terme infiniment répulsif près des nœuds). En pratique, les marcheurs restent donc piégés

dans les sous-volumes nodaux découpés par les nœuds de la fonction d’essai. Ceci revient

à résoudre l’équation de Schrödinger avec de nouvelles conditions aux limites (annulation

de la fonction d’onde exacte aux nœuds de la fonction d’essai). L’instabilité liée au signe

disparâıt alors complètement. Malheureusement, le prix à payer est l’introduction d’une

erreur systématique (l’erreur dite “fixed-node”), résultant de la position approximative des

nœuds de la fonction d’essai. Cependant, et c’est un point important, on peut démontrer

qu’un calcul “fixed-node” est un calcul variationnel, c’est à dire qu’on a la propriété:

E0(Fixed − Node) ≥ E0(Exact) (19)

B. Monte Carlo quantique en chimie théorique: où en est-on?

En nous appuyant sur les quelques éléments présentés dans la section précédente on

peut maintenant discuter l’“état de l’art” en chimie théorique des calculs électroniques par

méthode Monte Carlo quantique.

1. Problème du signe.

Le premier point qu’il s’agit de commenter est la nature des difficultés associées au

problème du signe pour les atomes et les molécules. Comme nous venons de le dire, il existe

deux grandes classes de méthodes pour traiter ce problème: les méthodes exactes mais

instables (“transient” ou “nodal-release” methods) et les méthodes stables mais approchées

de type nœuds fixés (fixed-node). La première classe de méthodes a été appliquée avec

succès à des systèmes comportant des atomes très légers. On peut citer le calcul de la

surface de potentiel complète H +H2 → H2 +H qui joue un rôle important dans les calculs
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de dynamique quantique [11] ainsi que quelques calculs “tous-electrons” pour des petits

systèmes (LiH,Li2 ..., voir par exemple la revue récente d’Anderson [8]). Notons que pour

des systèmes homogènes en densité, comme les liquides et les solides quantiques, des calculs

à très grand nombre d’électrons sont également possibles. On peut citer le célèbre calcul

du gaz électronique uniforme par Ceperley et Alder [12] qui sert à calibrer les méthodes

de type Density Functional Theory (DFT). Ce calcul correspond à une résolution exacte

par méthode Monte Carlo quantique de l’équation de Schrödinger pour un grand nombre

d’électrons (jusqu’à 246 électrons) à l’aide d’un schéma exact avec relâchement des nœuds.

On peut également citer le calcul du diagramme de phase de l’hydrogène en fonction de

la pression qui a été effectué sous différentes conditions [13]. Dans ce type de calculs,

les auteurs se sont même affranchis de l’approximation de Born-Oppenheimer en résolvant

l’équation de Schrödinger complète pour un grand nombre de protons et d’électrons (jusqu’à

plusieurs centaines). Dans ces exemples, les quantités c,K et ∆E = E0F −E0B de la formule

fondamentale (18) sont suffisamment petites pour que l’estimateur de l’énergie “converge”

dans un temps raisonnable. Physiquement, ceci est relié au fait que le système simulé a

une densité électronique relativement homogène sans grandes variations d’échelle en son

sein. Dans le cas des molécules, ceci n’est absolument pas le cas. A cause du principe de

Pauli et du caractère très inhomogène de l’attraction coulombienne des noyaux (avec charge

éventuellement élevée), on doit décrire une densité électronique très structurée. Il y a des

régions de cœur à haute densité d’énergie et des régions de valence beaucoup plus homogènes.

Les zones où les liaisons chimiques s’établissent doivent être décrites avec précision. Il faut

également être à un niveau de précision très grand pour espérer retrouver les effets subtils

à longues distances (par exemple, les forces de van der Waals). Mathématiquement, cela

se traduit par le fait que le préfacteur c de la formule (18) (relié à la qualité de la fonction

d’onde d’essai utilisée) doit absolument être réduit le plus possible et que l’écart énergétique

∆E = E0F − E0B entre le fondamental physique et le fondamental “bosonique” (tous les

électrons dans l’orbitale la plus basse) est très grand à cause de la structure en couche très

prononcée.

Pour conclure, imaginer des calculs exacts pour des systèmes moléculaires lourds et

structurés n’est actuellement pas réaliste à cause du comportement pathologique, Eq.(18).

Cependant, et c’est le point fondamental, l’expérience numérique a montré que la méthode

à nœuds fixés représente une très bonne approximation pour les molécules. Ceci est parti-

culièrement vrai pour l’énergie mais cela semble aussi être vrai pour un certain nombre de

propriétés au prix de développements spécifiques (voir, par exemple, le calcul très récent du

dipôle de la molécule CO par Schautz et Flad [14]). Comme nous l’avons déjà mentionné une
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propriété très intéressante des calculs fixed-node est le fait qu’il existe un principe variation-

nel pour l’énergie, Eq.(19). L’expérience montre qu’en choisissant, par exemple, les nœuds

d’une fonction d’onde de type Hartree-Fock l’erreur fixed-node est déjà très petite. Pour fixer

les idées, nous présentons dans le tableau I quelques résultats obtenus pour l’énergie totale

de petits atomes et molécules (calcul “tous-électrons”). On voit que l’erreur fixed-node ne

représente pour ces systèmes que quelques pourcents de l’énergie de corrélation totale. En

d’autres mots, l’approximation fixed-node est tout à fait satisfaisante. Notons qu’on obtient

également ce type de précision pour les calculs QMC avec pseudo-potentiels (voir plus loin).

TABLE I. Energies totales (“tous-électrons”) calculées par méthode Monte Carlo variationnelle

(VMC) et par méthode QMC dans l’approximation des nœuds fixés (fixed-node). L’énergie de

corrélation (EC) totale obtenue dans chaque cas est donnée en pourcentage. L’erreur statistique

sur le dernier chiffre est donnée entre parenthèses.

Atome ou Molécule E0(HF) E0(VMC) EC(%) E0(Fixed-Node) EC(%) E0(Exact)

He (pas de nœuds) -2.86168 -2.9037244(1)a 100.0000(2) -2.90372437

LiH -7.987 -8.06973(26)b 99.4(3) -8.0699(10)c 100(1) -8.07021

Li2 -14.87152 -14.98850(4) 94.43(4) -14.9938(1)d 98.7(1) -14.9954

Ne -128.54705 -128.9011(1) 90.56(2) -128.9236(2)a 96.32(4) -128.93755

H2O -76.0675 -76.20(3)e 36(8) -76.430(20)f 90.5(7) -76.4376

N2 -108.9928 -109.4376(5) 80.94(8) -109.505(1)d 93.1(2) -109.5423

F2 -198.7701 -199.4101(6) 84.23(8) -199.487(1)d 94.3(1) -199.5299

a Réf. [15]; b Réf. [16] c Réf. [17]; d Réf. [18]; e Réf. [10] f Réf. [19]

2. Choix de la fonction d’essai

Comme nous l’avons déjà mentionné, un aspect fondamental qui détermine la qualité

des simulations est le choix de la fonction d’essai utilisée, ψT . Plus cette fonction d’onde

est “proche” de la solution inconnue plus les fluctuations statistiques sur l’énergie totale

sont faibles. De nombreux efforts ont été faits pour choisir les meilleures approximations

possibles. Il est important d’insister sur le fait que le choix des formes possibles est très

large puisque, contrairement aux méthodes sur base, aucune intégration de la fonction n’est

effectuée au cours de la simulation. Seule la dérivée première [vecteur dérive, Eq.(12)] et

la dérivée seconde [énergie locale, Eq.(8)] par rapport aux 3N variables sont requises. Sans

entrer dans les détails des nombreux travaux effectués, on peut dire que les formes les plus

élaboréees considérées à ce jour s’écrivent essentiellement de la manière suivante:
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ψT = exp [
∑
i<j

∑
α

Uα(riα, rjα, rij)]
∑
K

cKDet
K
α Det

K
β (20)

La partie déterminantale est constituée d’une somme sur un ensemble de configurations

au sens des méthodes ab initio traditionnelles. Les orbitales moléculaires utilisées provien-

nent généralement d’un programme ab initio sur base et sont le plus souvent réoptimisées

dans le cadre de la méthode Monte Carlo quantique. Le nombre de configurations utilisées

ne peut pas être très important car le Laplacien de la fonction d’essai doit être calculé à

chaque pas Monte Carlo, et on effectue des millions de pas. Le préfacteur qui est écrit

sous une forme exponentielle est habituellement désigné sous le vocable “terme de Jastrow”.

C’est une partie qui dépend explicitement des coordonées interelectroniques rij et de leur

couplage avec les distances electrons-noyaux riα (l’indice grec porte ici sur les coordonnées

nucléaires). Ce terme joue un rôle très important : il permet d’incorporer dans la fonc-

tion d’onde les comportements corrects de la fonction d’onde quand les électrons sont très

proches (conditions dites de CUSP) ainsi que la réorganisation du nuage électronique quand

la corrélation explicite entre électrons est prise en compte. En introduisant des paramètres

variationnels dans les fonctions Uα et la partie déterminantale, il est possible de chercher

des représentations optimales. Il est important de noter que cette étape d’optimisation

des paramètres (éventuellement en grand nombre) peut être effectuée relativement aisément

dans un formalisme QMC grâce à la méthode dite de “l’échantillonnage corrélée” introduite

il y a une dizaine d’années par Umrigar et collaborateurs [20]. Les résultats obtenus avec

de telles représentations sont déjà très bons. Suivant les systèmes, on peut récupérer assez

facilement entre 40 et 90 % de l’énergie de corrélation au niveau variationnel. Quelques

exemples illustratifs sont présentés dans le tableau I (calculs VMC).

Notons que le développement de fonctions d’onde d’essai de qualité constitue encore à

mon avis un thème d’étude crucial pour les méthodes Monte Carlo quantique. En particulier,

des formes beaucoup plus physiques pour ces fonctions peuvent encore être exploitées. Nous

avons déjà discuté cet aspect dans la section II.B.6: “Meilleures fonction d’essai”.

3. Problème des électrons de cœur.

En utilisant les fonctions d’essai que nous venons de présenter on peut calculer l’énergie

totale électronique pour des systèmes moléculaires comprenant au maximum une vingtaine

d’électrons. Comme nous l’avons déjà discuté, le nombre maximal d’électrons qui peut être

traité dépend en fait très fortement de la distribution des charges nucléaires. Définir un

tel nombre sans faire référence aux propriétés du potentiel exérieur n’a pas réellement de
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sens. La raison principale de l’existence de cette limite réside dans la difficulté de mâıtriser

les fluctuations internes dues aux électrons de cœur des atomes. De nombreuses tentatives

ont été faites pour résoudre ou contourner cette difficulté. L’idée la plus naturelle qui

vient à l’esprit est évidemment de geler les électrons de cœur d’une façon ou d’une autre

comme cela est effectué dans les méthodes ab initio sur base. Plusieurs propositions ont

été faites dans cette direction (Hamiltoniens modèles, pseudo-Hamiltoniens,“damped-core”

approches, etc.). On ne détaillera pas ici ces différentes tentatives (pour cela, se reporter au

livre de Hammond et collaborateurs, [7]) mais on notera que ce n’est qu’assez récemment

qu’un algorithme stable et de portée générale a été mis au point [22]. Le résultat-clef a été

de montrer que l’utilisation de projecteurs de type “potentiels de cœur effectifs” (Effective

Core Potentials) et de fonctions d’onde d’essai de grande qualité pour les électrons de valence

permet d’obtenir en pratique des résultats de grande qualité. L’Hamiltonien des électrons

de valence est écrit sous la forme:

Hval =
∑

i

−1

2
~∇2

i +
∑
iα

Vloc(riα) +
∑
α<β

ZαZβ/Rαβ +
∑
i<j

1/rij +Wnonloc (21)

où Vloc décrit l’attraction électron-noyau usuelle et Wnonloc est l’opérateur non-local qui

projette sur les états de cœur:

Wnonloc =
∑
iα

∑
lm

vl(riα)Ylm(Ωiα)
∫
dΩ′

iαY
∗
lm(Ω′

iα) (22)

où vl représente le pseudo-potentiel radial et Ylm les harmoniques sphériques usuelles.

L’expérience montre que, si l’opérateur est rendu local de la manière suivante (la non-localité

est a priori difficile à implémenter dans un schéma Monte Carlo)

Wlocalise(x) = WnonlocψT (x)/ψT (x) (23)

et qu’une fonction ψT de qualité suffisante (c’est un point important) est utilisée, alors la

méthode donne des résultats très satisfaisants. Pour illustrer le type de résultats obtenus

nous présentons dans la tableau II quelques énergies de liaison d’agrégats et de molécules

organiques, calculées avec des pseudo-potentiels dans l’approximation des nœuds fixés. Les

résultats comparés aux résultats expérimentaux sont toujours très bons.
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TABLE II. Quelques énergies de liaison calculées par méthode Monte Carlo quantique (QMC)

dans l’approximation des nœuds fixés et utilisation de pseudo-potentiels. L’erreur statistique sur

le dernier chiffre est donnée entre parenthèses

Energies de liaison(eV) de quelques molécules organiquesa HF LDA QMC Exp.

Méthane (CH4) 14.20 20.59 18.28(5) 18.19

Acétylène (C2H2) 12.70 20.49 17.53(5) 17.59

Ethane (C2H6) 23.87 35.37 31.10(5) 30.85

Benzène (C6H6) 44.44 70.01 59.2(1) 59.24

Energies de liaison (eV/atome) de qques agrégats de Sib HF LDA QMC Exp.

Si2(D2h) 0.85 1.98 1.580(7) 1.61(4)

Si3(C3v) 1.12 2.92 2.374(8) 2.45(6)

Si7(D5h) 1.91 4.14 3.43(2) 3.60(4)

Si10(C3v) 1.89 4.32 3.48(2) ...

Si20(C3v) 1.55 4.28 3.43(3) ...

a Réf. [23]; b Réf. [24];

En conclusion, en utilisant les fonctions d’essai actuellement disponibles et

l’approximation des nœuds fixés, on peut mener des calculs QMC “tous-électrons” de grande

qualité pour des systèmes moléculaires ayant des charges nucléaires pas trop élevées et un

nombre d’électrons relativement limité (disons une vingtaine d’électrons). Pour des systèmes

plus gros, il est possible depuis peu d’éliminer de manière efficace les électrons de cœur re-

sponsables de la majeure partie de l’erreur statistique en utilisant des potentiels de cœur

effectifs. Cette approche, couplée à l’utilisation de fonctions d’onde d’essai de qualité pour

les électrons de valence, permet de traiter des systèmes de tailles comparables à celles traitées

par les méthodes ab initio traditionnelles. Ce dernier point est extrêmement important car il

rend les méthodes QMC compétitives. Il est donc prévisible que dans les années qui viennent

les méthodes stochastiques se développent dans le milieu de la chimie théorique.

Terminons cette partie en présentant un travail très récent qui illustre le fait que les

méthodes QMC sont sur le point de devenir des méthodes tout à fait compétitives vis à vis

des méthodes ab initio. La figure qui suit présente quelques résultats obtenus par le groupe

de Cambridge sur des système de type fullèrenes [25]. Le système étudié est la molécule

C24. Les deux électrons de cœur 1s ont été gelés par la technique présentée ci-dessus et les

24×4=96 électrons de valence sont traités dans l’approximation des nœuds fixés. Différentes

structures (anneau, feuille, boule, cage, etc.) ont été calculées par QMC et par plusieurs
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variantes des méthodes de type DFT. Sans entrer dans les détails, on voit que les résultats

Monte Carlo quantique (DMC) sont très bons et, d’après les auteurs, d’une qualité supérieure

à celle des résultats DFT.
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FIG. 2. Structures et énergies des isomères C24 relativement au fullérène D6. Les résultats

Monte Carlo quantique sont indiqués sous le nom de DMC (Diffusion Monte Carlo)
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VI. PERSPECTIVES. MON PROJET DE RECHERCHE

Dans les années qui viennent je vais m’employer à développer les deux idées importantes

que nous avons introduites récemment, à savoir le principe de zéro-variance et l’introduction

de processus de reconfiguration stochastique. Ces deux idées vont permettre de dimimuer de

manière très significative les fluctuations statistiques et donc l’efficacité des méthodes Monte

Carlo quantique. C’est un point très important que ce soit pour le calcul des propriétés

électroniques des molécules ou pour la détermination des diagrammes de phase des systèmes

de fermions fortements corrélés. Dans le domaine de la physique du solide, les méthodes

QMC sont des méthodes bien établies et abondamment utilisées. Augmenter leur efficacité

est essentiel car la plupart des effets subtils liés à la corrélation électronique n’apparaissent

clairement qu’à des tailles, ou des nombres d’électrons, exigeant des simulations assez volu-

mineuses. En Chimie Théorique les méthodes QMC sont d’utilisation plus limitée; nous en

avons expliqué les raisons dans la section V. Toutefois, comme nous l’avons déja souligné ces

méthodes sont sur le point de devenir compétitives vis à vis des méthodes ab initio plus tradi-

tionnelles (Density Functional Theory (DFT) et/ou méthodes Hartree-Fock + traitement de

la corrélation électronique) et nous vivons donc une période charnière de leur développement.

Ceci a été rendu possible grâce à un ensemble d’améliorations méthodologiques qui se sont

échelonnés sur les vingt dernières années: développement de fonctions d’essai de qualité,

approche des nœuds-fixés, introduction d’une méthodologie de type pseudo-potentiels sta-

ble et efficace. Depuis peu, des applications sur des systèmes moléculaires réalistes incluant

jusqu’à une centaine d’électrons actifs ont été effectués (agrégats d’atomes de Silicium ou

de Carbone, molécules organiques, etc..). La raison essentielle pour laquelle les méthodes

Monte Carlo sont encore trop peu utilisées dans la communauté de la Chimie Théorique est

que, pour une édifice moléculaire complexe, il n’existe pas encore de procédure automatisée

pour calculer efficacement n’importe quelle propriété (en particulier pour les forces et la

plupart des observables). De plus, les volumes de calcul restent encore importants, quoique

comparables à ceux des calculs ab initio les plus poussés (“grandes” interactions de config-

uration, calculs Coupled-Cluster de précision, etc.). Il est donc très important de remédier

à ces limitations.

Comme nous l’avons déjà dit notre première direction de travail est la mise en pratique

de notre principe de variance-zéro de portée très générale. Nous avons déjà montré qu’un

tel principe permet le calcul des forces entre atomes au sein d’une molécule. C’est un

résultat important puisque le calcul des forces est un des objectifs centraux de la chimie

calculatoire et qu’il n’existait pas de moyen effectif pour le calcul de telles quantités dans les
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approches QMC. Le principe de variance-zéro devrait également nous permettre d’aborder

des quantités aussi délicates que les petites différences d’énergie et les propriétés de réponse

sous champs. Le problème des fluctuations importantes associées aux électrons de cœur

devrait également être abordé sous un angle nouveau. Comme nous l’avons déjà remarqué, ce

sont les fluctuations de cœur qui sont responsables de la limitation des méthodes QMC “tous-

électrons” aux systèmes ayant des petites charges nucléaires. La définition d’un formalisme

QMC basé sur les pseudo-potentiels a constitué une étape importante: on peut maintenant

aborder des systèmes assez complexes. Néammoins, il est évident que les difficultés associées

à l’utilisation de potentiels de cœur (contrôle de l’approximation effectuée, problème de

l’interaction cœur-valence, polarisation du cœur, etc.) subsistent comme dans les méthodes

ab initio sur base. A terme, il est donc souhaitable de rester dans une approche “tous-

électrons”. L’objectif à atteindre est de réduire les fluctuations de cœur au niveau de celles

des électrons de valence. Ceci semble tout à fait possible en “renormalisant” la partie très

fluctuante de l’énergie locale associée aux électrons de cœur. J’ai commencé ce projet en

collaboration avec R. Assaraf et P. Reinhardt au laboratoire. Ce travail comprend une partie

exploratoire assez importante (partition de l’énergie locale, choix de la représentation pour

la fonction d’essai associée au principe de variance zéro, etc.) mais je ne doute pas qu’il soit

possible d’atténuer grandement les fluctuations de cœur.

Le deuxième axe de recherche est l’exploitation du processus dit de reconfiguration

stochastique en vue d’accélérer la convergence des simulations Monte Carlo quantique

(réduction des volumes de calcul pour une précision donnée). En effet, nous nous sommes

aperçus que, grâce au processus de reconfiguration d’une population de marcheurs, il était

possible de réaliser une idée très intéressante du point de vue mathématique. A savoir,

l’introduction de corrélation entre marcheurs sans changement de la densité stationnaire

associée à chaque marcheur individuellement. En jouant sur la nature des corrélations entre

marcheurs, on peut modifier de manière importante la vitesse de convergence d’une observ-

able donnée calculée à partir des populations successives sans changer sa valeur moyenne.

Pour illustrer les potentialités d’une telle approche je présente dans le tableau suivant

quelques calculs préliminaires effectués en collaboration avec R. Assaraf et A. Khelif. Il s’agit

du calcul d’une observable pour un système modèle de taille finie (matrice 200 par 200). Je

donne les résultats obtenus avec différents niveaux de corrélation entre marcheurs. La pop-

ulation considérée comprend 4096 marcheurs et un million de pas Monte Carlo pour chaque

marcheur. J’insiste sur le fait que chaque résultat nécessite (à des variations négligeables

près) le même effort numérique. Le premier résultat (Monte Carlo standard) correspond à

l’approche habituelle sans corrélation entre marcheurs. Les trois autres résultats correspon-
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dent à des niveaux différents de corrélation. On voit que l’amélioration de convergence peut

être spectaculaire. Dans le meilleur des cas (Reconfiguration avec choix alterné) on obtient

un rapport d’erreur statistique égal à 0.1100/0.0068, ce qui correspond à un gain de l’ordre

de 300 en temps calcul (l’erreur se comporte en 1/
√
N). Evidemment, il s’agit d’être prudent

et de ne pas généraliser trop vite des résultats obtenus sur un système modèle simple à des

systèmes réalistes. Toutefois, nos premiers résultats sur des atomes légers indiquent qu’il y

a en effet une amélioration sensible de la convergence. Il reste encore beaucoup d’aspects

à élucider (en particulier, la détermination des corrélations optimales) mais l’idée doit être

développée.

TABLE III. Calcul d’une valeur moyenne pour un système modèle à 200 états. Le nombre de

marcheurs est 4096, le nombre de pas Monte Carlo pour chaque marcheur est de 106. L’erreur

statistique sur le dernier chiffre est donnée entre parenthèses

Méthode < O >

Monte Carlo standard 320.86(0.11)

Reconfiguration standard 320.98(0.039)

Reconfiguration avec choix aléatoire 320.935(0.010)

Reconfiguration avec choix alterné 320.953(0.0068)

Valeur exacte 320.944181...

On peut imaginer généraliser cette idée aux corrélations spatiales et temporelles des

marcheurs sur le processus. Ceci permettrait de réaborder le problème si important du

signe sous un angle nouveau. Par exemple, en cherchant à déterminer quelles sont les

corrélations spatio-temporelles entre marcheurs qui permettraient d’asservir les fluctuations

du signe fermionique et donc de réduire (supprimer?) le fameux “problème du signe” qui

surgit quand on cherche à s’affranchir de l’approximation des nœuds fixés.
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A method of evaluating perturbational components of intermolecular interaction energies by us-

ing quantum Monte Carlo (QMC) techniques is presented. It is shown how the nth-order Rayleigh-

Schrodinger (RS) perturbation term may be expressed in a very compact way in terms of suitably

defined stochastic autocorrelation functions of the perturbing operator (the intermolecular interac-

tion potential). The resulting formula is very general (not restricted to intermolecular interactions)

and corresponds in fact to an alternative way of expressing RS perturbation theory in any order. As

concerns the exchange contribution responsible for repulsion at small distances, an approximate ex-

pression for the first-order exchange interaction energy (by far the leading component) is given.

Both advantages and drawbacks of the proposed QMC approach with respect to more conventional

ab initio perturbational treatments are discussed. Some test calculations for the interaction of two

helium atoms at small distances are presented, Results are systematically compared to those ob-

tained with ab initio perturbation calculations using large Gaussian basis sets.

I. INTRODUCTION

Evaluating interaction energies between atoms and
molecules is an important goal of molecular physics. To-
day, the most commonly employed method for such cal-
culations is certainly the so-called supermolecule
method' in which the interaction energy is obtained by
subtracting from the total energy of the interacting mole-
cules (the supermolecule) the sum of the total energies of
each monomer, all energies being calculated by using the
same method, generally some form of the configuration-
interaction (CI) method. Difficulties associated with such
an approach are well known and have been discussed in
many places. ' They can be summarized as follows.

(l) The problem of evaluating a very small quantity,
the interaction energy, as a difference of two large and
approximately evaluated quantities. Generally, it is very
dificult to know whether errors made in calculating the
total energies of the monomers and of the dimers are of
comparable quality or not.

(2) Difficulties associated with the occurrence of the
basis-set superposition error (BSSE), see, e.g. , Refs. 2 —5.

(3) Rapid increase of memory and CPU time require-
ments as a function of the size of the system studied.

An alternative approach to the supermolecule method
consists in calculating interaction energies from perturba-
tion theory using the intermolecular potential as pertur-
bating operator. When the intermolecular distance R is
large, one is dealing with the usual Rayleigh-Schrodinger
perturbation theory. In this case, the complete set of ex-
cited states of the unperturbed Hamiltonian involved in

perturbational components is simply chosen to be the
products of monomer wave functions: due to the large
separation between monomers no antisymmetrization of
the factorized wave functions is necessary. In contrast,
for shorter distances, such as, for example, distances cor-
responding to the region around the equilibrium
configuration, the usual Rayleigh-Schrodinger theory
must be generalized in order to take into account the ex-
change of electrons between the interacting monomers
(the introduction of exchange terms). This may be done
by making use of one of the versions of the so-called
symmetry-adapted perturbation theories (SAPT) in which
the fermionic antisymmetry of the whole dimer is im-
posed within the perturbational expansion through the
use of intersystem antisymmetrizers (see, e.g. , Refs. 7 and
8). By using perturbation theory the basic difficulties of
the supermolecule method listed above are essentially
avoided: a direct evaluation of the small interaction ener-
gy is done, the BSSE is avoided, and calculations are gen-
erally much less expensive (the problem of having a high
level of accuracy on total energies of each system is re-
moved). However, a number of difficulties are still
present. First, in order to perform the infinite summa-
tions over intermediate states involved in perturbational
quantities, exact eigensolutions of monomers are re-
quired. Unfortunately, it is known that exact or even ac-
curate correlated wave functions for atomic and molecu-
lar systems are in general not available. Consequently,
approximate wave functions must be used. Generally,
they are obtained from a self-consistent-field (SCF) calcu-
lation, so that the intramonomer electron correlation of
monomers is neglected. However, it should be pointed
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out that by using the decomposition of the exact Hamil-
tonian of each monomer into the complete Fock operator
and into the residual two-electron operator accounting
for the electron correlation (Moiler-Plesset-type decom-
position), and by applying the usual Rayleigh-
Schrodinger perturbation theory, one can express in prin-
ciple each perturbation contribution (with respect to the
intermolecular interaction potential) as an infinite series
of perturbation corrections due to internal correlation.
In practice, such a procedure is generally limited to the
calculation of leading corrections (e.g. , up to second or-
der in the internal correlation) and/or to some partial
infinite-order summation corresponding to specific classes
of diagrams (see, e.g. , Ref. 10). Another difficulty associ-
ated with ab initio perturbation theory is the problem of
summing efficiently infinite sums involved in perturba-
tional expressions. In particular, as pointed out by
Jeziorski and van Hemert" summations defined over the
infinite set of unoccupied orbitals belonging to the con-
tinuous spectrum are practically inexecutable integra-
tions. To overcome this difficulty, suitable variation-
perturbation schemes have been proposed. " In practice,
the achievement of a complete basis set is an obvious
shortcoming of such procedures. An additional well-
known difficulty common to any ab initio framework (su-
permolecular as well as perturbational approaches) is the
problem of adequately choosing the basis set to use for a
given physical problem. Due to the great sensitivity of
perturbation quantities with basis set, the use of judi-
ciously chosen basis sets turns out in fact to be essential.
Finally, it is known that computational aspects of ab ini-
tio techniques are not favorable. Codes are important,
complex, and many practical difficulties arise from calcu-
lation, storage, and manipulation of huge numbers of bi-
electronic integrals (with a very fast increase of the num-
ber of these integrals with the number of electrons treat-
ed).

In the present work, a method of evaluating perturba-
tion quantities by using quantum Monte Carlo (QMC)
techniques (e.g. , Refs. 12—17 and references therein) is
presented. The basic idea of this approach is to express
perturbational quantities of interest in terms of suitably
defined stochastic averages. The underlying stochastic
process from which averages are taken is a pure diffusion
process (a generalized Brownian process) constructed in a
simple way from some reference wave function (a detailed
presentation of this aspect may be found in Ref. 17). It is
demonstrated how the nth-order Rayleigh-Schrodinger
(RS) term bE~s' can be expressed as an (n —1)-time in-
tegral of the connected (cumulant) n-time autocorrelation
function of the perturbing potential (the intermolecular
interaction potential) with respect to the diffusion process
constructed from the exact ground-state wave function of
the unperturbed Hamiltonian (the Hamiltonian describ-
ing noninteracting dimer). It should be remarked that
this formula is very general (not restricted to intermolec-
ular interactions) and corresponds in fact to an alterna-
tive way of expressing RS perturbation theory in any or-
der. ' In addition, this new formulation appears to be
particularly compact, in contrast with the usual Bloch-
Bruckner formulation of the RS perturbation theory. '

By expressing stochastic averages defined from the gen-
erally unknown exact ground-state wave function of the
unperturbed Hamiltonian in terms of stochastic averages
defined from an approximate trial wave function, and by
resorting to standard Langevin simulation techniques, it
is shown how practical calculations of AE~z may be per-
formed. As concerns the exchange contribution responsi-
ble for intermolecular repulsion at small distances an ap-
proximate formula for the first-order exchange interac-
tion energy hE,'„",h (by far the leading contribution of the
total exchange interaction energy) is given.

An essential feature of the method presented here is
that no basis-set expansions are used. Resulting
difficulties described above are therefore avoided. Anoth-
er remarkable point is that infinite summations involved
in usual perturbational expressions do not appear in our
QMC formalism (in fact, they only appear implicitly, see
below). Accordingly, no approximate expressions for
eigenfunctions of each monomer are required. In prac-
tice, the only quantity needed for making exact calcula-
tions of perturbational quantities is an approximate
ground-state wave function for each monomer (e.g. , a
Hartree-Fock wave function or better an explicitly corre-
lated wave function). Another basic point which deserves
to be mentioned is that intramonomer correlation contri-
butions to perturbational quantities may be exactly taken
into account without basic practical difficulties. Finally,
we would like to emphasize that the computational as-
pects of the method are quite favorable (in fact, this is a
very general feature of all Monte Carlo approaches): (1)
memory requirements remain perfectly bounded (no cal-
culation and storage of bielectronic integrals) and (2)
codes are short, simple, and very well suited for vector
and parallel computing.

In a more general perspective, let us mention that a re-
cent proposal based on the renormalization-group ap-
proach for electronic structure ' ' could lead to an alter-
native way of computing interaction energies. However,
no realistic calculations (done at the level of the chemical
accuracy) have been performed so far.

The contents of this paper are as follows. In Sec. II we
present the basic theoretical elements of the method.
Section II A is devoted to the derivation of the basic for-
mula expressing AE~z in terms of stochastic averages. In
Sec. II B we present our approximate formula for calcu-
lating AE„,h. How to compute the stochastic averages

(1)

involved in both formulas is presented in Sec. II C. The
detailed theory including mathematical derivations may
be found elsewhere. ' Section II D briefly discusses how
to correctly introduce Fermi statistics for monomers
within the framework of the proposed method. Section
III is devoted to the presentation of some numerical re-
sults for the interaction of two helium atoms at short dis-
tances (ranging from 1.5 to 2 a.u. ). The essential motiva-
tion of such numerical application is to demonstrate the
applicability of theoretical expressions derived in Sec. II
and not to make a quantitative study of He-He interac-
tion. In any case, at the short distances studied corre-
sponding to a nonperturbative region of interaction, per-
turbational treatments for describing He-He interaction
would fail (note that an exact treatment of this region of
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interaction has been made by Ceperley and Partridge '

using a QMC supermolecular approach). Some calcula-
tions for AE~s, AE,",,'h, and AE~~ are presented. In or-
der to check the validity of the method our calculations
have been systematically compared to calculations per-
formed with an ab initio perturbational program based on
the Jeziorski —van Hemert approach. " The role of the
intra-atomic correlation contribution on perturbational
quantities (known to be particularly diKcult to evaluate
within ab initio frameworks) is briefly discussed. Finally,
some concluding remarks are presented in Sec. IV.

II. THEORY

where H denotes the Hamiltonian of the noninteracting
system M (M= A, B) and V is the intermolecular in-
teraction potential (atomic units are used)

Z Z0 Z—X
cE A jEB &j

—X X„+X X„
PEB iEA 01 i&A jEB "ij

where r,b
=

~ r, —rb ~. Roman indices label electronic
coordinates and Greek indices label nuclear coordinates.
Z„ is the charge number of nucleus p belonging to mole-
cule M (M= A, B). The normalized eigenfunctions of
the Hamiltonian H of isolated system M (M= A, B)
are denoted P, with the corresponding energies E, , thus
we write

HMPM EMyM (3)

The intermolecular interaction energy is defined as the
difference between the total ground-state energy Eo of
the complex described by the Hamiltonian H and the to-
tal ground-state energy of the two noninteracting subsys-
tems 3 and 8,

gE EAB (EA+EB)

As usual, the interaction energy is decomposed into two
contributions corresponding to the so-called Rayleigh-
Schrodinger and exchange parts of the interaction energy

AE =AE~s+ AE„,h

The Rayleigh-Schrodinger interaction energy corre-
sponds to the interaction energy obtained when antisym-
metry constraints on wave functions associated with the
possibility of exchanging electrons between each subsys-
tem are not considered. When full antisymmetry con-
straints are taken into account, the resulting increase in
energy is given by the exchange part AE„,h. Let us first
focus our attention on the Rayleigh-Schrodinger part of
the interaction energy.

Consider two interacting systems A and B (atom or
molecule). The total Hamiltonian of the complex, denot-
ed as H, is decomposed as usual into three different parts

H=H +H + V

A. nth-order Rayleigh-Schrodinger interaction energy

Within the framework of perturbational treatments,
AE&s is expressed as an infinite perturbation series of the
form

AE~s= g AERs ~

n=i

where n corresponds to the order in V . Let us show
how the nth-order RS interaction energy AEzz may be
expressed in terms of a suitably defined stochastic time-
correlation function of the intermolecular interaction po-
tential V . For that purpose, it is first noticed that the
RS interaction energy may be expressed in the following
form:

The validity of this expression is easily checked by mak-
ing use of the spectral representation of operator e ™.It
should be noted that the eigenvalue of H extracted by
Inaking the long-time limit is the lowest eigenvalue of H
whose corresponding eigenfunction has a nonzero over-
lap with $0"Po. This wave function obeys the same an-
tisymmetry properties as Pp Po and the interaction energy
obtained in Eq. (7) is therefore the RS interaction energy
and not the true physical one as defined by Eq. (4).

Now, our essential step consists in invoking the so-
called generalized Feynman-Kac (GFK) formula present-
ed elsewhere. ' ' Basically, this formula expresses the
quantum matrix element of the right-hand side of Eq. (7)
(actually, a slightly generalized version of the imaginary
time-dependent Green's function associated with H) as
an expectation value with respect to a suitable diffusion
process. This basic formula is written here in the form

(H gA ~B)
(yAyB~ o 0 ~yAyB)

exp — V X s ds 8—t/2
p ApB

0 0

where ( )» denotes the stochastic average over the
0 0

infinite set of stochastic continuous trajectories X(s )

[defined in the time interval ( —t l2, t I2)j of the underly-
ing diffusion process constructed from the wave function
$0"Po (Refs. 17 and 20). Here, X(s ) is a compact notation
for representing a point (at time s) in the 3(%A+KB)-
dimensional configuration space, that is X
=(r,",. . . ,rg, r, , . . . , r~ ), where NA and XB are the

numbers of electrons of molecule A and B, respectively.
At this stage, we shall not define the exact meaning of
this stochastic average and the way of computing it in a
Monte Carlo simulation. This will be done in detail in
Sec. II C.

Our next step consists in taking advantage of the fact
that the previous stochastic average is a genuine average
operation (in the Kubo sense, see Ref. 23) so that it is
possible to resort to standard cumulant expansion
methods. Applying a theorem due to Kubo (theorem II
in Ref. 23), the averaged exponential in the right-hand
side of formula (8) may be rewritten as the exponential of
a cumulant expansion
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exp — VAB X 5 ds—t/2 pApB

+ „ t/2 t

=exp g (
—1)"f dt„ f dt„, . f dt, (V (X(t, )) V (X(t„)))',

n =1 —t/2 —t/2 —t/2 &0 &o
(9)

where ( )'„Bare the usual cumulant averages which are known to be expressed as some weil-defined linear combina-

tion of products of same and lower-order moments (as pointed out by Kubo, c may be as well understood as connected
in the sense given to this word in the techniques of graphical representation). Note that for the sake of clarity a super-
script notation for c is employed here instead of the more commonly used subscript notation. By making use of Eqs.
(7), (g), and (9), the RS interaction energy takes the form

+ 00 t/2
bERs = — lim g (

—1)"f dt„ f dt„, . f dt, ( V (X(t, )) V (X(t„)))'„B .
+ oo Bt —t/2 —t/2 —t/2

n =1
(10)

Now, it is important to note that, due to the stationarity property of the diftusion process, all the cumulants involved in
the preceding expression are only functions of the time diA'erences t; —t; 1. It is therefore possible to perform a time-
shift of length t /2 on each variable of integration and then to make the time derivative, one obtains

+ oo t2
AE„s = — lim g (

—1)"f dt„,f dt„, f dt, ( V "B(X(t, ) ) V "B(X(t„,) ) V ~B(X(t ) ) ) ' » .
t —++ co 0 0 0 0 0

By making t e following change of variables: u, i
—u, z=t; —t; 1 (i =2 to n with t„—:t and uo ——0) and by invoking

once more the stationarity property, the nth-order contribution of Eq. (11), AE'asI may be finally written in the form

u

gE~gs) =( —1)"+'f du„, f du, ~
. f du, ( V (X(0))V" (X(u, )). . . V" (X(u„,)))'„B .

0 0 0 0 0
(12)

This is our final form for the nth-order RS perturbation term as a function of the n-time connected (cumulant) auto-
correlation function of the intermolecular interaction operator with respect to the underlying diAusion process. It
should be emphasized that this form is very compact, in contrast with the standard Bloch-Bruckner formulation of the
RS perturbation theory in any order (see, e.g. , Ref. 19).

Let us briefiy explain how to recover standard expression for b,E~as) from our formula (12). In order to make explicit
the nth-order cumulant, kth-order correlation functions of the perturbing potential are needed (k =1 to n). Using the
very basic definition of stochastic averages in terms of the underlying probability densi, ties, the kth-order correlation
function of V is written

/t —1

(V" (X(0)) . V" (X(u„,))) „=f dx . . dx„,p(x )V (x ) Qp(x;, x;, u; —u;, )V (x, ),
i =1

(13)

p(x) =(Po"Po )'(x) (14a)

(yAyB(y)
p(x~y, u )= g (P, P, )(x)(P,"P, )(y)

(Po Po )(x), ,
—u(E. +E. —E —E )

A 8 A 8
i j 0 0

(14b)

with uo
——0 and where p(x) and p(x~y, u ) denote the

stationary and transition probability densities of the
diA'usion process, respectively. These densities may be
expressed in terms of the eigenfunctions P, P (with cor-
responding energies E;"+E ) of the unperturbed Hamil-
tonian Ho=H "+H as follows [see Eqs. (2.7) and (2.13)
in Ref. 17]:

Schrodinger perturbational components in terms of corn-
bination of multiple summations over the complete set of
eigenfunctions of the unperturbed Hamiltonian H +H
are recovered. Let us derive the two first perturbational
contributions. The first-order interaction energy is readi-
ly obtained; one has

gE(1) ( VAB)c ( VAB)Rs y ApB p ApB ~

Now, since the stationary density of the di6'usion process
is nothing but the quantum-mechanical probability densi-
ty associated with Po $0 IEq. (14a)], the usual expression
for AERs is recovered:

gE") =(y "yB~ V»~y~yB)

Applying the general formula (12) to the case n =2 and
using expression of the second-order curnulant

After having inserted expressions (13) and (14) into Eq.
(12) time integrals may be easily performed. Once this is
done, standard expanded expressions of Rayleigh-

(x,x, )'= ((x, —(x, ) )(x, —(x, ) ) },
the second-order RS interaction energy takes the form

(17)



43 QUANTUM MONTE CARLO PERTURBATION CALCULATIONS OF. . . 2143

aZ,",' = —f du ((V"—( V"'&...,)(X(O))( V"'—
&
V"&...,)(X(u )) &..., .

0
(18)

Using the basic definition of stochastic averages in terms of probability densities, one obtains

bEiRsi= —f du f f dxodxip(xo)[V (xo) —( V" ) A B]p(xo~x, , u)[V" (x, )
—( V" ) A B] .

0
(19)

By using Eqs. (14) and performing the time integral, ex-
pression (19) is finally found to be

[(yAyB~ VAB~yAyB) ~2

~ A +FB (g A+~B) (20)

B. Exchange interaction energy

In this work, we shall limit ourselves to the calculation
of the first-order exchange contribution which is by far
the leading contribution of the exchange interaction ener-

gy. Following standard symmetry-adapted perturbation
theories, ' the complete first-order interaction energy is
written

which is nothing but the usual expression for the second-
order term (here, the prime in g' means as usual that the
term corresponding to i =0 and j=0 is excluded from
the summation). Higher-order perturbational terms
would be recovered in the same way.

( qAqB~ V ABJ
~ qAqB )

(23)

Jastrow-like pair-correlation factors introduced to allow
explicitly for electron correlation in the wave function,
subscripts LS and US being introduced in order to distin-
guish between like spin (LS) and unlike spin (UL)
electron-electron correlation factors (for more details on
wave functions see, e.g., Refs. 14, 15, and 24 —26). Final-
ly, IP,. ] is some set of one-particle atomic or molecular
space orbitals and a and P represent usual spin functions.
For the sake of clarity only expressions for two interact-
ing closed-shell systems having the same number of elec-
trons (here denoted N will be derived. Generalizations
to different numbers of electrons N~ WNz and/or to
non-closed-shell systems do not involve particular
difficulties. Now, since our Monte Carlo approach is
defined within a spin-free framework, spin variables in
Eq. (21) must be integrated out. Once this has been done,
AE'" may be rewritten in the following form:

aE'"=
& a,"e,'i a

i a,"e,'& (21)

Vo = 3 ~(expULsexpUUsX Xp ), M= A, B (22)

where X =ii, P, a and Xti =ii;P; P. The symbol 2 z
stands for the intramonomer antisymmetrizer acting on
space and spin coordinates of the N electrons of system
M; functions Uz s and UUs are some fully symmetric

where A is the full antisymmetrizer of the interacting su-

persystem (intra- and intersystem permutations are both
considered) and where 4o (M= A, B ) denotes the com-
plete exact wave function of system M (depending on
both space and spin coordinates). Now, especially be-
cause A is a nonlocal operator mixing coordinates of
each subsystem, to derive an exact expression of AE"'
suitable for Monte Carlo simulation is not a trivial task
(it involves off-diagonal matrix elements). In the present
work, we did not investigate such a possibility. We shall
content ourselves with giving a high-quality approximate
expression for AE'". To do that, some approximate trial
wave function +o (M = A, B ) for representing each
monomer will be employed. Note that such an approxi-
mation is similar to that used when doing variational
quantum Monte Carlo simulation for calculating total en-
ergies (see, e.g. , Ref. 24). However, it should be em-
phasized that no variational property holds here for such
a perturbational component. A well-known feature of
any QMC approach is that no basic limitations on the
form of the trial wave function to be used are required.
Here, following previous works (e.g. , Refs. 12—17), we
shall use an explicitly correlated wave function for
describing monomers:

where only space-dependent functions and space integra-
tions are involved. Here, 1(o (M= A(, B ) denotes the
space-dependent part of the trial wave function (22) and
A is an effective local operator depending only on space
coordinates of monomers 2 and B [expression (27b)
below]. To show this, we take advantage of the following
equalities:

(24a)

and

——N —N

and then rewrite AE" ' in the form

( g (P A B
i

V. AB
i
g (y AB )

( gq)AB g(pAB)

(24b)

(25a)

( g g yAB~ VAB~ AI g y "B)
gE( i )—

( ~„w„y"'~~ a y" )
(26a)

where

exp( ULs+ UUs)exp( U„s+ U„, )X X Xt3Xti

(25b)
Now, let us remark that AE"' as written in the form
(25a) is nothing but the average of a spin-independent
operator V with respect to a properly antisymmetrized
wave function for the dimer, AN . Spin integrations
may be easily performed and the resulting expression in-
cludes only space antisymmetrizations over a and 13 elec-
trons separately. More precisely, we have
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where P (depending only on space coordinates) is given
by

=exp( Ui"s + UUs )exp( U„s+ UUs )

~N ~NBA

qAqB

2

(27b)

N Np

x II&,'y', ll & (26b)

N/2 N/2

p(U +U„)A QP A QP M=& B

and 3 the effective function is given by

Quantities AN (y=a, p) refer here to space- antisym-

metrizers with respect to the N electrons of spin y (be-

longing to both AI and B monomers). Finally, b,E"' may
be written in the form (23) where ito (M= AI, B) are usu-

al space-dependent trial wave functions for monomers 2
and 8.

In Eq. (27a) Az&z stands for the intramonomer antisym-
metrizer acting on space coordinates of the N/2 elec-
trons of system M with the same spin. It should be em-
phasized that in contrast with expression (27a) in which
the total Jastrow factor is invariant under the action of
AN/2AN/2 and then can be factorized out, the Jastrow
factor involved in P" [Eq. (26b)] is not invariant under
AN AN (because of exchanges between electrons of same

a P
spin of systems 3 and B) and then cannot be factorized
out when this operator is applied to P" .

Now, by using the decomposition

(28)

the total first-order energy given by Eq. (23) may be ex-
pressed as a sum of two contributions corresponding to
some approximate Rayleigh-Schrodinger first-order in-
teraction energy and to the approximate first-order ex-
change interaction energy resulting from 3 in which we
are interested here:

(qAyB~ J ~qAqB) (qAqB~ V B~qAqB) (qAqB~ VABJ tqAqB)

( qAqB~ g i qAyB)
(29)

By rewriting quantum averages involved in Eq. (29) as
one-time stochastic averages with respect to the approxi-
mate diffusion process constructed from otto go [admitting

(Po $0) as stationary density, see details of Sec. II C],
AE,",,'h takes the final following form suitable for Monte
Carlo simulation:

( v"'(x(o) ) v"'(x(,„
walim

(31)

(1)
~+exch =

( ~ ),„,,( v")...,—( v"'~ ')...,0 0 0 0 0 0

0 0

(30)

where the infinite length stochastic trajectory X(s ) is gen-
erated by using the Langevin equation associated with
the underlying diffusion process, namely,

dx(t)=b(x(t))dt+dW(t), (32)

C. The calculation of stochastic averages

In this section the problem of computing stochastic
averages introduced in the preceding sections [more pre-
cisely, kth-order correlation functions involved in Eq.
(l2) and one-time averages of Eq. (30)] is addressed. Let
us first focus our attention on the computation of kth-
order correlation functions as defined in Eq. (13). In
principle, the computation of such quantities may be easi-
ly performed by merely averaging successive values of the
product V (X(0)) . . V (X(ui, , )) along any sto-
chastic trajectory of the underlying diffusion process con-
structed from the reference unperturbed Hamiltonian
H +H, ' that is

where W represents the multidimensional Wiener process
and b, the drift vector, depends only on the ground-state
wave function of the unperturbed Hamiltonian $0 $0 as
follows 7

b Py AyByy AyB (33)

In practice, such a scheme is impossible to perform since
the ground-state wave function of monomer
M (M = A, B ) is generally unknown. To escape this
difficulty we introduce a new diff'usion process defined
from a known trial wave function Po (M= A, B) for
each monomer. For that purpose, let us construct a new
reference Hamiltonian H' ' admitting $0 as ground-
state wave function. This may be trivially done as fol-
lows:
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H(0)M ] g+ y(0)M
2

with

(34a) ing as the intramonomer local energy EL associated with
yM.

V(0)M ) gyM)qM+E(0)M (34b)
EM —HMqM)yM (37)

where 5 denotes the 3AM-dimensional Laplacian opera-
tor, XM being the number of electrons of monomer M,
and Eo ' some arbitrary reference energy associated
with H' ' . It is elementary to verify that

H (0)MqM E (0)M qM (3&)

HM ~(0)M+HMqM)qM E(0)M M g B (36)

The basic quantity H p0 /g0 is referred to in the follow-

The complete Hamiltonian H of monomer
M (M= A, B ) may now be written in the form

Roughly speaking, the magnitude of this quantity (actual-
ly, a function of all particle coordinates) is a measure of
how much the unknown exact wave function p0 and the
used trial wave function 1()0 are different. Note that
when the trial wave function is chosen to be identical
with p0, the intramonomer local energy reduces to a con-
stant (namely, the exact energy E0 ) and one obtains
H =H' ' . Now, by constructing the reference
diffusion process from the trial wave function f0"p0 and

by making use of the CzFK formula as explained in Ref.
17, the previously defined stochastic averages can be ex-
pressed as stochastic averages with respect to this new
diffusion process. Let us write the quantity in which we
are interested here, namely, the k-time autocorrelation
function of the intermolecular interaction operator

( V" (X(0)) V" (X(u(, ) ) ) )~g~))
0 0

limt~+ oc

V" (X(0)) V" (X(u„,))exp —f (E +E E' '" —E—' ' )(X(s))ds—t/2
p ApB

exp —f (E +E E' '" E'—' )(X(s—))ds—r/2
g ApB

0 0

with —t/2(0+u& . . +u&
&
&t/2.

The main steps of our approach for practical computa-
tions of hE'R"s may be then summarized as follows.

(1) Use formula (12) to express EE(Rs) in terms of a suit-
able combination of time-correlation functions with
respect to the diffusion process constructed from p0"(()0.

(2) Resort to formula (38) to express stochastic aver-
ages defined over the diffusion process built from the gen-
erally unknown ground-state wave function p0 p0 in
terms of stochastic averages defined over the diffusion
process built from the chosen trial wave function p0")t 0.

(3) Calculate stochastic averages involved in the right-
hand side of Eq. (38) by resorting to the ergodic formula
(31) (merely add the Feynman-Kac exponential weight),
the stochastic trajectory being generated using a discre-
tized version of the Langevin equation (32) in which the
drift vector is constructed from g0 g0. In actual fact, it is
appropriate to introduce, instead of a single very long
trajectory, a set of shorter trajectories since the corre-
sponding set of time averages may be used for evaluating
the variance using standard statistical methods.

As concerns the computation of the first-order ex-
change interaction energy, it is readily done by taking
one-time averages of the integrand involved in formula
(30) along stochastic trajectories of the diffusion process
constructed from the trial wave function g0 g0.

D. Fermi statistics for monomers

Up to now, we did not pay attention to the problem of
imposing fermion statistics for each monomer. In the
preceding sections, formulas have been derived by impli-
citly assuming that a fixed-node approach for monomers
was employed. Indeed, the trial wave function p0"p0 was
supposed to obey the correct antisymmetry properties
with respect to internal exchange of electrons within each
monomer (no intermonomer exchanges of electrons). In
practice, such a condition may be fulfilled by antisym-
metrizing independently electrons of spin up and down
for each monomer (see Ref. 17 and references therein).
When computing first-order observables (that is, mere
one-time averages of local operators with respect to the
trial wave function, the total energy for example), it is
well known that such an approach generally introduces a
bias in results due to an eventual error in the fixed loca-
tion of the nodes of the trial wave function. The resulting
approximation, known as the fixed-node approximation,
has been extensively described in many works. ' ' '
Here, it is important to realize that we are in somewhat
different situation. In contrast with the usual case where
only a very good approximation of the unknown ground-
state wave function is needed, the computation of the @-

time correlation functions implicitly requires the com-
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piete set of eigenfunctions of the reference Harniltonian
constructed from the trial wave function [Hamiltonian
defined by Eq. (34)]. To be more precise, let us write
which transition probability density is introduced when a
fixed-node framework for each monomer is used:

p( y, )= „—g(()," ( )P,
" (y)

yFN(x)

(39)

where (ttt,",E, ) denote the fixed-node eigensolutions of
the reference Hamiltonian (34). These eigensolutions are
those obtained by imposing aO eigenfunctions of H' ' to
vanish wherever the ground-state wave function $0
vanishes. In particular, excited states obtained in that
way may be very different from the correct ones which
actually have no reason to vanish at the same locations as

Accordingly, a u)rong dynamics for the underlying

diffusion process is introduced and an a priori uncon-

trolled error for correlation functions is made. It is quite
important to stress that such an error does exist, even if
exact nodes for the trial wave function would be used. As

a consequence, it is never a priori justified to use a fixed-

node framework for computing multiple-time correlation
functions. To escape this difhculty, projection methods
or some form of them' ' ' ' (simple projection method,
release-node projection, or nodal relaxation methods)
must be used. This type of approach has already been de-

scribed elsewhere. ' ' In a few words, the essence of
these methods consists in using a bosonic-type nonvan-

ishing wave function as trial wave function and to remove
bosonic components by making use of projection func-
tions having correct fermionic antisymrnetry properties.
Let us denote as f and g two such projection functions;
the exact nonbiased autocorrelation function of V is

then written

( V (X(0)) . V (X A.

f(X( —t /2) ) V" (X(0))
r/2

V" (X(uk
~
))g(X(t/2))exp —f (EL"+EL —E&e'~ —Eo —'s )(X(s))ds

t/2
f(X( —t/2))g(X(t/2))exp —f (EL '+Et ' EIt

'" —Ee ' —)(X(s))ds (40)

where ttto $0 is a bosonic (nonvanishing) trial wave func-
tion. From a practical point of view, it is important to
recall that Monte Carlo procedures based on projection
methods are much less stable than those based on a
fixed-node approach. We shall return to this point in our
final discussion of the concluding section.

written in the form

0.5r12
1(0™(r„r,) =exp

1 +ar12

X exp

exp
2+br M1

)+bM

(43)

III. NUMERICAL APPLICATIONS

qp (r) r2) IsM(&] )ls~(r2) (41)

where the optimized lsM orbital (centered at nucleus M)
is built as a linear combination of five Slater orbitals,
namely,

1 (sr)= g c;e ', M=A, B . (42)

In order to demonstrate the applicability of formulas
derived in the preceding sections, some test calculations
for the interaction of two helium atoms at small distances
have been performed. Results have been systematically
compared to those obtained by using standard ab initio
techniques. In what follows, two different trial wave
functions for the helium atom are employed. The first
trial wave function is the Hartree-Fock wave function
proposed by Clementi and Roetti, '

where r, denotes the distance between electron
i (i =1,2) and nucleus M (M= A, B). By employing
this form, it should be remarked that all two-particle
cusp conditions are fulfilled, namely

(I/)tt)(B)jt/t)r, 2)~„o=—,
' (electron-electron cusp condi-

12

tion for unlike spins) and (1/1')(t)p/t)r, ) ~„0=—Z

(electron-nucleus cusp condition for an infinite mass nu-

cleus of charge number Z). In addition, a Pade form for
both correlated and Slater parts of the trial wave function
has been chosen. Parameters involved in Eq. (43) have

been adjusted in an exact QMC calculation of total ener-

gy of the He atom so as to achieve the lowest variance on
the estimator of the ground-state energy. Some features
of both trial wave functions are presented in Table I. In
the following, electrons labeled 1 and 2 (respectively, 3

and 4) are arbitrarily assigned to atom A (respectively
atom B). Using this convention, the intermolecular in-

teraction operator V is written

Coefficients and exponents may be found in the tables of
Clementi and Roetti. ' Our second trial wave function is
a more sophisticated wave function which explicitly con-
tains the interelectron coordinate r&2 to properly describe
the electron-electron interaction at small distances. It is

2 2 2

"1B "2B

1

r 13 14 r23 r24

V" (r(, r2, r3, r4)=
rAB

(44)
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TABLE I. Some features of trial wave functions used. ' TABLE II, Hartree-Fock first-order RS interaction energy. "

Properties
Hartree-Fock

wave function
Correlated

wave function' Rb
~+RS

(QMC)'
~+RS

(ab initio)
~E'RS

(exact)'

Correlation
energy
(r„)

—2.861 68
0%

1.362(1)

—2.8983(1)
87%

1.4247(6)

A. First-order interaction energy

'All quantities are given in atomic units. Statistical uncertain-
ties on QMC results are indicated in parentheses.
"Equations (41) and (42), see Ref. 31.
'Equation (43) with a =0.3 and b =0.1.
Defined as the difference between the exact nonrelativistic and

Hartree-Fock total energies.

1.5
1.6
1.7
1.8
1.9
2.0

—0.0805(4)
—0.0686(4)
—0.0575(5)
—0.0477(4)
—0.0390{3)
—0.03 18(2)

—0.0807
—0.0688
—0.0577
—0.0478
—0.0392
—0.0319

—0.0806
—0.0686
—0.0575
—0.0476
—0.0391
—0.0318

'All quantities are given in atomic units.
Interatomic separation.

'Using Eq. (45a). Statistical uncertainties are indicated in

parentheses.
"Ab initio calculation using ten Gaussian functions for
representing 1s orbital (42).
'Exact analytical evaluation of Eq. (45a).

hE" I = ( V )
0 0

(~ )„...(V"&...,—(I'"'~ ')...,0 0 0 0 0 0

1 —(W'& ...
(45a)

(45b)

Expectation values involved in Eqs. (45) may be evaluated
as one-time averages with respect to the diA'usion process
constructed from gp ttp. It should be remarked that they
are simply six-dimensional integrals and therefore it
would be possible here to resort to any efficient integra-
tion procedure to calculate them. However, let us em-
phasize that such procedures would no longer be useful
when considering calculation of exact quantities (such as
the exact first- and second-order RS interaction energies).
A practical difficulty encountered when using a finite
time step for integrating the Langevin equation (32) is the
occurrence of the well-known short-time approxima-
tion. ' ' ' Indeed, the transition probability density
used to generate stochastic trajectories (corresponding to
a discretized form of the Langevin equation) is only an
approximate version of the exact one, for example, in the
simple G aussian approximation,

1 Iy —x —b(x)b, t ]p(x~y, b, t ) = exp
(2rrb, t )'"

Let us first present some approximate calculations of
first-order Rayleigh-Schrodinger and exchange interac-
tion energies. For that we shall set the intramonomer lo-
cal energies IEq. (37)] to zero. Such an approximation
consists in neglecting internal fluctuations due to the
nonexactness of the trial wave function ttp ttp used. As
already pointed out, this approximation is similar to the
approximation made when doing variational quantum
Monte Carlo simulations for calculating total energies,
except that no variational property holds here for such
variational components. Rewriting Eq. (15) by replacing
the exact ground-state wave function by the approximate
trial wave function, and Eq. (30), the following expres-
sions for DER's and AE,",,'h are obtained:

TABLE III. Hartree-Fock first-order exchange interaction
energy. "

R

1.5
1.6
1.7
1.8
1.9
2.0

(QMC)'

0.508(11)
0.412{6)
0.334(8)
0.268{4)
0.215(4)
0.172(5)

(l)
exch

(ab initio)

0.513
0.415
0.335
0.270
0.218
0.175

'All quantities are given in atomic units.
Interatomic separation.

'Using Eq. (45b). Statistical uncertainties are indicated in
parentheses.

Ab initio calculation using ten Gaussian functions for
representing 1s orbital (42).

and therefore calculated stationary averages are subject
to a finite time-step error. One possible way of removing
this error consists in imposing the detailed balance condi-
tion in the Monte Carlo simulation. Doing that, a non-
biased stationary density is constructed. In practice, de-
tailed balancing is ensured by accepting moves from x to
y with a probability P p, given by

(ep'40)'(y)p(y x, »)
(47)

(Pp Pp ) (x)p(x~y, b, t )

where p(x~y, ht ) is the short-time Gaussian approxima-
tion (46) of the exact unknown transition probability den-
sity. This procedure may be viewed as a generalized ver-
sion of the well-known Metropolis algorithm in which the
usual initial random displacement is replaced by a
Langevin move generated through Eq. (46).

Tables II and III present Hartree-Fock calculations
performed by using form (41) of the trial wave function.
Quantum Monte Carlo results for b.E Izs and hE, „",h
(second column of Tables II and III, respectively) are
compared to ab initio calculations performed with a large
Gaussian basis set (ten Gaussian functions for represent-
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TABLE IV. First-order RS interaction energy using diff'erent

wave functions. '
TABLE V. First-order exchange interaction energy using

difterent wave functions. '

1.5
1.6
1.7
1.8
1.9
2.0

HF wave
function'

—0.0805(4)
—0.0686(4)
—0.0575(5)
—0.0477(4)
—0.0390(3)
—0.0318(2)

Correlated wave
function

—0.0818(4)
—0.0693(4)
—0.0578(3)
—0.0476(2)
—0.0388(2)
—0.0314(2)

Exact wave
function'

—0.080(4)
—0.068(3)
—0.057(3)
—0.048(3)
—0.039(2)
—0.032(2)

1.5
1.6
1.7
1.8
1.9
2.0

HF wave function'

0.508(11)
0.412(6)
0.334(8)
0.268(4)
0.215(5)
0.172(5)

Correlated
wave function

0.566(12)
0.450(10)
0.358(10)
0.284(9)
0.226(8)
0.178(7)

'All quantities are given in atomic units. Statistical uncertain-
ties are indicated in parentheses.
Interatomic separation.

'Equations (41) and (42), see Ref. 31.
Equation (43) with a =0.3 and b =0.1.

'Equation (48).

ing ls orbital taken from the van Duijneveldt tables ).
G-aussian basis-set calculations are presented in the third
columns of Tables II and III. In addition, exact results
for AE Rs obtained by performing space integrals in-
volved in Eq. (45a) are given (last column of Table II). Of
course, such exact integrations are possible only because
the Hartree-Pock wave function (41) has a very simple
structure. Agreement between exact and/or ab initio re-
sults and QMC results is excellent (within statistical er-
rors). Calculations of first-order RS and exchange in-
teraction energies with the explicitly correlated wave
function (43) are displayed in Tables IV and V, respec-
tively. It is seen that using a highly correlated wave func-
tion for describing each monomer does not change
significantly the Hartree-Fock results obtained for AERs,

'All quantities are given in atomic units. Statistical uncertain-

ties are indicated in parenthesis.
Interatomic separation.

'Equations (41) and (42), see Ref. 31.
Equation (43) with a =0.3 and b =0.1.

at least for the small distances studied. Such a conclusion
will be confirmed below from exact calculations of AERs.
In contrast, AE,",,'h appears to be slightly more sensitive

to intra-atomic correlation. For all distances, the effect
of correlation seems to be to increase Hartre-Fock re-
sults. It should be noted that a similar conclusion has
been obtained within the framework of ab initio calcula-
tions using CI wave functions, ' for larger distances (R
ranging from 3.0 to 7.0 a.u. ).

Let us now present some exact calculations of the
first-order RS interaction energy. The basic expression
for practical calculation of AERs is obtained by rewriting
expression (15) in terms of stochastic averages with
respect to the diffusion process built from $0 go IFq. (38)]
and by resorting to the property of ergodicity of the
diffusion process IEq. (31)]. One gets

5E"' = lim lim
g —++ oo 7—++ Go

/

—f exp —f (E~ +E~ E,"' E,' ' )—(X(s))—ds dr
T 0 —t /2+z

V" (X(r))exp —f (EL"+EL Eo ' —Eo ' )—(X(s))ds dr
T 0 2+T

(48)

where X(s ) is an arbitrary stochastic trajectory of the
diffusion process built from go"Po. In contrast with

preceding approximate evaluations of AERs which were
based only on the use of the stationary density, formula
(48) also makes use of the dynamical properties of the
diffusion process. Accordingly, exact calculations of
AERI'z [using Eq. (48)] are subject to the short-time error
resulting from the nonexact form of the transition proba-
bility density used. The usual way of handling this prob-
lem is to repeat calculations for different values of the
time step At and then to extrapolate results to zero time
step by using a more or less sophisticated extrapolation
procedure (see, e.g. , Refs. 14, 17, and 32). Exact calcula-
tions of AE s displayed in the last column of Table IV
have been obtained with At =0.01 a.u. For such a time
step, the short-time error turned out to be smaller than
statistical fluctuations. Accordingly, results of Table IV
may be essentially considered as exact within the statisti-

B. Second-order Rayleigh-Schrodinger
interaction energy

Calculation of the second-order RS interaction energy
is based on Eq. (18):

gE(2) ( c (49)

cal noise. It is seen by comparing the second and last
columns of Table IV that for distances ranging from
R = 1.5 to 2.0 a.u. , no differences appear between
Hartree-Fock and exact results (up to statistical fluctua-
tions). It is therefore concluded that intra-atomic corre-
lation contribution to AE'Rs is certainly negligible at
these small distances.



43 QUANTUM MONTE CARLO PERTURBATION CALCULATIONS OF. . . 2149

C'(u )= ( V" (X(0))V" (X(u )) ) (50)

where C'(u ) is the connected two-time autocorrelation
function of V with respect to the diffusion process con-
structed from Po (t o, namely,

V "~=V "~—( V" )». By expressing the sto-

chastic average in terms of stochastic averages with
respect to the diffusion process constructed from fo $0
[Eq. (38)] and by making use of the ergodic property (31),
the following expression suitable for computational pur-
poses is obtained:

V" (X(r))V" (X(r+u))exp —f (E "+E EI —' E' ' )—(X(s))ds dr
C'(u ) = lim lim

and the numerical evaluation of this expression is per-
formed as usual. On the other hand, by using the basic
definition of stochastic averages in terms of probability
densities [Eq. (13)] and by resorting to expressions (14)
for these densities, the following form for C'(u ) is ob-
tained:

i j 0 0
—u(E.'+E —E' —E )

(52)

Accordingly, it is seen that C'(u ) is written as an infinite
sum of real exponentials with true excitation energies of
the noninteracting systems as exponents, and squared
centered transition moments of V as amplitudes. Due
to this form, it is natural to fit the calculated function C'
by a function expressed as a sum of a finite number of
real exponentials, namely,

—~, uC'(u)= g c, e (53)

At the distance studied (R =2 a.u. ), this fit was per-
formed from a set of 50 calculated values of C' uniformly
distributed in the time interval (0,2). The method used to
perform the fit is a recently proposed method based on a
Pade analysis of the Laplace transform (or eventually
other integral transforms) of the function to analyze.
This method is presented in detail elsewhere (see Ref. 37).
We found out that a three-real-exponentials description
was sufficient to correctly describe our data. The follow-
ing amplitudes and exponents have been obtained:

c, =0.033 77, X, =1.7539,

cq =0.080 87, k2= 5.4948,

c3 0 063 04~ A3: 19 025

The autocorrelation function obtained for the intra-
atomic distance R =2 a.u. is presented in Fig. 1 ~ Note
that the statistical fluctuations for all data are rather
small, except at the initial time value u =0. This feature
is explained as follows. From expression (52) of C'(u ), it
is seen that C'(0) is nothing but the average of
the squared centered potential C'(0)
= ( Po Po l ( V" )

l Po"Po ) . When a particle of A (respec-
tively, 8) is close to a particle of B (respectively, A), this
latter quantity is essentially given by ( I /r ), where r is
the interparticle distance. This average has a well-defined
value but an infinite variance. Special techniques for han-
dling this difficulty could be used (such as the introduc-
tion of a cutoff as made in Ref. 38). However, it should
be noted that this difficulty occurs only for u =0. Ac-
cordingly, in order not to bias our analysis, we decided to
remove the initial point from the set of data used to per-
form the fit. However, it should be noted that the initial
value was correctly recovered by the fit function (53).
The result obtained for AE' s at R =2 is presented in
Table VI and is compared with an ab initio SCF perturba-
tional calculation of the same quantity (method presented

0.201

0.15

O

O
C

0.10—
C0

o 005—

Having an analytical expression of the autocorrelation
function, EEL& is readily obtained from Eqs. (49) and
(53); one obtains

'0 0.5 1.0 l.5
time (arb. units)

2.0

(54)
FIG. 1. The autocorrelation function of the intermolecular

potential computed by Monte Carlo simulation vs the time u

[Eq. (50)].
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TABLE VI. Second-order RS interaction energy. '

R 6E"' (QMC)'

—0.0375(11)

~E(R's) (scF)'
—0.030

'All quantities are given in atomic units.
Interatomic separation.

"'Equations (49) and (51). Statistical uncertainites are indicated
in parentheses.

Ab initio SCF calculation, see text.

in Refs. 11 and 22). The numerical calculation was car-
ried out by using an (8s, 3p, 2d ) Gaussian basis set. The
major conclusion resulting from comparison between ex-
act and Hartree-Fock calculations of AE~z is that intra-
atomic correlation contribution to AE&& is important.
At the distance studied (R =2 a.u. ), it accounts for more
than 20% of the exact value. It is therefore essential to
take account of such a contribution in any accurate cal-
culation of interaction energies.

IV. DISCUSSION

Let us summarize what has been done in the present
work. First, a very compact expression for the nth-order
Rayleigh-Schrodinger perturbational energy has been de-
rived within the framework of diffusion processes [Eq.
(12)]. This formula expresses the nth-order component of
the energy as an (n —1)-time integral of a connected
correlation function of the perturbing operator. It should
be stressed that it is a very general formula which can be
used in any problem for which a perturbational approach
is desired. However, in the present work we focused our
attention on a specific application: the calculation of per-
turbational components in intermolecular interactions.
In order to be able to compute the main part of the ex-
change interaction energy (a contribution resulting from
the change of antisymmetry properties between the
monomer and the interacting dimer), a high-quality ap-
proximate expression for this quantity (defined beyond
the commonly used Hartree-Pock approximation) has
been derived. In order to demonstrate the feasibility of
our new approach we have carried out some test calcula-
tions for the interaction of two helium atoms at small dis-
tances. For this small system comparisons with more
standard calculations using ab initio techniques are very
satisfactory. Potential advantages of this new approach
with respect to commonly employed ab initio methods
may be summarized as follows.

(1) No basis-set expansions are used. Accordingly,
well-known difficulties associated with basis-set calcula-
tions are avoided.

(2) Infinite summations appearing in the usual Bloch-
Brucker formulation of perturbational components are
not performed. Consequently, good representations of the
infinite (continuous) set of excited wave functions and cal-
culations of transition matrix elements of the perturbing
operator between all intermediate states are not needed.
Actually, the resolvent of the unperturbed Hamiltonian
(responsible for the occurrence of infinite sets of inter-

mediate wave functions in the usual formalism) is impli-
citly taken into account through the transition probabili-
ty density [see Eq. (14b)] of the underlying diffusion pro-
cess. In practice, the transition probability density may
be easily simulated [from Langevin equation (32)] only by
using an approximate expression of the ground-state
wave function of the unperturbed Hamiltonian.

(3) Quantities difficult to evaluate within ab initio
frameworks, such as intramonomer correlation contribu-
tions or high-order perturbational terms (third order, for
example) are in principle easy to evaluate.

However, a number of potential difficulties may also
exist.

(1) When applying formula (12) to systems involving
fermions, it has been seen that the fixed-node procedure
must be avoided, whatever the quality of the nodes of the
trial wave function used. By making use of a projection
approach, this problem may be in principle solved. How-
ever, it is known that such approaches are in general
quite unstable numerically due to the sign problem. Only
realistic calculations on bigger systems will permit one to
give a precise answer about the feasibility of such a pro-
posal. However, let us once more emphasize that this
problem disappears when bosonic-type systems (or more
generally when no change of symmetry between the un-
perturbed and total Hamiltonian occurs) are treated.

(2) It is not clear at this stage what the dependency is
of statistical fluctuations on the order of the perturba-
tional component considered. Here also the importance
of such a difhculty could be very dependent on the system
treated and on the quality of the trial wave function used.

The next step of this work will be to make calculations
for interaction of bigger systems [such as (LiH)2, Be2, or
(HzO)2, for example]. Expected practical limitations of
the method result essentially form present limitations of
QMC methods for treating monomers. Indeed, it is
known that a serious increase of statistical fluctuations
with the number of electrons treated is observed for
atomic and molecular systems (see, e.g. , discussion in
Ref. 39). In the present method, this means that an in-
crease of statistical fluctuations on intramonomer local
energies must be expected when treating systems of in-
creasing size. In practice, calculating interaction of sys-
tems having up to ten electrons should be considered as a
reasonable limit at the present time. However, it is clear
that any future improvement in the efficiency of quantum
Monte Carlo methods for treating electronic structure
would directly improve the practical possibilities of the
present method.
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PACS. 31.15 - General mathematical and computational developments. 
PACS. 31.50 - Molecular solids. 
PACS. 05.30F - Fermion systems and electron gas. 

Abstract. - A method for accelerating the rate of convergence of the long-time (or small- 
temperature) limit of quantum Monte Carlo approaches is presented. To do that, a variation of 
the Lanczbs algorithm suitable for QMC data is introduced. This algorithm allows one to extract 
more information from correlation functions at  small times, thus avoiding large statistical 
fluctuations associated with large times. It is first applied to an exactly soluble system and then 
to the LiH molecule. Calculations using both the fixed-node and nodal-release approaches are 
discussed. 

Quantum Monte Carlo (QMC) methods have proved to be powerful techniques for solving 
the Schrodinger equation. They have been applied to a variety of problems [l] such as the 
study of quantum liquids and solids, the electron gas or the electronic structure of small 
molecules. In each case, very accurate results for some properties of these systems have 
been obtained. Although there exists a number of variants of QMC methods, the common 
idea in the approaches we consider here consists in projecting out the ground-state 
component of a known trial wave function,YT, by applying a suitable projection operator to 
this function (exp [- tH] in diffusion Monte Carlo (DMC) or 1/(H - E)" in Green's function 
Monte Carlo (GFMC) methods, H denoting the Hamiltonian operator) and then letting the 
projecting parameter (t or n) go to infinity. Within the framework of DMC methods used in 
this work, this projection procedure takes the form 

exp[-tH]YT~'Yo+O(exp[-tAEl),  as t + a ,  (1) 

where Yo denotes the ground-state wave function and AE is the gap in energy between the 
f i s t  two eigenstates having a nonzero overlap with the trial wave function. 

This long-time limit may be difficult to perform. Certainly the most well-known 
illustration of such a difficulty is the so-called sign problem occurring in exact simulations of 
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fermion systems. This problem has been discussed in detail in many places (see, e.g., [2-41). 
It can be summarized as follows. Fermion matrix elements of the operator exp[-tH] 
decompose as a difference of two boson contributions corresponding to even and odd 
permutations of the particle labels. At large times t (or low temperatures), the two boson 
contributions nearly cancel and the resulting fermion contribution becomes rapidly 
exponentially smaller than the statistical fluctuations. Accordingly, only reasonably small 
values o f t  may be used in eq. (1) in a fermionic simulation and convergence of the limit may 
not be possible in practice. Even in bosonic-type calculations the long-time limit can be 
difficult to handle for quantities other than the energy, particularly for systems involving a 
large number of bosons. For example, to compute ground-state expectations of operators 
not commuting with H requires a similar projection at large time (see, for instance, the 
discussion in [51). 

In this work we propose a new procedure for taking advantage of the information 
contained in data at small values of the projecting time t, thus minimizing the effect of 
statistical fluctuations at large times. We shall present this procedure within the framework 
of a variant of the DMC approach-the pure diffusion Monte Carlo method [6]-although 
any other Monte Carlo scheme could be employed without essential changes. Consider the 
projected trial wave function at  time t :  

- 
YT(t) E exp [ - tH] YT . (2) 

With quantum Monte Carlo techniques, quantum averages with respect to FT Ray be 
computed. In what follows the norm n(t) of YT(t/2) and the average h(t) of H over YT(t/2) 
will be used: 

These matrix elements of exp [- tH] may be computed as stochastic averages over a set of 
drifting random walks generated by using a Langevin equation. Denoting (. . .>DRW the 
stochastic average, n(t) and h(t) may be written in the following form: 

Here w = YT/YG is a weight factor involving the trial wave function, YT, and the guiding 
function, YG, a strictly positive function responsible for importance sampling; EL' = HYTIYT 
is the local energy associated with YT, E &  = HYG/YG is the local energy associated with YG, 
and R(s) stands for the drifting random walk in the 3N-dimensional configuration space. The 
normalization factor appearing on the right-hand side of each expression will be immaterial 
in what follows. Equations (4) are a generalization of the well-known Feynman-Kac formula. 
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For a detailed presentation and derivation of these formulae, the reader is referred to 
previous works[6]. At this point, we would like to emphasize two situations that will be 
encountered in what follows. When YG is chosen to be I YT 1 ,  random walks generated by the 
Langevin equation are trapped in subdomains of the configuration space delimited by the 
(3N - 1)-dimensional nodes of the trial wave function YT and no change of sign for the 
weight factor occurs. This stable approach is called fixed-node approximation, since the 
nodes are in general approximate. On the other hand, when YG is chosen to be strictly 
positive everywhere, no approximation is made but weights have no longer a definite sign 
for fermions. This exact but unstable method will be referred to as the nodal-release 
approach. More details about both approaches may be found elsewhere [3,6]. 

The standard way of extracting the exact energy from a set of QMC data {n(ti), h(ti)}i=l,N 
consists in looking at the ratio 

To do that, matrix elements are computed up to values of t necessary to reach the 
convergence. The main point of this work is to use information contained in h, n at smaller t. 
This is important due to the increase of statistical fluctuations as t goes to infinity. This idea, 
which in fact takes its origin in the somewhat different context of effective Hamiltonian 
theory[7], is implemented here in a quite simple way. 

Let us define the following basis set of size n consisting of the projected trial wave 
function evaluated at n different times: 

For finite n, such a basis set is in general linearly independent and may be used to 
diagonalize H. To perform the diagonalization, the matrix elements Hij of H and Nij of the 
unity operator between two arbitrary functions of the basis set are needed. It is easy to 
check that such matrix elements may be in fact trivially expressed in terms of the matrix 
elements (3) as follows: 

Hij (  ti> 1 H I @ ~ ( h ) )  = h(ti h) ( 6 ~ )  
and 

~ i j  ( @ T ( ~ J  I @T(h>) = n(tl+ . (6b) 

This is important since it means that no extra quantities beyond the usual matrix elements 
(eq. (3)) are required. Then once H and N are estimated with QMC, the generalized 
eigenvalue problem is solved by standard numerical methods. At this point, it is important 
to emphasize that the algorithm proposed here is nothing but a variation of the well-known 
Lanczos algorithm with YT playing the role of the initial vector and exp [- tH] playing the 
role of H .  Using the terminology of Krylov spaces [8], this can be rephrased by saying that 
H is diagonalized within the Krylov subspace { Y T ,  exp [- t l H l  YT, ..., exp [- t,Hl YT} 
instead of the Krylov subspace {YT, HYT,  ..., Hn-' YT} as in the Lanczos algorithm. Note 
that the standard method described by (5 )  may be viewed as a r a t h y  trivial case for which H 
is diagonalized within the one-dimensional subspace defined by YT(t/2). 

Let us first present the application of this approach to an exactly solvable problem, 
namely the harmonic oscillator described by the Hamiltonian H = - (1/2)(d2/dx2) + (112) Kx2.  
The trial wave function is chosen to be Gaussian (different from the exact solution) and since 
the kernel of exp [- t H ]  is also Gaussian, exact expressions for matrix elements (3) may be 
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TABLE I. - Comparison between the Lanczk-type algorithm and the stun&ard method fm the 
hamumic oscillator. Hamiltonian comesponding to K = 3.0, trial wave function (") with k = 1. 

This work Standard method ( b )  Exact 

Basis set (') Eigenvalues Basis set (7 Eigenvalues 

{0.0,0.02) A0 = 0.88 (0.02) 
Al=5.1 

{0.0,0.02,0.04} A0 = 0.8668 { O W  

{0.0,0.02,0.04,0.06} A0 = 0.8661 (0.06) 

A1 = 4.4 
A2 = 9.4 

A1 = 4.34 
A2 = 7.86 
A3 = 13.9 

{0.0,0.02,0.04,0.06,0.08} Aoz0.86603 (0.08) 
A1 = 4.331 
A2 = 7.80 
A3 = 12.0 
A4 = 18.4 

A0 = 1.0 

A0 = 0.98 

A0 = 0.96 

A0 = 0.95 

A0 = 0.94 A0 = 0.8666025.. . 
A1 = 4.3301 ... 
A2 = 7.794 ... 
A3 = 11.2 58... 
A4 = 14.72.. . 

(a) YT = ( k / ~ ) ' ' ~  exp [- (flI.2) 2'1. 
( b )  Equation (5). 
(e )  Basis set deiined as {tl, h, ..., t-} = (exp[- t ,H]  'PT, expr-  h H ]  'PT, ..., exp[- t,,m FT}, see text. 

obtained. Table I presents results obtained when using a basis set of increasing size and 
compared to those resulting from (5) using only the last component of the set. For the case of 
the Lancz6s-type algorithm all the eigenvalues are given. A few remarks are in order. First, 
it is clear that the lowest eigenvalue in the Lancz6s approach converges quite rapidly toward 
the exact energy. This is in sharp contrast with the standard method which would require 
much larger times to achieve the convergence. A way of understanding this may be put as 
follows. Diagonalizing H within the subspace {tl, 4, , . . , tn} may be viewed as constructing 
the best wave function written in the form of a linear combination of the projected trial wave 
function defined at different times, ck YT(tk). This combination has much more variational 

freedom than the one-state approach using only { tn}  and therefore the resulting improv- 
ement in energy may be important. 

A second point worth mentioning is that excited-state energies may also be obtained in 
principle. Results presented in table I show a good convergence of excited-state eigenvalues 
toward their respective limit, at least for the first two. Note that, according to the 
MacDonald variational theorem applying for linear variational calculations [9], all the 
eigenvalues A d t )  are always greater than the corresponding exact eigenvalue of the 
Hamiltonian, the equality would be obtained by letting t go to infinity. How far Ai( t )  is from 
Ei = Ai(m) for a given time t depends essentially on the overlap between the exact excited- 
state and the trial wave function. The problem of evaluating excited-state energies will not 
be discussed further, since the obtained results are not representative of the typical case 
where matrix elements have statistical errors. However, note that this approach may be 
readily generalized to the multiple-state method for computing excited-state properties of 
Ceperley and Bernu [lo]. 

k 
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Fig. 1. - Fixed-node energy as a function of the projecting time t for the LiH molecule for both the 
standard method (0) and the proposed Lancz6s-type method (U). The dashed line indicates the exact 
energy. The small difference between the energy obtained for large times and the exact energy is due 
to the fixed-node error. Energy and time in atomic units. The curves are only a guide to  the eye. 

Fig. 2. - Nodal-release energy as a function of the projecting time t for the LiH molecule for both the 
standard method (0) and the proposed Lancz6s-type method (U). The dashed line indicates the exact 
energy. Large fluctuations at large times in the standard method result from the fermion sign 
problem. Energy and time in atomic units. The curves are only a guide to the eye. 

Let us present a realistic application to the LiH molecule involving quantum Monte Carlo 
evaluation of matrix elements (3). In order to deal with the fermionic constraints, we have 
used both the approximate fixed-node and exact nodal-release approaches. Figure 1 
presents the convergence of the fixed-node energy as a function of the projecting time t for 
both the standard method ( 5 )  (upper curve) and the proposed method (lower curve). With 
the Lancz6s-type approach convergence is reached at times - 1.6 a.u., while the standard 
method requires times greater than 3a.u. Statistical errors for both curves have been 
obtained by computing the dispersion of results over a set of independent calculations. 

There is a serious numerical problem in applying this scheme to Monte Carlo results. 
When t goes to infinity the projected trial wave function FT(t) converges exponentially fast 
to @,,, eq. (1). Accordingly, projected trial wave functions at large times become almost 
identical. Hence the matrices become nearly singular and, because of the finite precision on 
machine, it is not possible to use basis sets of arbitrary size if there is any statistical error on 
the matrix elements. We circumvented this problem by employing basis sets small enough 
to lead to well-conditioned matrices. For the case presented in fig. 1, the successive basis 
sets employed are: {O.O}, {0.0,0.4}, {0.0,0.4,0.8}, {0.0,0.4,1.2}, ..., and {0.0,0.4,2.8} 
with At = 0.005 a.u. as time step. The energy obtained in both calculations is - 8.0691(6) 
((99 zk 0.71% of the correlation energy is recovered). 

Figure 2 presents our calculations using the exact nodal-release procedure. The positive 

guiding function used here is of the form YG = Y$ + 0 np(ri), where np denotes the 

Hartree density corresponding to the trial wave function YT. The switching parameter 8 has 
been chosen to have a value of 0.48 so as to minimize both statistical fluctuations on the local 
energy EL = H Y G I Y G  and fluctuations arising from crossings and recrossings of nodes [31. 
The upper curve of fig. 2 represents the variation of the energy ws. the projecting time as 

7 
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obtained with the standard method (5). The fermion sign problem is evident as t becomes 
greater than 2.0 a.u. The lower curve has been obtained by applying our algorithm with the 
successive basis sets: {O.O}, {0.0,0.2}, {0.0,0.2,0.4}, {0.0,0.2,0.6}, {0.0,0.2,0.8}, and 
{0.0,0.2, 1.0) with At = 0.005 a.u. Within statistical fluctuations the convergence is reached 
for t - 2.0 u.a., that is before statistical fluctuations arising from the sign problem become 
too pathological. The resulting energy is Eo = - 8.070(1), compared with the exact 
nonrelativistic energy of - 8.0699 [ll].  

These good results should be taken with caution. The main point to emphasize is that by 
using a linear variational calculation the energy is expressed as a lowest eigenvalue which is 
a nonlinear function of the matrix elements (3). The stability of the eigenvalue with respect 
to statistical errors has been obtained here at the expense of a high-quality evaluation of the 
matrix elements. I t  is not clear whether such a quality can be obtained for fermionic systems 
involving a large number of particles. However, the results presented here are important 
since they demonstrate that QMC data at  small times, that is before the sign catastrophe 
occurs, may eventually contain enough information for computing exact fermionic ground- 
state properties. In a forthcoming work, a more stable and general method for taking 
advantage of this information will be presented [E].  
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We study a model of strongly interacting lattice bosons with a Gutzwiller-type wave function that
contains only on-site correlations. The variational energy and the condensate fraction associated with

the variational wave function are exactly evaluated for both finite and infinite systems and compared
with exact quantum Monte Carlo results in two dimensions. This ansatz for the wave function gives the

correct qualitative picture of the phase diagram of this system; at commensurate densities, this system

enters a Mott-insulator phase for large values of the interaction.

Strongly interacting boson systems have been exten-
sively studied for a long time. Apart from the usual A,

transition between the superfluid and the normal liquid at
a given temperature, systems of bosons in an external po-
tential may also undergo a superfluid-insulator transition
at T =0 upon a change of strength in the interaction or
the conditions of the environment. Such a phase transi-
tion has recently been studied in several works for a rnod-
el of strongly interacting lattice bosons interacting with a
repulsive on-site interaction. The model described by the
Hamiltonian

II= g (a;a +H. c. )+—gn;(n; —1)
—t y U

(i,j ) 1

is the focus of the present Brief Report. It describes a
system of M bosons on a lattice with N sites in d dirnen-
sions. This system exhibits a superfluid phase for all
values of the interaction U and noncornrnensurate densi-
ties; i.e., p=M/N not an integer. Indeed, some particles
can always gain kinetic energy at no cost in potential en-

ergy by hopping to sites occupied by a smaller number of
particles. At commensurate densities (i.e., integer p), the
model also exhibits a superfluid phase at small Ult since
the penalty in potential energy is not large enough to
offset the gain in kinetic energy that delocalizes the parti-
cles. However, for large enough interaction, this is no
longer true, and the system is trapped into a Mott-
insulator state. Accordingly, there exist two transitions
from the superfluid phase to the Mott-insulator phase: (i)
when U/t approaches some critical value U, /t at com-
mensurate (integer) densities n, and (ii) when the density

p approaches n, at large on-site repulsion U/t.
A scaling theory of these transitions has been worked

out by Fisher et al. ' They have shown that transition (i)
is in the universality class of the (d +1)-dimensional XY
model, whereas (ii) is described correctly by mean-field

theory in any dimension.
Apart from considerations of universal quantities, the

explicit phase diagram of this system is of interest. These
questions have recently been addressed in exact path-
integral Monte Carlo (PIMC) simulations in both one and
two dimensions. ' More general, if approximate, infor-
mation is provided by mean-field theory, in which the lo-
cation of the phase boundaries can also be determined. A
mean-field-theory treatment of this model has been indi-
cated in the work by Fisher et al. '

In this work we present an exact variational calcula-
tion with a Gutzwiller-type wave function

N N

'P(n[, n2, . . . , n~)= g f(n;)5 y n; —M, (2)
i=1 i=1

for both finite and infinite lattices. This wave function
does not incorporate any information on the geometry or
dimensionality of the lattice and is therefore also mean
field in nature. In particular, it does not include long-
range correlations arising from zero-point phonons:
These must be described by a Jastrow factor of the type
exp[+;&J g(r; rj)] mult—iplying Eq. (2), with g(r) de
caying as r for large r. This term would ensure a
correct behavior of the structure factor S(k) for small k
and hence the correct spectrum for low-energy excita-
tions. However, inclusion of this factor ruins the appeal-
ing feature of Eq. (2), namely, that it leads to an explicit
solution for all values of the interaction U/t and density
p.

We use two variational approaches: a genera/ minimi-
zation with respect to the If (n), n =0, 1, . . . I and a
simplified approach in which f (n) is parametrized ac-
cording to

f(n)- exp( an /2)i&n!—,

and where the optimal parameter a minimizing the ener-

45 3137 1992 The American Physical Society
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gy is sought. This parametrization corresponds (in posi-
tion representation) to a wave function with a contact
term %(r„rz, . . . , r~ ) = exp[ —~/2 g; & J. fi(r; —r, ) ] As
we shall see, the two approaches are equivalent for all in-
tents and purposes: They give the same asymptotic be-
havior [ U/t ~ U, /t =d(Qn, +Qn, + 1)2] for com-
mensurate densities p=n, and at U/t= 00 for incorn-
rnensurate densities, and agree closely in the numerical
values for the energy and momentum condensate. As the
critical value U, It (at p =n, ) is approached from below,
there is a second-order phase transition from the
superAuid into a Mott insulator with an energy per parti-
cle, E ——

( U, —U), below the transition and E =0
above it. As the parameterized form of the wave function
is considerably simpler to evaluate for the finite systems
(which we can then compare to the exact numerical cal-
culations), we shall base much of our detailed calcula-
tions on this version.

We are also able to calculate the condensate fraction
associated with the wave function (the Fourier transform
at k =0 of the one-body density matrix), n (k =0). One
obtains n (k =0)—U, —U below the transition and
n (k =0)=0 above it. For incommensurate densities the
condensate fraction is strictly positive for any value of U,
demonstrating that the system is always superfiuid. We
given an explicit formula for n (k =0) as a function of the
density p.

We have in addition performed high-precision simula-
tions of the two-dimensional model (d =2) using a zero-
temperature diffusion Monte Carlo scheme [it is for this
reason that we use a canomcal formulation in Eq. (2)].
This allows us to compare the variational energy (at finite
N) with the exact energy at all values of the parameters,
especially away from the critical point where the solution
is expected to be accurate. The exact energy for a system

I

(4)

This can be written as

(%~%)=f expNg(f, A),1 (5)

g(f, A, )=— iAp—+ln g fi(n)exp(iA. n)
n=0

Similarly, we find, for the potential and kinetic energies,

Ek;„

~%) =N f exp[Ng(f, A. )]
~ dX

—~ 2'

E „(f,A, )

Ek;„(f,A. )

with

U gn(n —1)f (n)exp(iAn)
E „(f,A. )=-

gf (n) exp(iAn )

and

with 16 bosons (p= 1, d =2), e.g., is found to be off by
about 20% at U/t =6, by 5% at U/t =4, and by 1.5%
at U It =2. The critical interaction U, /t =6+4V2
—11.66 (at density p= 1, in two dimensions) compares
well with the value of U, /t-8. 5 found in a previous
work from two-dimensional PIMC simulations.

We now present the calculations for this model. The
norm of the wave function is given by

[ gi/n + 1f (n)f (n + 1)exp(iAn )]2
E„;„(f, A, ) = dt exp(iA—),

[ gf (n) exp(i An )]

For the given wave function, the condensate fraction is
proportional to the kinetic energy per particle. We find
that n (k =0)= —1/(dN)Ek;„

For finite systems the integrals [Eqs. (5) and (7)] have
to be calculated explicitly. In the N ~~ limit, of course,
the integrals are given by the values of the integrands at
their saddle point A, , which is located at A. =O, provided
that p= g„=onf (n}/g„f(on} [cf. Eq. (6)]. Under
this condition [and considering properly normalized wave
functions g„" cf (n) = 1], the energy per particle is

given by

of the parameters f (n), n =0, . . . , oo, by solving for
BE/Bf (n)=0 (under the constraints stated above). This
can easily be done by iteration.

Equation (10) can also be solved asymptotically in the
limit U/t~U, /t, for commensurate densities n„and
U/t ~ oo (for incommensurate densities). In fact, we can
show that a self-consistent ansatz for f (n} close to the
transition is given by f (n, )=i/1 —2e and f(n, +1}=We
with e « 1 and f (n, +2) « i/e, etc. In this limit the en-

ergy [Eq. (10)] reduces to

E= ——g v'n + 1f (n)f (n +1)dt

n=O

2 E= — E(1 —2e)( +n, +Qn, + 1)
nc

+ [2e+n, (n, —1}].U

2n,
U+ g n(n —1)f (n) .
2p o

(10)

From this equation we can now obtain the optimal values

A simple derivation of E with respect to e shows that
the probability e to have n, +1 particles on one site van-

ishes at the critical interaction U, It =d ( Qn,
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+Qn, +1) . Close to the transition (b =U, /t —Ult),
the energy is given by

Q2
E(b, }=

4n, U,
(12)

For U & U, we find that Ez;„=0,E~„=U/2(n, —1).
Our complete results for the commensurate case p= 1

are presented in Figs. 1 —3. In Fig. 1 we show the evolu-
tion of the probability to have a site occupied by n parti-
cles, f (n), with U/td for n =0, 1,2, 3,4 [cf. Eq. (10)].
Note that f (n) quickly becomes extremely small for
n 3.

In Fig. 2 we show the energy per particie of the system
as a function of the variational parameter K for different
values of the interaction ( U/td = 1,3, 5, 7) for a finite lat-
tice with size N =16 [from Eq. (7)] and for the infinite
lattice [from Eqs. (8) and (9)]. The optimal value of the
Parameter, K pt is marked also. The variational energy
E(a, , ) is on this scale indistinguishable from the one
given by the more general E[ [f (n )], ,].

The inset in Fig. 2 gives the value of K pt as a function
of U, as determined numerically, both for the finite and
infinite systems, where it diverges as lr,~,

—ln( U, I
t —U/t)

Figure 2 contains one more important piece of infor-
mation. The horizontal lines underneath each curve for
the finite system give the exact value of the ground-state
energy for the corresponding two-dimensional (2D} sys-
tem (with N=16), as determined with a pure-diffusion
Monte Carlo method. For example, we find a ground-
state energy per particle of E = —0.511+0.002 at
Ult =6 (in 2D), whereas the variational energy is
E„„=—0.401 for the optimal solution If(n)] and
E„„=—0.388 for the wave function parametrized ac-
cording to Eq. (3). The agreeinent of the variational ener-

gy with the exact solution is good, considering the simpli-
city of the wave function.

In Fig. 3 we show the values of the momentum conden-
sate for this case of p= 1, both for the finite case N =16
and in the infinite system and compare them to the exact
superfluid density at N =16 (cf. Ref. 2). The numerical
calculation of the momentum condensate, although in
principle possible, has not been carried out for this mod-
el, in contrast to the (more interesting) superfluid density.

N = l6

FIG. 2. Variational energy (scaled by the dimension of the
lattice ) E/d vs variational parameter a at density p=1 for
U/td =1,3,5, 7 (from below). N = 00 (solid line, solid circles)
and X=16 (dashed hne, open circles). The exact ground-state
energies for N = 16 in two dimensions are indicated by horizon-
tal lines. The inset gives the optimal values of the variational
parameter, a',~„as a function of U/td for both N = 16 and 00 ~

As is well known, ' there is no direct relationship be-
tween the two quantities away from the small-U/t re-
gion, where the agreement is excellent. In general, the
fact that n (k) & 0 only allows us to conclude that the trial
wave function describes a superfluid. For N= ee, n(k)
goes to zero as ( U, —U)/4dtn, at the transition into the
insulating state. In two dimensions the transition takes
place at an interaction strength of U, /t =11.66, which
compares well with the exact value from the PIMC simu-
lations, which yield U, /t —8.5. The critical exponent, of
course, coincides with the mean-field one and cannot be
expected to coincide with that ( -0.669) predicted by the
scaling theory of Fisher et al. '

[.0

0.8

O
II

c 04

0.2

0 i 2 3
I I

5 6 7o~
0 3 4 5 6

U/td

FICr. 1. Probability f (n) of a site to be occupied by n parti-
cles vs interaction U/td for n =0, 1,2, 3,4.

FIG. 3. Variationally calculated values of the momentum
condensate n (k =0) vs interaction (scaled by the dimension)
Ultd for density p=1. N = 00 (solid line) and N =16 (dashed
line). Also shown are the exact values of the superAuid density

p, /p for the system with N = 16 in 2D.
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FIG. 4. Variational energy E/d vs K at density p=0.75 for
U/td =1,3,5,7,9 (from below). N= ~ (solid line, solid circles)
and N =16 (dashed line, open circles). The exact ground-state
energies for N = 16 in two dimensions are indicated by horizon-
tal lines. The inset gives the optimal values of the variational
parameter, K pt as a function of U/td at N = ao for densities

p =0.75,0.85,0.95.

U(n, —1)(2p —n, )
Epot(x)~

2p

n, (n, —p)[p —(n, —1)]
E„;„(~)~ dt—

P

(13)

(14)

Complete results for the incommensurate case p=0. 75
are given in Fig. 4. In the main picture we show again
the energy per particle as a function of the variational pa-
rameter K for diff'erent values of the interaction
(U/td =1,3, 5, 7, 9) for a finite lattice with size N =16
and for the infinite lattice. The optimal value of the pa-
rameter, K, „and the exact ground-state energies for

At a general incommensurate density p
(n, —1&p&n, ) and U/t = ~, we can again perform an
asymptotic analysis with a self-consistent ansatz
f(n, —1)=a and f(n, )=(1—a )'~. A calculation
analogous to the one presented for the commensurate
case now yields

FIG. 5. Variationally calculated momentum condensate
n (k =0) vs density p.

N =16 (in 2D) are also marked. The inset in Fig. 4 gives
the value of K pt as a function of U/td for the infinite sys-
tem ( the asymptotic behavior is a.——ln[2d(1 —p)]
+ ln(U, —2d)).

Finally, we show in Fig. 5 the variationally calculated
momentum condensate n (k =0) at U/t = oo as a func-
tion of p at N= co. From Eq. (14) we can see that
n (k =0)=n, (n, —p)[p —(n, —1)]/p. For large values of
the density (n, —1 &p & n„with n ~ ~ ), the momentum
condensate is therefore given by the formula
n(k =0)-(n, p)[p (n—, —1)—], with a Pnite maximum
value of n (k =0)=—,

' for p=n, —
—,
'.

In conclusion, we have given a complete treatment of
the problem of strongly interacting lattice bosons in
terms of a Gutzwiller variational wave function. It will
be interesting to see whether this approach can be ex-
tended successfully to provide a suitable starting point
for calculations on more difficult problems, such as the
one of disordered bosons. '

J.P.B. wants to thank P. Nozieres for discussions on
the problem on interacting bosons. '
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On the Nonconservation of the Number 
of Nodal Cells of Eigenfunctions. 

M. CAFFAREL, X. KROKIDIS and C. MIJOULE 
Laboratoire Dynamique des Interactions Mole'culaires, Universite' Paris VI 
75252 Paris Cedex 05, France 

(received 27 July 1992; accepted 29 September 1992) 

PACS. 03.65G - Solutions of wave equations: bound state. 
PACS. 33.10G - Vibrational analysis. 

Abstract. - The theorem stating that the number of nodal cells of a pure eigenfunction of a 
Hamiltonian with a smooth and uniformly bounded potential may change as the potential is 
continuously varied, is illustrated by constructing a particular two-dimensional Hamiltonian (two 
coupled oscillators) of which one of the eigenfunctions exhibits the nonconservation property. 
The analytical form of both the potential (a six-order polynomial) and the eigenfunction is 
given. 

Very little is known about the properties of the nodes of eigenfunctions of 
multidimensional systems. Paraphrasing Korsch [ 11 we may summarize the few established 
properties as follows (here n labels the nondegenerate eigenvalues, E,, n = 1,2,3, ..., 
ordered according to increasing magnitude; for simplicity, the properties are expressed for a 
two-dimensional case): 

1) The only state having no nodes is the ground state, n = 1. 
2) The number of nodal cells of the n-th eigenfunction is not larger than n [ 2 ] .  
3) The number of nodal cells does not necessarily increase with n. 
4) The nodal set is generically a manifold; in particular it means that in most cases nodal 

lines do not cross in the interior of the domain of the Hamiltonian; however, crossings of 
nodal lines are expected at  the boundary [3,4]. 

5 )  If q nodal lines cross, the crossing occurs a t  equal angles z/q, in particular a t  right 
angles for q = 2 [51. 

6)  The total length of the nodal lines in state n is bounded from below and increases 
with n faster than n1l2[6] .  

7) For a Hamiltonian with a uniformly bounded potential and a given energy the 
volumes of the nodal cells are bounded from below [7] (strictly greater than zero). 

An additional property which has been discussed is whether or not the number of nodal 
cells of a given eigenfunction is conserved when a parameter of the Hamiltonian is 
continuously varied. A proof that this number is conserved (adiabatic invariant) has been 
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given by Robnik [7], but was very soon later on criticized by him as containing a gap [SI 
(events such as the merging of two nodal cells along an (N - 2), (N  - 3), ..., O-dimensional 
boundary in an N-dimensional configuration space were not considered, and indeed we shall 
construct below our counterexample in that way). Numerical calculations performed by 
Korsch [l] for a rectangular .*billiard), deformed into a parallelogram demonstrated that the 
number of nodal cells can change when deforming boundary conditions. A similar conclusion 
may be drawn from a number of numerical calculations done to study the connection between 
nodal patterns of nodal lines of eigenfunctions in the semi-classical regime and .quantum 
chaos. (see, e.g., [9-111). However, it is generally considered that the number of nodal cells in 
almost all cases is a conserved quantity, particularly when the energy spectrum is 
nondegenerate [8]. To our knowledge, no exact eigenfunction of a nontrivial system changing 
its number of nodal cells under a smooth variation of the potential has been exhibited so 
far. 

The motivation of the present work takes its origin in a recent proposal [12] of computing 
the fundamental excitations of coupled oscillators with quantum Monte Carlo (QMC). In this 
scheme-relying essentially on a generalization of the fured-node approach for excited 
states-a basic assumption on the nodal structure of eigenfunctions associated with 
fundamental excitations was made. More precisely it was assumed that their nodes divide the 
N-dimensional space (N oscillators) into exactly two domains. Such an assumption was 
considered as reasonable since, by their very definition, the fundamental excitations are 
connected continuously (when decreasing the coupled part of the potential) to the 
fundamental excitations of some N uncoupled oscillators which, indeed, have this property. 
However, although numerical calculations for some model and realistically coupled 
anharmonic oscillators (compared to the exact results obtained by diagonalizing H using a 
large enough Hermite-Gaussian basis set) have strongly supported our basic assumption, an 
eventual breakdown of the conservation property could occur. Let us now construct such a 
situation for a system of two coupled oscillators. 

We consider the following wave function: 

$(x, y, A) = f ( x ,  y, A )  exp [ - @b, y, jl)l, (1) 

where @ is a smooth and bounded function,fsome function determining the nodes of $ via the 
relation f =  0, and A a parameter controlling the deformation of the nodal pattern. The 
function @ is chosen so that $ describes a bound state, that is @ + + cc when I x I or I y I tend 
to infinity (a polynomial form for f being used here, the large-distance behaviour of $ is 
determined by @I. Let us choose f as the simplest function exhibiting the nonconservation 
property when varying A. We take 

(2) 
2 
27 

f =  y2 - x 3  - F(h)x  - - , 

where F(A) is some function of A.  Regarding the nodal structure o f f (o r  $) three different 
regimes have to be distinguished: 

i) When F(h)  > - 1/3 the nodes o f f  divide the plane into two regions. 
ii) At the critical value F(A) = - 1/3 the nodal line crosses itself a t  the singular point 

0(1/3,0). Note that f has been chosen so that the crossing is at  right angles as required by 
the property 5) stated above. 

iii) For F(1,) < - 1/3 the nodes divide the plane into three nodal cells. 
The three different regimes are represented in fig. 1. It should be pointed out that 

condition (7) forbids the emergence of an extra nodal cell from an isolated point of the plane 
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(the volume of a nodal cell cannot be arbitrarily small a t  a given energy). Deforming a nodal 
line in the way just described above circumvents this problem. The next step consists in 
showing that the wave function (1) may be interpreted as an eigenfunction of a physical 
Hamiltonian H ,  namely 

H$ = E $ ,  (3) 

where 

1 a2 H = - - - + 2 + V(X, y ,  A )  
2 [ a x .  

(4) 

and V is a bounded potential function to be determined. Using eqs. (l), (3)  and (4) V may be 
written as follows: 

1 1 Yf Vf 
2 f  f V = E +  2((V@)2-V"}+ -- - --.V@. 

The frst three terms of the r.h.s. of ( 5 )  are bounded a t  any finite distances and therefore do 
not introduce any difficulty (the imposition of the adequate large-distance behaviour of V and 
$ will be treated later). In contrast, dividing by f in  the last two terms may lead to unphysical 
divergencies in the potential at the nodes. Therefore, we shall seek a solution for @ 
verifying 

1 V 2 f  Vf 
2 f  f 

- V@ = K(x,  y )  , 

where K is any bounded function well behaved at  large distances. Equation (6) may be 
rewritten under the form 

with 

It turns out that there exists a polynomial solution of eq. (7) when K is also chosen to be 
polynomial. The simplest (lowest-order) form for K is 

the solution !#j having the form 
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The only nonzero coefficients aii are 

azo = - - 1 ( K o F  + - 3 ) ,  2F 

K1 K3F + -  a12 = - - 6 ’  4 

( l o g )  

(10h) 

K3 a22 = - - 

K3 
8 .  

6 ’  

U04 = - - 

In addition, the coefficients K O ,  K 1 ,  and K3 are related via the following equalities: 

( l l a )  

(lib) 9 K , = z ,  

Kz  = s ( 1  + 1 + 2 7 F 3 )  - -  27 ( l l c )  2 27P 8P ’ 

where 

is a strictly positive function of E.. In order to get an eigenfunction describing a bound state, 
the higher-order coefficients ~ 4 0 ,  ~ 0 4 ,  and aZ2 determining the large-distance behaviour of + 
and V must all be strictly positive. From eqs. (10) it follows that coefficients K2 and K3 must 
be strictly negative. Finally, since no particular conditions hold for KO and K 1 ,  any choice of 
strictly negative coefficients Kz and K3 verifying eq. ( l l c )  is a solution of our problem. We 
shall exemplify this by choosing K3 so that coefficient aI2 (eq. Clof)) vanishes, i .e .  K3 = 
= 3K1 /2F. From eqs. ( l l b ) ,  ( l l c ) ,  and ( l l d )  it is easy to check that this is a valid choice if F is 
taken to be negative. Note that the only requirement on F to obtain a wave function 
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1’y F>-1/3 

I 

-1 

-1 - 

F=-1/3 

X 
-1 

+ 

I / 

X 
-1 % X 

w 1.0 
W Y  

Fig. 1. Fig. 2. 

Fig. 1. - Nodal pattern of the wave function 4, eq. (1). The three different regimes depending on 
parameter F are shown. Q is the singular point where the two nodal cells separate. 
Fig. 2. - Plot of the wave function 4 (see table 11). Note the zero contour line reproducing the 
nodes. 

exhibiting the nonconservation property is that F ,  while varying A, goes through the critical 
value of - 1/3. To summarize, we present the potential energy function and its excited 
eigenfunction of energy E in tables I and 11, respectively. In fig. 2 the wave function is drawn 
for the three different nodal regimes. Figure 3 presents the potential energy function at  the 
critical value F = - 1/3. No qualitative changes occur at  other values of parameter F. 
Finally, we would like to  point out that the solution obtained is a nondegenerate one. To see 
this, we have performed a careful variational calculation of the lowest eigenvalues by 
diagonalizing H using a large Hermite-Gaussian basis set. Results are presented in fig. 4. 
They indicate that the eigenfunction just constructed is nondegenerate (note that a crossing 
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TABLE I. - Potential energy function of the coupled anharmonic oscillators: V(x, y) = q j x i y j .  
Here P F' - F/3  + 1/9.  i + j r 6  

21 1 3 3F 1 1 - + - - - + - + - - - 
2 p  3PF2 F 2  2P2 9FP2 PF 

63 1 9 - + - - - 
8P2 2P2F2 2PF2 

9 81F2 207 + - + -  CO2 = - - - 32P2F2 16P2 3 2 ~ 2  16PF 
1 

243 27 
32P2 32P2F2 c04 = - - - 

729 
128F2P2 c06 = 

9 3 
c12 = - + - 

4PF2 4FP2 

243 +--- 3 27 
16P2 16P2F2 4PF2 

e22 = - 

27 
8P2F 

C32 = - 

189 
C4p = - 

32F2P2 

81 
e24 = - 

8F2P2 

of levels of different symmetry, V is invariant under y + - y, occurs just before the critical 
value) and is the 4th excited state of H in the subspace of even symmetry. 
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TABLE 11. - Eigenfunction of the coupled anharmonic oscillators: P = F 2  - F/3  + 119. 

$ 4 ~  Y, A) = y2 - x 2  - F x  - - exp[- alOx - ~~x~ - u30x3 - u4,x4 - aozy2 - ~ ~ x ~ y ~ ]  

with 
( 27 2 ,  

1 1  

9F 3 

1 
U30 = - - 

2P 

3 
8PF 

ulo= - F  - 3p 
a z o =  - 4p - & + - 2F 

U40 = - - 

1 9F 
a02 = - - - 8PF 8P 

27 
U04 = - - 

32PF 

9 
a z 2 =  - 8pF 

J 

0 

-10 

m 
e, 
hn 
.3 

ki -20 
!2 

-30 

-40 
-0.30 -113 -0.35 -0.40 

I7 

Fig. 3. Fig. 4. 

Fig. 3. - Plot of the potential energy function for F = - 113. Other values of F give a similar 
shape. 
Fig. 4. - Low-lying energies of potential V (table I) 11s. F (the arbitrary coefficient coo of V being set to 
zero). The constructed wave function $ is the 8th level when F > - 0.31 and the 7th for smaller values. 
Crossing of the two energy curves (of different symmetries) is indicated by an open circle. 
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Imaginary-time correlation functions calculated by quantum Monte Carlo (QMC) are 
analyzed using the maximum entropy method (MaxEnt) to determine the ground-state energy 
and spectral overlap function. In contrast to earlier applications of MaxEnt, the data is 
obtained from importanced-sampled zero-temperature quantum Monte Carlo simulations. The 
analysis includes two steps. First, that spectral overlap function and ground state energy 
which maximizes the entropy and agrees with the QMC correlation functions is obtained. Then 
the errors in the energy are evaluated by averaging over all the possible images (average 
MaxEnt method), the multidimensional integrals being computed using the Metropolis 
algorithm. The central feature of this approach is that all the information present in the 
correlation functions is used in the only way consistent with fundamental probabilistic 
hypotheses. This allows us to fully exploit the information contained in the correlation 
functions at small imaginary times, thus avoiding large statistical fluctuations associated with 
large imaginary times. In addition, the computed errors include both the statistical 
errors and systematic extrapolation errors. The method is illustrated with a harmonic oscillator 
and the four-electron LIH molecule. 

I. INTRODUCTION 

It is known to be very difficult to solve the Schrodinger 
equation for fermion systems with a Monte Carlo proce- 
dure because of the “sign problem.” This problem arises 
because Fermi averages decompose into a difference of 
contributions corresponding to even and odd permutations 
of the particle labels. At large imaginary times, these con- 
tributions nearly cancel and become exponentially smaller 
than the statistical error, but large times are needed to 
project out from the trial wave function excited state com- 
ponents. The increased variance coming from the cancel- 
lations at large times will be greatly reduced by exploiting 
more fully all the information present in data at small 
times. In any case, it is important to estimate not only the 
statistical errors, but the systematic errors resulting from 
stopping the calculation at a fixed projection time. These 
same issues are involved in computing the energy of any 
excited state, not just the Fermion ground state. 

In a previous work,’ we have shown that the usual 
methods of calculating the energy are not optimal. More 
specifically, using a variation of the Lanczos algorithm for 
QMC, we have shown that the ground-state energy could 
be recovered from fixed-node or released-node data com- 
puted at smaller imaginary times. However, there is no 
guarantee that the Lanczos method will use all the infor- 
mation present in the data and the stability of the algo- 
rithm with respect to statistical fluctuations is bad. 

In this work, we present a general procedure for taking 
full advantage of the QMC data. In addition, this method 
allows one to evaluate error bars on the energies including 
systematic errors. The framework employed is Bayesian 

‘)On leave from: Laboratoire Dynamique des Interactions Moltculaires, 
UniversitC Paris VI, 75252 Paris Cedex 05, France. 

probability theory and more specifically the maximum en- 
tropy (MaxEnt) method. Maximum entropy has been 
used in a wide variety of image reconstruction problems 
encountered in such different fields as astronomy, magnetic 
resonance imaging, neutron scattering, etc.2 MaxEnt is a 
general and powerful technique for reconstructing positive 
images from noisy and incomplete data. Recently, several 
groups have applied this technique to extract dynamical 
information from imaginary-time quantum Monte Carlo 
Green’s functions of lattice models,3-5 e.g., a single- 
impurity Anderson model. 

Here, we propose to apply this method to data from 
electronic systems, calculated by zero-temperature quan- 
tum Monte Carlo. Although we shall also be concerned 
with extracting a spectral overlap, our main purpose is to 
estimate the ground-state energy. As explained before, our 
ultimate goal is to avoid the sign problem appearing at 
large times while still calculating converged results, both 
for the ground state of Fermion systems and for quantum 
excited states. 

Let us briefly outline our approach. Quantum Monte 
Carlo can estimate imaginary-time correlation functions of 
the form 

hW=W~le-cHI~d, (1) 

where Y r is a known antisymmetric trial function. This 
correlation function is related by a Laplace transform 

J- 
+cO 

h(t)= dE c(E)emcE 
-co 

to the spectral overlap 

(2) 

c(E) = c &E-4) I W,l *i) 12, (3) 
i 
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where cE,~i) are the ith exact eigenvalueand kigenfimc- 
tion of H. In contrast to the usual spectral density, c(E) 
includes the squared overlap between the trial function and 
the exact excited states. The use of a good trial function 
leads to very accurate estimates of the ground-state energy. 
Essentially, one is doing Monte Carlo only on the errors of 
the trial function. 

The usual method of calculating the ground-state en- 
ergy from h(t) is to find its rate of decay at large time. Let 
the transient estimate energy be defined as 

‘where‘ky{O,l,2), =Y, is the trial function, generally the 
best available computable approximate wave function 
known for the system under consideration, and the opera- 
tor O(t) is anevolution operator. Two forms for O(t) are 
used for continuous systems; they define the two following 
-algorithms: 
(i) Diffusion Monte Carlo (DMC) i 

O(nr)-exp[ -wr(H-ET)]; 

(ii) Green’s function Monte Carlo (GFMC) 
(9) 

ET&)=- dln[h(t)l -pdt -. . .z..- -_. ..:r :... (4) 
O(n~)=[1+7(H--ET)]--n. (10) 

Here ET is the reference energy and r is the time step. 
Then ; L ‘i In both approaches, time-correlation functions of Eq. 

lim&dt)=&. I _. _. - _-_ ._ .(?I 
c-m 

It is this transient estimate which has an exponentialiy 
increasing signal-to-noise ratio at large time for a Fermion 
ground state. 

The approach considered here is to regard Eq. (2) as 
an ill-conditioned inversion problem and ask what spectral 
overlaps are consistent with the noisy estimates of h(t). 
Using Bayes’ theorem, we postulate that the probability 
distribution of a given spectral overlap is 

P(clh,c*) aP(hIc)P((:Ic*), ‘. (6) 

where the likelihood function P(h 1 c) is the distribution of 
Monte Carlo errors given a spectral overlap and P( c ] c*) is 
the prior probability of a given spectral overlap and may 
depend on an assumed model spectral function c*. We will 
use an entropic form for this prior probability. 

The proposed approach includes two steps. First, we 
maximize P(c I h,c*) with respect to c and thus determine 
the most likely overlap. This we will call the MaxEnt step. 
Then, to obtain a reliable estimate of the statistical errors, 
we sample possible overlaps with probability P(c] h,c*). 
This we will call the AvEnt step. 

The organization of this paper is as follows: In Sec. II, 
the quantum Monte Carlo methods used in this work are 
discussed briefly. Section III is concerned with the general 
presentation of the proposed approach. In Sec. IV, the 
main ideas of the method and details of implementation are 
presented for a harmonic oscillator and in Sec. V, for the 
LiH molecule. Finally, some concluding remarks are made 
in Sec. VI. 

II. THE QUANTUM MONTE CARLO METHODS 

In this paper, we are concerned with quantum systems 
described by a Hamiltonian of the form 

1 N 
H= -2 -3 -VT+ V(rI,...,rN), 

i-l 
(7) 

where ri is the position of the ith particle and V(R) is the 
potential energy. Our analysis is based on the following 
three imaginary-time correlation functions: 

h(k)(t)=(YTIHkO(f)IYy) (8) 

(8.) may be computed as averages over an ensemble of 
configurations (walkers) evolving in the 3N-dimensional 
configuration space according to some appropriate proba- 
bilistic rules. Since both methods will be used to compute 
the time-correlation functions hck) (t), we shall give a brief 
description of each of them. For the complete description 
of the basic aspects of QMC techniques, the reader is re- 
ferred to the original works. 
A. Diffusion Monte Carlo (DMC) 

In DMC, configurations advance according to three 
elementary processes-diffusion, drift, and branching. In 
fact, branching is not a necessary step in DMC since it may 
be taken into account by introducing weights in the corre- 
lation functions defined along the stochastic trajectories 
generated by diffusion and drift. In this case, the number of 
walkers remains .constant and the notion of trajectory is 
identical with that used in a classical molecular dynamics 
simulation. In this “pure” DMC, the configurations ad- 
vance from t to t+r according to 

fW,t+r) = s ~p(R+R’,dfUV), (11) 

where f (R,t) represents the density of configurations 
(walkers) at time t and p (R + R’,r) is the transition prob- 
ability density describing the drifted diffusion. In the short- 
time approximation, it has the form 

exp{- [R’-R--b(Rjr12/2r), 
\  I  

where the drift is 
(12) 

b(R) =V ln(YG) (13) 
and YG a strictly positive function is a guiding (or impor- 
tance) function used to increase the efficiency of the sim- 
ulation by keeping the walk in important regions of phase 
space. 

= It is possible to show by iterating the relation ( 1 1 ), 
and by introducing at each iteration the weight factor 
e-T# L, where g’(R) =BYG(R)/YG is the local energy as- 
sociated with Y G, hck) (t) may be estimated as 

h(O)(t) =I( w(Ojw(t)exp[ --Jo’ @(s)ds] ) DRW9 
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h"'(f) =I (w(O>w(t>f[E,T(O) +El(t)] 
( 

Xexp[ - Jof~(S)dS])DRW. 

and 

Xexp[ - J~-@(s)dsJhw, (14) 

where~(R)=Y#lJ~isaweight,E~(R)=HYr/Y~isthe 
local energy associated with the trial function, (a *-)nRw 
refers to the average over drifting random walks generated 
by Eqs. (ll)-(13), and I=.fY~ is a normalization con- 
stant which will eventually drop out. The practical evalu- 
ation of time-correlation functions from Eq. (14) is rather 
simple; for more details, the interested reader is referred to 
Ref. 6. 

Note that when Y, is chosen to be 1 Y rj, drifting ran- 
dom walks generated via Eqs. ( 1 l)-( 13) are trapped in 
subdomains of the configuration space delimited by the 
(3N-1 )-dimensional nodes of the trial wave function Y r 
and no change of sign of the weight factors w occurs. This 
approach is called fixed-node approximation since the 
nodes are in general approximate. When Yd is chosen to be 
strictly positive everywhere, no approximation is made, but 
the weights have no longer a definite sign for fermions. 
This exact, but unstable method will be referred to in the 
following as the transient method. More details about both 
approaches may be found elsewhere.&’ 

B. Green’s function Monte Carlo (GFMC) 

The Green’s function Monte Carlo method is similar 
to the DMC method, but it does not have the time-step 
error inherent to DMC approaches. We will see that it is 
important to remove all systematic errors before using the 
Bayesian statistical analysis since otherwise these errors 
could be amplified. There exist different variants of 
GFMC; we shall use the formalism developed by Ceperley’ 
which is particularly convenient for particles interacting 
via a Coulombic force. Precise rules for diffusion, drift, and 
branching are described in the Ref. 8. 

To compute the time correlation functions let us as- 
sume that & is a configuration distributed according to 
Yi(R,,)/l. Then assume that the set of configurations 
{Ri}, with lai<M(&n), are produced after n genera- 
tions (applications of the evolution operator). Then 

( 

‘wR),n) 
h'o)(n~)=I w(h) 1 w(Ri,) . > (15) 

j=l 

The other correlation functions h”‘(t) and hc2’(t) are 
computed in a similar way. 

The situation with respect to Fermi statistics is identi- 
cal in GFMC and DMC. The fixed-node approximation is 
obtained when YG is chosen to be 1 Y rj, and a transient 
approach corresponds to the use of a positive guiding func- 
tion. 

Here, we shall consider an additional exact approach, 
the released-node method,8 where the basic GFMC algo- 
rithm is used with an important difference. The initial con- 
figuration (denoted above as Ra) comes from the output of 
a fixed-node calculation instead of a variational one. It 
should be emphasized that by so doing, slightly different 
matrix elements of the evolution operator are obtained, 
namely, 

and 

1 1 
n 1 +dH-ET) 

1 
1 -tdH--ET) 

@FN 

n 

(16) 

where @rN stands for the “exact” fixed-node wave func- 
tion. It is difficult to compute /zc2’ (t), since the analytical 
form for the result of the action of H on the fixed-node 
wave function is not known. 

III. MAXIMUM ENTROPY ANALYSIS 

In order not to repeat almost identical formulas for 
both DMC and GFMC data, we shall present the method 
only with DMC evolution [Eq. (9)], the extension to 
GFMC evolution [Eq. (lo)] being straightforward. 

The first step consists of realizing that the data h(‘) (t) 
are related to the spectral overlap c(E) via a linear trans- 
formation 

h(k)(t)= s 
+CO 

dE Ekc(E)eBtCEmET), k=0,1,2, (17) 
-cc 

where c(E) has already been defined in Eq. (3). Now c(E) 
exhibits a very sharp maximum at E=Eo since Yr is cho- 
sen as close as possible to the ground-state wave function 
+@ The “zero-variance” principle of (zero-temperature) 
quantum Monte Carlo states that as the trial function ap- 
proaches an exact eigenfunction, the statistical variance 
vanishes. It is important to preserve this property in the 
MaxEnt analysis. This we do by requiring that the recon- 
struction fit both h(O) (t) and h(l) (t) . 

Now, our problem is the following: Having computed 
with QMC a set of data {h (‘) h(1),h(2)} at different times , 
fk: l< k0-f and estimated (via statistically independent 
calculations) the statistical errors of this data, we would 
like to find the “best” and the “average” spectral overlap 
c(E) compatible-in a sense to be specified below-with 
our incomplete and noisy data. This problem is often en- 
countered in image processing where noisy data are related 
to the quantity of interest-the image-by a linear trans- 
formation. A robust and coherent way of tackling this dif- 
ficult problem is the maximum entropy method based on 
Bayesian logic. The essence of this approach is to look for 
the most probable function c(E) compatible with the data 
and with any prior knowledge about c(E). 

For simplicity, we shall represent the data by using a 
single vector h(t) as follows: 
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A(&) =h”‘(tk) , h(t k+M) =h”‘(tk), 

h(fk+;?M) =h%k) (18) 

and use a subscript C and F to distinguish between com- 
puted (QMC) data h,( tk) and their corresponding fitted 
values hF( tk) obtained via a representation of Eq. ( 17) in 
terms of a large (but finite) number of real exponentials 

hLk) (t) = i= c&e-f(Et-ET), 
I=0 

(19) 

where P is typically of the order of 200. The number of 
components and the spacing in energy are chosen to have 
a good representation of the integral in Eq. ( 17). 

Now consider the first of the two probability functions 
in Bayes’ theorem [Eq. (6)], the likelihood function. Ac- 
cording to the central limit theorem [assuming that the 
variances of w(R) and w(R )E,(R) exist] for sufficiently 
large simulation times, the probability of finding of a given 
QMC correlation function h,(t) will have a Gaussian dis- 
tribution about its exact value hF(t); 

P(hcl c> = exp( -x2/2>, 

where 

(20) 

3M 

x2= s [12F(fi)-hC(tijjC~~l[hF(tj)-hC(tj)]. (21) 

Here Cij is the covariance matrix defined by 

C,=(h,(ti>hc(tj))-(hc(ti))(hc(tj)), (22) 

where the averages are over a set of statistically indepen- 
dent calculations. We have checked systematically that our 
QMC-calculated correlation functions obey Gaussian sta- 
tistics. 

Any image c(E) [in practice, the finite number of co- 
efficients cl in Eq. (19)] with a x2 significantly greater than 
the number 3M of data points is improbable. The set of 
feasible images is defined as the set of images verifying 

x2-number of data points. (23) 

Clearly, when the chi squared is significantly smaller than 
the number of data points, we are overtitting the data, and 
the resulting fit, which is essentially determined by the 
noise, should be excluded from the set of feasible images. 

Now we need a criterion to pick up among all these 
feasible images. Many of the feasible images are physically 
impossible or improbable, e.g., those with a negative spec- 
tral overlap C(E) < 0. The role of the prior probability 
P(c 1 c*) is to filter out from all feasible images those that 
are very different from a default model containing any 
prior knowledge we have about the exact solution. It can 
be argued by using very general probabilistic concepts that 
for positive and additive images, there is a natural measure 
for that probability-the entropic form” 

P(cjc*) aexp[crS(clc*)], 

where the entropy is 

(24) 

P 
4-W 

S= c c(El) -c*(El) -c(E&ln - 
I=0 c”U4) 
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(25) 

and c*(E) is a default spectral overlap which encapsulates 
all exact knowledge about the spectral overlap before add- 
ing in the information from QMC. One may question 
whether this entropic function is appropriate for the spec- 
tral overlap function of a small molecule, where the dis- 
creteness of the energy levels may be important. Two of its 
features are significant-it only allows overlaps with c(E) 
>O and it has a maximum at c=c*. 

The maximum entropy image is then defined as the 
image having a x2 -number of data and maximizing the 
entropy. Since both the x2 function and the entropy are 
convex functions, this image is defined uniquely. The pa- 
rameter 0: controls the competition between S and x2. 

Since our goal is to have an accurate evaluation of the 
ground state energy Eo, it is included in the set of fitting 
parameters. In practice, this means that we shall define our 
max entropy solution is the set {Eo,co,...,cp3 maximizing S 
with the constraint that x2 -33M.. In the Bayesian frame- 
work, the parameter (Y becomes an additional variable with 
its own prior distribution. Following standard practice,” 
we use a probability distribution uniform in log (a: ) and the 
MaxEnt optimization and AvEnt averages evaluated with 
P(c I h,c*)P(a), where P(a) = l/a over some “sensible” 
range. 

Once the MaxEnt spectral function has been deter- 
mined, it is important to estimate the statistical and sys- 
tematic error. For that, we look at a typical set of feasible 
images, sampled from P(c I h,c*) as defined from Eqs. (6), 
(21>, and (24). Then the error on any component of the 
spectral density, say the ground-state energy, is 

SE,= &CEO- (Eo) 12>, (26) 

where the averages are over P( c 1 h,c*) . A similar formula 
may be written for the error of any coefficient ck This 
approach, which consists of integrating the fluctuations 
around the MaxEnt solution in the functional space of all 
possible images, is the average maximum entropy 
method” The multidimensional integrals involved can be 
computed using the Metropolis algorithm. 

The reader may be wondering why we have chosen to 
fit the three functions hck’(t) rather than simply h”‘(t), 
since analytically h(‘)(t) is equivalent. There are several 
reasons. In the pure DMC approach, if the trial function 
equals the guiding function, it is true that one could nu- 
merically differentiate h(O) (t) to obtain h(l) (t) and hC2) (t). 
In practice, this introduces systematic errors which cause 
the statistical analysis to become unreliable. In the more 
important case where the guiding function is not equal to 
the trial function, statistical fluctuations in the time deriv- 
ative of h”‘(t) are different from those where h”‘(t) is 
computed directly. In fact, it is the very strong correlation 
between the fluctuations of h”‘(t) and h”‘(t) which lead 
to the zero variance property of QMC. It is clearly impor- 
tant to use both h(O) and h(l) in doing the statistical anal- 
ysis, since it is in the correlation between these two func- 
tions that gives a low variance energy estimate. 
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Knowledge of all three correlation functions implies 
that the feasible images have values of the ground-state 
energy bounded from both above and below. The upper 
bound is given by the transient estimate energy and a lower 
bound by the Temple boundi 

ETE(t)-[h(2)(t)-ETE(t)21~EO<ETE(f) I7 , (27) 
%vP 

where EBap is the gap to the next state of the same symme- 
try. Note that these upper and lower bounds squeeze in the 
exact energy exponentially fast in t because the energy ETE 
of the projected trial function e-‘H’2YT converges expo- 
nentially fast to the ground state. Now the spread in 
ground-state energies for feasible images will be smaller 
than the bounds in the above inequalities because we are 
asking that the spectral overlap and energy fit the Monte 
Carlo data at many times simultaneously. For example, the 
results of the Lanczos method, described below, give 
tighter upper bounds than the transient estimate energy 
using the same functions h(O) (t) and h(l) (t). 

The fact that the fitting gives tighter energy bounds is 
only one of the reasons to use this approach. It is perhaps 
more important that the information in the correlation 
functions is combined in a statistically robust way. The 
error bars on the correlation functions are all exponentially 
increasing in time. Thus it is important to strongly weight 
the small time data. Bayesian statistics provides a system- 
atic framework for balancing the statistically accurate, but 
biased data at short times with the noisy, but more con- 
verged data at large times. 

IV. APPLICATION TO THE HARMONIC OSCILLATOR 

In this section, we apply our approach to the Hamil- 
tonian 

1d2 1 
H=-z@+2X2+yx, 

where y is some constant defining the magnitude of the 
linear perturbation. By using the Green’s function Monte 
Carlo method presented in Sec. II B, we calculate the time- 
correlation functions with a trial wave function Y r chosen 
to be the ground-state wave function of the unperturbed 
( y = 0) harmonic oscillator 

y/T,e-2/2 (29) 

and Y o= Y p Then one can show 

h(i)(nr)=e-?/2 i. i ($)k(k+Eo)i(y-$---)n (30) 

when the reference energy is equal to the ground-state en- 
ergy ET= (l/2) - (y/2). We have performed a GFMC 
calculation using the time-dependent Green’s function of 
the unperturbed harmonic oscillator as trial Green’s func- 
tion. 

The upper curve of Fig. 1 shows the transient energy 
ETE( t). The open circles are the QMC results, to be com- 
pared with the solid line representing the analytical results 

E 

FIG. 1. Energy as a function of the projecting time for the harmonic 
oscillator. The solid line is the exact transient estimate energy from Eq. 
(30); the open circles are &s(t) from QMC. Results obtained from a 
Lanczbs-type analysis are shown by the filled circles and t labels the 
amount of data used in the analysis. The dashed line shows the exact 
ground-state energy. 

obtained from Eq. (30). The agreement between exact and 
computed values is excellent. 

The lower curve gives the result of a Lanczb-type 
analysis using the same data. The Lanczb algorithm used 
here has been presented elsewhere’ and may be summa- 
rized as follows: Consider the following projected trial 
wave function at some given time tP=pr: 

1 

I 

P 

l+r(Jf-~~) yT* 

The overlap and Hamiltonian matrix elements between any 
two such states, say, at times tp and tp may be expressed in 
terms of the time-correlation functions h(O) and h(l). We 
have 

@T(tp, IHI~T(tq))=h(‘)(tp+tq). (32) 

Having computed all the time-correlation functions h(‘) up 
to a given maximum time t, we consider the generalized 
eigenvalue problem defined in the basis set consisting of all 
of the projected trial wave functions defined at different 
times with ti<t/2. By doing this, tighter upper bounds are 
obtained from the QMC data than from the transient esti- 
mate energy since more variational freedom is introduced. 
One is constructing the best linear combination of the pro- 
jected_ trial wave function defined at different times 
BgkY T( tk). One sees from Fig. 1 that the exact result is 
obtained almost immediately from the “short-time” infor- 
mation. However, this procedure, based on a nonlinear 
relation between QMC correlation functions and the en- 
ergy, is unstable with respect to statistical errors. 

Because of the discrete nature of the energy levels of 
the oscillator, we represent the spectral overlap by a sum of 
delta functions 

P-l 

C*(E)= 2 G(E-Ei)CT. (33) 
i=O 
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TABLE I. Maximum entropy analysis for the harmonic oscillator. 

c*(E) Most probable c(E) Average c(E) 

0.500 0.419 8 D.419 9(2) 
0.900 0.923 21 0.923 2(2) 
0.025 0.073 78 0.073 8(l) 
0.025 0.003 13 0.003 lO(5) 
0.025 0 0 
0.025 0 0 

Exact c(E) 

0.420 00 
0.923 12 
0.073 85 
0.002 95 

7.8X 1O-5 
1.5x 10-6 

EO 
co 
Cl 
c2 

c3 

c4 

The coefficient representing the ground state is by far the 
largest since the overlap between the trial wave function 
and the ground state has been optimized. The energies Ei 
for i> 1 could be incorporated into the fitting procedure, 
but for simplicity in this model, we only optimized the 
location of the main peak corresponding to the ground- 
state energy Ep The other energies were fixed at their exact 
value. In applications to many-electron systems with a qua- 
sicontinuum of excited states, the assumption of a uniform 
grid in energy is more appropriate. 

We assumed a “flat” default model, i.e., a model in 
which a uniform weight is used for the excited peaks. It is 
essential to introduce in the default model the fact that 
there is a very dominant peak close to the variational en- 
ergy, but its precise magnitude does not matter. Once the 
magnitude of this peak has been chosen (we have taken 
0.9), the common magnitude of the other peaks is chosen 
uniformly 

P-l 
c +P)(O)=l. (34) 
i=O 

In our numerical applications, we have chosen P=5 and 
therefore CT = 0.025 (for i> 0). We have then used the 
GFMC method to calculate the values of h(O) (t), /z(i) (t), 
and hc2’ (t) at the 13 times shown in Fig. 1. 

A very important point to notice is that the transient 
estimate of the ground-state energy is a relatively smooth 
function of time despite the stochastic nature of its evalu- 
ation. This is due to the fact that we use a common set of 
random walks to compute the correlation functions at dif- 
ferent times. In other words, all the QMC data on which 
we base our analysis are highly correlated. It is essential to 
include this correlation between the data in calculating the 
x2. In fact, when we tried to perform the MaxEnt analysis 
neglecting this correlation, the resulting ground-state en- 
ergy was systematically biased because of a tendency to fit 
the noise. Therefore, our first step consists of performing a 
singular value decomposition of the covariance matrix Cii 
to determine the degree of correlation between data and to 
discard those eigenvalues with singular values less than the 
computer’s precision lo- 16. For the case shown in Fig. 1, 
12 eigenvectors are kept out of 39 original data points. 

The maximum entropy solution is given in Table I. It 
is remarkable that the analysis succeeds in reproducing 
accurately the magnitude of the first three peaks. The error 
bars have been obtained by averaging over the probability 
distribution of feasible images. This simple example illus- 
trates the feasibility of this approach on an exact model. 
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FIG. 2. Fixed node energy as a function of the projecting time t for LiH. 
The upper curve of the three pictures is &n(t) and +‘s are the Lanczbs 
results. The lower curve of the first picture represents the average MaxEnt 
results obtained from the time-correlation function h”‘(f’) only using the 
data t’<t. The second picture gives the result obtained with /z(O) and ht” 
and the third with /z(O), h(i), and h t2). The solid horizontal line indicates 
the fixed-node energy. 

V. A REALISTIC APPLICATION: THE LiH MOLECULE 

Let us now apply the maximum entropy ideas to the 
determination of the ground-state energy of the LiH mol- 
ecule. We begin with the fixed-node, pure DMC method of 
Sec. II A. In the calculations below, the Li and H ions were 
fixed with a bond length of 3.015 bohr, the trial wave 
function was VI1 of Ref. 13, and the guiding function from 
Ref. 8. The exact electronic energy, corrected from zero- 
point and relativistic effects, is estimated at - 8.070 23 har- 
trees. This number is computed by adding together the 
nonrelativistic energies of Li and H atoms,14 subtracting 
the experimental binding energy of the molecule,15 and the 
zero point energy of LiH. This experimental number is 
lower than a modern configuration interaction (CI) calcu- 
ationi6 (which obtained an energy of -8.06904 hartrees) 
by 1.2 mhartrees. 
A. Fixed node approach 

The Monte Carlo data input to the Bayesian analysis 
consist of a set of 13 values for each correlation function 
h”‘(t) (i=O,1,2) starting at t=O and uniformly distrib- 
uted with a spacing of &=0.2 a.u. The upper curve of Fig. 
2(a) [upper curves of Figs. 2( a)-2(c) are all identical] 
shows the transient energy E&t>. Because the fixed-node 
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FIG. 3. Fixed node spectral overlap for LiH using all the Monte Carlo 
data. 

method is stable, one can extend this curve until the tran- 
sient energy has converged. This occurs for times on the 
order of 3-4 au., where it reaches the value of - 8.0680(6) 
(represented by the horizontal solid line). This is higher 
than the exact energy because the assumed nodes of the 
trial function are not correct. We also show the Lanczos 
results [Figs. 2( a)-2(c), “+“,I ob_tained by u_sing a two- 
dimensional basis set consisting of Y T( 0) and ‘I’ T( no) with 
n=l ,...,6. The convergence of the Lanczos energy is faster 
than that of the transient energy. 

We have used a flat model for the spectral overlap, but 
in order to represent the continuum of states present, it was 
necessary to use a large number of fixed energies. P in Eq. 
(19) was on the order of a few hundreds. The spacing 
between these peaks needed to describe the details of the 
spectral overlap was found to be 0.1 a.u. In order to get a 
good fit to the data, energies up to 20 a.u. were included. 
Only the ground-state energy was varied in the analysis; 
the other energies (but not the spectral overlaps) were 
fixed. We note that one can prove by considering the ex- 
istence of the integrals SY+l,,,YT=S dE E”‘c(E) that the 
spectral overlap for a trial function of a Coulombic inter- 
action will decay as O(Ek> at large energies where the 
exponent k depends on whether the trial function has the 
correct two-particle cusp condition. We have chosen not to 
use this additional analytic prior information in our anal- 
ysis. Indeed, our results are insensitive to the default 
model. 

Figure 3 presents the maximum entropy spectral over- 
lap obtained when all the data available [h”’ (ti), /z(l) (ti), 
and hc2’( fi) for i= l-131 are used. We see clearly besides 
the very dominant peak associated with the ground state, a 
structure for the excited states. More precisely, a second 
peak is seen - - 7 a.u. as well as a smaller peak - - 2 a.u. 
Note that the location of the first peak is in agreement with 
the estimate of the gap in energy which can be obtained 
from the exponential decay of the transient estimate curve 
of Fig. 2(a). This gap does not represent the first excited 
state, which is much smaller, but represents the lowest 

FIG. 4. Transient estimate energy (filled circles) and Lanczb energies 
(open squares) for LiH. The dashed line indicates the exact energy. 
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excited state having a large overlap with the trial wave 
function. The small peak at an energy of -2 a.u., which is 
always present in our analysis, represents a nontrivial fea- 
ture of c(E). 

The lower curves of Figs. 2 (squares with error bars) 
show the dependence of the estimated ground-state energy 
on the quantity of information available. For example, at 
f =0.2 [Fig. 2(a) 1, we use only h”‘(0.2), perform the fit, 
and calculate errors. Obviously, the quantity of informa- 
tion is very limited and the error bar obtained on the en- 
ergy is therefore large. Nonetheless, the error bars overlap 
with the exact result. Then, we incorporate the next value 
h”‘( 27), etc. The convergence is very rapid. Figures 2(b) 
and 2(c) show how the information contained in h(l) and 
hc2) affects the estimated energy and errors. The conver- 
gence is much enhanced, particularly at the very short 
times for which any additional information improves our 
knowledge of the ground-state energy substantially. How- 
ever, we also see when convergence is reached, at approx- 
imately 1 a.u., introducing more data does not significantly 
reduce the error bars since little additional information is 
contained in the correlation functions. The only way of 
decreasing this error bar would be to decrease the statisti- 
cal errors on the data by making a much longer Monte 
Carlo run. 

In this example, the trial function was chosen equal to 
the guiding function which implies that the information in 
h”’ and hc2) is essentially present in h(‘). Hence there is 
not a rapid decrease in errors bars as h(l) and hc2) are 
added to the analysis. 

B. Transient method 

We have computed the correlation functions using a 
strictly positive guiding function, thus removing the fixed- 
node restriction. The results in this section were done with 
the pure diffusion Monte Carlo scheme presented in Sec. 
II A. The upper curve of Fig. 4 reproduces the conver- 
gence of the transient estimate energy ETE( t). The sign 
problem is evident for t~2.0 a.u. The lower curve shows 
the results obtained by using the Lances algorithm for 
these data. In contrast to the fixed-node case for which the 
MaxEnt analysis was successful, we encountered some se- 
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FIG. 5. Released-node energy as a function of the projecting time for 
LiH. The upper curve (X) is ETE. The average MaxEnt results are given 
by filled circles. Note the expanded scale. 

rious problems in doing the analysis for the transient data. 
Indeed, we found that the analysis is very sensitive to sys- 
tematic time-step errors in the data. Very small time steps 
are required to obtain a time step-independent image. Un- 
fortunately, in that case, the corresponding total simula- 
tion time (roughly, the number of MC steps multiplied by 
the time step) is too short to give reliable QMC data. 

C. Nodal-release approach 

To avoid the time-step errors and to speed up the con- 
vergence in imaginary time, we used the GFMC method 
with released node where one starts from the fixed-node 
output W,Y, as initial population instead of the transient 
method which starts from Y$. This means that we com- 
pute slightly different matrix elements of the evolution op- 
erator and that 

c(E) = c NE--E,) (‘u,l@i> ($1 %N) (35) 

is not necessarily positive. However, since the trial wave 
function Y, is chosen quite close to the fixed-node solu- 
tion, it is likely that significant values of c(E) are positive 
and we continued to use the entropic prior function. We 
are currently investigating a more rigorous prior function 
which will be needed to extend this analysis to excited state 
energies. -~ 

The transient energy is shown as the upper curve (X) 
of Fig. 5. The Bayesian results are given by filled circles. 
Since there is no simple way of computing the correlation 
function hc2) (t), the fit only includes h(O) and h(l). We see 
that the convergence of the MaxEnt solution is very rapid 
and leads to a stable solution without going to large pro- 
jecting times. We get a very accurate value of -8.0700 
*0.0002 for the ground-state energy. In contrast to previ- 
ous calculations, our errors include both statistical errors 

and systematic errors. The only uncontrolled systematic 
error arises from the assumption of the prior probability. 
Our result is 0.23kO.2 mhartree above the experimental 
result. 

VI. CONCLUSIONS 

In this paper, we have presented an application of Bay- 
esian statistics to the determination of the ground-state 
energy of quantum systems. We analyze time-correlation 
functions obtained from zero-temperature quantum Monte 
Carlo calculations (projector methods) to obtain the spec- 
tral overlap function of a given trial function. This spectral 
overlap contains a dominant peak at the ground state and 
small components at higher energies. It has been found 
that the default model appearing in the prior probability 
does not play a role as important as in other applications, 
so a flat model for the density of excited states is sufficient. 
In order to calculate the ground-state energy, we consid- 
ered the location of the main peak as a parameter to be 
optimized. By using a chi-squared likelihood function and 
an entropic prior function, we have computed the average 
and the dispersion of the estimator of the energy (average 
maximum entropy) with the Metropolis method. In that 
way; a reliable estimate of the errors is obtained. Our nu- 
merical applications have demonstrated the efficiency of 
this approach for simple problems, e.g., the LiH molecule 
treated with the fixed-node method. However, the situation 
is a little more difficult when real Fermion data (data ex- 
hibiting the sign problem) are analyzed. In particular, we 
found that the maximum entropy analysis for LiH was 
very sensitive to systematic errors such as the finite time- 
step error. By using a GFMC scheme free of systematic 
error and a released-node approach starting from an initial 
fixed-node population, we demonstrated feasibility of the 
method on the four-electron LiH molecule. It is not yet 
clear how this method will scale with the number of Fer- 
mions, but this way of analyzing the correlation functions 
is guaranteed to be better than the transient estimate 
method, simply because all information generated in the 
QMC is used. 

The Bayesian approach also appears to provide a way 
of calculating excited state properties with quantum Monte 
Carlo. Our previous workI has used a generalization of the 
transient estimate method and was bedeviled with instabil- 
ities coming from statistical fluctuations. The approach 
considered here is the most general way of treating system- 
atic and statistical errors and uses all information in the 
correlation functions. At present, we are testing various 
choices for the nonpositive prior functions needed for ex- 
cited states. Applications to these more difficult problems 
will determine the usefulness and generality of this type of 
analysis. 

ACKNOWLEDGMENTS 

This work was supported by the National Science 
Foundation through grant number NSF DMR88-08 126 by 
the Department of Physics at the University of Illinois, by 
the National Center for Supercomputing Applications, by 

J. Chem. Phys., Vol. 97, No. 11, 1 December 1992 

Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



M. Caffarel and D. M. Ceperley: Monte Carlo correlation functions 8423 

NATO, and by the CNRS. The computational aspects of 
this work used the CRAY-YMP at the National Center for 
Supercomputing Applications. 

’ M. Caffarel, F. X. Gadea, and D. M. Ceperley, Europhys. Lett. 16,249 
(1991). 

‘S. F. Gull and J. Skilling, IEEE Proc. 131, 646 (1984). 
‘R. N. Silver, D. S. Sivia, and J. E. Gubematis, Phys. Rev. B 41, 2380 

(1990). 
‘R. N. Silver, J. E. Gubematis, D. S. Sivia, and M. Jarrell, in Condensed 

Mutter Theories 6, edited by S. Fantoni and A. Fabrocini (Plenum, New 
York, 1991), pp. 189-202. 

‘J. E. Gubematis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. Rev. B 
44,6011 (1991). 

“M. Caffarel and P. Claverie, J. Stat. Phys. 43, 797 (1986); J. Chem. 
Phys. 88, 1088 (1988); 88, 1100 (1988). 

‘M. H. Kales, in Monte Carlo Methods in Quantum Problems, NATO 
ASZ Series C (Reidel, Dordrecht, 1982). 

*D. M. Ceperley, J. Comp. Phys. 51,404 (1983), D. M. Ceperley and B. 
J. Alder, J. Chem. Phys. 64, 5833 (1984). 

9K. E. Schmidt and M. H. Kalos in Monte Carlo Methods in Statistical 
Physics, edited by K. Binder (Springer, Berlin, 1984). 

“J Skilling and S. F. Gull, MaxEnt Conference SAMS-SIAM, 1988. 
” S; R. White (unpublished). 
“G. Temple, Proc. R. Sot. London, Ser. A 119, 22 (1928). 
13P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. 

Phys. 77, 5593 (1982). 
14C. F. Bunge, Phys. Rev. A 16, 2496 (1977). 
‘sK. Huber and G. Herzberg, Constants of Diatomic Molecules (Van 

Nostrand, New York, 1979). 
16N. C. Handy, R. J. Harrison, P. J. Knowles, and H. F. Schaefer III, J. 

Phys. Chem. 88, 4852 (1984). We have corrected the estimate of the 
experimental LiH energy by the exact energy of an isolated H atom, 
-0.499 73 a.u. 

“D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988); B. 
Bemu, D. M. Ceperley, and W. A. Lester, ibid. 93, 552 (1990). 

J. Chem. Phys., Vol. 97, No. 11, 1 December 1992 Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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We present some systematic calculations of dynamic multipole polarizabilities and van der Waals
dispersion coe%cients for the helium atom and H2 molecule with a quantum Monte Carlo calculation.
Using an original method based on a gauge-invariant formalism we also report some ab initio results
of the same quantities. In light of the results we discuss the advantages and drawbacks of both
approaches in comparison to prior theoretical results,

PACS number(s): 31.20.Di, 31.90.+s

I. INTRODUCTION

Dynamic multipole polarizabilities determine a num-
ber of properties of systems interacting with external
electric fields. In particular, they can be closely related
to the van der Waals dispersion coefFicients that describe
the long-range interaction of atoms and molecules. It is
well known that such quantities which formally involve
all the excited states of the system (both the discrete
and continuous part of the spectrum) are very difficult
to evaluate with accuracy. To illustrate this, it is quite
instructive to point out that, for the rather elementary
case of the helium atom, it is only in 1976 that Glover and
Weinhold [1] were able to determine some high-quality
upper and lower bounds of the dynamic dipole polar-
izabilities; more interestingly, these bounds were tight
enough to rule out the majority of previous theoretical
and experimental predictions.

A number of approaches based on O,b initio meth-
ods has been devised to obtain dynamic polarizabilities.
Among the numerous ab initio models currently in use
(corresponding to various levels of accuracy) we may cite
the self-consistent-field configuration-interaction (SCF-
CI) and the full-configuration-interaction (FCI) methods
[2—4], the multiconfigurational time-dependent Hartree-
Fock or multiconfigurational linear response (MCTDHF
and MCLR) [5, 6], the random phase approximation
(RPA) [7], or the more elaborate second-order polar-
ization propagator approximation (SOPPA) [8, 9], and
a time-dependent gauge-invariant (TDGI) method intro-
ducing a dipole-moment factor in the SCF-CI approxi-
mation [10—13].

Very recently, Caffarel and Bess have presented a
method of computing response properties with quantum
Monte Carlo (QMC) [14]. Basically, this scheme re-
lies on the possibility of connecting the imaginary-time-
dependent dynamics of the unperturbed system (the

time-dependent Green's function closely related to quan-
tum response properties) with the transition probabil-
ity density of a diffusion process. As a consequence,
the usual perturbational components of the Rayleigh-
Schrodinger perturbation theory may be expressed in a
natural way in terms of stochastic correlation functions
of the perturbing potential. These correlation functions
are then computed from random walks in configuration
space generated using the transition probability density
(Langevin techniques). The salient features of this ap-
proach will be presented with some detail in Sec. II. It
is interesting to note that such a scheme is formally very
similar to that of standard molecular dynamics, except
that Newtonian trajectories are replaced here by Brow-
nian trajectories (mimicking the "diffuse" character of
quantum mechanics).

The chief advantage of the QMC approach with respect
to cb initio schemes is that no basis-set expansion nor ex-
plicit summation over a large, but necessarily incomplete,
set of basis functions are introduced. It is, of course, a
fundamental property of QMC, considering the impor-
tance of such aspects in cb initio schemes. Other origi-
nal features include the possibility of computing several
response properties (e.g. , dipole, quadrupole, octopole,
etc. , components) in one single Monte Carlo run; the
possibility of having a rigorous estimation of the error
bars on results (a difficult task for ab initio methods);
the very favorable computational aspects of QMC (rnem-
ory requirements are perfectly bounded —no calculation
and storage of huge numbers of bielectronic integrals; the
computer codes are short, simple and very well suited for
vector and parallel computing), etc. All these aspects will
be illustrated in this paper.

The quantum Monte Carlo perturbation formalism has
been fi.rst applied to the problem of the interaction of
two helium atoms at short distances [14]. Some prelim-
inary calculations concerning the dynamic dipole polar-
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izability of helium have also been reported [15]. In this
paper we are concerned with the presentation of some
more systematic calculations of dynamic multipole po-
larizabilities and van der Waals dispersion coefBcients for
the helium atom and H2 molecule. These results are pre-
sented together with some ab initio calculations of the
same quantities we performed by using an original for-
malism based on a TDGI method [12] derived in the spirit
of the variation-perturbation approach [16,17] later used
by Karplus and Kolker [18] for the time-dependent inter-
action. The very different features of QMC and ab initio
approaches are emphasized and the advantages and draw-
backs of each of them are discussed in comparison with
the most accurate theoretical results available [1,19—41].

Just before completing this work we received a paper
from Huiszoon and Briels in which the static dipole po-
larizabilities of helium and H2 (at equilibrium geometry)
are computed using a differential-diffusion Monte Carlo
method [42]. In fact, their approach is very similar to
ours as presented in Refs. [14] and [15], and in the present
work, except that a branching process is used in their
simulations (like in most QMC methods designed so far
to compute total energies).

The organization of this paper is as follows. In Sec.
II, the quantum Monte Carlo method for computing re-

sponse properties of two-electron systems is presented.
We also give a brief presentation of the TDGI ab initio
method we shall use for making some comparisons (in
particular, when no ab initio data are available). Section
III presents calculations of dynamic multipole polariz-
abilities (both in real and imaginary frequencies) for He
and H2. In Sec. IV we present some results concern-
ing van der Waals dispersion coeKcients. Finally, some
concluding remarks are presented in Sec. V.

II. METHODS

A. Quantum Monte Carlo

Dynamic multipole polarizability components of an N-
electron system at frequency ~ are given by

~t""(~) = ~i"'(~) + ~i (~) (1)
with..+( ) ) - (4o1Qt" 14")(O'* I

Qt" 14'o)
E, —Ep+u

nP"+(w) may be rewritten in terms of the Laplace trans-
form of the following centered two- (imaginary) time cor-
relation function:

d~ e+ Cq;q;(~),

where

Qi" —= (&o I Qi I 4), ~ =~, ~. (5)

(6)
where R is a compact notation for representing a point
in the 3N-dimensional configuration space, that is B =
(ri, ..., rN), where N is the number of particles of the
system. It should be noted that the stationary density,

p(R), of the diffusion process (obtained by letting t go to
infinity in the preceding formula) is nothing but the usual
quantum-mechanical probability density associated with
the ground-state wave function

p(R) = &o

In practice, a Gaussian short-time version of the transi-
tion probability density (6) is used to generate stochastic
trajectories of the diffusion process:

1 3NI2

(R Rg g]) I I

—[R' —R—b(R)Dtj /26t

(8)

where the so-called drift vector b responsible for impor-
tance sampling is given by

The important point is that such correlation func-
tions may be computed by using simulation techniques
based on diffusion processes. To do that, we intro-
duce a Markovian diffusion process in configuration space
whose transition probability density is closely related to
the imaginary-time-dependent Green s function associ-
ated with H. More precisely, the transition probability
density employed here is

Rl~
p(R ~ R', t) = ' ) P, (R)P, (R')e '

Po(R)

where Q~t stands for the multipole operator: b(R,) = (9)

and p, are the eigenfunctions of H (the Hamiltonian de-
scribing the isolated atomic or molecular system) with
the corresponding energies E,. It is easy to see that

I

The effect of drifting the mean value of the Gaussian
function (8) is to increase the efficiency of the simula-
tion by keeping the configurations in important regions
of phase space. The two-time correlation functions are
formally defined in terms of the stationary and transition
probability densities as follows:

Cq;q;( ) = ([Qi"(R(0)) —Qi ][Qt"(R(~)) —Q,"])

dRodRi [Qi (Ro) —Qi ]p(RO)p(Rc Ri, 7.) (Qi" (Ri) —Qi ), (1O)
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where () denotes the average with respect to stochastic trajectories. The validity of Eq. (10) is easily checked by
inserting expressions (6) and (7) into (10) and comparing with (4). In practice, such averages may be calculated
from random walks generated from Eqs. (8)—(9) and by averaging the two-time product of Q's along them. However,
at this point this scheme is rather formal since the ground-state wave function of H [whose expression is needed to
construct the drift vector (9)] is generally not known. In fact, it is possible to avoid this problem by introducing a
new difFusion process defined from a known trial wave function QT instead of the exact one [43]. In order to compute
the very same correlation functions, it is possible to show that one just has to introduce a suitable weight factor in
the preceding averages (for a detailed presentation, see [14] and [43]). For example, the two-time correlation functions
in which we are interested here are expressed as

— "' Z a. )d

t —++oo —f'~)~ E I(R(s))d sy

where averages of the right-hand side of the equation are
defined with respect to the diffusion process built from
a trial wave function @T. In fact, formula (11) is noth-
ing but a generalization of the well-known Feynman-Kac
formula [43]. The quantity EL, appearing in the weight
(Feynman-Kac) factor is defined as

EL, = HIT/4T

and is usually referred to as the local energy.
As discussed in length in [14] it is important to em-

phasize that the formalism presented here is effective for
systems having no more than two electrons (no antisyrn-
metry constraints from the Pauli principle). In theory
bigger systems could be treated by introducing some pro-
jecting weights with appropriate antisymmetry. In prac-
tice, doing this introduces a dramatic sign problem at
large times which renders the simulation very delicate
to perform. Note that the commonly used fixed-node
approximation cannot be employed for computing multi-
time correlation functions (even if the exact nodes of the
ground state were known, see [14]). Some proposals to
control this diKculty have been very recently proposed
by one of us [44, 45]. However, the situation is not yet
fully satisfactory.

tional wave function.
We have shown elsewhere [12] that the use of a first-

order wave function which combines a polynomial func-
tion g(r) and both true spectral states P„and quasi-
spectral states g allows us to reach accurate values for
static and dynamic polarizability components. For the
case of dipole polarizabilities (Qi = u) the expression of
this first-order wave function is

N M

11') =g" (r)l&o)+ ). 4 14-)+).c" IO-),
n (&0} m

(14)

where g(r) is a first degree polynomial function of the
electronic coordinate:

g" (r) =) a" u with u v=xy z

when the electric field lies in the v direction. P„are the
true spectral states built from Slater determinants

B. Ab initio TDGI method

Since this original ab initio method has been described
in detail in Ref. [12], only its main features will be given
here. The dynamic polarizability components [Eqs. (1)—
(2)] may be obtained from a time-dependent variation-
perturbation approach [18) using the following expres-
sions:

and g is a quasispectral series determined by Slater
determinants selected using the following threshold:

g(4olvl@ )
H m —EO

with

where H is the Hamiltonian of the unperturbed (isolated
system), Po is its ground-state wave function, Eo the cor-
responding energy, and

l
1 ) the first-order perturba-

with H = (g lH[g ).
The computation of the dynamic polarizability re-

quires the calculations of c„,c"„,and c factors ob-
tained by projecting Eqs. (13) (for +co and —w) on vlPo),
lP„), and lQ ). This leads to a system of two linear sets
of equations to be solved.

When the origin is fixed at the electronic centroid, the
dynamic dipole polarizability components are given in
atomic units by
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~t=l(~) = ).a" (~u) + ) .c (Alul& )
+,to +,n

+).c" (&olu14-) (15)

III. DYNAMIC MULTIPOLE POLARIZABILITIES
FOR HE AND H

with u, v, m = x, y, z and (mu) = (Po] Q,"' m, u~ [go) (n,
being the number of electrons).

We have reformulated the TDC I expressions for
the imaginary frequency-dependent dipole polarizability
a;(ice) in order to calculate the dispersion coefficients via
the Casimir-Polder formula [46]. The two systems of lin-
ear equations become identical but twice greater than for
real frequencies. The resolution is made as described by
Koch and Harrison [47].

Quadrupole polarizability components are obtained in
the same way by replacing the dipole moment operator
by the quadrupole moment but the polynomial function
j(r) has not been used in this case.

obtained using full CI (FCI) calculations or explicitly cor-
related wave functions [I, 24, 37]. Note also that, in the
case of He, Glover and Weinhold [I] have used a method
for calculating rigorous upper and lower bounds to dy-
namic dipole polarizabilities using explicitly correlated
wave functions. To study the reliability of QMC and
TDGI methods, our values are to be compared to these
almost exact results when possible.

Let us first discuss the QMC results. As emphasized
in Sec. IIA a central role is played by the trial wave
function used. The closer the exact solution of the trial
wave function is, the smaller the fluctuations of the lo-
cal energy (12) are, and the better the simulation for
a given amount of computer time is. In practice, one
of the best trial wave functions available for the system
under consideration is generally chosen. The wave func-
tion may have a rather arbitrary form since only its first
(drift vector) and second derivatives (local energy) are
to be calculated (no integrals to perform). Highly and
explicitly correlated trial wave functions (i.e. , including
the interelectronic distance) are generally used. Here, we
have chosen a rather simple form

A. He 47 = lls(rq))lls(rz)) exp
j. +br» (16)

Tables I—IV present the dynamic dipole, quadrupole,
and octopole polarizabilities of helium as calculated
by QMC and TDGI (present work), and various ab
initio methods for comparison. The most commonly
used method for evaluating dynamic polarizabilities
is certainly the time-dependent Hartree-Pock method
(TDHF). TDHF results may be largely improved by us-
ing a MCSCF wave function as reference (MCTDHF)
instead of a single one [25]. However, for a simple two-
electron system such as He nearly exact results may be

with

3

lls(r)) = ) c, exp( —A, r),

where parameters a, 6, A, , and c, have been optimized to
minimize the energy. With our optimized trial wave func-
tion (a = 0.5; b = 0.51571; cq=0.00698; cq ——0.36714;
cs —0.537 62; Aq=4. 462; A2=2.8955; As=I. 5689) we re-

TABLE I. Dynamic dipole polarizabilities o.(cu) (in a.u. ) of He for real frequencies (in a.u. ).
GW stands for Glover and Weinhold [1, QMC for quantum Monte Carlo, and TDGI, TDHF [25],
MCTDHF or MCLR [25], SOPPA [27, and FCI [26] for the corresponding ab initio methods.
Statistical errors on the last digit of QMC results are indicated in parentheses.

Frequency u

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

QMC
1.382(16)
1.386(17)
1.398(17)
1.418(19)
1.449(22)
1.490(25)
1.546(31)
1.618(39)
1.715(52)
1.846(73)
2.031(111)
2.318(188)
2.858 (399)

TDGI
1.3827

1.3984

1.4478

1,5404

1.6974

1.9696

2.5091

4.1308

GW
1.3834(8)
1.3872(8)
1.3990(8)
1.4191(8)
1.4485 (8)
1.4885(9)
1.5412(9)
1.6096(10)
1.6983(11)
1.8145(13)
1.9705(15)
2.1875(18)
2.5091(23)
3.0391(34)
4.1184(73)
8.1640(761)

n((u)
TDHF
1.3214

MCLR
1.3821

1.3354 1.3976

1.3797 1.4467

1.4619 1.5385

1.5995 1.6938

1.8327

2.2741

1.9621
2.1753
2.4897

3.4320 4.0339

soppA
1.3674
1.3712
1.3826
1.4022
1.4307
1.4695
1.5205
1.5866
1.6722
1.7840
1.9334
2.1402
2.4441
2.9380
3.9173

FCI
1.3846
1.3885
1.4003

1.4500

1.5431

1.7009

1.9746

4.1527

'Reference [42]: n(0) =1.38(1).



3708 MICHEL CAFFAREL, MICHEL RERAT, AND CLAUDE POUCHAN 47

cover 89%%uo of the correlation energy. Stochastic trajecto-
ries in the six-dimensional con6guration space are gen-
erated using the Gaussian transition probability density
(8) with

where the Qi's are the dipole (t = 1), quadrupole (I = 2),
and octopole (l = 3) operators given by (only one com-
ponent for each multipole moment has been considered
because of spherical symmetry)

b(R) = (17) Ql +1 + +2~

Ci(r) = ((Qi —Qi)(0)(Qi —Q&)(~)), l = 1, 2, 3 (18)

TABLE II. Dynamic dipole polarizabilities o.(~) (in a.u. )
of He for imaginary frequencies (in a.u. ). GW stands for
Glover and Weinhold [20], QMC for quantum Monte Carlo,
and TDGI for the cb initio method. Statistical errors on the
last digit of QMC results are indicated in parentheses.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0,80
0.85
0.90
0.95
1.00
1,10
1.20
1.30
1.40
1.50
2.00
3.00
4.00
5.00

QMC
1.382(16)
1.378(16)
1.366(15)
1.347(14)
1.322(12)
1.291(11)
1.256(9)
1.217(7)
1.175(6)
1.132(5)
1.088(4)
1.044(4)
1.001(4)
0.958(4)
0.916(4)
0.875(4)
0.836(4)
0.799(4)
0.763(4)
0.729(4)
0.696(3)
0.635(3)
0.581(3)
0.532(2)
0.488(2)
0.449(1)
0.305(l)
0.1647(7)
0.1016(3)
0.0686(1.5)

n(ice)
TDGI
1.3827

1.3675

1.3242

1.2587

1.1788

1.0918

1.0035

0.9180

0.8377

0.7637

0.6964
0.6358
0.5813
0.5326
0.4891
0.4501
0.3075
0, 1659

GW
1.3834(8)

1.370(10)

1.322(7)

1.257(5)

1.178(4)

1.090(3)

1.002(2)

0.917(2)

0.836(2)

0.762(2)

0.695(2)

0.580(1)

0.449(1)
0.3069(9)

Reference [42]: a(0)=1.38(1).

As usual when using a step-wise procedure to generate
trajectories, a finite time-step error is introduced (the
"short-time error" ). In order to reduce it significantly we
have used the acceptance-rejection procedure presented
in Refs. [14] and [48], essentially a standard Metropo-
lis algorithm based on a Langevin move. To keep the
short-time error under control, we have repeated our sim-
ulations for different time steps of decreasing magnitude
up to some value for which the time-step error is signi6. —

cantly smaller than the statistical one. A typical value of
the time step for the simulations presented here is 0.01
a.u. The following autocorrelation functions have been
calculated:

Q. =-', ( '+ ')--,'("+ ')
Qs &~i + &2 g&1(yi + zi) ——',~2(v2 + z2),

where x, , y, , z, denotes the position of electron i Av. ery
important feature of this type of approach is that the
different correlation functions are computed from a com-
mon set of random walks. Only integrands change when
computing different averages. It should be noted that
within the framework of cb initio methods computing
polarizabilities corresponding to different multipole mo-
ments requires in theory as many calculations as dif-
ferent operators. In practice, this is not strictly true
(the perturbation-independent part of the calculation is
evaluated only once; it is possible to take advantage of
eKcient algorithms for solving simultaneous equations,
etc.), but the cost remains larger Fig.ure 1(a) (upper
curve) presents the dipole correlation function Ci versus
~ as calculated for several statistically independent sets of
random walks (here, only eight curves have been drawn).
The location of the different curves gives a visual repre-
sentation of the dispersion of QMC results. The number
of independent calculations done for any result presented
in this paper is always of the order of 100, the error bars
given in the tables being estimated from these statisti-
cally independent sets of trajectories. As usual when
computing correlation functions it is important to realize
that the long-time regime may be difBcult to reproduce.
The reason for that is the exponential decay of the func-
tion, together with the presence of an error bar more or
less constant as a function of time. We illustrate this
difBculty by showing the logarithm of C(~) in Fig. 1(b)
(lower curve). The theoretical expression (4) indicates
that lnC should become linear for suKciently large times
(the slope representing the gap in energy of the system).
In practice, this is what happens for large enough times
(here, around r = 2 a.u. ); however, at too large times
(here, around ~ & 3 a.u. ) the noise dominates. To corn-

pute polarizabilities and van der Waals force constants
[Eqs. (3) and (22)] the correlation function must be inte-
grated over the entire time domain. Therefore, we must

pay special attention to the long-time domain. The strat-
egy employed here is simple. We determine at large times
a range of time values where the correlation function de-
cays as a single exponential and for which the noise is still
small. On this interval a fit of the correlation function
as a single exponential is performed. This representa-
tion for C(w) is used for ulterior times. In the short-time
regime, the data are represented analytically via a spline
interpolation procedure. Accordingly, the integrations
involved in (3) and (22) are expressed as a finite sum
(the number of QMC points) of Laplace transforms of a
third-order polynomial (spline part) plus a trivial residue
corresponding to large times. Here also, as in the ease
of evaluating properties related to different multipole op-
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erators, it is important to stress that we do not need to
do two separate calculations when both imaginary- and
real-frequency polarizabilities are needed. Indeed, once
the multipole correlation function has been computed as
a function of time over a sufBciently large range of time
values, evaluating multipole polarizabilities at zero or ar-
bitrary frequencies (real or imaginary) and even van der
Waals dispersion coeKcients is just a matter of perform-
ing a few trivial analytical integrations. Let us now have
a closer look at our QMC results. A first observation is
that the results obtained are good since in all cases (Ta-
bles I—IV) they are compatible with the estimated exact
values. This is, of course, expected since QMC results
are supposed to be exact and free of any systematic error
(such as the choice of the basis set in ab initio methods).
The only relevant quantity here is the magnitude of the
error bar defining the accuracy of the QMC simulation.
According to the central-limit theorem, the error bar be-
haves as c/~T, where T is the computer CPU time which
is directly related to the total number of Monte Carlo
steps performed. c is a constant depending on different
factors such as the quality of the trial wave function used
and the amount of statistical correlation between succes-
sive configurations generated and the nature of the oper-
ators involved in the averages. Since in the present work

6n( bc(o)
C(0)

&4o I
~Q2'14o) —(4o I

~Qt'
I 4o)

(go I

~Qt'
I 4o)

(19)

where

~Q~ —= Qi —Qi.

A crude estimate of these errors may be obtained by com-

a common set of trajectories has been used to compute all
the quantities presented, differences in statistical errors
are mainly due to the nature of operators. In particular,
it is worth noting that the statistical error on polariz-
abilities increases when multipole operators correspond-
ing to increasing t are considered. To explain this we
first notice that errors on polarizabilities and correlation
functions are expected to be roughly proportional due to
the linear relation between them. On the other hand, a
rough estimate of the error on correlation functions may
be obtained by evaluating this error at the initial time,
which is essentially given by the dispersion of the squared
multipole operator. We have

TABLE III. Dynamic quadrupole polarizabilities (in a.u. ) of He for both real and imaginary
frequencies (in a.u.). BL stands for Bishop and Lam [24]. Statistical errors on the last digit of
QMC results are indicated in parentheses.

Frequency w

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0,45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.10
1.20
1.30
1.40
1.50
2.00
3.00
4.00
5.00

C(~)qMc
0.800(16)
0.802(16)
0.807(16)
0.815(17)
0.827(17)
0.843(18)
0.864(20)
0.891(22)
0.926(26)
0.972 (31)
1.034(40)
1.125(57)
1.287(104)

C(~)TDGI
0.8022

0.8085

0.8280

0.8633

0.9192

1.0058

1.1449

1.3965

2.0946

C(cu)BI.
0.8146
0.8161
0.8208
0.8289
0.8404
0.8559
0.8757
0.9007
0.9318
0.9705
1.0189
1.0802
1.1596
1.2661
1.4172
1.6541

C(2~) qMC
0.800(16)
0.799(16)
0.794(15)
0.787(15)
0.776(15)
0.763(14)
0.749(13)
0.732(13)
0.714(12)
0.695(11)
0.675 (10)
0.655(10)
0.634(9)
0.613(9)
0.593(8)
0.572(8)
0.552(7)
0.533(7)
0.513(6)
0.495(6)
0.477(6)
0.442(5)
0.410(5)
0.381(4)
0.353(4)
0.329(4)
0.233(2)
0.129(1)
0.0803(3)
0.0545(2)

C(2Cd) TDGI
0.8022

0.7960

0.7781

0.7504

0.7153

0,6754

0.6331

0.5903

0.5485

0.5086

0.4712
0,4364
0.4043
0.3750
0.3482
0.3237
0.2301
0.1296
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puting the averages in (19) using the approximate trial
wave function instead of the exact one. Resorting to a
standard Metropolis algorithm to compute integrals we
obtain

bn2 bog
)

5~3 bo. y ~ 6.8.
A3 Ay

These ratios agree quite well with ratios of QMC errors
presented in Tables I—IV. For the case of the dipole re-
sults, our values are compatible with the narrow range of
possible values resulting from the very tight rigorous up-
per and lower bounds of Glover and Weinhold [1, 20] ob-
tained by using correlated Hylleraas-type wave functions
or, for the static case, with the experimental value of
1.383 79(7) obtained by Gugan and Michel [49] [after cor-
recting for the motion of the nucleus we get 1.38323(7),
in agreement with the best ab initio value (1.383192)
given by Bishop and Lam [24] ].

This is true for both real and imaginary frequencies.
Concerning quadrupole polarizabilities our results are
compatible with our TDGI results and the results ob-
tained by Bishop and Lam [24] (note that we have di-

vided our results by a factor 3 to match their conven-
tion). Table IV presents dynamic octopole polarizabili-
ties of He. They are compared with the ab initio results
of Luyckx, Coulon, and Lekkerkerker [38] obtained by
a simple variation method. The latter ones agree quite
well with our QMC results within statistical errors. An-
other feature which deserves to be commented on is the
increase of the statistical error with real frequency. This
behavior arises from the fact that high real frequencies
require an accurate evaluation of the correlation func-
tion for increasing times [the Laplace kernel exp(co~) in

(3) explodes for large frequencies], and the small statisti-
cal errors on the tail of the correlation function are then
exponentially magnified by the Laplace transform. Note
that this problem does not exist in the case of imaginary
frequencies.

In order to make some comparisons, a number of ab
initio calculations are also presented in Tables I—IV. Our
Ob initio calculations were performed using the TDGI
approach [12, 13] briefly presented in Sec. IIB. For He,
the basis set employed consists of 13s, 7p, and 6d primi-
tive Gaussian orbitals based on the van Duijneveldt (10s)
primitive set [50, 51] and an even tempered (7p, 6d) po-
larization set augmented by adding 3s disuse function.

TABLE IV. Dynamic octopole polarizabilities (in a.u. ) of He for both real and imaginary
frequencies (in a.u. ). Ab initio results are taken from Ref. [38]. Statistical errors on the last digit
of QMC results are indicated in parentheses.

Frequency w

0.00
0.05
0.10
0.15
0.20
0,25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.0

O3(~)QMC
10.36(69)
10.38(70)
10.45(71)
10.57(72)
10.75(75)
11.00(80)
11.33(86)
11.77(96)
12.35(113)
13.14(144)
14.26(212)

(C~t3) ab initio
10.48
10.49
10.54
10.63
10.74
10.90
11.10
11.34
11.64
12.01
12.45

Ci3 (Z(d) QMC
10.36(69)
10.33(69)
10.26(68)
10.15(66)
10.01(64)
9.83(62)
9.62(59)
9.40(57)
9.16(54)
8.91(51)
8.66(49)
8.41(46)
8.17(44)
7.92(41)
7.69(39)
7.46(36)
7.23(34)
7.02(32)
6.81(30)
6.61(28)
6.41(26)
3.51(9)
1.92(2)
1.198(9)
0.820(11)
0.591(8)
0.452(4)
0.350(3)
0.276(3)
0.225(2)

O'3(t~) ab initio
10.48
10.46
10.42
10.34
10.23
10.10
9.94
9.76
9.56
9.35
9.12
8.89
8.65
8.40
8.15
7.90
7.66
7.41
7.17
6.93
6.70
3,42
1.93
1.217
0.828
0.597
0.449
0.350
0.280
0.228

Reference [37]: n3(0)= 10.6144.
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Exponents of the 3s orbitals are, respectively, 0.049069,
0.022 304, and 0.010 138. SCF and CI calculations within
this basis set give an atomic energy of —2.861 67 a.u. and
—2.902 52 a.u. , respectively. Dynamic dipole polarizabil-
ities of He for real frequencies computed with TDGI are
listed in Table I together with some TDHF [25], MCLR
[25], SOPPA [27], and FCI [26] results and the very accu-
rate rigorous upper and lower bounds obtained by Glover
and Weinhold [19,20]. A first point to emphasize is that
our ab initio TDGI results for the static polarizability
(1.3827 a.u. ) is in excellent agreement with the one ob-
tained by Glover and Weinhold [1.3834(8)] and with the
very accurate value (1.383 192) given by Bishop and Lam
[24] using explicitly electron-correlated wave functions.

MCTDHF and FCI methods give quite accurate re-
sults; an error of approximately 1% is found with
SOPPA. The main differences between various calcula-
tions appear at frequencies close to the first excitation
energy of He. Table I shows that, for frequencies up to

0.7 a.u. , the TDGI results, close to the accurate results
of Glover and Weinhold [1], are the most accurate ones
among ab initio calculations. The main explanation is
that the excitation energy corresponding to the transi-
tion 1s —+ 2p is very well reproduced in our calculations,
namely, 21.193eV, to be compared with the experimental
value of 21.22 eV. As already explained above QMC re-
sults have a statistical error which increases very rapidly
with the frequency. Calculating polarizabilities for real
frequencies close to the excitation energy is not an easy
task for the QMC approach. For the case of imaginary
frequencies where this problem does not exist, we obtain
a very good agreement between QMC and TDGI results
(Table II). Concerning the dynamic quadrupole polariz-
abilities (Table III) our results are compared with those
obtained by Bishop and Lam [24] which have to be con-
sidered as reference values. Between 0.0 and 0.6 a.u. our
ab initio values have a similar behavior as Bishop and
Lam results. However, it seems that our results are too
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FIG. 1. (a) Dipole correlation functon of
He vs ~ as calculated in eight independent
runs. (b) Logarithm of C(r). Note the effect
of the noise in the large-time domain.
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small with an error of approximately 1.5%. QMC results
within the statistical errors are in good agreement with
both sets of results.

@T = exp
I

[C'A(1)c'rr(2) + C'g(2)C'rr(1)]
i, 1+brr,

B. Hg

Calculating response properties for a molecular system
such as H2 using QMC does not introduce any additional
difBculties with respect to an atomic system such as He.
As usual choosing a good approximate trial wave func-

tion is the crucial step. Since calculations at both in-

termediate and large internuclear separations, RH H, are
considered here it is important to choose a wave function
capable of describing both the equilibrium region (co-
valent regime) and the large RH H region (valence-bond
regime). This could be realized with one single wave

function with some parameters connecting both cases.
For simplicity we have chosen here to use two diferent
wave functions

For large distances

@T = exp]
~
C(1)C(2),(1+brr2)

where the molecular orbital is given by

C (i) = exp( —Ar, g) + exp( —Ar, ~).

(21)

Concerning our ab initio TDGI calculations, we have
chosen for each hydrogen atom a contracted basis
[Gs, 6p, 3d] issued from the basis [4s, 3p, 1d] proposed by
Siegbahn and Liu [52] in their study of the potential
energy surface of H3. The two additional s functions

with

C'M(i) = exp( —Arr, M) + cexp( —Aqr, M), M = A, B,

where r,M denotes the distance between electron i and
nucleus M (M = A, B).

For intermediate distances

TABLE V. Dynamic dipole polarizabilities (in a.u.) of H2 at R = 1.4 for real and imaginary
frequencies (in a.u.). QMC stands for quantum Monte Carlo and TDGI, Rych [28] and SOPPA [27]
stand for the corresponding ab initio methods. Statistical errors on the last digit of QMC results

are indicated in parentheses.

0,0000
0.0720
0.0834
0.1045
0.1363
0.1535
0.1979
0.2354
0.2500
0.3000
0.3500
0.3748
0.4000
0.4500

6.42(8)
6.55(9)
6.59(9)
6.69(9)
6.90(10)
7.04(10)
7.52(13)
8.09(15)
8.37(17)
9.68(34)

Prequencies nQ
II

TDGI
II

6.4310
6.5617
6.6077
6.7132
6.9278
7.0756
7.5865
8.2125
8.5226
10.0190
12.7855
15.2223
19.4440
61.6664

Rych
II

6.3873
6.5164
6.5618
6.6659
6.8776
7.0235
7.5256
8.1412
8.4481
9.9160
12.6126
14.9610
18.9847
54.3276

SOP PA
II

Real
6.4495
6.5812
6.6276
6.7338
6.9501
7.0990
7.6136
8.2437
8.5568
10.0649
12.8558
15.3084
19.5639
62.0977

QMC
Qg

4.53(7)
4.60(7)
4.62(7)
4.68(9)
4.79 (9)
4.87(10)
5.13(13)
5.43(18)
5.57(22)

TDGI
Ag

4.5944
4.6725
4.6999
4.7626
4.8892
4.9758
5.2713
5,6257
5.7982
6.6041
7.9877
9.1058
10.8521
20.9387

Rych
Qg

4,5786
4.6562
4,6834
4.7457
4.8715
4.9576
5.2503
5.6017
5.7738
6.5713
7.9320
9.0182
10.6930
19.4400

SOPPA
Ag

4.5676
4.6445
4.6715
4.7331
4.8576
4.9427
5.2328
5.5800
5.7493
6.5367
7.8834
8.9633
10.6421
20.0551

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.8000
1.0000
1.2000
1.5000
1.8000
2.0000

6.42(8)
6.19(7)
5.59(6)
4.82(4)
4.05(3)
3.36(2)
1.96(l)
1.423(7)
1.073(5)
0.743(4)
O. 542(3)
0.448(2)

6.4310
6.1939
5.5834
4.8082
4.0395
3.3624
1.9746
1.4396
1.0848
0.7484
0.5437
0.4496

Imaginary
4.53(7)'
4.40(7)
4.05(5)
3.58(4)
3.09(3)
2.63(2)
1.63(l)
1.220(8)
0.942(4)
O.670(3)
0.499(2)
0.417(2)

4.5944
4.4517
4.0777
3.5888
3.0870
2.6294
1.6367
1.2290
0.9481
0.6718
0.4978
0.4160

Reference [42]: o.~~(0) = 6.38(5); n~(0) = 4.60(3).
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and three p functions have an exponent of (0.0287739,
0.012 510 3) and (0.101818, 0.037 025, 0.013463 5), re-
spectively. The three exponents of the d functions are
1.20252, 0.463925, and 0.0812406. Even if this basis
set is far from being complete, the introduction of the
polynomial in the determination of polarizabilities im-
proves the convergence. Performing a full CI calculation
within this basis set leads to an energy of —1.173485
a.u. at R=1.401 a.u. A most important point when
determining the dynamical properties of H2 is to cor-
rectly describe the vertical transition X Z+ ~ B ~E+
and X Z+ C II„. Our results for the corresponding
excitation energies are 12.73 eV and 13.21 eV, respec-
tively, in excellent agreement with the exact values of
12.76 and 13.22 eV.

Table V presents dynamic dipole polarizabilities of H2
at the equilibrium geometry for both real and imagi-
nary frequencies as computed with QMC and TDGI. Re-
sults for real frequencies are compared with the reference
calculations by Rychlewski [28] based on a variation-
perturbation method using explicitly correlated wave
functions and some recent SOPPA results by Sauer,
Dierksen, and Oddershede [27].

QMC results for real frequencies are compatible with

Rychlewski's values within statistical error bars. Con-
cerning ab initio (TDGI) results, it is noted that the
static components n„(0) and a (0) overestimate Rych-
lewski results by a factor of 0.7% and 0.3%, respectively.
This overestimation is true for all frequencies. At fre-
quency 0.4 a.u. , close to the resonance, our values are
too large by a factor of 2.4% and 1.5%, respectively. It
should be emphasized that our TDGI results, obtained
using a much smaller basis set than Sauer, Dierksen, and
Oddershede [27] with SOPPA are of comparable quality.
Although the parallel component is better reproduced
with TDGI than with SOPPA, this is no longer true for
the perpendicular one much more sensitive to the angu-
lar correlation. In the case of imaginary frequencies, only
our QMC and TDGI results can be compared. Both sets
of results appear to be compatible.

Table VI presents dynamic quadrupole polarizabilities
of H& at the equilibrium geometry for both real and imag-
inary frequencies for the three independent components
denoted as C„„,C, „and C (z is the inter-
nuclear axis), as computed by QMC and TDGI. Our
static components and values at real frequency m=0. 0720
a.u. are compatible with those available in the literature
[33, 34]. TDGI results are in good agreement with QMC

TABLE VI. Dynamic quadrupole polarizabilities (in a.u. ) of H2 at R = 1.4 a.u. for real and
imaginary frequencies (in a.u.). QMC and TDGI stand for quantum Monte Carlo and ab initio,
respectively. Statistical errors on the last digit of QMC results are indicated in parentheses.

Frequencies

0.0000
0.0720
0.0834
0.1045
0.1363
0.1535
0.1979
0.2354
0.2500
0.3000
0.3500
0.3748
0.4000
0.4500

~QMC
ZZ) ZZ

6.10(35)
6.17(36)
6.19(38)
6.25(39)
6.36(44)
6.43(47)
6.66(62)
6.93(80)
7.06 (90)

gTDGI
ZZ) ZZ

5.9914
6.0645
6.0879
6, 1410
6,2466
6.3177
6.5530
6.8209
6.9461
7.4885
8.2798
8.8137
9.5016
11.6312

~QMC
XZ )XZ

Real
4.30(36)
4.35(37)
4.37(38)
4.40(40)
4.47(45)
4.52(49)
4.68(65)
4.87(83)
4.96(93)

gTDGI
XZ]XZ

4.1976
4.2440
4.2601
4.2968
4.3696
4.4186
4.5806
4.7650
4.8511
5.2236
5.7656
6.1304
6.5989
8.0344

gQMC
'X X $ XX

4.93(24)
4.99(25)
5.01(26)
5.05(27)
5.14(30)
5.20(32)
5.41(41)
5.64(54)
5.75(62)
6.23(115)

~TDGI

4.7929
4.8465
4.8651
4.9074
4.9914
5.0478
5.2340
5.4451
5 5433
5.9652
6.5684
6.9660
7.4656
8.9104

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.8000
1.0000
1.2000
1.5000
1.8000
2.0000

6.10(35)
5.98(31)
5.64(25)
5.16(18)
4.63(14)
4.10(12)
2.80(9)
2.18(6)
1.73(4)
1.25(2)
0.921(8)
0.775(6)

5.9914
5.8662
5.5243
5.0444
4.5098
3.9815
2.6840
2,0839
1.6455
1.1935
0.8975
0.7553

Imaginary
4.30(36)
4.21(30)
3.99(27)
3.66(19)
3.29(16)
2.92(13)
2.01(9)
1.59 (6)
1.28(5)
0.92(2)
0.680(9)
0.570(7)

4.1976
4.1113
3.8750
3.5428
3.1720
2.8047
1.8986
1.4774
1.1687
0.8495
0.6399
0.5389

4.93(24)
4.82(21)
4.53(15)
4.13(11)
3.69(9)
3.26(8)
2.23(5)
1.75(3)
1.39(3)
1.01(1)
0.768(6)
0.653(4)

4.7929
4.6929
4.4191
4.0336
3.6035
3.1789
2.1454
1.6734
1.3302
0.9760
0.7421
0.6286

Reference [34]: C„,„=5.983; C .. .= 4.180; C, = 4.927.
Reference [34]: C. .. = 6.050, C .. .= 4.226, C, = 4.981.
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TABLE VII. Dipole static polarizabilities (in a.u.) of H2 at selected internuclear distances A
(in a.u.). Rych stands for Rychlewski [29], BL stands for Bishop and Lam [31], QMC stands for
quantum Monte Carlo, and TDGI stands for ab initio. Statistical errors on the last digit of QMC
results are indicated in parentheses.

Distance R
1.4
2.4
3.0
3.4
3.8

6.0

QMC

4.53(7)
7.61(14)
8.76(20)
9.01(26)
9.13(18)
9.10(17)
8.98(13)

A TDGI
Ag
4.5944
7.6697
8.8494
9.2238
9.3003
9.2143
8.9371

Rych

4.57856
7.66049
8.85806
9.22883
9.30201

8.92719

BL

4.5785
7.6592
8.8555

QMC
II

6.42(8)
14.57(57)
17.60(79)
18.35(90)
17.41(53)
14.59(28)
10.17(17)

TDGI
II

6.4310
14.2932
17.8692
18.3724
17.3388
14.7043
10.2007

Rych
II

6.38732
14.26621
17,79965
18.28339
17.30680

10.19754

BLA
II

6.3875
14.2691
17.9990

Reference [42]: n~~(0) = 6.38(5); nz(0) = 4.60(3).

ones, except at large imaginary frequencies where TDGI
seems to give too small values.

The dependence of static dipole polarizabilities on the
internuclear distance H-H is presented in Table VII. For
all distances the TDGI results are in excellent agreement
with the reference values obtained by Rychlewski [29].
The same remark is valid for QMC results.

~ab gab(1 1)

gab gab(I 2) +. gab(2 1)

C;ob = C"(I, 3) + C"(2, 2) + C'(3, 1).

A. cq-cs and cqo far He

(23)

IV. van der WAALS COEFFICIENTS FOR He
AND Hg

The multipole dispersion force coefficients between two
systems a and b may be expressed in terms of the dynamic
polarizabilities as follows (see, e.g. , Ref. [53])

(2ta + 2tb)! +
( ) =

2 ( I )t( t )I
ckd cli (ted)Ai (i(d),

(22)

usual van der Waals constants being related to these co-
efficients in the following way:

As already pointed out a remarkable feature of QMC
is that no additional calculations are needed to compute
van der Waals constants once the polarizabilities have
been evaluated. Indeed, when computing polarizabilities
we built an analytical representation of the correlation
function of each multipole operator. Obtaining van der
Waals coefficients is then a simple matter of perform-
ing the analytic integrations involved in formula (22).
Our results for c6, cs, and ego are presented in Table
VIII together with some other results found in literature
[20,27,35—40]. QMC results appear to be quite good.

Our TDGI results are obtained from the values of
the polarizabilities at imaginary frequencies using the

TABLE VIII. van der Waals dispersion coefficients (in a.u. ) of He. Statistical errors on the last
digit are indicated in parentheses.

Method

Glover and Weinhold
Maeder and Kutzelnigg
Meyer'
Thakkar~
Luyckx, Coulon, and Lekkerkerker'
Buckingham and Hibbard
soppA~
MCTDHF"
Present work:
QMC
TDGI

C6

1.460(6)
1.457
1.456
1.4608
1.458
1.4638
1.4394
1.4608

1.454 (14)
1.4593

13.90
13.90
14.1118
14.06
14.094

13.88(22)
13.883

C10

177.24
175.4
183.6
182.2
183.47

177.9(69)

Reference [20].
Reference [35].

'Reference [36].
Reference [37].

'Reference [38].
Reference [39].

sReference [27].
"Reference [40].
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TABLE IX. c6 dispersion force constant (in a.u. ) for He-H2 as a function of the interhydrogen
distance R (in a.u. ) with quantum Monte Carlo (QMC) and ab initio (TDGI) methods. Comparison
with the semiempirical results of Matias and Varandas [41], see text.

Met
R 1.4 2.4 3.0

Parallel

3.4 3.8 4.4 6.0

QMC
TDGI
Max. Matias
Min. Matias

4.61(4)
4,6267
4.6
4, 2

7.81(15)
7,8405
7.5
6.8

8.75(22)
8.8621

8.88(29)
8.8602
8.6
7,6

8.30(12)
8.4148
8.4
7.3

7.46(11)
7.4756
7.8
6.7

5.99(5)
6.04
6.6
5.7

Perpendicular

QMC
TDGI
Max, Matias
Min. Matias

3.53(4)
3.5579
4
3.2

5.05(6)
5.0702
6.1
5.8

5.52(8)
5.5774

5.64(9)
5.7275
6.9
5.4

5.68(9)
5.7563
6.9
5.3

5.67(8)
5.7198
6.6
5.2

5.59 (8)
5.61
6.4
5.0

Casimir-Polder formalism. More precisely, we first solve
Eq. (13) in order to get cr(iw) for a number of imaginary
frequencies. Then, we perform a fit of the resulting curve
using the oscillator strengths and transition frequencies
as fitting parameters. Finally, the coefficient c6 is ob-
tained from the following expression:

in complete disagreement with their results. This illus-
trates how semiempirical evaluations can be significantly
pool .

V. DISCUSSION

fAfB
C6 =—

~ ~A~B(~A + ~B)V P V P

using the optimized parameters. Note that the values
of the oscillator strengths (f+, f+) and transition fre-

quencies (~+,w„) calculated at the CI level for the two
systems A and B are used as a starting point of our op-
tirnization.

The evaluation of the coefficient cqo which requires
some additional calculations has not been performed.
The values obtained for c6 and c8 are in excellent agree-
ment with those obtained by QMC and preceding calcu-
lations.

B. ce for He-Hq

Table IX presents calculations of the c6 dispersion force
constants (both parallel and perpendicular) for the sys-
tem He-H2 as a function of the interhydrogen distance
RH H with quantum Monte Carlo and ab initio (TDGI)
methods. To our knowledge this is the first from-first-
principles calculation of this quantity. We have compared
our results with the recent results of Matias and Varan-
das ([41]) obtained from a number of more or less crude
semiempirical approximations. It is very satisfactory to
note that our QMC and TDGI results are compatible
(within statistical error bars) for any distance. We have
given the upper and lower bounds obtained from calcula-
tions by Matias and Varandas (denoted as Min and Max).
We see that for a number of distances our evaluations are

The purpose of this work was to present some sys-
tematic calculations of dynamic multipole polarizabilities
and van der Waals dispersion coefficients of two-electron
systems (He and H2) with quantum Monte Carlo results.
A detailed presentation of the practical implementation
of this new approach has been given. We compared our
results with a number of previous theoretical results ob-
tained by using various ab initio methods. In all cases
QMC results are in good agreement with estimated "ex-
act" values within statistical error bars. The typical sta-
tistical error on QMC results is of the order of a few per-
cent. This should be considered as satisfactory, even if for
simple systems such as He and H2 more accurate results
have been obtained by using explicitly correlated wave
functions (particularly for static quantities). However, it
should be noted that the accuracy on QMC results could
be increased by making longer Monte Carlo runs (that
was not the purpose of this work).

We also reported some results obtained using an orig-
inal ab initio method based on a gauge-invariant formal-
isrn (TDGI method). It has been illustrated that TDGI
results are of comparable quality with the best ab initio
values, although the size of our basis sets was significantly
smaller. This is essentially due to the fact that, besides
giving a good description of the ground-state wave func-
tion, in TDGI we also give a very good description of
the first excited state, an essential step to correctly re-
produce the dynamical properties of the system. Having,
at our disposal, this accurate ab initio method appeared
to be essential in checking our QMC calculations in the
interesting cases where QMC results entered in conflict
with existing theoretical results. That was, in particular,
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the case when calculating the c6 dispersion coefficient for
He-H2, a quantity for which only semiempirical results
were known. In addition, presenting QMC results to-
gether with cb initio results helps us to emphasize the
very different features of both approaches.

QMC does not require any expansion on a basis set.
Most of the correlation energy is taken into account via
the high-quality trial wave function used. The remain-
ing part is recovered using an appropriate weight factor
(Feynman-Kac factor) when computing averages. Such
a property is remarkable. In some very rough sense, we
may view the various ab initio methods referred to in
the tables as different clever ways of trying to tackle the
problem of basis-set convergence. In particular, as em-
phasized above, our TDGI method is another original
way of getting accurate results from a relatively modest
basis set. In addition, it should be emphasized that no
error bars appear in tables for ab initio results. Indeed,
computing errors resulting from an incomplete basis set
with a given cb initio method is by no way an easy task.
In sharp contrast, QMC gives a natural and viable esti-
mate (nonbiased statistical estimator) of the error made
for a given amount of numerical effort.

Using our QMC framework based on two-time corre-
lation functions enables us to compute during a same
run all the response properties corresponding to different
multipole operators (real and imaginary polarizabilities
for 1=1,2, . . . , van der Waals dispersion coefficients). This
is particularly convenient. Within the framework of an ab
initio calculation, in theory, a calculation is required for
each separate quantity (although in practice it is possible
to reduce a non-negligble part of the cost). In particular,
that was the reason why we did not compute dynamic
octopole polarizabilities with TDGI (even if, of course,
this is possible).

The computational aspects of QMC are remarkably
favorable: the memory requirements are very small (no
calculation and storage of bielectonic integrals); the codes
are short, simple, and very well suited for vector and
parallel processing.

Finally, we would like to end with some of the limita-
tions of QMC. First, as pointed out above, the method is
not suitable for computing real dynamic polarizabilities
at a frequency close to a resonance. Big error bars in the
frequency region close to 0.7 a.u. in Tables I and III—VI
illustrate this point. However, this does not occur for
imaginary frequencies which are used for computing van
der Waals constants. However, the most important lim-
itation of QMC is that the formalism used in this work
is limited in practice to two-electron systems (see discus-
sion at the end of Sec IIA), systems for which accurate
ab initio calculations may be performed using explicitly
electron-correlated wave functions. Accordingly, it will
be possible to consider QMC as a viable alternative to
the use of full CI methods only when efficient methods
of computing multitime correlation functions for many-
electron systems will be available. This will require some
more methodological developments.
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Dynamic dipole and quadrupole polarizabilities of the 2 'S and 2'S metastable states of He are calcu-
lated using our time-dependent gauge-invariant method and compared with previous theoretical results.
Dispersion coe%cients for the He(2'S)-H2 and He(2'S)-H2 systems, and their dependence on the in-
tramolecular H—H distance are reported.

PACS number(s): 31.20.Di, 31.50.+w, 31.90.+ s, 35.10.Di

I. INTRODUCTION

Collision processes involving excited atoms play an im-
portant role in many fields of physics including gas-laser
physics, plasma physics, and upper-atmosphere physics
[1]. Among these processes, an important one —which
has been extensively studied —is the Penning-ionization
process involving metastable helium. For the systems
He(2'S and 2 S)-Hz, experimental data in the thermal
[2—6] and superthermal [7] energy range have been re-
ported. Qualitatively good agreement between experi-
mental results and quantum-mechanical calculations
based on an optical-potential model [8] and classical tra-
jectory calculations [9,10] has shown that the dipole-
dipole interaction is the major contribution to the au-
toionization process at large interatomic distances [11].
However, although reliable values for the dipole-dipole
( C6 ) dispersion coefficients are available for a large num-
ber of rare-gas diatomic systems in which atoms are in
their ground state [12—15], very little is known for excit-
ed atoms. On the other hand, it is well known that
dispersion coefficients may be obtained from the
knowledge of frequency-dependent polarizabilities.
Then, to be capable of calculating frequency-dependent
polarizabilities for the low-lying excited states of rare gas
is of importance.

The purpose of this paper is first to present accurate
calculations of the dynamic (both real and imaginary fre-
quencies) dipole and quadrupole polarizabilities for the
two low-lying metastable states (2 'S and 2 S) of He us-
ing our time-dependent gauge-invariant (TDGI) method
[16—18]. When possible, our values are compared with
the nearly exact results obtained by Glover and Weinhold
[19,20] using explicitly correlated wave functions. Then,
the frequency-dependent polarizabilities are used to com-
pute the two-body dispersion coefficients corresponding
to 1 'S, 2 'S, and 2 S states, and by combining the present
results with those obtained in a previous work [18], to ob-

II. METHODOLOGICAL AND COMPUTATIONAL
DETAILS

Our calculations are done by using a recently presented
method based on a TDGI formalism for calculating static
as well as dynamic linear and nonlinear polarizabilities
[16,17]. This method, which has been first applied to sys-
tems in their ground state, is extended here to calculate
polarizabilities of the 2 'S and 2 S metastable excited
states of He at frequencies below and above the first exci-
tation threshold. Many of the theoretical details are
similar to those described in Refs. [16,17] and [21], and
therefore need not be repeated here. The fundamental in-
gredient to obtain accurate values of dynamic polarizabil-
ities is to generate wave functions leading to accurate en-
ergies for the ground 1 'S and excited 2 'S, 2 S, 2 'P, and
2 P states, as well as accurate dipole-transition moments.

TABLE I. Comparison between calculated and experimental
transition energies (AE), oscillator strengths (f,k), and transi-
tion probability ( AI, ; ) involving 2 'S, 2 'P, 2 S, and 2 P states of
He. Experimental values (see Ref. [29]) are in parentheses.

Transition

1 'S 2'P
1s 2 1s2p
2&S~2&P
1s2s 1s2p
2S~2P
1s2s 1s2p

hE (a.u. )

0.778 879
(0.779 751)
0.022 251

(0.022 130)
0.042 143

(0.042 060)

0.2723
(0.2762)
0.3801

(0.3764)
0.5408

(0.5391)

Ak; (10 s ')

1.769
(1.799)

0.002 015
(0.001 976)

0.01028
(0.01022)

tain the C6 dispersion coefficients and their dependence
on the intramolecular coordinate of Hz for the He(2 'S
and 2 S)-Hz systems.

Some methodological and computational details are
given in Sec. II. Results are presented and discussed in
Sec. III. Atomic units are used throughout the paper.
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For He, the basis set used consists of 13s, 7p, and 6d
primitive Gaussian orbitals based on the van Duijneveldt
( 10s ) primitive set [22,23] augmented by an even-
tempered (7p, 6d ) polarization set and 3s diffuse func-
tions. Exponents of the 3s orbitals are 0.049 069,
0.022304, and 0.010138, respectively. Using this basis
set, full configuration-interaction (CI) calculations were
carried out to obtain the ground and the low-lying excit-
ed states by means of the multireference second-order
many-body perturbation through the CIPSI algorithm
[24,25]. A comparison of our energies with the "exact"
nonrelativistic values [26—28] illustrates how good
our wave functions are: 2 'S: —2. 145 916 (exact:
—2. 145 974), 2 S —2. 175 229 (exact —2. 175 229),
2'P —2. 123666 (exact —2. 123 843) and 2 P.
—2. 133086 (exact: —2. 133 163). As an additional test
of the accuracy and the completeness of our wave func-
tions, we calculated the absorption oscillator strengths

TDGI results Rigorous bounds [19,20]

TABLE II. Dynamic dipole polarizability a&(co) of the 2 S
state of He. Comparison with the rigorous bounds results of
Glover and Weinhold [19,20]. We think there must be a typing
error on this value marked with an asterisk. All results are in
a.u.

f,k for the dipole transitions between lower (i ) and upper
(k) states as well as the Einstein spontaneous-transition
probability Ak, .

As can be seen in Table I, there is an excellent agree-
ment between our theoretical values for bE, f,k, and Ak,
for the 2 'S~2 'P and 2 S~2 P transitions and the ex-
perimental ones [29]. Such an agreement is important
since the more these properties are accurately described
the more the results on computed dynamic dipole polari-
zabilities are expected to be good. In order to obtain
realistic potential surfaces for triatomic van der Waals
systems consisting of a metastable atom and a stable dia-
tom, the knowledge of the dependence of the atom-
diatom dispersion coefficients on the diatomic internal
distance is needed [18,30—33]. For the He(2 'S and
2 S )-H2 systems, calculations of the dispersion
coefficients are based on the so-called Casimir-Polder [34]
formula which expresses dispersion coefficients in terms
of imaginary-frequency integrals of the dynamic polariza-
bilities for the noninteracting systems. Note that by us-

TABLE III. Dynamic dipole polarizability a&(co) of the 2 S
state of He. Comparison with the rigorous bounds results of
Glover and Weinhold [19,20]. All results are in a.u.

TDGI results
0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090

803.25
804.84
809.66
817.81
829.51
845.07
864.93
889.69
920.14
957.38

1002.85
1058.59
1127.45
1213.58
1323.18
1466.01
1658.27
1928.94
2335.48
3010.05
4339.60
8149.49

—2700.55
—877.88
—474.98
—301.61
—206.30
—146.21
—104.49
—73.05
—47.24
—23.65

1.46
35.23

103.15
529.0

803.31+6.61
804.90+6.63
809.68+6.68
817.81+6.76
829.46+6.87
844.96+7.03
864.74+7.22
889.38+7.47
919.68+7.77
956.71+8. 14

1011.91*+8.60
1057.28+9. 15
1125.63+9.84
1211.02+ 10.71
1319.56+ 11.81
1460.78+ 13~ 26
1650.45+ 15.22
1916.66+ 17.99
2314.75+22. 18
2970.69+29.21
4246.89+43.32
7785.88+85.30

—2707.52+93.61
—881.51+22.42
—477.48+ 13.19
—303.61+10.09
—208.08+8.77
—147.95+8.30
—106.35+8.39
—72.23+9.04
—50.04+ 10.41
—27.60+ 12.97
—4.78+ 17.98
24.01+29.18
78.79+64.32
631.0+591.0

0
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175
0.0200
0.0225
0.0250
0.0275
0.0300
0.0325
0.0350
0.0375
0.0400
0.0450
0.0500
0.0550
0.0600
0.0650
0.0700
0.0750
0.0800
0.0850
0.0900
0.0950
0.1000
0.1050
0.1090
0.1095
0.1125
0.1150
0.1170

315.92
317.00
320.31
325.97
334.25
345.56
360.50
379.96
405.28
438.51
482.95
544. 17
632.41
768.67

1003.68
1499.53
3205.28

—2097.0
—726.27
—417.20
—281.78
—206.21
—158.17
—124.94
—100.49
—81.55
—66.11
—52.74
—40.07
—26.03
—10.17
—7.49
16.98
74.32

450.0

Rigorous bounds [19,20]

316.24+0.78
317.33+0.78
320.63+0.79
326.30+0.80
334.59+0.83
345.90+0.86
360.75+0.90
380.32+0.96
405.65+ 1.03
438.89+1.13
483.34+ 1.25
544.57+ 1.43
632.82+ 1.70
769.05+2. 10

1003.93+2.82
1499.16+4.39
3199.13+10.27

—8388.0+6339.0
—724.20+5.89
—416.44+3.05
—281.32+2. 14
—205.84+ 1.74
—157.82+ 1.56
—124.58+1.51
—100.11+1.55
—81.15+1.71
—65.71+2.03
—52.38+2.63
—39.91+3.79
—26.50+6.40
—11.93+11.88
—9.82+ 12.77

10.98+25.63
61.24+67. 87

1193.0+ 1192.0
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TABLE IV. Dynamic quadrupole polarizability of the 2'S
and 2'S states of He. All results are in a.u. C„„is defined [49]
as C„„=2y3ey & (&gi()„~m&i Z~ =lx3a2.

0
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090
0.095
0.100
0.105

C„„(2'S)

2290.3
2296.9
2317.0
2351.1
2400.9
2468. 1

2555.6
2667.7
2810.0
2991.6
3225.6
3531.8
3944.5
4522.8
5383.5
6785.9
9460.5

16 548.0
90 882.0

—22 973.0
—9525.4
—5639.2

C„„(2'S)

887.34
888.97
893.07
900.14
910.51
923.80
940.91
961.92
987.40

1018.1
1054.8
1098.5
1151.2
1214.4
1292.1

1387.5
1507.5
1662.6
1868~ 1

2153.9
2577.6
3267.9

ing our TDGI method the dispersion coefficients for
seven specific H—H bond distances varying from 1.4 to
6.0 a.u. have already been calculated in a previous work
[18]

III. RESULTS AND DISCUSSION

There is a vast amount of theoretical [19,20,35 —45]
and experimental data [46] for the static dipole polariza-
bilities nl of the 2 'S and 2 S metastable states of helium.
To our knowledge, none are so accurate and so reliable as
the rigorous upper- and lower-bound results obtained by
Crlover and Weinhold [19,20]. They also give the
rigorous bounds for dynamic dipole polarizability at real
[a,(co)] and at imaginary frequencies [a,(ice)] for a wide

range of energies. We shall use these rigorous bounds as
a criterion to estimate the quality of our TDGI results
(Tables II and III). A first point to emphasize is that our
results for the static polarizabilities (803.25 and 315.92
a.u. for 2 'S and 2 S, respectively) are in excellent agree-
ment with the rigorous bounds of Glover and Weinhold
[19,20] (803.31+6.61 and 316.24+0.78 a.u. ), and also
agree with the experimental values (728.8+87.7 and
301+20 a.u. ) determined by the electric-defiection time-
of-fiight method [26]. For the dynamic polarizabilities at
frequencies up to the second excitation threshold, TDGI
results are always compatible with the rigorous bounds,
except for the 2 'S metastable state near the resonance
within the range 0.019—0.021 a.u.

In contrast to the dipole polarizabilities very little is
known about quadrupole polarizabilities (az =3C„„)of
excited states of He. For the 2 S state, earlier theoretical
values for the static quadrupole polarizability component
C„„range from 887.7 to 947.6 a.u. [47] in the extended
Coulomb approximation (ECA) and quantum-defect or-
bital (QDO) methods, while multiconfiguration self-
consistent-field (MCSCF) calculations done by
Konowalow and Lengsfield [48] give a value of 914.4 a.u.
(note that we have divided their results by a factor 3 to
adopt Bishop's convention [49]).

For the 2 'S state, the values obtained by Lamm and
Szabo [47] are 2346 and 2425 a.u. depending on the ap-
proximation used. Calculated dynamic quadrupole po-
larizabilities are given in Table IV. Our static C„„
values (2290.3 a.u. for 2 'S and 887.34 a.u for 2 S) agree
within 2% with the ECA value of Lamm and Szabo [47].
For the dynamic values we found no published data to
compare with [50].

The multipole expansion of the second-order interac-
tion energy between a pair of neutral S-state atoms is
given by

AE = C6R C8R CIOR

where the C„'s are the van der Waals or dispersion
coefficients. The C6 and C8 dispersion coefficients for the
interaction between the ground (1 'S) and excited states

TABLE V. van der Waals C6 and C, coefficients (in a.u. ) for He in the 1 'S, 2 'S, and 2 'S states. The
rigorous bounds results are given in parentheses for C6.

C,
1'S

2'S

2 S

C8
1'S
2'S
2 S

1'S

1.4593
( 1.4597+0.0055 )

1'S
13.883

2'S

42.12
(41.47+ 1.70)
1.136X 10
([1.133+0.063] X 104)

2'S
3263
8. 125X 10

2 S

29.19
(29.00+0.51)
5.866X 10
( [5.767+0.339]X 10')
3.279X 10
([3.289+.0.090] X 10')

2'S
1689
4.068 X 10'
2.086X 10
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TABLE VI. Calculated C6 dispersion coefficients for He(2 1 )-Hz and He(2 S)-H2 as a function of
the interhydrogen distance R.

He(2 'S)-H,

C6
C6

1.4

188.7
135.8
153.4

2.4

406.7
222.8
284. 1

3.0

501.5
255.7
337.6

3.4

513.4
266.0
348.5

3.8

484.4
268.2
340.3

4.4

412.9
265.7
314.8

6.0

292.1

258.0
269.4

He(2'S)-H,

Ci
C6

129.1
93.0

105.0

274.4
151.6
192.5

336.6
173.8
228. 1

343.8
180.7
235.1

324.4
182.0
229.5

277.1

180.5
212.7

197.5
175.3
182.7

(2 'S and 2 S) of He were calculated by combining our
a, (ico) and a2(ico) TDGI values through a simple numer-
ical integration using (see [51]and Table IV),

3A
C6 = f a,"(ico)a, (ico)dco,

0

Cs= f [az"(ico)a, (ico)+a, (ico)az(ico)]dco .
15k'

For the ground and low-lying S states of He, C6 and
C8 values are given in Table V. For C6 our values are
compatible with the very tight error bounds obtained by
Glover and Weinhold [20]. Our best estimate of C6 for
(1 'S—1 'S), (2 'S —2 'S), and (2 S—2 S) are different
from rigorous calculations by 0.03%, 0.26%, and 0.3%,
while our (2'S —2 S) result is too high by 1.7%%uo with
respect to the rigorous bounds mean value of [20]. For
C8 the largest difference between the values in Table V
and the results given by Proctor and Stwalley [52] is
2.7%%uo. As expected, in all cases the results obtained for
systems consisting of excited atoms are fairly large with
respect to those obtained with atoms in their ground state
since excited rare-gas atoms lose their "closed-shell"
character.

Table VI presents TDGI calculations of the C6 disper-
sion coefficients (both parallel and perpendicular) for the

systems He(2 'S)-Hz and He(2 S)-Hz as a function of the
interhydrogen RH H distance. This is a calculation from
first principles of this quantity involving low-lying meta-
stable states of He. C6 dispersion coe%cients for both
systems are obtained using accurate dipole polarizabili-
ties at seven H—H distances ranging from 1.4 to 6.0 a.u.
calculated in [18]. A maximum for the C6 coefficients
occurs at values of R similar to those at which the polari-
zabilities of H2 reach their maximum value. It should be
noted that for all distances the C6 [He(2 'S)-H2]
coefficient is roughly 50% higher than the C6[He(2 S)-
Hz] value. These R-dependent coefficients may be used
for representing model potential functions.
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We present a powerful method for calculating the thermodynamic properties of infinite-
dimensional Hubbard-type models using an exact diagonalization of an Anderson model with a
finite number of sites. The resolution obtained for Green's functions is far superior to that of
quantum Monte Carlo calculations. We apply the method to the half-filled Hubbard model for a
discussion of the metal-insulator transition, and to the two-band Hubbard model where we find
direct evidence for the existence of a superconducting instability at low temperatures.

PACS numbers: 75.10.Lp, 71.10.+x, 71.45.Lr, 75.30.Fv

Following the pioneering work of Metzner and Voll-
hardt [1], the limit of large dimensions for models of
strongly correlated fermions has received much attention.
In this limit, the highly intricate quantum many-body
problem simplifies considerably and leads to a nontrivial
mean-field theory [2]. Remarkably, this limit captures
many features of the physics in finite dimensions and
gives a very successful description of quantum fiuctua-
tions.

In spite of the considerable simplification obtained in
taking the large D limit, the mean-field equations still
have to be solved numerically. Up to now, all calcula-
tions [3—5] have relied on the Hirsch-Fye quantum Monte
Carlo (QMC) algorithm [6]. A major limitation of this
scheme is the difliculty of accessing low temperatures,
where statistical and finite time-step discretization errors
of the QMC algorithm become very important.

In this paper, we present a powerful exact diagonal-
ization method for solving these mean-field equations.
We find that the resolution obtained for thermodynamic
Green's functions is far superior to that of QMC cal-
culations and that essentially the exact solution of the
model is obtained, except at very small frequencies. Hav-
ing at our disposal such a unique method, we investi-
gate two important physical issues for which no defi-
nite answers have been given so far. First, we consider
the metal-insulator transition in the half-filled Hubbard
model, where our numerical results are indicative of a
second-order transition at zero temperature. Second, we
establish the instability of the normal state of the two-
band Hubbard model [7] with respect to singlet super-
conductivity at large U and small doping (the regime of
relevance for high-T, superconductors) and also an in-
stability towards triplet superconductivity in the large
doping regime n 2.

For concreteness, we explain the method in the single-
band Hubbard model on a Bethe lattice of infinite con-

nectivity z ~ oo. The Hamiltonian is written as

IfAnd = ed ) d d + ) clat cl + Undtndj,t
0' cr, l=2

+ ) (VlaI d + H.c.),
cr,l=2

the function Gp(iso„) being given by the U = 0 Green's
function of the impurity

Gp(iso„) = GpA"d(iso„)

( n,
l=

~

Md~ —E'g —P —g
2

&ion el)
(4)

Given the infinite number of degrees of freedom of the
models defined in Eq. (1) and Eq. (3), it is evident that
strict self-consistency can only be obtained with a contin-
uous Anderson model, i.e., with n, = oo. Our algorithm
is based on the observation that a systematic approxima-
tion (i.e., fit) of Gp(ilo) with a finite-n, Anderson model

H = —) ct c, +H.c.+U) n, tn;t. (1)
(li) ~

2Z"'
The calculation of the single-site properties of the Hub-
bard model, in this limit reduces to the self-consistent de-
termination of the on-site Green's function G(ice) of the
Hubbard model and of a bath Green's function Gp(ilo),
which describes the interaction on the single site with the
external environment. G(iso) and Gp(iso) are related by
a self-consistency condition which (in the paramagnetic
normal state, on the Bethe lattice) reads

Gp (ilo) = ill+ P —G(iv))/2. (2)

As is well known [8], the on-site Green's function of
the Hubbard model may be interpreted as the Green's
function of an Anderson model
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gives extremely good results. We stress from the begin-
ning that we perform a fit of the imaginary-frequency
Green's functions only.

In practice, we approximate any Go (iu) by a function
Go

" (iu) with a finite number n, of sites. This can be
cast into a minimization problem in the variables ei and
Vi. In this work, we choose the following cost function:

~m4LX

x'= ) IGo'(i~ ) —Go '""'(i~ )I (5)
+mcLx + 1

p

where n is chosen sufBciently large [~„))
max~(ei)] [9]. We search for the parameters e~ and Vi

minimizing the y2 in Eq. (5) with a standard conjugate
gradient method.

For a small number of sites, n, & 6, the Green's
function G(i~„) can be obtained exactly from the com-
plete set of eigenvectors and eigenvalues of the Anderson
Hamiltonian equation (3). The procedure

G-i( )
& (s) G-i And( )

«(s)
G( )

«(s) G i(. )

(6)
is then iterated to convergence.

Beyond n, = 6, the size of the Hilbert space be-
comes too large for an explicit diagonalization of the An-
derson Hamiltonian. However, the calculation of zero
temperature Green's functions is still possible by means
of the Lanczbs algorithm [10], which allows us to easily
calculate G(iso) and Go(iu) up to n, 10 om a work sta-
tion. The fit with the Anderson model is performed as
before. We simply replace the Matsubara frequencies by
a fine grid of imaginary frequencies, which correspond to
a "fictitious" inverse temperature p (u„= (2n+ 1)vr jp).
P introduces a low-frequency cutoff in an obvious way.

The following observations are made:
(1) We notice in general very small differences between

G& (LJ) and G&
" (iu) as expressed by small minimal

values of y in Eq. (5). yz decreases by approximately
a constant factor each time we add one more site. This
means that exponential convergence in n, is observed.

(2) The extensive comparisons with QMC [5] which
we have undertaken indicate that, even at finite tem-
perature, exact diagonalization is by far the superior
method for this problem. Using exact diagonalization
at n, = 3, . . . , 6, very precise values of the Green's func-
tion G(r) can be obtained in a few minutes on a work
station, which it has taken us days to check by QMC [11].

(3) Using the Lanczos algorithm at T = 0 we can go
higher in n„and the quality of fit can be ameliorated
by another 2 orders of magnitude. To illustrate, we dis-

play in Fig. 1(a) the low-frequency part of G& (i~) and

Go
"

(iw) for U = 2 at P = 200 [see also Fig. 3(a)
for the two-band Hubbard case] Notice th. e systematic
amelioration of the fit. Furthermore, the bath Green's
function Gs [the Green's function obtained from Eq.
(2), once G(uu) has been computed] is extremely inde-
pendent of n„especially at high frequency. Already at
u = 0.11, e.g. , G'p varies by less than 0.0001 between
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FIG. l. (a) Go(iu) and Go
" in the Hubbard model

at U = 2 at small frequency for n, = 6, 8, 10. Note the
systematic improvement of the solution. The maximal mis6t
between the two functions is 0.082 for n, = 6. (b) Density of
states p(u) for U = 2 (e = 0.01). We compare with the IPT
density of states [12]. Inset: Comparison of the integrated
densities of states between exact diagonalization and IPT.

n, = 6, 8, and 10. The same convergence is observed
for the physical Green's function G(ice) in which v/e are
ultimately interested.

(4) Even though the method has been geared exclu-
sively at the calculation of thermodynamic Green's quan-
tities, it is very interesting to consider the dynamic prop-
erties, e.g. , the one-particle spectral densities p(u)
—ImG(~+ ie)i7r. We have computed p(~) (r4=10) for
different values of U. In the Fermi-liquid regime at mod-
erate U, the excitation spectrum of our finite-size An-

derson model consists of a large number of peaks, which
are grouped into three well-separated structures: a cen-
tral quasiparticle peak and two broad high-energy satel-
lite features, corresponding to the formation of the upper
and lower Hubbard bands. At sufliciently large U a Mott
insulator gap is observed, and far fewer peaks contribute
to the spectrum. Figure 1(b) gives the spectral density
as obtained at U = 2. The dashed line represents the
results given by the iterated perturbation theory (IPT)
approximation. This method is based essentially on the
use of a weak coupling calculation to second order in U
of Z which gives an interpolation between the small and
large U limits (exclusively at half filling and in the para-
magnetic phase) [8,12,13]. We also present the integruted
density of states corresponding to Lanczos and IPT. The
agreement between both curves is seen to be excellent,
provided we average over a small frequency interval. This
indicates that the spectral density, as calculated by our
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FIG. 2. Quaaiparticle weight Z as a function of U for the
half-filled Hubbard model. The curve gives the IPT approx-
imation, which predicts a first-order transition. The crosses
give the results for n, = 10, with the corresponding results for
n, = 6, 8 at two points. The inset shows the small-~ behav-
ior of ImE(~) for n, = 6, 8, 10 from which the quaaiparticle
weight is calculated. Note the excellent convergence with n, .

method, contains coarse-grained information about the
exact solution, and can be very useful in cases in which
IPT cannot be applied.

Let us now give a more quantitative discussion of the
metal-insulator transition. Figure 2 presents some results
for the quasiparticle spectral weight Z calculated from
the slope of the self-energy Z = Go —G . In the
inset of Fig. 2 we present the data for ImZ(i~) at small
frequencies from which the spectral weight is extracted
[ImZ(ice) (1 —1/Z)u + ]. To get a truly stabilized
slope of Z we have found it necessary to reach very large
values of P. The main plot compares the results at n„=
10 with IPT. On a few points we give in addition the
results at n, = 6 and n, = 8. Given the extremely
good agreement between the values of Z calculated with
n,, = 8 and 10, we are very confident of the numerical
values presented.

As discussed in Ref. [12], the IPT approximation leads
to a first-order Mott-Hubbard transition (cf. Fig. 2),
and the quasiparticle weight Z jumps discontinuously at
U 3.6. We have only found limited evidence for such a
scenario within the present approach. At n, = 6, we are
unable to stabilize two solutions at the same values of
the physical parameters (the coexistence of two solutions
is indicative of a first-order phase transition). At n, = 8,
and using a fictitious temperature of P = 120, we find
a coexistence region within a very small interval of U:
4.45 & U & 4.60 [14]. Even though the question of the
order of the transition will have to await a more detailed
investigation, it seems to us to be difficult to reconcile
our numerical results with an abrupt zero-temperature
transition anywhere close to U = 3.6. Let us reiterate
the fact that the results presented in Fig. 2 are at zero
temperature and that P only serves as a frequency cutofF.

We now consider the very important issue of supercon-

ductivity in Hubbard-type models in infinite D. We have

looked for it in the single-band model defined above, and
in the two-band Hubbard model defined by the Hamilto-
nian [7]

) t,~d, p~ +H.c. +ep ) p~ p~
i&D,j&P,cr j&P,cr

+eg ) d, d;~+Up) n;)n";I,
i QD, cr ~eD

(7)

where the hopping is scaled as t,z 1/v 2z. In Eq. (7)
(d, p ) represent two atomic orbitals on difFerent sub-
lattices (D, P) of a bipartite lattice with z ~ oo which,
as before, is taken to be the infinitely connected Bethe
lattice.

In the standard Nambu notation, 4&t = (dt, dl) (equiv-
alently for @p) the d-orbital Green's function can be writ-
ten as a 2 x 2 matrix

D(~) = —&(@~(~)+g(~))= I F ( ). G ( )
$ Gg(~) Fg(u)

(8)
and the self-consistency equations for the Green's func-
tions are given by [7]

Dp (Nd~) = lcd~ + (p —tg)tT3 tpg cF3P(t~„)mrs )

P (ted~) = Qd~ + (p —Ep)03 '—t 'g 0'sD(Qd~)cps

(note that Dp and D are 2 x 2 matrices and that Dp
denotes the matrix inverse).

In the presence of superconducting order, the Green's
functions D(ku„) and Dp(iu„) may be viewed as impu-
rity Green's functions of an efFective Anderson model in
a superconducting medium, which we fit by a general's
tion of Eq (4), m. odified by an explicit pairing between
all the sites [11].

We are interested in the normal state exclusively as
a starting point for a linear stability analysis and in-

vestigate the regime close to the normal solution. An
example of the excellent quality of the normal state so-
lution [15] is presented in Fig. 3(a). Here, Re[Gyp(tu)]
and Re[G&Ap"~(iu)] are displayed. The "fictitious" tem-

perature is P = 250, Ug = 8, ep —eg = 4, p = 3.5, and
the density corresponds to the lightly doped regime of
the two-band model (n 1.3). We now consider the
stability analysis of the normal state solution. A pos-
sible way of studying this stability is to calculate the
pairing susceptibility. An alternative way used here is
to establish the stability properties of the solution by
introducing small superconducting terms in the Ander-
son Hamiltonian, and following the evolution under sub-
sequent iterations [7]. Under such conditions, the nor-
mal state solutions very quickly acquire nonzero values of
F(u), which indicate a superconducting instability. More
rigorously, and in order to study quantitatively the ef-
fects of increasing n„we may calculate the largest eigen-
value, and the corresponding eigenvector of the matrix
BF(ku) "+ /OF(ice)" close to the normal state, where the
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FIG. 3. (a) Real part of Gq e (i~) and Gq o(ia) for

n, = 4, . . . , 8 (two-band model: Uq = 8, p = 3.5, e„—ez = 4).
(b) Largest eigenvector of the matrix BF(i~)"+ /BF(iv)"
close to the normal state solution for n, = 6, 7, and 8 (singlet
sector). The corresponding eigenvalues are A,„2in all
three cases.

superscripts on the F's indicate two subsequent iterations
of the self-consistency loop. We have done such calcula-
tions, which correspond to the well-known procedure of
extracting the largest eigenvalue and eigenvector of a ma-
trix with the "power method. " We are able to identify
a linear regime at small F(iu), with the largest eigen-
value always of the order Am~„2. The corresponding

(rescaled) eigenvectors for n, = 6, 7, 8 are plotted in Fig.
3(b). Clearly, the agreement between these completely
independent curves is excellent. We have checked this
result in a variety of ways [by changing P, the precise
form of the function used in Eq. (5), and the doping].
This leads us to the conviction that the normal state so-
lution of the d = oo model at small doping is indeed
unstable with respect to singlet superconductivity. We
have performed a completely analogous stability analysis
for the lightly doped (n ~ 1.2 and n ~ 1.4) regime of the
corresponding one-band Hubbard model for a number of
values of the interaction (U = 2, 4, 6, 8). In sharp con-
trast to the two-band Hubbard model, we have found no
indication of a superconducting instability in that case.

We have also studied the point investigated previously

[7], i.e. , values of the physical parameters correspond-
ing to a total density of n 2, where the Hubbard in-

teraction is just large enough to create a large overlap
between the upper Hubbard band of the d-level and the
p-level band. There our evidence for singlet superconduc-
tivity is very limited (at least for frequencies larger than

1/200). However, we have on that point found very
clear evidence for superconductivity in the triplet sector.
Following the procedure outlined above (at T = 0), we

find consistently that any small superconducting term,
in addition to the normal state solution, blows up at a
rate which corresponds to a largest eigenvalue of 1.8
of the matrix BF(iu)"+i/BF(i~)" [16] (typical values of
parameters are Ug = 4.5, p = e„—eg = 4, P = 200). Su-
perconducting order of this kind has been first proposed
by Berezinskii [17] in the context of sHe, and, very re-
cently by Coleman, Miranda, and Tsvelik [18] for heavy-
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PACS. 75.30F - Spin-density waves. 

Abstract. - Using a collective-mode Monte Carlo method (the Wolff-Swendsen-Wang algorithm), 
we compute the spin stiffness of the two-dimensional classical Heisenberg model. We show that it 
is the relevant physical quantity to investigate the behaviour of the model in the very 
low-temperature range inaccessible to  previous studies based on correlation length and 
susceptibility calculations. 

As well known, the long-distance, low-energy physics of two-dimensional spin systems is 
expected to be obtained from a low-temperature perturbative expansion of a suitable 
non-linear sigma (NLu) model. In order to have a non-perturbative control of this 
low-temperature expansion, one can take advantage of Monte Carlo simulations. Up to now, 
calculations have been mainly concerned with correlation lengths and susceptibilities [ 11. 
Unfortunately, because of their exponential behaviour as a function of p = l / k T  and the 
computationally accessible lattice sizes, studying the very low-temperature regime is very 
demanding, or even impossible. The aim of this paper is: 1) to show that the relevant physical 
quantity allowing to reach this regime for accessible sizes in the spin stiffness p s  , a measure 
of the free-energy increment under twisting of the boundary conditions [2,3]; 2) to argue that 
it is essential to use a non-local Monte Carlo algorithm to get truly converged values of the 
spin stiffness in the very low-temperature regime; 3) to exhibit in the case of the 
two-dimensional classical Heisenberg model the quasi-perfect agreement between the Monte 

(§) E-mail: mc@dim.jussieu.fr. 
(@) E-mail: aza@lptl.jussieu.fr. 
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Carlo simulation of the spin model and the predictions of the corresponding non-linear sigma 
(NLo) model; applications to more involved systems will be presented in a forthcoming 
work. 

To our knowledge, two previous works have attempted to compute the spin stiffness of the 
Heisenberg model. However, they are either based on a wrong formula [4], or on the use of a 
local Monte Carlo scheme [4,5] not suited at all to the problem as discussed in the following. 
In our opinion, we present here the first unambiguous numerical calculation validating the 
precise finite-size behaviour of the spin stiffness of the two-dimensional classical Heisenberg 
model. 

The Hamiltonian of the Heisenberg model is 

where (ij) denotes the summation over nearest neighbours of a finite square lattice of size L. 
In (l), Si are three-component unit length classical vectors and J is positive. Each site i of the 
lattice is indexed by two coordinates xi and y i .  

We impose a twist in the x-direction, by coupling the system with two walls of spins: 
S(x = 0) = SI, S(x = L )  = S2, S2 being deduced from SI by a rotation of angle 8 around a 
direction e. The spin stiffness p s  is defined as 

where F is the free energy. 
In terms of the spins it writes 

where Tis the temperature and Boltzmann averages are performed with two walls of parallel 
spins fured at boundaries in the x-direction. 

The finite-size behaviour of ps(L), when L is much larger than the lattice spacing a but 
much smaller than the correlation length E, has been calculated at one- and two-loop order 
with use of the 0 ( 3 ) / 0 ( 2 )  NLo model [2,6]:  

P S 1 5 1  € In - + - lnln - ,  _ - _  
T 2 x  L 2 x  L (4) 

where the common coefficient 1/2x in front of the leading and subleading logarithmic terms is 
a universal number which is not modified by higher orders in the low-temperature 
expansion. 

The crucial point in measuring p s  is that its predicted size dependence given by (4) is all the 
more valid since L << 5. Therefore, in the very low-temperature regime we can hope to test 
formula (4) by using a large range of relatively small lattice sizes. In contrast, measuring the 
temperature dependence of t; requires t; < L and, therefore, relatively high temperatures for 
accessible sizes[l], a regime where the validity of the perturbation theory becomes less 
controlled. A most important point to notice is that at the very low temperatures considered 
here the physics of the model is entirely controlled by collective excitations-spin 
waves-and therefore we must  take great care of these large-scale moves in any simulation 
of the model (<<beating>> the critical slowing-down). 

The purpose of this paper is to present a Monte Carlo study of the spin stiffness for the 
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finite two-dimensional classical Heisenberg model free of critical slowing-down and then to 
investigate prediction (4) numerically. To summarize what has been obtained, our Monte 
Carlo calculations confirm the existence of a leading logarithmic contribution with the 
universal amplitude 1 /2x. In addition, an extra-contribution to the spin stiffness consistent 
with the subleading term of (4) has also been clearly identified. The Monte Carlo results 
presented have been obtained using the Wolff-Swendsen-Wang method [71 of updating large 
clusters of spins simultaneously. At the low temperatures considered here, using a collective 
Monte Carlo algorithm appeared to be essential to get a well-converged estimate of the slope 
of the spin stiffness as a function of the lattice size. In particular, our preliminary attempts 
making use of a Monte Carlo algorithm based on local spin updates failed due to the severe 
critical slowing-down. 

At this point, it seems important to discuss in more detail the previous attempts of 
calculating the spin stiffness of the Heisenberg model. Apart from the paper of Mon[4] in 
which a wrong formula for p s  has been used (he has mistakenly used the spin stiffness formula 
of the XY case), another calculation by Ritchey [5] done with the correct formula and using a 
local Metropolis algorithm has been performed. We have redone entirely his calculations with 
the very same conditions (same lattice sizes, same temperatures, same number of Monte 
Carlo steps). As already emphasized, we realized soon that such calculations are hampered 
by a severe critical slowing-down. Instead of getting a slope of approximately - 0.16 (i.e. 
1/2x) Ritchey obtained a value of approximately - 0.12. At the lowest temperature he 
treated, the difference between both figures results in fact from the non-convergence of his 
estimate of the slope (very slow convergence, independent configurations are too scarce). It 
is interesting to note that this difference has been boldly interpreted elsewhere as taking its 
origin from cubic corrections to the scaling [8], corrections which in fact are negligible at  the 
lowest temperature presented by Ritchey. In this paper, highly converged estimates of the 
slope of the spin-stiffness are presented. Cubic corrections to the p-function (i.e. lnln 
corrections in formula (4)) showing up at sufficiently high temperatures are also put into 
evidence (see fig.2). 

Results. - The Wolff-Swendsen-Wang (WSW) algorithm has been implemented to 
simulate the Heisenberg model on an L x L square lattice. In the y-direction periodic 
boundary conditions have been chosen. In the x-direction, fixed boundary conditions are to 
be used. However, for simplicity we have also chosen periodic boundary conditions in the 
x-direction. This introduces an error in the spin stiffness exponentially small in In L. By using 
a very recently proposed interpretation of Wolff-type algorithms as algorithms based on an 
embedding of Ising spins into continuous spins[9] it can be seen that fixed boundary 
conditions can be implemented by introducing a suitable external magnetic field in the 
underlying Ising model. We have implemented this idea and found that the errors in the 
calculated spin stiffness are indeed exponentially small (less than 0.5% relative error for 
lattice sizes with L > 8). No difference on the resulting slopes have been observed within 
statistical fluctuations. 

One of the major results of this paper is that relatively moderate sizes L are in fact 
sufficient to validate formula (4). Lattices of sizes L = 4, 8, 12, . . . , 32 have been simulated. 
We have performed our simulations at  four different temperatures: T/J = 0.1, 0.15, 0.3, and 
0.395. In each case we are at a sufficiently low temperature to be in the regime of validity of 
formula (4) (L<<f ) .  

Figure 1 presents the complete set of results obtained for the spin stiffness at  different 
sizes and temperatures. At the scale of fig. 1, all curves appear to be very rapidly linear as a 
function of In L. In order to determine accurately the corresponding slope, a closer look is 
necessary. Figure 2 presents a blow-up of data of fig. 1 for the lowest (upper figure) and 
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I " ~ ' " ' ' '  I " '  I " " ]  

T/J=O 1 

>; T/J=O 15 

T/J=0.3  

- T/J = 0.395 - 

I , , , ,  I / # , , I , , ,  I 

1.5 2 2 5  3 3 5  
In L 

Fig. 1. - Spin stiffness for different sizes and temperatures. Statistical fluctuations smaller than the size 
of crosses. 

highest (lower figure) temperatures treated, T/J = 0.1 and T/J = 0.395, respectively. A 
first point to notice is that a very high accuracy on our data has been achieved. Such a level of 
accuracy is absolutely necessary to put into evidence the linear regime of the spin stiffness as 
well as to get a truly converged estimate of the slope. We emphasize that only when resorting 
to a collective Monte Carlo scheme we have been able to fulfd both requirements. A first 
important remark concerning fig.2 is how fast we enter the linear regime: a t  all 
temperatures considered it is reached at  L - 16. By using data for L = 16,20,24,28, and 32 
an estimate of the slope can be extracted, we get: - 0.162(4), - 0.166(5), - 0.171(5), and 
- 0.184(7) at  T/J = 0.1, 0.15, 0.3, and 0.395, respectively. At the very low temperature 
T/J = 0.1 we recover within statistical fluctuations the theoretical result 1/2x = 0.1592.. . 
predicted by formula (4) (l). At higher temperatures non-negligible higher-order 

l " 1 " " I " " I " " l  " ' I  I " "  

9 " " " " " ' " "  " '  " "  
1 5  2 2 5  3 3 5  1 5  2 2 5  3 3.5 

In L In L 
Fig. 2. - Blow-up of fig. 1 for T/J = 0.1 (a ) )  and T/J = 0.395 (b)).  The solid line is the best fit using 
eq. (4), the dashed line the first-order prediction (no renormalization of the slope). 

(I) In fact, a t  this temperature the slope is very slightly renormalized. Using eqs. (4), ( 5 )  we get 
- 0.162 instead of the bare value of - 0.1592 ... . However, both values are not distinguishable within 
statistical fluctuations. 
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contributions in the spin stiffness show up. To put this on a more quantitative basis, we have 
performed a fit of the data using the full expression (4). The resulting curve is represented by 
a solid line in fig. 2. The only free parameter entering the fit is the correlation length t;, the 
arbitrary reference value for the spin stiffness being chosen so as to reproduce exactly the 
last data (L  = 32). The dashed line is the linear curve obtained when resorting to the leading 
logarithmic behaviour (no lnln corrections, no renormalization of the 1/2x slope) using the 
very same correlation length as determined in the fit. At T / J  = 0.1, both curves almost 
coincide in the linear regime, illustrating the correctness of the leading log prediction and the 
smallness of the higher-order corrections at this temperature. At the higher temperatures 
considered, we clearly see the necessity of going beyond leading order. In addition, it is 
striking to see how good representation (4) is in reproducing our Monte Carlo data. Of 
course, due to the accuracy determined by statistical fluctuations and to the narrow range of 
lattice sizes used,it is not realistic to hope to resolve the precise analytical lnln behaviour of 
the second-order theoretical expression. However, our data are perfectly consistent with the 
<<renormalized slope,) predicted by (4), s *  = a( , c , /T ) /a  In L = - 1/2x(1 + l/ln(t;/L)). 

In fig. 3 we have plotted the correlation length t; issued from the fit using formula (4). We 
also present the curve obtained from the formula proposed by Shenker and Tobochnik [lo] 
(obtained by matching high- and low-temperature calculations): 

exp [ 2 x J / T ]  E = 0.01 
1 + 2 x J / T  * 

It is very satisfactory to see that our rough estimates of E are in good agreement with this 
completely independent calculation of the correlation length. 

In this paper, we have shown that for the case of the two-dimensional classical Heisenberg 
model it is possible to get a quasi-perfect agreement between the Monte Carlo simulation of 
the spin model and the predictions of the corresponding low-temperature non-linear sigma 
(NLcr) model. We have overemphasized that the essential point to obtain such a nice 
agreement is the use of an appropriate non-local Monte Carlo algorithm. The study of the 
spin siffness of more involved 2D systems such as frustrated Heisenberg spin models could be 

1 

i 

60 

C 
i 

20 

0.1 0.2 0.3  0.4 
Temperature T/J  

Fig. 3. - Correlation length E.  The solid line is obtained from eq. (5), the values indicated by crosses 
from the fit of OUT data using eq. (4). 
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a very efficient test of the validity of the low-temperature perturbative expansion of the 
corresponding more general non-linear sigma models [ 111, an expansion which can be 
questioned due to the presence of non-trivial topological excitations [12] (2>. However, the 
implementation of a non-local Monte Carlo scheme for such models is a highly non-trivial 
task; work in that direction is in progress. 

(2) Note that after completion of this work an interesting study of the spin stiffness for the case of a 
classical antiferromagnet on a triangular lattice using a local Monte Carlo scheme has been 
published [131. 
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A perturbational study of some hydrogen-bonded dimers
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We present a detailed study of several hydrogen-bonded dimers consisting of H2O, NH3, and HF
molecules using the Symmetry Adapted Perturbation Theory~SAPT! at different levels of
approximations. The relative importance of each individual perturbational components and the
quality of the total interaction energies obtained are discussed. The dependence of the results on the
relative orientation of the molecules of the dimers and on the intermonomer distance is also
investigated. ©1995 American Institute of Physics.
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I. INTRODUCTION

It is well-known that evaluating intermolecular intera
tion energies with the level of accuracy required by the ph
ics and chemistry of complex molecular systems is very
ficult. There are two basic reasons for that. First,
interaction energy~defined as the difference between the
tal energy of the complex and the sum of the total energie
the individual noninteracting species! is really a tiny fraction
of the total energies involved. Typically, this fraction ca
vary from about 1027 ~weakly interacting van der Waal
complexes! to about 1024 ~strong hydrogen-bonded sys
tems!. Second, there is noexactmethod to computedirectly
this very small difference. In absence of such a proced
two different theoretical strategies are usually employed
first natural strategy consists in computing the total energ
each species separately~the complex and the individual mol
ecules! and then to subtract out these energies accordin
the very definition of the interaction energy~the so-called
supermolecularmethod!. To do that is difficult due to the
very high level of control required on the different sources
approximation of the particular method used to compute
total energies. Without entering into the technical deta
~choice of the basis set functions, finite-basis-set error, b
set superposition error~BSSE!, etc...! it is fair to say that
current state-of-the-artab initio calculations are not able t
reach the necessary level of accuracy, except of course
very small interacting species. A second quite natural
proach is to consider that the interaction energy is the re
of a very small physical perturbation of the isolated mon
mers and thus to employ some kind of perturbatio
method. This line of research has been intensively follow
during the last decades and has led to the so-called Sym
try Adapted Perturbation Theories~SAPT! ~see e.g., Refs. 1
2, or 3!, a variety of methods based on the usual Rayleig
Schrödinger perturbation theory supplemented by some te
nique to force the change of antisymmetry property of
wave function between the monomers and the interac
complex~as known there is not a unique way to do that a
then, various schemes have been proposed, see referen
Ref. 1!. It is this constraint which is at the origin of th
strong repulsion at short distances~exchange contributions!.

a!E-mail: jl@dim.jussieu.fr
b!E-mail: jc@dim.jussieu.fr
c!E-mail: mc@dim.jussieu.fr
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In order to take account of the continuum contribution
present in the infinite sums involved in the perturbational
components ~except, of course, for the first-order!, a
variation-perturbation scheme is usually employed~it can be
shown that this can be reduced to a calculation in a suitabl
dimer basis set!.4,5 In their pioneering work on the use of
SAPT Jeziorski and van Hemert~JvH!4 have proposed to
compute the interaction energy using the following minimal
representation:

DEint;ERS
~1!1Eexch

~1! 1Eind
~2! 1Edisp

~2! , ~1!

where all quantities are computed using the wave function
issued from a SCF calculation of the monomers.ERS

(1) is the
standard Rayleigh–Schro¨dinger first-order component
~physically, the classical electrostatic interaction of the un-
perturbed charge distributions in the monomers!, Eexch

(1) is the
first-order exchange part resulting from the change of the
antisymmetry property of the wave function~physically, the
dominant part of the repulsive interaction at short distances!
and whereEind

(2) and Edisp
(2) are the second-order Rayleigh–

Schrödinger induction and dispersion energy, respectively
~physically, the energy of interaction of one monomer within
the electric field of the other, and the major attractive contri-
bution to the interaction energy for neutral systems, respec
tively!. It is important to emphasize that Eq.~1! describes the
main physical facts of the intermolecular interaction~electro-
static interaction, repulsive force, induction and dispersive
forces!. However, a number of corrections are neglected
when using Eq.~1!. The numerical experience shows that
their importance is very system-dependent. It is therefore
very important to compute them if a reliable~although ap-
proximate! answer for any interacting system and not just for
a specific class of systems is wanted. Three types of corre
tions may be distinguished:

~i! corrections to the exchange part due to effects beyon
the first-order,

~ii ! corrections due to higher-order perturbational
Rayleigh–Schro¨dinger components (ERS

(n) with n.2),
~iii ! corrections due to the intramolecular correlation ef-

fects.

A great deal of activity has been devoted to the calcula
tion of these corrections. First of all, it has been very soon
realized that the first-order exchange contribution was no
sufficient to give a proper description of the repulsive part a
80438)/8043/15/$6.00 © 1995 American Institute of Physicsct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8044 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
intermediate distances and different methods have been
posed to evaluate the second-order exchan
contributions.5–12Note that at much shorter distances no s
isfactory approach seems to exist.13 Incorporating these im-
portant contributions we arrive at the following decompos
tion

DEint
SAPT;ERS

~1!1Eexch
~1! 1Eind

~2! 1Eexch2 ind
~2! 1Edisp

~2!

1Eexch2disp
~2! , ~2!

which we shall refer to in the following as the SAPT decom
position. An alternative way of going beyond Eq.~1! is to
combine both perturbational and supermolecular worlds
follows:

DEint
hybrid;DESCF1Edisp

~2! 1Eexch2disp
~2! , ~3!

whereDESCF is the SCF binding energy computed with th
supermolecular method~corrected for the BSSE!. Such a
procedure is attractive since the SCF interaction energy
supposed to contain most of the second-order exchan
induction energy, some induction part of third- and highe
order perturbational terms and even some intramolecular
relation contribution introduced when doing a SC
supermolecular calculation,14 contributions which are all ne-
glected when using Eq.~1!. In the following we shall refer to
it as thehybridmethod. However, when resorting to Eq.~3!
it is important to realize that mixing both approaches ren
difficult the control on the errors made. How much of th
higher-order perturbational contributions, what part of t
exchange-induction energy, etc... is gotten with a SCF sup
molecular calculation is not easy to estimate. Note that it c
be argued that a pure perturbational treatment where in
vidual errors are in a better control may be preferable. In
same idea of incorporating nonperturbational effects it h
been proposed to include the so-called apparent correla
or self-consistency effects into the second-order induct
energy, Eind

(2) . 15–18 In short, it consists in resorting to a
coupled Hartree-Fock~CHF! which implicitly sums up to
infinity certain diagrams appearing in the many-body expa
sion of the induction energy. This is expected to give a be
approximation of the total induction energy. Note that th
can also be done for the exchange-induction part.19 Concern-
ing the explicit calculation of higher-order perturbation
components very little is found in the literature~see, refer-
ences in Refs. 1,20,21!. Finally, let us note that very recently
a great deal of attention has been focused on the calcula
of intramolecular correlation contributions to the interactio
energy.11,13,20,22–28The monomer Hamiltonians are decom
posed as a sum of the Fock operator and some residua
tramonomer correlation operator~Mo” ller-Plesset partion-
ning!. Using a many-body expansion framework a doub
perturbation theory~in the correlation operators of eac
monomer! may be written down for any of the interactio
components. Some calculations of the leading correction
the first- and second-order perturbational components h
been presented~see previous references!. Note also that
quantum Monte Carlo~QMC! techniques can be used t
computeexactlyperturbational quantities~in particular, the
intramonomer correlation effects can be fully taken into a
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count, see application to the He–He interaction in Refs.
21,29!. However, it should be noted that the method is in
practice limited to the case of two-electron systems because
of the celebrated fermionic ‘‘sign problem’’~see, e.g., Refs.
30,31!.

The purpose of this paper is to present a detailed study
of several hydrogen-bonded dimers~ranging from weak to
rather strong bonded-systems! using the perturbational for-
malism with different levels of description~two different
pure perturbational approaches and the hybrid method!.
More precisely, using the original formalism presented by
Hesset al.12 a few years ago we investigate the dependence
of the different perturbational contributions on the geometry
of the dimer~both the intermonomer distance and the relative
orientation! for five different hydrogen-bonded dimers~con-
sisting of H2O, NH3, and HF!. We discuss in detail the va-
lidity of the different representations for the interaction en-
ergy presented above and investigate the peculiar role of the
second-order exchange-induction energy.

The organization of the present paper is as follows. In
section II we give a rapid summary of the formalism used in
this work. In particular we give the rather unfamiliar expres-
sions for the exchange-induction and -dispersion energies de-
rived within SAPT theories by Hesset al.12 Section III con-
tains the computational details. In section IV, we present our
numerical results for the different contributions of the inter-
molecular interaction energy and a comparison between the
interaction energies obtained with the different approaches.
Finally, some conclusions are presented in section V.

II. METHOD

In this section we give a rapid overview of the formalism
used in this work; for a very detailed and self-contained pre-
sentation the reader is referred to the original work of Hess
et al.12 In the perturbation theory of interactions the total
Hamiltonian is decomposed asH5H01VAB whereH0 de-
notes the sum of the non-interacting Hamiltonians of the two
monomersA and B ~we shall consider here only dimers,
formulas can be trivially generalized to an arbitrary number
of monomers! andVAB is the intermolecular interaction po-
tential.

Following standard Symmetry Adapted Perturbation
Theories~SAPT! ~see, e.g., Refs. 1–3! and using standard
notations, the complete first- and second-order interaction
energies are written in the form:

E~1!5
^C0

AC0
BuVABAuC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
, ~4!

E~2!52
^C0

AC0
BuVABR0A~VAB2E~1!!uC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
, ~5!

whereR0 denotes the reduced resolvent ofH0 given by

R05(
i j

8
uC i

AC j
B&^C i

AC j
Bu

~Ei
A1Ej

B!2~E0
A1E0

B!
~6!

~the prime in(8 means as usual that the term corresponding
to i50 and j50 is excluded from the summation! andA is
the intersystem antisymmetrizer:
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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A512A8512P~1!1P~2!2...1~21!Nin fP~Nin f !
, ~7!

whereP(1)5( i
A( j

BPi j denotes the sum of all permutation
exchanging~space and spin! coordinates of electroni of mol-
eculeA with coordinates of electronj of moleculeB, and
similar definitions hold forP(2) ,P(3) ,... (Nin f denotes the
smallest ofNA andNB , the numbers of electrons of molecul
A andB, respectively!. The role played by the antisymme
trizerA is essential: it forces the correct antisymmetry of t
dimer wave function with respect to the exchange of ele
trons between both monomers. In formulas~4!–~6! C i

M (M
5A,B) are supposed to be theexacteigenfunctions of the
HamiltonianHM (M5A,B). In what follows we shall re-
strict ourselves to the use of approximate wave functions a
energies calculated at the SCF level. The role of the int
monomer correlation effects will not be considered here.

As usual the first-order interaction energy~Eq. ~4!! is
written as a sum of two contributions:

E~1!5ERS
~1!1Eexch

~1! , ~8!

where ERS
(1) ~the subscript RS stands for Rayleigh-

Schrödinger! can be interpreted as the energy of the elect
static interaction of the unperturbed charge distributions
the isolated monomers~this quantity is often referred to as
the electrostatic part or also as the first-order polarizat
energy! andEexch

(1) is the first-order exchange energy resultin
from the presence of the antisymmetrizer. Note that in
present work all multiple exchange of electrons~quantum-
mechanical tunneling! between moleculesA andB have been
considered when calculatingEexch

(1) .
In the same way the second-order perturbation ene

E(2) ~Eq. ~5!! is decomposed into two terms: the usu
second-order Rayleigh-Schro¨dinger~RS! perturbation energy
ERS
(2) ~obtained by settingA51 in Eq. ~5!! and the second-

order exchange energyEexch
(2) given by

Eexch
~2! [E~2!2ERS

~2!

52
^C0

AC0
Bu~VAB2E~1!!~A82^A8&!uF~1!&

^A&
, ~9!

where ^A8& and ^A& are the expectation values ofA8 and
A calculated with the ground-state wave functionC0

AC0
B and

F (1) stands for the first-order correction to the wave functi
in the perturbation theory

F~1!52R0V
ABC0

AC0
B . ~10!

Now, we shall suppose that multiple exchanges contr
ute weakly in the region around the equilibrium geom
try,6,14 so that only the leading contribution toEexch

(2) corre-
sponding to a single exchange of electrons between m
eculesA andB is considered. Thus, the approximate expre
sion forEexch

(2) used here is obtained by settingA8 5 P(1) in
Eq. ~9!. Neglecting terms which correspond to contributio
of order higher thanS2 ~whereSstands for overlap integrals
between orbitals of monomersA andB!, we get

Eexch
~2! 52^C0

AC0
Bu~VAB2^VAB&!~P~1!2^P~1!& !uF~1!&.

~11!

By rewriting F (1) ~Eq. ~10!! in the form:
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F~1!5C0
AF ind

B 1F ind
A C0

A1Fdisp
AB , ~12!

it is clear that the second-order exchange energy may b
decomposed into three terms

Eexch
~2! 5Eexch2 ind

~2! ~A→B!1Eexch2 ind
~2! ~B→A!1Eexch2disp

~2! .
~13!

The sum of the first two terms in Eq.~13! are referred to
as the exchange-induction energy andEexch2disp

(2) as the
exchange-dispersion energy. These two terms take their or
gin in the coupling between the induction or dispersion
forces and the electron exchange.

In order to compute these various perturbational quanti-
ties we have used the formalism presented in Ref. 12. In a
few words, the main idea is to express exchange contribu
tions as a combination of formal electrostatic interaction en-
ergies between suitably generalized charge distributions,
form particularly suitable for calculations. To do that, the
main ingredients used are:

~i! The possibility of reducing the action of the intersys-
tem antisymmetrizer~appearing in SAPT! on factorized SCF
wave functions to a sum of simple products of SCF determi-
nants corresponding to each subsystem, namely:

P~1!@CACB#5(
iPA

(
jPB

CAS bjai DCBS aibj D , ~14!

whereCA(ai
bj) denotes the Slater determinant of moleculeA

in which the occupied spin-orbitalai has been replaced by
the spin-orbitalbj of moleculeB, the summation is over the
spin-orbitals of determinantsCA ~here labeled byi! and
CB ~labeled by j!. Using Eq. ~14! all integrals involving
functions of the typeP(1)@CACB# are reduced to sums of
integrals involving simple productsCA(ai

bj) CB(bj
ai ) of ‘‘op-

posite transfer’’ determinants.
~ii ! The use of the so-called Longuet–Higgins represen-

tation of the interaction operatorVAB in terms of the molecu-
lar charge distributionsrM (M5A,B), namely:

VAB5E E rA~rWA!rB~rWB!

urWA2rWBu
drWAdrWB, ~15!

with

rM~rW !5rnuclear
M ~rW !1relectronic

M ~rW !

5 (
mPM

Zmd~rW2rWm!2 (
iPM

d~rW2rW i !, M5A,B.

~16!

~iii ! The possibility of using a variational-perturbation
method to compute efficiently the infinite sums involved in
the second-order expressions. In practice, this can be easi
implemented by making a variational calculation in a dimer
basis set.12

Let us now describe briefly the main steps followed to
derive the rather unfamiliar formulas used in this work to
compute the exchange-induction and dispersion energies.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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A. Exchange–induction energy

By using Eqs.~11! and~12!, Eexch2 ind
(2) (A→B) is written

as

Eexch2 ind
~2! ~A→B!52^C0

AC0
Bu~VAB2^VAB&!

3~P~1!2^P~1!& !uC0
AF ind

B &, ~17!

with a similar formula forEexch2 ind
(2) (B→A). A first point is

that it is possible to rewriteF ind
B in the form:

F ind
B 5 (

kPB
C0

BS f kB
bk

D , ~18!

where the summation runs over all occupied spin orbi
bk of monomerB and where the so-called ‘‘induction func
tions’’ f k

B’s are some well-defined linear combinations of t
virtual spin orbitals ofB ~one associated with each occupi
orbital!. Using Eq.~18! it is not difficult to show that the
exchange induction energy may be now written

Eexch2 ind
~2! ~A→B!52 (

kPB
~@VABP~1!#k2^VAB&@P~1!#k

2^P~1!&@V
AB#k), ~19!

with the notation

@O#k[K C0
AC0

BUOUC0
AC0

BS f kB
bk

D L , ~20!

whereO stands for an arbitrary operator. Now, by using t
fact that the action of the permutation operatorP(1) on a
product of two determinantsCA andCB may be expressed
as a linear combination of simple products of determina
corresponding to subsystemsA and B and by using the
Longuet-Higgins representation of the interaction opera
VAB ~Eqs.~15!,~16!! it is possible to show that the three bas
contributions in~19! may be written as some specific com
binations of electrostatic interactions between some gene
ized intermolecular charge densities. For example, we ob
for the major contribution12

@VABP~1!#k5(
iPA

(
jPB
jÞk

E E
f 00
A S bjai D f 00B S f kBai

bkbj
D

urA2rBu
drAdrB

1(
iPA

E E
f 00
A S f kB

ai
D f 00B S aibkD

urA2rBu
drAdrB, ~21!

where

f 00
A S bjai D[K C0

AUrA~rA!UC0
AS bjai D L ,

with similar definitions for the other generalized charge d
tributions involved in Eq.~21!. Finally, explicit expressions
for the generalized charge distributions in terms of mo
and bi-electronic integrals involving spin orbitalsai ,bj , and
f k
B may be easily obtained.
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B. Exchange-dispersion energy

A similar route to that followed for the exchange-
induction energy can be used for the exchange-dispersio
component. WritingFdisp

AB ~see, Eq.~12!! as:

Fdisp
AB 5 (

kPA
(
lPB

(
rPA

(
sPB

ckl
rsC0

AS arakDC0
BS bsbl D , ~22!

where indicesk and l are associated with summations over
the corresponding set ofoccupiedspin orbitals whiles and l
refer to summations over the corresponding set ofvirtual
spin orbitals and whereckl

rs are some coefficients analogous
to the linear coefficients of the ‘‘induction functions’’ intro-
duced above, we can expressEexch2disp

(2) in a form very simi-
lar to Eq.~19!:

Eexch2disp
~2! 52 (

kPA
(
lPB

(
rPA

(
sPB

ckl
rs~@VABP~1!#kl

rs

2^VAB&@P~1!#kl
rs2^P~1!&@V

AB#kl
rs!, ~23!

with the notation

@O#kl
rs[K C0

AC0
BUOUC0

AS arakDC0
BS bsbl D L . ~24!

Exactly in the same way as before it is possible to write th
elementary contributions ofEexch2disp

(2) as a combination of
some electrostatic interactions between generalized char
distributions which are ultimately written in terms of mono-
and bi-electronic integrals. As an example, the major contr
bution toEexch2disp

(2) writes:

@VABP~1!#kl
rs5(

iPA
iÞk

(
jPB
jÞ l

E E
f 00
A S arbjakai

D f 00B S bsajblbj
D

urA2rBu
drAdrB

1(
iPA
iÞk

E E
f 00
A S arbsakai

D f 00B S aibl D
urA2rBu

drAdrB

1 (
jPB
jÞ l

E E
f 00
A S bjakD f 00B S bsarblbj

D
urA2rBu

drAdrB

1E E
f 00
A S bsakD f 00B S arbl D

urA2rBu
drAdrB, ~25!

and similar formulas for the other contributions.

III. COMPUTATIONAL DETAILS

A. Dimers

We have studied five different hydrogen-bonded dimer
made of the molecules H2O, NH3, and HF. The intramolecu-
lar geometry of the monomers has been taken to be the e
perimental geometry for isolated monomers~water molecule:
ROH51.8088 bohr, uHOH5104.87°; ammonia molecule:
RNH51.9219 bohr, uHNH5107.81°; HF molecule:
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8047Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
RHF51.71362 bohr!. In Figure 1, we present the differen
dimers in their equilibrium geometry as obtained by the pu
perturbational treatment~SAPT, see Eq.~2!!, note that
slightly different geometries can be obtained with other the
retical schemes, see discussion in the next section. In
work, we shall denoteA the proton acceptor molecule andB
the proton donor molecule. The dimer geometries will
described by the quantitiesuA , uB , and RAB where:

~i! uA defines the angle between the principal axes of
proton acceptor molecule~bisector in H2O, Cv axis in
NH3, and bond axis in HF! and the axisA...B con-
necting the two heavy atomsA andB.

~ii ! uB is the angle between the B-H bond axis of th
proton donor and the axisA...B.

~iii ! RAB is the ~intermolecular! distance between the two
heavy atomsA andB of the two monomers. The val-
ues of these different quantities at the SAPT equili
rium geometry are given in Figure 1.

The five different dimers have been chosen from ve
weak to rather strong hydrogen-bonded dimers. The l
bounded system is the dimer H2O...HNH2. In fact, there is
no experimental evidence of its existence. It is well-know
that NH3 acts as a proton acceptor when it is involved in
H-bonded system.32,33 For example, this is the case fo
H3N...HF,

34 NCH...NH3,
35 and HCCH...NH3.

36 There is so
far no known example of systems in the gas phase where

FIG. 1. The five hydrogen-bonded dimers studied. For a definition of
anglesuA anduB , see text.
J. Chem. Phys., Vol. 103,Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
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ammonia molecule acts as a proton donor. Here, the H2O...
HNH2 dimer has been studied as a prototype of a H-bonde
dimer with NH3 as a proton donor. A stronger but still weak
example of H-bonded dimer is~NH3)2 . Since the ammonia
molecule exhibits no tendency to proton donation, th
~NH3)2 complex is expected to be a case of H-bonded dime
not easy to treat. In this work a linear H-bonded structure ha
been chosen for the dimer. Earlierab initio calculations have
predicted such a structure.37,38 However, this picture is not
supported by microwave experiments,39,40 which predict a
cyclic structure. More recent theoretical~ab initio!
calculations41 indicate that cyclic and linear complexes are
almost degenerate in energy and that which one is found
be the most stable is extremely sensitive to details of th
basis set as well as to the amount of correlation effects i
cluded. In fact, three kinds of tunneling motions exist for the
ammonia dimer: interchange of thedonorandacceptorroles
of the monomers, internal rotation of the monomers abo
their C3 symmetry group andumbrellainversion tunneling.

42

A computational exploration of the six-dimensional
vibration-rotation-tunneling dynamics of~NH3)2 by van
Bladel et al.43 has concluded that the~NH3)2 structure can
be obtained from theab initio equilibrium structure by vibra-
tional averaging. Here, the radial evolution of the intermo
lecular interaction~and its components! of ~NH3)2 has been
mainly studied in order to compare the ammonia dimer wit
the dimer HOH...NH3. The dimers~H2O!2 and~HF!2 can be
considered as good examples of intermediate H-bond
dimers. Finally, we treat the H3N...HOH dimer as an ex-
ample of a rather strong H-bonded system.

B. Basis set

Our calculations for the different dimers have been pe
formed with a very large basis set~13s 8p 3d!/~7s 2p! con-
tracted into~8s 5p 3d!/~4s 2p! ~the first set of basis functions
corresponds to the heavy atom N, O, or F, the second to t
hydrogen atoms!. The basis set used has been taken from
Voisin44 and has been built as follows. First, based on atom
calculations the sets of primitives optimized by van Duijn
eveldt ~12s 7p!/~6s!,45 have been contracted into some re
duced set~7s 4p!/~3s!. Then, a set of diffuse functionss and
p has been added. Their exponents have been obtained
cording to the averaging procedure presented in Ref. 46. F
nally, to better describe the heavy atoms~N, O, and F!, three
polarization functionsd have been added according to the
rules proposed by Werner and Meyer.47 The two orbitalsp of
hydrogen are those given by Christiansen and McCullough.48

In order to evaluate the quality of our basis set we hav
performed a number of checks.

1. Basis-set quality: Some monomer properties

The SCF energy and dipole moment have been com
pared to the some recently estimated Hartree–Fock limits f
the three molecules~Table I!. Our values for the SCF ener-
gies appear to be quite close to the nearly-infinite-basis-s
results. The values of the dipole moments are also qui
good. It is important to emphasize that reproducing correct

he
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



t

f
le

t
e

n
a

a
r

n

s

-
s

e
ct
-
ry

f

n-

-

d

t
s-

d

.

s

r

o

8048 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
the permanent dipole moments is crucial since the interac
energy of hydrogen-bonded systems is dominated by
electrostatic interaction.

2. Basis-set quality: Some dimer properties

a. Complementary exchange energy.A very useful
quantity to evaluate the quality of a given finite basis set
computing intermolecular interactions is the so-cal
‘‘complementary exchange energy.’’ A very detailed prese
tation of this quantity can be found in references.1,50 How-
ever, since the use of this quantity is not very common, le
first give a short presentation of it. The complementary
change energy,ecompl2exch, is defined via the following for-
mula

E0[
^C0

AC0
BuHAuC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
5Ē0

01ecompl2exch

1
^C0

AC0
BuVABAuC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
~26!

where

ecompl2exch5
^C0

AC0
Bu~Ē0

02H0!A8uC0
AC0

B&

^C0
AC0

BuAuC0
AC0

B&
. ~27!

In Eq. ~26! E0 denotes the total Heitler–London energy a
Ē0
0 the total energy corresponding to the approximate w

function uC0
AC0

B& for the unperturbed HamiltonianH0 .
WhenC0

M (M5A,B) are chosen to be the exact~ground-
state! wave functions of the monomers the complement
exchange energy vanishes and the Heitler–London inte
tion energy~defined asE02Ē0

0) coincides with the complete
first-order interaction energy. Note that, due to the prese
of the operatorA8 at the numerator,ecompl2exch decreases
exponentially as a function of the distance. This is the rea

TABLE I. SCF energies and dipole moments obtained with the basis
used in this work. Comparison with the corresponding near Hartree–F
limits. All energies in a.u. Dipole moments in Debye.

Molecule ESCF Enear HF limit mSCF mnear HF limit

H2O 276.0606 276.0673a 1.98 1.98a,b

NH3 256.2179 256.2246a 1.56 1.62a

HF 2100.064 2100.0706a 1.93 1.92a

aReference 49.
bReference 53.
J. Chem. Phys., Vol. 103,Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
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why this quantity, which may be viewed as a correction to
the ordinary exchange energy, is called ‘‘complementary ex
change energy.’’ Now, the important property we shall use i
thatwithin the one-exchange approximationthe complemen-
tary exchange energy vanishes if and only if the approximat
functions used for the unperturbed monomers are the exa
Hartree–Fock solutions. Since for not too small intermono
mer distances the exact and one-exchange complementa
exchange energies are almost identicalecompl2exch is a good
indicator of how far an approximate SCF wave function built
from some given basis set is from the Hartree–Fock limit. O
course, for very small values ofecompl2exch it would be nec-
essary to consider the true one-exchange complementary e
ergy instead ofecompl2exch. In Table II we present for the
different dimers treated the values obtained forecompl2exch

at a few representative distances RAB . To compare with, we
also report the values of the Heitler–London exchange en
ergy defined as

Eexch2HL
~1! 5Eexch

~1! 1ecompl2exch. ~28!

The values obtained forecompl2exch are found to be rather
small when compared with typical values~see, e.g., Refs. 1
or 51!. This illustrates the good quality of the basis sets use
in this work.

b. Counterpoise correction at the SCF level. In a super-
molecular calculation of a complex the better the basis se
used for describing each monomer is, the smaller the basi
set-superposition error~BSSE! is. We have computed this
error by using the standard counterpoise method of Boys an
Bernardi,52 some of our results are displayed in Table III. As
a general rule, we get a very small counterpoise correction

c. Second-order dispersion energy. Szalewiczet al.53

pointed out that the use off functions improved considerably
the dispersion energy. Their estimate of the exact value wa
22.0 kcal/mol for the water dimer near the equilibrium dis-
tance~RO...O53. Å!. In a recent work, Rybaket al.20 have
obtained a value of21.90 kcal/mol by using a very large
basis set. Here, although nof functions are present in our
calculations, our 122 atomic-orbital dimer basis set leads, fo
the water dimer, to a value of21.89 kcal/mol which is al-
most identical to the value obtained by Rybaket al.and quite
close to the exact one estimated by Szalewiczet al.

set
ck
TABLE II. Complementary exchange energyecomp2exch and first-order Heitler–London exchange energy
Eexch2HL
(1) for some representative values of the distance RAB between the heavy atoms. Energies in kcal/mol,

distances in Å.

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

2.75 ecomp2exch 20.05 0.43 20.22 20.30 0.03
Eexch2HL
(1) 19.70 30.49 12.80 4.91 19.84

3.00 ecomp2exch 20.16 20.10 20.15 20.26 20.10
Eexch2HL
(1) 8.12 13.69 5.18 1.78 8.72

3.70 ecomp2exch 0.00 0.01 0.02 20.02 0.00
Eexch2HL
(1) 0.64 1.40 0.40 0.09 0.85
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Counterpoise-corrected SCF interaction energy,DECP
SCF , and counterpoise correction,eCP for some

representative distances. Energies in kcal/mol. Distances in Å .

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

2.75 DECP
SCF 3.84 5.84 22.46 23.64 22.78

eCP 0.09 0.10 0.10 0.20 0.10
3.00 DECP

SCF 20.01 0.60 23.65 23.48 24.54
eCP 0.05 0.06 0.06 0.16 0.06

3.70 DECP
SCF 21.38 21.73 22.50 21.90 23.29

eCP 0.02 0.03 0.02 0.11 0.02

Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
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IV. PERTURBATIONAL RESULTS

A. Total interaction energies at equilibrium
geometries

In Table IV we present the total interaction energies o
tained for the different dimers studied. We also present
optimized geometries, RAB , uA , anduB . We have used three
different approaches:

~i! The pure perturbational approach, SAPT, including
perturbational components up to the second-order

DEint
SAPT5ERS

~1!1Eexch
~1! 1Eind

~2!1Eexch2ind
~2! 1Edisp

~2!

1Eexch2disp
~2! . ~29!

~ii ! A truncated approach we shall refer to in the follow
ing as SAPTtrunc in which the exchange part of the
induction is neglected~this method will play an im-
portant role in the discussion to follow!

DEint
SAPTtrunc5ERS

~1!1Eexch
~1! 1Eind

~2!1Edisp
~2! 1Eexch2disp

~2! . ~30!

~iii ! The hybrid approach mixing the SCF interaction e
J. Chem. Phys., Vol. 103, NMar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
-
he

ll

-

-

ergy ~counterpoise-corrected! and the complete dis-
persion contribution calculated with SAPT:

DEint
hybrid5DEint

SCF1Edisp
~2! 1Eexch2disp

~2! . ~31!

For the three different approaches the geometries ha
been optimized by varying the anglesu I ~I5A andB! and
the distance RAB around the estimated equilibrium geometry
(u I within 230° and130 ° aroundu I

exp using65° steps,
RAB within 20.40 Å and 0.4 Å around RAB

exp with 0.03 Å
steps!.

From a qualitative point of view, both SAPT,
SAPTtrunc , and the hybrid methods lead essentially to th
same results. The force of the hydrogen bond~importance of
the total interaction energy! for the dimers we have studied
may be classified as follows: H2O...HNH2 ,H3N...HNH2
,H2O...HOH; HF...HF,H3N...HOH, where the notation
X,Y means that the dimerX is less bounded than the dimer
Y. We verify the well-known result that NH3 acts preferen-
tially as a proton acceptor rather than a proton donor sinc
here H3N...HOH is much more stable than H2O...HNH2.
Note also that NH3 acts as a better acceptor than H2O since
TABLE IV. Intermolecular interaction energy,DEint , obtained from different methods~see text! at the corre-
sponding equilibrium geometry. The values ofuA , uB , and RAB are given together with the known experimen-
tal values. Energies in kcal/mol, distances in bohr.

H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

DEint
SAPT 22.09 22.50 24.22 23.75 25.19

DEint
SAPTtrunc 22.50 23.15 25.45 25.82 27.55

DEint
hybrid 22.49 23.13 25.31 24.89 26.76

DEint
exp -a -b 25.460.7c 24.960.1d ;6e

Req
SAPT 3.40 3.50 3.15 2.83 3.15

Req
SAPTtrunc 3.20 3.20 2.68 2.48 2.70

Req
hybrid 3.25 3.30 2.91 2.68 2.93

Req
exp -a -b 2.98f 2.68g 2.99h

uA 50° 0° 60° 68° 20°
uA
exp -a -b 60°f 62°g 11°,uA,23°h

uB 0° 0° 0° 0° 5°
uB
exp -a -b 0°f 11°g .13°h

aUnphysical molecule, see text.
bLinear H-bonded structure, no experimental values, see text.
cReference 55.
dReference 20.
eTo our knowledge no experimental value available. The value quoted is anab initio estimate given by Latajka
and Scheiner~Ref. 56!.
fReference 57.
gReference 58.
hReference 59.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8050 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
H3N...HOH is more stable than H2O...HOH. Concerning the
geometrical parameters it appears that the value of the a
uA defining the angle between the axesA...B ~A andB being
the heavy atoms of the complex! and the principal axis of the
proton acceptor depends strongly on the chemical nature
the acceptor. A value of about 60° has been obtained w
the proton acceptor is H2O or HF. A smaller value is obtained
when the proton acceptor is NH3. The value of the angle
uB characterizing the position of the bond A-H~A being N,
O, or F! of the proton acceptor is always very close to 0
The smallest distance RA...B between the two heavy atoms a
the equilibrium geometry has been obtained for the H
dimer. We get the following series: RF...F~HF!2 , RO...O

~H2O!2 , RN...N~NH3)2 . The equilibrium distance RA...B
calculated for the heterodimer involving NH3 and H2O in-
creases from the most stable dimer~H3N...HOH! to the less
stable one~H2O...HNH2).

From a more quantitative point of view, the first impo
tant point to note is that values of the interaction ener
DEinter , depend appreciably on the method used and/or
dimer considered. First, it is clear thatDEint

SAPT is always
smaller in magnitude thanDEint

hybrid or DEint
SAPTtrunc . The sys-

tematic difference is about 20%. The comparison betwe
DEint

SAPTtrunc andDEint
hybrid depends on the dimer. We can dis

tinguish three different cases:
~i! the weak H-bonded dimers case~including H2O...

HNH2 and ~NH3)2) for which DEint
SAPTtrunc andDEint

hybrid al-
most coincide.

~ii ! the intermediate case of medium H-bonded dime
~~H2O!2 and ~HF!2) for which we obtain two different re-
sults. For the~H2O!2 dimer the total interaction energy cal
culated with SAPTtrunc and the hybrid methods are almos
identical ~the difference is less than 3%!. This is a result
which has already been obtained by Refs. 4, 12, and
However, this is no longer true for the~HF!2 dimer for which
DEint

SAPTtrunc andDEint
hybrid are off by about 20%, therefore

the equality of these two quantities cannot be considered
general rule. We shall return to this important point later af
having presented the individual components of the inter
tion energy~sec. C below!.

~iii ! the rather strong H-bonded dimer, H3N...HOH, for
which an important difference between the truncated and
brids results is observed.

Regarding the equilibrium distance Req we find that the
SAPT results are systematically larger than those obtai
with the two other methods. Once again, the situation is
so clear when we compare the values obtained w
SAPTtrunc and the hybrid methods. Almost identical resul
have been obtained for the case of weakly bonded dim
while shorter distances have been calculated with
SAPTtrunc approach for the other dimers. If we compare wi
the known experimental values it is clear that the hyb
method is the method which gives the most plausible resu
Now, regarding the calculated angular parameters (uA and
uB) defining the relative position of the two molecule
within the H-bonded dimer we have systematically obtain
almost the same values with the three different procedu
We have also found that not only the equilibrium angles a
J. Chem. Phys., Vol. 103, NDownloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
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very similar but also the general shape of the interactio
energy curves with respect to the relative angles for a
dimers presented here. To illustrate this point we present
Figure 2 the energy curve obtained for the water dimer as
function of the angleuA . Clearly, there exists some impor-
tant radial dependence of the interaction energy on the pr
cedure used but a much smaller one for the relative positio
of the molecules. In what follows we study in more detai
this radial dependence.

B. Radial dependence of the perturbational
contributions

Keeping the angular parametersuA anduB of each dimer
fixed at their optimized values, we have investigated the r
dial dependence of the intermolecular interaction energy pe
turbational components.

Our main purpose is to study which contributions to the
interaction energy are actually dominant in stabilizing th
five studied complexes. We are also interested to trace ba
to its origin the poor stability of the dimer~NH3)2 and also
the very short F...F distance in the~HF!2 dimer.

In the next few tables we present the radial dependen
of the following contributions:

~i! ERS
(1) , Eexch

(1) and the complete first-order,E(1)SAPT

~Table V!;
~ii ! the second-order induction energyEind

(2) , its exchange
part Eexch2 ind

(2) , and the complete induction energy
Eind
(2)SAPT ~Table VI!;

~iii ! the second-order dispersion energyEdisp
(2) , its ex-

change partEexch2disp
(2) , and the complete dispersion

energyEdisp
(2)SAPT ~Table VII!.

We make the following comments on the results pre
sented in Tables V–VII:

~i! All contributions of the Rayleigh–Schro¨dinger ~RS!
treatment ~no exchange terms!, namely ERS

(1) , Eind
(2) , and

FIG. 2. Interaction energy curves,DEint , as a function ofuA ~see text! for
the water dimer as calculated by SAPT, SAPTtrunc , and the hybrid methods.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. First-order Rayleigh–Schro¨dinger energy,ERS
(1) , first-order exchange energy,Eexch

(1) , and complete
first-order,ESAPT

(1) 5 ERS
(1) 1 Eexch

(1) for different values of RAB . Energies in kcal/mol and distances in Å.

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

ERS
(1) 211.28 217.00 211.51 26.63 216.36

2.75 Eexch
(1) 19.75 30.07 13.10 5.21 19.87

E(1)SAPT 8.48 13.08 1.59 21.42 3.44
ERS
(1) 27.62 212.00 28.40 25.16 212.30

2.90 Eexch
(1) 11.40 18.90 7.40 2.98 12.23

E(1)SAPT 3.78 6.90 21.00 22.18 20.07
ERS
(1) 26.20 29.60 27.15 24.42 210.27

3.00 Eexch
(1) 8.32 13.80 5.33 2.04 8.83

E(1)SAPT 2.12 4.20 21.82 22.38 21.44
ERS
(1) 24.32 26.71 25.39 23.47 27.72

3.17 Eexch
(1) 4.54 8.02 2.84 1.06 5.03

E(1)SAPT 0.22 1.31 22.55 22.41 22.70
ERS
(1) 21.24 21.76 21.94 21.39 22.61

4.00 Eexch
(1) 0.21 0.52 0.12 0.03 0.31

E(1)SAPT 21.03 21.24 21.82 21.36 22.30
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Edisp
(2) , have a stabilizing effect. Of course, the major con

bution is the electrostatic interaction energy which represe
between 55 and 70 % of the total RS contribution. When
compare the relative force of the RS interaction energy
the different H-bonded dimers we get the following ord
~NH3)2 . H3N...HOH, H2O...HNH2 . ~H2O!2, ~HF!2 .
For an average distance of RAB 53 Å, it appears that for the
dimers~H2O!2 and ~HF!2 the electrostatic energy represen
75% and 50% of the value obtained for~NH3)2; for the
dimers~H2O!2 and ~HF!2 , Eind

(2) represents 75% and 40% o
the value obtained for~NH3)2 , respectively; and for~H2

O!2 and ~HF!2 Edisp
(2) represents, 50% and 20% of Edisp

(2) of
~NH3)2 , respectively.

~ii ! The total first- and total second-order exchange c
tributions~including both induction and dispersion contrib
tions! reduce the stabilizing effect of the Rayleigh
Schrödinger terms just discussed. As expected, the m
exchange contribution results from the first-order excha
term which represents 80% of the total exchange contr
J. Chem. Phys., Vol. 103,¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
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tion at intermediate distances, while the second-order indu
tion and dispersion exchange components have been o
tained to represent 14% and 6% of the total exchang
respectively. Regarding the total exchange contributio
we obtain the following order:~NH3)2 . ~H2O...HNH2)
. ~H3N...HOH!.~H2O!2. ~HF!2 . We have investigated the
behavior of each individual exchange component as a fun
tion of the distance RAB . We have found that for distances
greater than 3 Å the exchange contribution may be very wel
represented via a single exponential function,Ce2a(R2R0).
The set of parameters obtained for the different dimers an
for the different components of the exchange part using th
results for RAB53.00, 3.17, 3.70, and 4.00 Å are given in
Table VIII ~note thatR0 has been chosen to be fixed at 3 Å!.
The values of the parameters depend essentially on the n
ture of the exchange contribution~first-order, exchange-
induction or exchange-dispersion! and on the chemical na-
ture of the molecules involved in the complex.
TABLE VI. Second-order induction energy,Eind
(2) , second-order exchange induction energy,Eind2exch

(2) , and
complete second-order induction,Eind

(2)SAPT5 Eind
(2)1Eind2exch

(2) for different values of RAB . Energies in kcal/mol
and distances in Å.

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

Eind
(2) 26.10 29.59 24.55 22.39 27.58

2.75 Eind2exch
(2) 4.27 6.30 2.81 1.36 4.70
Eind
(2)SAPT 21.83 23.29 21.74 21.03 22.88
Eind
(2) 23.26 25.69 22.49 21.38 24.63

2.90 Eind2exch
(2) 2.17 3.61 1.40 0.70 2.74
Eind
(2)SAPT 21.09 22.08 21.00 20.68 21.89
Eind
(2) 22.30 24.04 21.80 20.96 23.36

3.00 Eind2exch
(2) 1.48 2.49 0.95 0.45 1.91
Eind
(2)SAPT 20.82 21.55 20.85 20.51 21.45
Eind
(2) 21.22 22.30 21.00 20.54 21.99

3.17 Eind2exch
(2) 0.71 1.32 0.45 0.20 1.04
Eind
(2)SAPT 20.51 20.98 20.55 20.34 20.95
Eind
(2) 20.10 20.21 20.10 20.06 20.21

4.00 Eind2exch
(2) 0.02 0.07 0.02 0.01 0.06
Eind
(2)SAPT 20.08 20.14 20.08 20.05 20.15
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



TABLE VII. Second-order dispersion energy,Edisp
(2) , second-order exchange dispersion energy,Edisp2exch

(2) , and
complete second-order dispersion energy,Edisp

(2)SAPT5Edisp
(2) 1Edisp2exch

(2) for different values of RAB . Energies in
kcal/mol and distances in Å.

RAB
H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3...HOH

Edisp
(2) 24.63 26.78 23.38 21.46 24.82

2.75 Edisp2exch
(2) 1.28 2.28 0.82 0.24 1.35
Edisp
(2)SAPT 23.35 24.50 22.56 21.22 23.47
Edisp
(2) 23.19 24.88 22.32 21.00 23.45

2.90 Edisp2exch
(2) 0.77 1.45 0.48 0.14 0.88
Edisp
(2)SAPT 22.42 23.43 21.84 20.86 22.57
Edisp
(2) 22.59 23.93 21.89 20.79 22.77

3.00 Edisp2exch
(2) 0.57 1.07 0.34 0.09 0.64
Edisp
(2)SAPT 22.02 22.86 21.55 20.70 22.13
Edisp
(2) 21.79 22.74 21.31 20.53 21.93

3.17 Edisp2exch
(2) 0.33 0.64 0.19 0.05 0.38
Edisp
(2)SAPT 21.46 22.10 21.13 20.48 20.92
Edisp
(2) 20.34 20.54 20.24 20.10 20.38

4.00 Edisp2exch
(2) 0.02 0.05 0.01 0.00 0.03
Edisp
(2)SAPT 20.32 20.49 20.23 20.10 20.35
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~iii ! Clearly, at very short distances the repulsive e
change part of the first-order dominates the attractive
contribution. However, at sufficiently large distances the e
change part vanishes and only the electrostatic term surv
~it behaves as 1/RAB

3 ). Accordingly, the total first-order en-
ergy displays a minimum. The location of the minimum d
pends very much on the system studied. Looking at result
TableV we see that the weak H-bonded dimer~NH3)2 has a
shallow minimum at a relatively large distance~21.30 kcal/
mol with Req . 3.8 Å!. In contrast, the stronger-bounde
dimers~H2O!2 and~HF!2 have a larger total first-order inter
action energy~about22.50 kcal/mol!. The minimum region
of ~HF!2 is found to be quite broad within a range of value
between 2.9 Å and 3.3 Å.

~iv! The positive ~repulsive! exchange contributions
Eexch2 ind
(2) and Eexch2disp

(2) terms never dominate thei
Rayleigh–Schro¨dinger counterparts,Eind

(2) andEdisp
(2) . In fact,

the second-order RS terms tend to decrease the intermol
lar interaction energy and to push the equilibrium distan
RAB towards shorter distances, this effect is slightly reduc
by the second-order exchange terms whose main effect i
bring back RAB to more reasonable values. The effect of t
J. Chem. Phys., Vol. 103, NDownloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
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second-order exchange contributions is more important for
~NH3)2 than for the~HF!2 dimer ~see Tables IV, VI, and
VII !. In conclusion, the relative stability between the differ-
ent H-bonded dimers results from a subtle balance betwee
Rayleigh-Schro¨dinger and total exchange contributions.

C. Radial dependence of the total interaction energy:
A comparison between the different approaches

In Table IX we present the total interaction energy as
calculated within SAPT, SAPTtrunc and the hybrid methods
~Eqs. ~29!, ~30!, and ~31!! as a function of RAB . We also
present in Figures 3 and 4 the complete interaction energy
curves for two representative examples: the NH3 and HF
dimers. A number of remarks are in order. First, it is clear
that at very large distances the three approaches give th
same results for the total interaction energy and thus, the
same dissociative behavior. The results obtained by the dif
ferent methods at small and intermediate distances may b
quite different depending on the force of the hydrogen bond.
For the two weak H-bonded cases~H2O...HNH2 and
~NH3)2) the agreement between the truncated and hybrid
TABLE VIII. Parameters of the representationCe2a(R2R0) (R053 Å) for: ~a! the first-order exchange energy,
~b! the second-order exchange induction energy,~c! the second-order exchange dispersion energy. ParametersC
in kcal/mol anda in Å21.

H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

Eexch
(1)

a 3.685 3.280 3.777 4.205 3.351
C 8.404 13.910 5.397 2.121 8.860

Eexch2 ind
(2)

a 4.317 3.585 3.906 5.489 3.450
C 1.473 2.444 0.893 0.474 1.893

Eexch2disp
(2)

a 3.392 3.053 3.518 3.115 3.085
C 0.572 1.077 0.344 0.088 0.636
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE IX. Total interaction energy calculated with SAPT, SAPTtrunc and the hybrid methods, see text.
Energies in kcal/mol and distances in Å.

RAB
H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

DEint
SAPT 11.29 15.31 1.60 22.41 2.79

2.54 DEint
SAPTtrunc 1.31 2.04 25.11 25.73 27.14

DEint
hybrid 6.63 9.15 22.51 24.45 22.84

DEint
SAPT 3.31 5.26 22.71 23.67 22.90

2.75 DEint
SAPTtrunc 20.96 21.00 25.51 25.03 27.60

DEint
hybrid 0.50 1.35 25.02 24.86 26.26

DEint
SAPT 0.27 1.39 23.94 23.72 24.53

2.90 DEint
SAPTtrunc 21.90 22.22 25.34 24.42 27.27

DEint
hybrid 21.48 21.29 25.31 24.51 26.74

DEint
SAPT 20.72 20.21 24.20 23.59 25.02

3.00 DEint
SAPTtrunc 22.19 22.70 25.10 24.03 26.93

DEint
hybrid 22.03 22.25 25.19 24.18 26.68

DEint
SAPT 21.76 21.75 24.22 23.23 25.19

3.17 DEint
SAPTtrunc 22.46 22.97 24.68 23.42 25.57

DEint
hybrid 22.47 22.98 24.73 23.57 26.15

DEint
SAPT 21.83 22.27 22.84 22.01 23.72

3.70 DEint
SAPTtrunc 21.90 22.52 22.89 22.02 23.88

DEint
hybrid 21.92 22.53 22.90 22.07 23.88

DEint
SAPT 21.43 21.87 22.13 21.51 22.82

4.00 DEint
SAPTtrunc 21.45 21.93 22.14 21.51 22.86

DEint
hybrid 21.46 21.96 22.16 21.53 22.88
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results is very good except at small distances~see Figure 3!.
For the rather strong dimers~HF!2 and H2O...HOH the trun-
cated and hybrid curves appear to differ quite substantia
by about 20%. The water dimer appears as an intermed
species for which both methods are in reasonable agreem
a result which has been already obtained by Refs. 4, 12,
20. It should be noticed that for strong enough dimers
equilibrium distance obtained with the truncated method
systematically smaller than with the hybrid method. Rega
ing the SAPT results it is clear thatDEint

SAPT is always
smaller in magnitude thanDEint

hybrid or DEint
SAPTtrunc . The sys-

tematic difference for all dimers is about 20%. Note also th
the equilibrium distance obtained by the pure perturbatio
method is also systematically greater than with the two ot
methods. In order to discuss further these results it is imp

FIG. 3. Interaction energy curves,DEint , as a function of RAB for the
~NH3)2 dimer as calculated by SAPT~curve with open squares!,
SAPTtrunc ~solid squares!, and the hybrid methods~crosses!.
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lly
ate
ent,
nd
e
is
d-

at
al
er
r-

tant to point out that the equality of the results obtained with
the truncated and hybrid methods should result from the fol
lowing equality:

DEint
SCF;E~1!1Eind

~2! , ~32!

whereE(1) is the complete first-order~electrostatic and ex-
change terms! andEind

(2) is the Rayleigh–Schro¨dinger part of
the induction energy. It has been argued that this equalit
should result from a fortunate cancellation between the ex
change part of the induction energy and some part of th
higher-order perturbational contributions which are implic-
itly included in a SCF supermolecular calculation of the in-
teraction energy.4 Despite the fact that it is roughly true for
the water dimer, our results clearly demonstrate that it is
wrong for the ~HF!2 and H3N...HOH dimers. To illustrate

FIG. 4. Interaction energy curves,DEint , as a function of RAB for the
~HF!2 dimer as calculated by SAPT~curve with open squares!,
SAPTtrunc~solid squares!, and the hybrid methods~crosses!.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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this point we present in Figures 5 and 6 a comparison be-
tween the SCF interaction energy curve and the curve rep
senting the perturbational sumE(1)1Eind

(2) for the~NH3)2 and
~HF!2 dimers, respectively. For the NH3 dimer the overall
agreement between the two curves is strikingly good. In c
trast, for the~HF!2 dimer there is a clear disagreement, th
main feature being an important difference in the location
the minimum. Although the difference of minimum energie
is small ~about 0.2 kcal/mol! this difference at the new cor-
responding minima is magnified when the total dispersi
energy is added to lead to the complete interaction ene
Following the Morokuma decomposition~see e.g., Ref. 54!
the SCF interaction energy may be written as:

DEint
SCF5Eelec1Eexch2HL1Eind

SCF, ~33!

whereEelec is the electrostatic energy~identical toERS
(1)) as

calculated here with SAPT,Eexch2HL is the Heitler–London
exchange energy which reduces almost toEexch

(1)SAPTwhen a
very large basis set is used~see discussion on the comple
mentary exchange in Sec. III.B! andEind

SCF is by definition the

FIG. 5. Comparison between the SCF interaction energy curve~solid line
with crosses! and the curve representing the perturbational sumE(1)

1Eind
(2) ~dashed line with open squares! for the ~NH3)2 dimer.
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induction part of the SCF interaction energy. In order to dis-
cuss the status of the SAPT induction energy~including or
not the exchange contribution! with respect to the SCF in-
duction energy, we have presented in Table X the SCF in-
duction energy, the difference between the SCF induction
energy and the total SAPT induction energy~including ex-
change effects! and the same difference without the ex-
change terms, all quantities being given as a function of the
distance RAB . It immediately appears that at short and inter-
mediate distances, the three calculated values of the induc
tion energy are different. The nice agreement obtained for
the water dimer at RO...O53 Å betweenEind

SCF and Eind
(2) is

actually fortuitous. In fact,Eind
SCF should not be compared to

Eind
(2) because the so-calledapparent correlationor self-

consistency effects are included in the supermolecular
Hartree–Fock interaction energy but not in our computation
of Eind

(2) .15 As emphasized by Sadlej15 the second-order RS
induction energy calculated within SAPT methodology by
using the first-order perturbed wave function is equivalent to
that computed within a UnCoupled Hartree–Fock~UCHF!

FIG. 6. Comparison between the SCF interaction energy~solid line with
crosses! and the curve representing the perturbational sumE(1)1Eind

(2)

~dashed line with open squares! for the ~HF!2 dimer.
in
TABLE X. Comparison between the SCF induction energy and the perturbational induction energy. Energies
kcal/mol and distances in Å.

RAB
H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

Eind
SCF 24.57 27.66 23.84 21.92 26.26

2.75 Eind2tot
(2) 2Eind

SCF 2.74 4.37 2.10 0.89 3.39
Eind
(2)2Eind

SCF 21.53 21.93 20.71 20.47 21.32
Eind
SCF 22.61 24.75 22.25 21.15 24.00

2.90 Eind2tot
(2) 2Eind

SCF 1.52 2.67 1.25 0.47 2.11
Eind
(2)2Eind

SCF 20.65 20.94 20.24 20.23 20.63
Eind
SCF 21.93 23.49 21.68 20.84 23.00

3.00 Eind2tot
(2) 2Eind

SCF 1.11 1.94 0.83 0.33 1.55
Eind
(2)2Eind

SCF 20.37 0.55 20.12 20.12 20.36
Eind
SCF 21.10 22.00 20.99 20.50 21.85

3.17 Eind2tot
(2) 2Eind

SCF 0.59 1.02 0.44 0.16 0.90
Eind
(2)2Eind

SCF 20.12 20.30 20.01 20.04 20.14
Eind
SCF 20.23 20.48 20.23 20.13 20.46

3.70 Eind2tot
(2) 2Eind

SCF 0.08 0.20 0.07 0.03 0.18
Eind
(2)2Eind

SCF 0.01 0.01 0.02 0.02 0.01
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8055Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
perturbation scheme. In particular, the perturbation-induc
modification of the Hartree–Fock~HF! potential is not taken
into account. In a UCHF scheme, the results obtained
Eind
(2) are underestimated. Sadlej emphasizes that if both

perturbed and perturbed many-electron systems are descr
in the HF approximation, then the appropriate perturbat
theory is the Coupled Hartree–Fock~CHF! scheme. The in-
duction computed at the CHF level is usually denoted
Eind,resp
(2) , it sums up to infinity certain linear diagrams with

out rings and then fully accounts for the self-consisten
effects. The CHF scheme corrects the HF potential of
unperturbed systems but no correlation corrections are in
duced. The total exchange-induction contributions are a
present in the SCF induction energy. However, at the S
level, once again because of the self-consistency effects
getEexch2 ind,resp

(2) instead ofEexch2 ind
(2) . Finally, the SCF in-

duction contribution is written as:

DEind
SCF5Eind,resp

~2! 1Eexch2 ind,resp
~2! 1dEmixt , ~34!

wheredEmixt gathers all higher perturbational terms. A num
ber of calculations ofEind,resp

(2) andEexch2 ind,resp
(2) have been

presented~see references in Ref. 28!.
Although results obtained with the hybrid approach a

good it is important to realize that escaping from a pu
perturbational treatment has some drawbacks. How much
the higher-order perturbational contributions, what part
the exchange-induction energy, etc... is recovered from
SCF supermolecular calculation is not easy to estimate
may be argued that the good results obtained with the hyb
approach could result from a subtle balance between
glected contributions very different in nature. It is not cle
whether that balance will still hold when higher-order co
tributions will be evaluated. Of course, a similar problem
present in a pure perturbational scheme but it is importan
emphasize that the neglected quantities not taken into
count are much more clearly identified. Accordingly, in o
opinion it is still important to study the pure perturbation
treatments. From Tables IV and IX~in particular the com-
parisons with experimental values! it appears that the com-
plete pure perturbational treatment~SAPT! is the approach

FIG. 7. Comparison between the SCF interaction energy curve~solid line
with crosses! and the curve representing the perturbational sumE(1)

1Eind
(2)1Eexch2 ind

(2) ~dashed line with open squares! for the ~NH3)2 dimer.
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which gives the less plausible results. Results from the tru
cated approach demonstrate that the main part of the d
agreement betweenDEint

SAPT on one hand, andDEint
SAPTtrunc

and DEint
hybrid on the other hand, comes from the second

order exchange-induction energy which destroys the overa
quality of the results. To illustrate this point Figures 7 and
display a comparison between theDEint

SCF curve and the
curve representing the perturbational sum
E(1)1Eind

(2)1Eexch2 ind
(2) for the dimers H3N...HNH2 and

~HF!2 ~same curves as in Figures 5 and 6, except that th
exchange-induction energy has been added!. In Figure 7 it is
seen that the very good agreement found in Figure 5 is d
stroyed. This result shows that the calculated values f
Eexch2 ind
(2) are overestimated since for a weak dimer such a

H3N...HNH2 the perturbational contributions beyond the
second-order should be small and a perturbational descr
tion should be adequate. For stronger dimers like~HF!2 the
clear disagreement between the two curves does not nec
sarily mean that we are in trouble~higher-order terms cer-
tainly play a role! but there is no reason not to believe that
in that case also, the exchange-induction term has been ov
estimated. Let us have a closer look to our estimate of th
exchange-induction energy. Within the one-exchange a
proximation used in this workEexch2 ind

(2) is calculated as a
sum of three terms~see Sec. II, Eq.~19!!. The analysis of our
results has shown that the first term is positive and represe
the major part ofEexch2 ind

(2) while the sum of the second and
third terms is negative and essentially reducesEexch2 ind

(2) by a
quantity which depends on RAB . For instance, for the
H3N...HOH dimer this quantity has been calculated to b
24%, 15% and 11% for RAB 52.54 Å, 2.75 Å, and 2.93 Å,
respectively. Quite similar results have been obtained wi
the other dimers. The sum of the two last terms entering in
Eexch2 ind
(2) ~see Eq.~19!! may be rewritten as

ERS
~1!(

k
F (
iPA

Si f
k
B

AB
Sik
AB1 (

jPB
Sj f

k
A

AB
Sjk
ABG1Eind

~2! (
iPA

(
jPB

uSi j
ABu2.

~35!

From Eq.~35! we see that an underestimation of the last term
related to the induction part leads to an overestimation of th

FIG. 8. Comparison between the SCF interaction energy curve~solid line
with crosses! and the curve representing the perturbational sumE(1)

1Eind
(2)1Eexch2 ind

(2) ~dashed line with open squares! for the ~HF!2 dimer.
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exchange-induction energy. If, as emphasized by Sadl15

the induction part is underestimated within the SAPT tre
ment, then, it is plausible that there exists some reduc
effect for the exchange-induction energy related to the ind
tion part. In other words, higher-order terms~related to the
apparent correlation effects! would contribute significantly to
the total exchange-induction energy. Besides this effect,
can also argue that the one-exchange approximation is
valid for intermediate and large intermolecular distances
some bias could be introduced by neglecting multiple
changes. The neat effect of the neglect of multiple excha
terms is not easy to estimate.

Finally, we would like to end with some remarks abo
the intramonomer correlation effects on the results prese
here. Quite recently a number of studies have addressed
problem of evaluating the intramonomer correlations con
butions to the interaction energy.11,13,20,22–28Although a com-
plete knowledge of all contributions is not at our dispos
the calculations made so far show clearly the importance
such effects. Of course, this is expected for the electros
energy of hydrogen-bonded systems which depends es
tially on the magnitude of the permanent dipoles of the m
ecules known to be overestimated at the SCF level. Howe
it is more surprising to get even stronger corrections for
exchange contribution to the first-order.13 Some important
effects~about 0.5 kcal/mol! have also been obtained for th
dispersion and induction part~20.42 kcal/mol forEdisp

(22) and
20.60 kcal/mol forEind

(22) in the case of the water dimer,20 the
second superscript indicating the perturbational order in
Mo” ller-Plesset expansion!. These results are of particular im
portance for the discussion just presented on the excha
induction. As mentioned above, an underestimation of
induction energy leads to an overestimation of the exchan
induction. Accordingly, the neat effect of the intramonom
correlation could be a reduction of the exchange-induct
energy. However, it should be noted that there is an oppo
trend for the electrostatic energy, although this effect is pr
ably less pronounced. This discussion illustrates the fact
there is still much room left to fully understand the intrica
balance between the different contributions to the interac
energy.

V. CONCLUSIONS

In this work we have presented a detailed perturbatio
study of several hydrogen-bonded dimers consisting
H2O, NH3, and HF molecules. Three different approach
have been used to compute the interaction energy: a
perturbational approach,DEint

SAPT, including all perturba-
tional components up to the second-order calculated at
SCF level, a so-called truncated approach,DEint

SAPTtrunc , in
which the exchange part of the induction is not consider
and the hybrid approach,DEint

hybrid , in which the supermo-
lecular SCF interaction energy~counterpoise-corrected! is
supplemented by the complete dispersion contribution ca
lated with SAPT~both Rayleigh-Schro¨dinger and exchange
contributions!. The quality of the large basis sets used h
been checked by computing a number of properties for b
the monomers and the corresponding dimers~SCF monomer
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energies, dipole moments, complementary exchange ene
gies, etc...!. From a qualitative point of view, the physical
results obtained with the three approaches are essentia
similar. The relative force of the different hydrogen bonds
are in agreement with experimental results and, in particula
the acceptor or donor properties are correctly reproduce
From a quantitative point of view, a number of differences
emerge when using the different approaches. These quanti
tive differences are particularly important for the radial prop-
erties, much less for the angular ones. A general result a
ready emphasized by some authors is that, at the level
approximation employed here~SCF level, perturbational
components up to the second-order only, etc.!, the hybrid
approach seems to be the most reliable approach~see Table
IV !. The pure perturbational approach including the main
contributions up to the second-order~calculated at the SCF
level! gives the less plausible results. Clearly, some of th
neglected contributions must be introduced to get better re
sults. In particular, the second-order exchange-induction e
ergy is certainly overestimated. We have argued that th
quantity is very probably reduced by some intramonome
correlation contribution. However, it is important to empha-
size that the error on the known experimental quantities is i
general of the same order of magnitude as the dispersion
the results obtained using the different approaches. Accor
ingly, there is still no clearcut conclusion on which method is
the best at the present time. To analyze further the impo
tance of each perturbational components is therefore esse
tial if we want to reach in a controlled way the asymptotic
regime of the perturbational expansion of the intermolecula
interaction energy.
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Using a recently proposed quantum Monte Carlo method theexactfirst-, second-, and third-order
Rayleigh–Schro¨dinger interaction energies of the He–He interaction have been calculated for
internuclear distances in the range 1.5- to 7.0 bohr. Putting together these new data with the bestab
initio results available, the relative importance of the different contributions appearing in the
perturbational expansion of the He–He interaction energy is discussed. In particular, the results
show that the third-order Rayleigh–Schro¨dinger term and the intra-atomic correlation contribution
to the second-order component play a significant role. For intermediate and large distances
~including the equilibrium distance!, it is found that the perturbational expansion limited to the
complete first- and second-order, plus the third-order Rayleigh–Schro¨dinger energy agrees with the
best known values of the total interaction energy of the helium dimer. ©1996 American Institute
of Physics.@S0021-9606~96!02610-X#

I. INTRODUCTION

The determination of the intermolecular potential be-
tween chemically nonbonding atoms and molecules is a
problem of fundamental importance in the field of molecular
physics. However, even in the case of the interaction be-
tween two helium atoms—the simplest inert gas pair—the
problem is known to be difficult and has been the subject of
numerous papers spanning a period from the late twenties to
the present time~see, e.g., Ref. 1 for a historical review!.

Two mainstreams in the methods of calculation can be
distinguished: the supermolecular and the perturbational
methods. In the supermolecular method the energy of inter-
action is obtained by subtracting from the total energy of the
interacting molecules~the supermolecule! the sum of the en-
ergies of each monomer. Since the energies involved cannot
be evaluated exactly one is confronted with the difficulty of
obtaining a very small number as the difference of two huge
numbers, both being known only approximately. As has been
stated by van Lentheet al.,2 for an accurate evaluation of the
interaction energy usingab initio techniques three require-
ments should be fulfilled: saturation of the basis set, satura-
tion of the configuration set, and effective elimination of the
basis set superposition error. In practice, it turns out to be
hard to meet these requirements, even for a relatively small
system such as the helium dimer. Nevertheless, according to
Liu and McLean,3 ‘‘... one seems to have come close to
writing the end of the chapter on helium dimer potentials.’’
Aziz and Slaman4 have fitted model potentials to the super-
molecularab initio energies of interaction calculated by Vos
et al.5 and by Liu and McLean.3 With these potentials the
prediction of a variety of accurate experimental data such as
the

second virial coefficient, viscosity and thermal conductivity
was attempted. The agreement with experiment can be con-
sidered excellent,1 although, as has been stated by Aziz and
Slaman,4 ‘‘... small failures nevertheless remain.’’ In this
context it is important to keep in mind the remark made by
Anderson et al.,1 regarding a result given by Liu and
McLean,3 ‘‘... that one should be a little nervous about the
estimated uncertainty of60.03 K in the interaction potential
when the calculated total energy is 1200 K above the exact
total energy.’’ Finally, van Mourik and van Lenthe6 very re-
cently presented the results of full configuration interaction
calculations for the helium dimer employing large basis sets,
which contain up toh-type basis functions, including bond
functions. Their results probably are the best at present for
the He2 interaction energy. At the equilibrium distance,
R55.6 bohr, the interaction energy was calculated to be
234.67mhartree with an error of60.03mhartree.

Quantum Monte Carlo~QMC! methods also can be used
to compute molecular energies. Lowther and Coldwell,7 us-
ing a variational QMC approach have calculated the energy
of interaction for internuclear distances ranging from 4.5- to
15 bohr using a 189-term Hylleraas-type atomic wave func-
tion from which a fully correlated dimer wave function was
constructed. They found a very good energy of interaction at
the minimum of the potential of235.561.5mhartree which
agrees well with the more recent values of234.64mhartree
~Liu and McLean3!, 234.42 mhartree ~Vos et al.5!, and
234.67mhatree~van Mourik and van Lenthe6!. Exact QMC
supermolecular calculations have been done by Ceperley and
Partridge,8 for the small internuclear distances, ranging from
1.0–3.0 bohr, and by Andersonet al.1 for distances greater
than 3 bohr. The results obtained by Anderson1 fully agree
with those of Liu and McLean,3 Voset al.,5 and van Lenthe.6

It should be emphasized that the difficult problems con-
nected with the use of a basis set inab initio calculations are

a!e-mail: c.huiszoon@thn.tn.utwente.nl
b!e-mail: mc@lct.jussieu.fr
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absent in exact QMC calculations. The only input is the so-
called trial wave function. It is important to realize that, al-
though the statistical error is directly related to the quality of
the trial wave function, the statistical estimate of the energy
is not biased by a particular choice of the input trial wave
function.

A very natural alternative approach to supermolecular
methods is to consider the interaction energy as the result of
a very small physical perturbation of the isolated monomers
and thus to employ some kind of perturbational method. At
this point, it is worthwhile to recall that, at the equilibrium
distance of the helium dimer in which we are interested here,
the interaction energy represents only approximately 631026

of the total dimer energy. Such a tiny fraction clearly justifies
the use of perturbational methods. This line of research has
been intensively followed during the last decades and has led
to the so-called symmetry adapted perturbation theories
~SAPT! for intermolecular interactions~see, e.g., Refs. 9, 10
or 11!. Within this framework the intermolecular Coulomb
potential is treated as a perturbation, and the interaction en-
ergy is directly given as a sum of perturbational components.
This type of approach does not involve the typical difficulties
of the supermolecular method mentioned above. Each pertur-
bational component can be split into an exchange and a
Rayleigh–Schro¨dinger ~RS! or polarization contribution. A
number of methods have been designed to calculate these
contributions. A general feature is that exchange contribu-
tions are more difficult to obtain than the RS contributions
since they require a wave function of good quality also in the
outer region of the system, a region which is not necessarily
very well described by wave functions obtained from a varia-
tional principle on the energy. Note that a quite complete
review of the perturbation approach to van der Waals com-
plexes has recently been published by Jeziorski, Moszynski,
and Szalewicz.12 Unfortunately, the use of perturbational ap-
proaches is limited because the computation of the perturba-
tional components is not easy to do. Even in the case of the
helium dimer, only the first- and second-order contributions
have been considered in practice.13,14Of these two, the first-
order term has been evaluated accurately since the wave
function for the dimer is a simple product of the ground state
monomer wave functions and these functions can be chosen
to approximate the exact result very closely.13 Contrary to
the first-order energy of interaction, the higher-order terms
are given in sum-over-states representations and the excited-
states must be known~explicitly or implicitly! to evaluate the
sums. Accordingly, accurate evaluations of these terms are
much more difficult to perform. In Sec. IV we will discuss
this point in detail.

In this paper we present exact calculations of the first-,
second-, and third-order RS interaction energies of the
He–He interaction for internuclear distances ranging from
1.5- to 7.0 bohr. In order to do that, we resort to a recently
proposed QMC method to compute perturbational
quantities,15,16 In this approach the perturbational quantities
are expressed as multitime integrals of some well-defined
autocorrelation functions of the perturbing potential. The
correlation functions are defined along the stochastic trajec-

tories of some generalized diffusion process associated with
the unperturbed system.17,18 In practice, to construct these
trajectories only a good approximate trial wave function for
the unperturbed Hamiltonian is required. It is important to
emphasize that the results obtained are essentially exact
within their statistical errors. In particular, the complete in-
tramonomer correlation contribution is included. The QMC
perturbational approach has been applied to the helium dimer
in the original work of Caffarel and Hess.15 However, the
numerical results presented in their work were obtained only
for very short distances~1.5- to 2.0 bohr!, and only for the
first- and second-order interaction energies. Here, we make a
much more systematic study including the short, intermedi-
ate, and large distances. In particular, we focus our attention
on the region of the potential well which is the region of
physical interest. The third-order RS term is also computed
here and is found to play a significant role. As has been
already stated above when discussingab initio SAPT tech-
niques, exchange contributions responsible for the repulsive
part of the potential energy curve, are in general difficult to
evaluate. This is particularly true for QMC. In fact, the re-
sults of the calculations presented here show that it is not
realistic to expect quantitative results for the longer dis-
tances. In order to illustrate this we will report some calcu-
lations of the first-order exchange interaction energy using a
high-quality approximate formula. The results are compared
with accurateab initio values and are found to agree within
large statistical errors. In principle, it is possible to write
exact expressions for the exchange components19 but, due to
these large statistical fluctuations, they will be of no practical
use and, therefore, will not be considered further.

By using the exact QMC data presented here for the
second- and third-order RS interaction energies, and the best
ab initio values for the complete first-order and second-order
exchange contributions we discuss the relative importance of
the different perturbational contributions making up the total
interaction energy of the helium dimer: The RS contributions
of different orders, the intraatomic electron–electron corre-
lation, the exchange effects. To our knowledge, this is the
first example of an intermolecular interaction whose pertur-
bational description is fully understood. Besides its own in-
terest, it is clearly of general interest for the theory of inter-
molecular forces and their evaluation by perturbation theory.

The organization of the paper is as follows. Section II
presents the basic equations of the QMC-perturbational ap-
proach used here. Section III contains the computational de-
tails. Finally, Sec. IV presents and discusses the numerical
results for the perturbational components of the He–He in-
teraction.

II. BASIC EQUATIONS

A. Rayleigh–Schro¨dinger interaction energies

Let us first consider the calculation of the first-, second-,
and third-order RS interaction energies. The formulas pre-
sented here are some particular cases of a generalnth order
formula derived by Caffarel and Hess.15,16Since the formal-
ism presented in Refs. 15 and 16 is very general and not
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commonly used, we have chosen to rederive the perturba-
tional expressions using a more pedestrian approach. It is
emphasized that the equations are valid for any perturba-
tional problem and are, therefore, not limited to intermolecu-
lar forces.

In any perturbational treatment the full Hamiltonian,H,
is written as the sum of a reference Hamiltonian,H ~0!, and a
perturbing potentialV

H5H ~0!1V. ~1!

In the present application,H is the Hamiltonian of the inter-
acting helium dimer,H ~0! is the Hamiltonian of the noninter-
acting dimer: H (0)5HA1HB, where HM represents the
Hamiltonian of the isolated helium atom (M5A,B). V is the
interatomic interaction operator

V5
1

r 13
1

1

r 23
1

1

r 14
1

1

r 24
2

2

r 1B
2

2

r 2B
2

2

r 3A
2

2

r 4A
1

4

RAB
,

~2!

where the indices 1 and 2 refer to the electrons of atomA
and indices 3 and 4 to those of atomB, r i j is the distance
between electronsi and j , and RiM the distance between
electroni and nucleusM (M5A,B).

We are interested in computing the change in the ground
state energy of the dimer due to the presence of the perturb-
ing operatorV. Within the framework of perturbational treat-
ments this change in energy is expressed as an infinite per-
turbation series

DERS[E02E0
~0!5 (

n51

1`

ERS
~n! , ~3!

whereE0 denotes the exact ground state energy ofH but
calculated with the complete neglect of the interatomic ex-
change of electrons,E0

~0! is the ground state energy of the
reference Hamiltonian:E0

(0)5E0
A1E0

B with E0
M (M5A,B) is

the energy of the isolated atoms.DERS is the so-called
Rayleigh–Schro¨dinger~RS! interaction energy, andERS

(n) rep-
resents thenth order RS component. In the literature this
quantity is also often called thenth order polarization com-
ponent. At this point, it is important to emphasize that the
ground state energy of the interacting dimer obtained by Eq.
~3! is not the true physical ground state energy of the actual
interacting dimer. Indeed, the change of symmetry of the
wave function with respect to the exchange of electrons be-
tween the noninteracting and interacting dimers must also be
taken into account. Physically, this leads to the repulsive in-
teraction at short distances. In practice, this important physi-
cal effect is described by introducing in the perturbational
series the so-called exchange terms. We shall discuss the
exchange contribution later.

Now, Caffarel and Hess15 have shown that thenth order
RS contribution can be written in terms of a multitime inte-
gral of then-point autocorrelation function of the perturbing
potential along the stochastic trajectories of some diffusion
process built from the reference HamiltonianH ~0!. Let us
denote byfi

(0) the eigenfunctions of the reference Hamil-
tonian with energiesEi

(0)

H ~0!f i
~0!5Ei

~0!f i
~0! . ~4!

The diffusion process associated withH ~0! is entirely defined
by its transition probability density

p~x→y,t !5
f0

~0!~y!

f0
~0!~x!

(
i

f i
~0!~x!f i

~0!~y!

3exp@2t~Ei
~0!2E0

~0!!#, ~5!

where x and y represent two points in the configuration
space~x5~r1,r2,r3,r4! in the present application!, and t is
the time parameter. In other words, the transition probability
density is, up to some factor involving the ground state wave
function, connected to the imaginary time-dependent Green’s
function ofH ~0!

p~x→y,t !5
f0

~0!~y!

f0
~0!~x!

^yuexp@2t~H ~0!2E0
~0!!#ux&. ~6!

Note that expressions Eqs.~5! and~6! are identical only if all
the eigenfunctions are real. This condition is satisfied since
only real Hamiltonians will be considered~for such Hamil-
tonians a complete set of real eigenfunctions can always be
constructed!. As a consequence, no conjugation sign will ap-
pear in the formulas that follow. Eq.~5! defines a diffusion
process consisting of a standard free diffusion part in con-
figuration space plus a deterministic part corresponding to a
drifted move with a drift vector given by

b5
“f0

~0!

f0
~0! . ~7!

It can be verified by substitution that the previous transition
probability density, Eq.~5!, is the solution of the following
~forward Fokker–Planck! diffusion equation

]p

]t
5
1

2
¹y
2p2“y@b~y!p# ~8!

with the initial condition,p(x→y,0)5d(x2y) ~for a gen-
eral presentation of diffusion processes, see, e.g., Refs. 19
and 20!. In practice, stochastic trajectories of the diffusion
process are generated using a discretized version of the
Langevin equation

Dx~ t1Dt !5b~x~ t !!Dt1hADt, ~9!

whereh is a random vector whose independent components
are drawn from a Gaussian distribution with zero mean and
unit variance~free diffusion process in a multidimensional
space!.

Next the different perturbational components can be
written in terms of averages of the diffusion process just
presented. The first order is given by the usual formula~f0

~0!

is supposed to be normalized!

E~1!5^f0
~0!uVuf0

~0!&, ~10!

which can be written as

E~1!5E dx p~x!V~x!, ~11!
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wherep(x) is given by

p~x!5@f0
~0!~x!#2. ~12!

In this formula,p(x) is the quantum-mechanical probability
density associated with the ground state wave function of the
reference Hamiltonian. In fact,p(x) is also the stationary
density of the diffusion process. This property is easily
checked by looking at the long-time behavior of the transi-
tion probability density, Eq.~5!, or by verifying thatp is the
stationary solution of Eq.~8!. Denoting bŷ •••& the stochastic
average along any trajectory or group of trajectories gener-
ated using the Langevin equation~these two methods of av-
eraging are equivalent due to the ergodicity of the diffusion
process, see Ref. 15!, the first order is simply given by

E~1!5^V&. ~13!

The derivation of the second order is more involved and
explicitly makes use of the dynamics of the diffusion pro-
cess. In what follows, we will use the reduced resolvent of
H ~0! defined by

R0[(
iÞ0

1

E0
~0!2Ei

~0! uf i
~0!&^f i

~0!u. ~14!

The usual expression for the second order is

E~2!5(
iÞ0

^f0
~0!uVuf i

~0!&^f i
~0!uVuf0

~0!&

E0
~0!2Ei

~0! , ~15!

which can be written in the compact form

E~2!5^f0
~0!uVR0Vuf0

~0!&. ~16!

Now, from the basic relation, Eq.~6!, we can express the
reduced resolvent, Eq.~14!, in terms of the transition prob-
ability density in the following way:

E
0

1`

dt@p~x→y,t !2p~y!#52
f0

~0!~y!

f0
~0!~x!

^yuR0ux&. ~17!

Using Eqs.~16! and ~17! we get

E~2!52E
0

1`

dtH E dx dy p~x!V~x!p~x→y,t !V~y!

2F E dx p~x!V~x!G2J , ~18!

which can be viewed as the integral of the two time-centered
autocorrelation function of the perturbing potential

E~2!52E
0

1`

dt CV̄V̄~ t !, ~19!

where the autocorrelation functionCV̄V̄(t) is given by

CV̄V̄~ t ![^~V~0!2^V&!~V~ t !2^V&!&

5^V~0!V~ t !&2^V&2. ~20!

This is the final formula for the second-order interaction en-
ergy. Note thatCV̄V̄ appears as a second-order cumulant of
the perturbing potential. A similar formula can be obtained

for the third-order RS component by starting from the usual
expression of the third-order component in terms of the re-
duced resolvent

E~3!5^f0
~0!uVR0~V2E~1!!R0Vuf0

~0!&, ~21!

which can be written in the form

E~3!5E
0

1`E
0

1`

dt1 dt2E E E dx dy dz p~x!V~x!

3@p~x→y,t1!2p~y!#~V~y!2^V&!

3@p~y→z,t2!2p~z!#V~z!. ~22!

After some algebra, this formula can be rewritten as

E~3!5E
0

1`E
0

1`

dt1 dt2$^V~0!V~ t1!V~ t2!&

2^V&^V~0!V~ t1!&2^V&^V~ t1!V~ t2!&

2^V&^V~0!V~ t2!&12^V&3%, ~23!

which can be used for practical Monte Carlo calculations.
Note that, now, it is a third-order cumulant of the perturbing
potential which appears in the formula. Quite naturally, the
general formula for the generalnth order in perturbation in-
volves thenth order cumulant of the potential~see Ref. 15!.

At this point, we have shown that, for a general Hamil-
tonian, it is possible to express any perturbational component
as an integral of a stochastic autocorrelation function of the
external potential. To compute this correlation function, only
the ground state wave function has to be known. From this
wave function the drift vector can be computed and, then, the
stochastic trajectories can be generated using the Langevin
equation, Eq.~9!. In general, except for very simple cases,
the ground state wave function is not known and stochastic
trajectories corresponding to the true reference problem can-
not be constructed. This problem is easily solved by making
use of a slightly different diffusion process constructed from
a very good approximation of the unknown ground state
wave function. Of course, in that case, it is also necessary to
change in some suitable way the integrands in the stochastic
averages so that the perturbational expressions remain exact.
Let us denote bycT ~T for trial wave function! this new
approximate wave function. It is important to emphasize
that, once a trial wave function is given, the diffusion process
is entirely determined via the Fokker–Planck equation Eq.
~8! and the drift vector Eq.~7! that is built from it. Doing this
corresponds to choosing a new transition probability density
whose expression is given by

pT~x→y,t !5
cT~y!

cT~x!
^yuexp@2t~HT

~0!2ET
~0!!#ux&, ~24!

whereHT
(0) is the Hamiltonian which hascT as its ground

state wave function, or

HT
~0!cT5ET

~0!cT . ~25!

The important point is that this new approximate Hamil-
tonian is explicitly known
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HT
~0!5H ~0!2~EL~x!2ET

~0!!, ~26!

whereEL is the so-called local energy corresponding to the
trial wave function

EL~x!5H ~0!cT /cT . ~27!

When the approximate wave function reduces to the exact
one, the local energy reduces to the exact energy and the
difference betweenHT

(0) andH ~0! vanishes. Accordingly, the
smoothness of the local energy is a measure for the quality of
the trial wave function.

In the short time limit a relation between the exact and
trial transition probability density can be found. Using Eqs.
~6!, ~24!, ~26!, and keeping the leading contribution in time,
we get

p~x→y,t!;t→0pT~x→y,t!exp@2t~EL~x!2ET
~0!!#.

~28!

Essentially there are two different ways to take into account
the additional exponential weight factor. A first method con-
siders this factor as a simple weight and carries it along the
stochastic trajectories. This method, which is usually referred
to as the pure diffusion Monte Carlo~PDMC! method, is the
method we shall employ here. The different aspects of this
method have been presented elsewhere15–18 and will not be
repeated here. The general expression used for the multi-time
correlation functions is

^V@x~u1!#••••V@x~uk!#&5 lim
t→`

^V@x~u1!#••••V@x~uk!#exp@2*2t/2
t/2 ds~EL~x~s!!2ET

~0!!#&

^exp@2*2t/2
t/2 ds~EL~x~s!!2ET

~0!!#&
, ~29!

where theui ’s are some fixed time values in the interval
(2t/2,t/2). Note that the total exponential weight appearing
in this formula is usually referred to as the Feynman–Kac
weight.17,18

A second possible approach is to simulate the exponen-
tial term using a birth–death process or branching process. In
contrast with the pure diffusion method, the number of walk-
ers varies during the simulation with some rate related to the
magnitude of the exponential factor. This method is referred
to as the diffusion Monte Carlo~DMC! method~see, e.g.,
Ref. 21 for a detailed presentation!. Note that this method
could be used here for computing correlation functions.
However, its implementation is not straightforward because
of the varying number of walkers. In order to compute the
different multitime correlation functions we have to keep
trace of all the death and birth events during a given period
of time. This is a nontrivial accounting problem that is
avoided here by using a PDMC approach.

B. Exchange terms

As mentioned in Sec. I, this paper does not focus on the
evaluation of the different exchange energy components with
QMC. Indeed, large statistical fluctuations associated with
very small exchange overlaps prevent accurate results being
obtained. Let us just present the approximate formula of the
first-order exchange contribution employed here.

The exact first-order energy of interaction is defined as

E~1!5
^f0

~0!uVAuf0
~0!&

^f0
~0!uAuf0

~0!&
, ~30!

wheref0
~0! is the exact ground state wave function of the

HamiltonianHA1HB. The operatorA denotes the antisym-

metrizer for all electrons. The first-order energy can be split
into two contributions: the first-order RS energy of interac-
tion and the first-order exchange interaction

E~1!5ERS
~1!1Eexch

~1! . ~31!

The first-order Rayleigh–Schro¨dinger has already been con-
sidered in the previous section. It is given by

ERS
~1!5

^f0
~0!uVuf0

~0!&

^f0
~0!uf0

~0!&
. ~32!

After integration over the spin coordinates, it is not difficult
to obtain the following expression for the first-order ex-
change component:

Eexch
~1! 5

^P &^V&2^VP &
12^P &

~33!

with P5 1
2(P131P141P231P24)2P13P24, Pi j denoting the

transposition of electronsi and j . The brackets indicate the
stochastic average along stochastic trajectories of the diffu-
sion process constructed fromf0

~0! . In practice, our approxi-
mate expression for this quantity is obtained by using the
stochastic trajectories of the approximate diffusion process
built from the high-quality trial wave functioncI . The
present definition for the first-order energy exchange is in
accordance with Rybaket al.13 and Caffarel and Hess15 but
differs from that given by Conway and Murrell,22 as these
authors split the total first-order energy in a different way
into two components. The differences are, however, com-
pletely negligible for regions of small overlap.

III. SOME COMPUTATIONAL DETAILS

The trial wave functioncT used to describe the nonin-
teracting dimer is constructed from a high-quality wave
function for the helium atom
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cT~r1 ,r2 ,r3 ,r4!5cK
A~r1 ,r2!cK

B~r3 ,r4!. ~34!

The helium atom wave functioncK
M (M5A,B) is a six-term

Hylleraas-type wave function optimized and parameterized
by Koga23 and written as

cK
M5exp~2zs!~11c1u1c2t

21c3u
21c4s

2u1c5s
3u!,
~35!

wheres, t, andu are the Hylleraas coordinates defined by

s5r i1r j ,t5r i2r j ,u5r i j , ~36!

and where the exponentz and the coefficientsci are varia-
tional parameters.r i is the distance of electroni to nucleus
M (M5A,B), r i j is the distance between the two electrons.
The values of the parameters are listed in Table I. This
atomic trial wave function gives an accurate total energy
corresponding to 99.35% of the correlation energy. In addi-
tion, its very compact form is quite attractive since the cal-
culation of its first~drift vector! and second derivatives~La-
placian appearing in the local energy! is not too time
consuming, an important point since this calculation must be
performed at each Monte Carlo step.

Besides the statistical error inherent to any statistical
method, the only source of error is the use of a finite time
step when integrating the Langevin equation, Eq.~9! ~short-
time approximation!. In order to reduce this short-time error
we have imposed the detailed balance property during the
simulation. Detailed balancing is introduced via an
acceptance/rejection step at each Langevin move in a way
similar to what is done in the usual Metropolis algorithm.
Such a procedure is presented in detail in Ref. 15. It is im-
portant to note that the time step used in this work has been
chosen small enough so that short-time errors are smaller
than the statistical fluctuations.

The total local energy associated with the trial wave
function appears in the different formulas used to compute
the exact correlation functions of the interatomic potential.
Using Eqs.~27! and ~34! we get

EL5HAcK
A/cK

A1HBcK
B/cK

B . ~37!

The total local energy is the sum of two monomer local
energies. In fact, the two terms of the sum are statistically
independent. Each monomer local energy depends only on
its own actual configuration but not on the internuclear dis-
tance or on the relative orientation with respect to the other
monomer. This property was used to accelerate the calcula-
tions. The local energy of an atom, in a particular configura-
tion, does not change if one of the operations of the full
octahedral point group,Oh , the symmetry group of the cube,
is applied to the configuration. The point group contains 48
symmetry operations. Application of these operations to each
monomer leads to 48348 different configurations all having
the same total local energy. Of these configurations there are
6348 configurations leading to different values for the inter-
atomic potential. These have been used in the calculations.
No bias in the results is caused due to the application of the
symmetry operations. In practice, the reduction in computa-
tion time achieved by considering these new configurations
was approximately a factor of 10.

Let us now consider the practical computation of the
correlation functions. Rewriting the one-point correlation
function of the interatomic potential, Eq.~29!, as an average
along an arbitrary stochastic trajectory~this is possible be-
cause of ergodicity, see Refs. 15, 17, 18 for all details!, the
first-order is written as

ERS
~1!5 lim

t→`

lim
T→`

*0
T dt V@x~t!#exp~2*t2t/2

t1t/2 ds EL@x~s!# !

*0
T dt exp~2*t2t/2

t1t/2 ds EL@x~s!# !
.

~38!

Here,T is related to the total time considered along the tra-
jectory ~actually, the total time isT1t! andx~t! is an arbi-
trary stochastic trajectory generated with the Langevin equa-
tion. The typical time step used in this work isDt50.03 a.u.
and T53000Dt. The projection timet appearing in the
Feynman–Kac weight is taken to bet5449Dt. This rela-
tively large value oft is in fact not required for the calcula-
tion of the first-order RS energy~a much smaller value
would be sufficient!. However, this value is needed for the
evaluation of the time correlation functions. The two- and
three-point correlation functions from which the second- and
third-order RS interaction energies are calculated, are

CVV~u!5 lim
t→`

lim
T→`

*0
T dt V@x~t!#V@x~t1u!#exp~2*t2t/2

t1t/2 ds EL@x~s!# !

*0
T dt exp~2*t2t/2

t1t/2 ds EL@x~s!# !
~39!

and

TABLE I. Optimized 6-term Hylleraas wave function for the helium atom
~atomic units!.a

z 1.858 924 275 683 8
c1 3.887 171 410 750 731021

c2 1.457 928 455 588 931021

c3 26.957 678 799 139 131022

c4 2.581 677 920 603 831022

c5 22.123 795 845 962 831023

Energy 22.903 452 763 436 1
Correlation energyb 99.35%
Best literature value for the energyc 22.903 724 377 034
Hartree–Fock energyd 22.861 679 995 6

aNot all figures displayed are significant. Some are displayed only to avoid
round-off errors.
bDefined as the difference between the exact nonrelativistic energy and the
Hartree–Fock energy.
cReference 24.
dReference 25.
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CVVV~u,v !5 lim
t→`

lim
T→`

*0
TV@x~t!#V@x~t1u!#V@x~t1u1v !#exp~2*t2t/2

t1t/2 ds EL@x~s!# !

*0
T dt exp~2*t2t/2

t1t/2 ds EL@x~s!# !
, ~40!

respectively. Note that, because of the stationarity property
of the diffusion process,CVV depends only on one time in-
terval u andCVVV on two time intervals,u andv. Figure 1
gives a typical example of the time-correlation function,
CV̄V̄ , as a function of the time intervalu @CV̄V̄ is the centered
time correlation function defined according to Eq.~20!#. In
order not to bias the final result it is important to take large
enough values ofu and thus of the projecting timet. To get
the second-order term the correlation function, Eq.~39!, has
to be integrated~in fact, the centered version of it!. The
integration has been done using Bode’s rule.26 Figure 2
shows the negative of the integral of the time correlation
function as a function of the total integration time, also for
R55.6 bohr. By taking sufficiently large values of the corre-
lation time, we can reach a regime where the integral has
converged within statistical error bars.

Finally, in order to estimate the statistical error in each of
the energy components, each calculation was split into a
number of independent blocks. The final result was obtained
as the mean value of the results obtained for the independent
blocks, the error being obtained as the standard deviation of
the mean. ForR ranging from 3- to 7 bohr, we have used 38
blocks, each of them containing 50 trajectories. Taking into
account the configurations generated with the symmetry as
discussed above our statistics is based on approximately
1.63109 Monte Carlo events for each perturbational compo-
nent and distance. For the shorter distances we have used 14
blocks.

IV. RESULTS AND DISCUSSION

A. First-order energy

In contrast with higher-order terms, the first-order per-
turbational energy depends only on the ground state wave
functions of the constituent monomers. A high accuracy can
then be achieved by expanding these wave functions over a

sufficiently large set of basis functions. Table II reports the
very accurate results obtained by Rybaket al.13 for both the
RS part, denoted asERS-ab initio

(1) , and the exchange part,
Eexch-ab initio
(1) . These results have been obtained using a 75-

term GTG ~Gaussian-type geminal! basis which reproduces
99.9976% of the helium correlation energy and properly rep-
resents the behavior of the electron density in the outer re-
gion of the helium atom. The error, in the interaction energy,
is approximately 0.1mhartree.13 Note that, even for the first-
order terms, the convergence of the calculations with the size
of the basis set, is not easy to achieve. As an illustrative
example consider the very recent results of Tachikawa
et al.14 Using quite a large basis set these authors obtained
RS contributions being very similar to those given by Rybak
et al.13 However, the first-order exchange contributions differ
noticeably from those reported by Rybaket al.13 For ex-
ample, atR55.6 bohr, the values of the polarization~RS!
components almost equal~25.35- and25.37mhartree!, but
the exchange contributions differ by approximately 1mhar-
tree ~38.95- and 37.92mhartree!. To illustrate the effect of
the intra-atomic correlation on the first-order energies, the
SCF values,ERS

~10! andEexch
~10! as given by Tachikawaet al.14

also have been listed in Table II~as usual, the second super-
script 0 indicates that the quantities are evaluated at the SCF
level!. When we regard the exponentially small first-order
RS part~there are no permanent multipoles and this contri-
bution results only from the penetration of the atomic wave
functions! the contribution of the correlation energy is be-
tween 5% to 8%, except at the largest distance~R57 bohr!
where it seems to be larger~however, care must be taken
with the quality of the SCF value at such a large distance!.
The first-order exchange contribution is much more impor-
tant and the effect of the intra-atomic correlation energy is a
little stronger: between 6% to 12%. As for the RS compo-
nent, the effect increases with the distance, showing that the
tail of the atomic wave function seems to be sensitive to a

FIG. 1. The time correlation function,CV̄V̄(u) ~a.u.!, R55.6 bohr.
FIG. 2. The negative of the integral ofCV̄V̄(u) ~a.u.! as a function of the
total integration time,R55.6 bohr.
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proper description of the intra-atomic correlation. We also
present our QMC evaluation of the first-order components,
ERS-QMC

~1! andEexch-QMC
~1! . The first-order RS energy has been

computed using the exact expression Eq.~38!, whereas the
first-order exchange energy has been calculated using the
approximate expression Eq.~33!. The first-order QMC re-
sults are given to show that they are in rough agreement with
the much more accurateab initio results. For the RS compo-
nent the statistical fluctuations are 5% forR54 bohr, 17% at
the equilibrium distance,R55.6 bohr, and essentially 100%
at the largest distance,R57 bohr, where the first-order RS
component is very small. As has been mentioned already, the
situation for the first-order exchange energy is even worse.
Statistical fluctuations range from 23% to 100%. For the
shorter distances the situation is more favorable. Table III
lists the results. It is seen that, in this region, accuracies of,
say, 1% to 2% are obtained. Hence, in what follows we shall
use the accurateab initio values, for the longer distances, as
reference values for the first-order energy. As we discuss
below, QMC results for the higher orders are much more
interesting.

B. Second- and third-order interaction energies

Perturbational components beyond the first-order have
been obtained, so far, by usingab initio frameworks where
the monomer wave functions~ground and excited states! are
expanded over a more or less extended set of basis functions.
As is well known, a number of difficulties are present in such

calculations. First, in order to perform the infinite summa-
tions, present in the perturbational expressions, the entire set
of the exact eigenfunctions of the monomers is needed.
These functions are in general not known and approximate
wave functions have to be used. In general, these functions
are issued from a self-consistent-field~SCF! calculation in
which the intra-atomic electron correlation is neglected. Very
recently, a great deal of attention has been focused on the
calculation of intramonomer correlation contributions to the
interaction energy components.14,27–35 The usual approach
consists in decomposing the monomer Hamiltonians as a
sum of the Fock operator and some residual intramonomer
correlation operators~Mo” ller–Plesset partioning! and, then,
to resort to a double perturbation theory~in the correlation
operators of each monomer! using a many-body expansion
framework. However, such calculations are not so easy to do
and are limited, in practice, to the calculation of some lead-
ing corrections~e.g., up to second order in the internal cor-
relation! and/or to some partial infinite-order summation cor-
responding to specific classes of diagrams~see, e.g., Ref.
36!. Second, there is the problem of efficiently evaluating the
infinite sums present in the perturbational expressions. In
particular, the summations corresponding to the continuous
part of the spectrum are in practice almost inexecutable in-
tegrations~see, Ref. 37!. To solve this problem, variation-
perturbation schemes have been proposed in which the per-
turbed wave function is interpreted as the solution of a
variational problem~Hylleraas variational procedure!. Then,

TABLE II. Quantum Monte Carlo andab initio perturbational components at various interatomic distanceR. Statistical errors on the last digit in QMC results
are indicated in parentheses. Energies inmhartree, distances in bohr.

R 3.0 4.0 5.0 5.6 6.0 7.0

ERS
~10!a 2283.09 222.79 24.94 21.78 20.138

ERS-ab initio
(1) b 2298.24 224.56 25.35 21.90 20.09

ERS-QMC
~1! 23355~56! 2283~13! 225~6! 26~1! 23~2! 20.3~3!

Eexch
~10! a 1752.71 155.85 35.52 13.11 1.040

Eexch-ab initio
(1) b 1854.16 168.14 38.95 14.55 1.18

Eexch-QMC
~1! c 16932~604! 1381~313! 449~339! 300~269! 62~43! 1~1!

ERS
~20! 2520.11a 2114.38a 255.27d 233.25a 211.97a

ERS-ab initio
(2) 2639.21a 2143.62a 268.89d 242.14a 215.20a

ERS-QMC
~2! 24421~68! 2703~17! 2161~10! 274~1! 245~2! 215.9~4!

Eexch
~20! a 96.05 8.13 1.894 0.723 0.067

Eexch-ab initio
(2) a 135.96 11.38 2.65 1.01 0.09

ERS-QMC
~3! 21186~96! 246~22! 26~11! 2.2~2! 0.3~7! 0.13~3!

aReference 14.
bReference 13.
cApproximate QMC first-order exchange energy, Eq.~33! with trial wave function Eq.~34!.
dReference 27.

TABLE III. Quantum Monte Carlo perturbational components at short internuclear distancesR. Statistical errors on the last digit are indicated in parentheses.
Energies in hartree, distances in bohr.

R 1.5 1.6 1.7 1.8 1.9 2.0

ERS-QMC
~1! 20.0813~6! 20.0694~6! 20.0583~6! 20.0484~5! 20.0398~5! 20.0323~5!

Eexch-QMC
~1! 0.576~7! 0.462~6! 0.370~6! 0.297~6! 0.239~5! 0.191~5!

ERS-QMC
~2! 20.125~1! 20.099~1! 20.0781~9! 20.0620~8! 20.0495~8! 20.0390~7!

ERS-QMC
~3! 20.077~2! 20.059~2! 20.045~1! 20.035~1! 20.028~1! 20.021~1!

4628 C. Huiszoon and M. Caffarel: The He–He interaction

J. Chem. Phys., Vol. 104, No. 12, 22 March 1996

Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



standard sets of basis functions can be used to describe the
variational space. Finally, as in anyab initio framework, one
still has the important problem of achieving a sufficiently
complete basis set. This is particularly important here, since
perturbational quantities are very sensitive to the basis set
used.

In Table II we show theab initio second-order RS inter-
action energies obtained very recently by Tachikawaet al.14

and by Jeziorskiet al.27 To our knowledge, these values are
the bestab initio values calculated so far. It is worth remark-
ing that, forR55.6 bohr, both SCF and correlated values of
ERS

~2! differ by approximately 2mhartree between the two sets
of results~the values given by Tachikawaet al.14 are252.93
mhartree, at the SCF level, and266.91mhartree at the cor-
related level, to compare with the better results of Jeziorski
et al.27 presented here!. These large differences illustrate the
difficulties in obtaining converged values withab initio tech-
niques.

In order to discuss the role of the intra-atomic electron
correlation Table IV shows some of its perturbational contri-
butions to the second-order components forR55.6 bohr. The
differences between RS andab initio values on one hand,
and QMC values on the other, are due to the intra-atomic
electron correlation effects. In Table IV the first superscript
gives the order in the interatomic perturbation, while the sec-
ond superscript indicates the perturbational order in the
Mo” ller–Plesset expansion with respect to the intraatomic
electron correlation operator. Note also that the second-order
energy is decomposed as usual into an induction and disper-
sion part~see, e.g., Ref. 9!. It may be clear that this distinc-
tion is specific to SCF andab initio calculations but is mean-
ingless within our QMC framework. ForR55.6 bohr, the
exactQMC value is274 mhartree with a statistical error of
only 1mhartree or approximately 1%. The SCF second-order
RS energy,ERS

~20! , is quite different from our exact value,
ERS-QMC

~2! . This shows that the intra-atomic effect is strong. It
is interesting to compare this result with the Mo” ller–Plesset
perturbational estimates of the same contribution presented
by Jeziorskiet al.27 Note that the induction contribution to
the total second order is very small@penetration contribution
behaving as;exp~2aR!# and only the contribution of the

correlation effect to the dispersion part has been considered.
At the first-order level 53% of the correlation contribution is
recovered. The second-order gives some additional 21% so
that the total contribution recovered is 74%. The remaining
correlation contribution represents 14% of the total interac-
tion energy. This illustrates the fact that any accurate evalu-
ation of the intramonomer correlation effects must incorpo-
rate contributions beyond second-order. Note that the error in
the QMC result is small enough~only 5% of this correlation
effect! to validate this conclusion.

As noticed in previous works~e.g., Refs. 27 and 39! the
second-order exchange effects in intermolecular interactions
are in general not negligible. Here, this contribution is 8% of
the total interaction energy. The correlation contribution to
the second-order exchange part is small but significant~2%
of the total interaction energy!.

We have computed the exact second-order RS energy for
various internuclear distances. The relative statistical error
grows slowly with the distance~see Tables II and III!. Even
for the largest distance the error is only 3%, which is a sat-
isfactory result. For the large distances the QMC results for
ERS

~2! are compatible with a behavior asc6/R
6 as it should be

for a van der Waals dimer. Note that a QMC evaluation of
the van der Waals coefficient,c6, has been presented
elsewhere.38

The results for the third-order interaction energy are pre-
sented in Tables II and III. To the best of our knowledge
there are no quantitative estimates of these values published
so far. At the small distances this contribution is found to be
negative, while at larger distances it corresponds to a repul-
sive contribution. It changes sign betweenR55- and 5.6
bohr. At the equilibrium distance, we find a repulsive contri-
bution of 2.2mhartree with a statistical error of 10%. This
contribution is clearly significant since it represents 6% of
the total interaction energy. In particular, it gives a contribu-
tion almost equal to the second-order exchange energy.

C. Total interaction energy

We are now in position to summarize the previous re-
sults and to discuss the relative importance of each perturba-
tional component making up the complete interaction energy
of the helium dimer. Within the framework of perturbational
treatments~symmetry adapted perturbation theories~SAPT!,
the total interaction energy can be written as

DEint5ERS
~1!1Eexch

~1! 1ERS
~2!1Eexch

~2! 1ERS
~3! . ~41!

In this expansionall contributions occurring at first- and
second-order in perturbation are taken into account. The ne-
glected contributions are the third-order exchange effects and
all contributions beyond the third-order. Putting together all
these contributions according to Eq.~41! we get the values
for the perturbational sum as listed in Table V. At the mini-
mum of the potential the value of235.061.2 mhartree for
the total interaction energy of the helium dimer is found.
This result is in good agreement with the very recent full CI
interaction energy of van Mourik and van Lenthe6 which was
calculated to be234.6860.03mhartree. It is also in accor-

TABLE IV. Intraatomic correlation contributions to the second-order inter-
action energy. The first superscript gives the order in the interatomic pertur-
bation, the second superscript indicates the perturbational order in the
Mo” ller–Plesset expansion with respect to the intraatomic electron correla-
tion operator. Energies inmhartree,R55.6 bohr.

Eind
~20!a 20.73

Edisp
~20!a 254.53

ERS
~20!5Eind

~20!1Edisp
~20! 255.27

ERS
~20!1Edisp

~21!a 265.10
ERS

~20!1Edisp
~21!1Edisp

~22!a 268.89
ERS-QMC

~2! 274~1!
Eexch

~20! b 1.894
Eexch

~20! 1Eexch
~21! b 2.37

Eexch
~20! 1Eexch

~21! 1Eexch
~22! b 2.65

aReference 27.
bReference 14.
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dance with the so-called VVVVR4,5 and LM2M24,40 poten-
tials, and with the supermolecular QMC calculation of
Andersonet al.1 Note that we have found a similar agree-
ment for the other distances considered. At this point, it is
important to remark that the statistical error in the total in-
teraction energy is rather large. At the equilibrium distance it
is about three times larger than the supermolecular QMC
error of Andersonet al.,1 which is itself an order of magni-
tude greater than the error in the very recent highly accurate
result of van Mourik and van Lenthe.6 To obtain more accu-
rate QMC results for the second- and third-order Rayleigh–
Schrödinger terms is certainly possible but would require
quite significant amounts of computer time. However, to
achieve the 0.03mhartree accuracy of the full CI calculation
is certainly out of reach at the present time. In any case, at
this level of accuracy, the contributions neglected in Eq.~41!
would have to be considered. In fact, a major result of this
work is that the perturbational expansion Eq.~41! gives a
complete description of the total interaction energy for dis-
tances equal and larger than the equilibrium distance. Statis-
tical errors on the QMC results presented here, although
large with respect to the best accuracy obtained so far for the
total interaction energy, are sufficiently small to lead to the
most accurate values that have been calculated for the
second- and third-order RS interaction energies. From our
results, we can conclude the following:

~i! The intraatomic correlation contribution to the
second-order RS component is large and higher-order
contributions beyond the second-order in a Mo” ller–
Plesset-like expansion must absolutely be taken into
account. A nonperturbative value of the total intra-
atomic correlation contribution has been exactly
evaluated in this work~with a relative error of only
5%!.

~ii ! The third-order RS part is significant and is as large as
the second-order exchange contributions at intermedi-
ate and large distances.

~iii ! The perturbational expansion limited to the complete
first- and second-order, plus the Rayleigh–
Schrödinger third-order energy is sufficient to repro-

duce the total interaction energy of the helium dimer
at intermediate and large distances.

Beyond this particular application it is clear that these
conclusions are also important for the general theory of in-
termolecular forces and their evaluation by perturbation
theory.
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The low-energy physics of the one-dimensional pair hopping~PH! and attractive Hubbard models are
expected to be similar. Based on numerical calculations on small chains, several authors have recently chal-
lenged this idea and predicted the existence of a phase transition at half filling and finite positive coupling for
the pair-hopping model. We reexamine the controversy by making systematic comparisons between numerical
results obtained for the PH and attractive Hubbard models. To do so, we have calculated the Luttinger
parameters~spin and charge velocities, stiffnesses, etc.! of the two models using both the density matrix
renormalization-group method for large systems and Lanczo´s calculations with twisted boundary conditions for
smaller systems. Although most of our results confirm that both models are very similar we have found some
important differences in the spin properties for the small sizes considered by previous numerical studies~6–12
sites!. However, we show that these differences disappear at larger sizes~14–42 sites! when sufficiently
accurate eigenstates are considered. Accordingly, our results strongly suggest that the ground-state phase
transition previously found for small systems is a finite size artifact. Interpreting our results within the frame-
work of the Luttinger liquid theory, we discuss the origin of the apparent contradiction between the predictions
of the perturbative renormalization-group approach and numerical calculations at small sizes.
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I. INTRODUCTION

In this paper we are concerned with the pair-hopping~PH!
model described by the Hamiltonian

H52t (
^ i , j &s

@cis
† cjs1H.c#2V(

^ i , j &
@ci↑

† ci↓
† cj↓cj↑1H.c.#,

~1.1!

where cis
† (ci ,s) creates~destroys! a fermion of spins

(s5↑,↓) at lattice sitei . The first term is the usual kineti
energy term~tight-binding approximation!, the V term al-
lows spin-singlet pairs of electrons to hop from site to site
what follows, we shall restrict our study to the caseV.0.1

There are a number of reasons that make this mode
teresting to study. First, the pair-hopping model can
viewed as a phenomenological model to describe the dyn
ics of small size Cooper pairs. Since high-Tc superconduct-
ors are known to display such pairs, to study this model
be important to capture some of the physics of these ma
als. Of course, when working with such a model nothing
said about the nature of the underlying mechanism resp
sible for the tight binding of the pairs. Second, it can
shown that the pair-hopping term arises from Coulomb in
action at large negativeU in the Hubbard model.2,3 Accord-
ingly, the competition between the usual one-electron h
ping and pair hopping is related to the physics of t
Hubbard model at strong coupling. Finally, understand
the physics resulting from all possible unusual interaction
one-dimensional~1D! strongly correlated models is clearly
problem of central importance in solid-state physics.
540163-1829/96/54~24!/17414~8!/$10.00
n

n-
e
-

n
ri-
s
n-

r-

-

g
n

Very recently this model has led to some contradicto
results. Using exact diagonalization calculations on small
chains ~up to L510 sites, with periodic boundary cond
tions!, Penson and Kolb claimed4 that a phase transition
should occur at some finite critical value of the hopping p
rameterV with Vc /t; 1.4. More precisely, they showed tha
a gap in the single-particle spectrum of the half-filled syst
opens up at that value. They have also observed that
second derivative of the ground-state energy with respec
V ~a quantity similar to a specific heat! has a local maximum
at the transition, which seems not to diverge. This wo
indicate a phase transition with an essential singularity. V
soon after, Affleck and Marston,5 making a renormalization-
group analysis with bosonization methods of the PH mod
showed that, in the continuum limit~low-energy, long-
distance physics!, this model is essentially equivalent, up
some irrelevant terms, to the negative-U Hubbard model, the
only important difference lying in the bare coupling co
stants. Accordingly, they predicted that the transition in
pair-hopping model must occur atV50 just as in the Hub-
bard model, the finite value observed in the numerical cal
lations for very small chains being attributed to a finite-s
artifact. A few years later, Hui and Doniach6 presented some
numerical calculations analyzed with more sensitive to
than the standard finite-size scaling analysis based on
small samples. Using an eigenprojection decomposition
the different order parameter operators involved and a
some calculations of the helicity modulus, they found th
the data seemed indeed to be compatible with the existe
of a phase transition at a finite value ofV, thus in contradic-
tion with the weak-coupling renormalization-group resul
They also presented some arguments as to why the pre
17 414 © 1996 The American Physical Society
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54 17 415ONE-DIMENSIONAL PAIR HOPPING AND ATTRACTIVE . . .
tions of the renormalization-group analysis of Affleck a
Marston could be not valid. Very recently, Bhattachary
and Roy7 have investigated the PH model using a real-sp
renormalization-group method. At small positiveV they also
found the existence of a gapless phase~identified as a quasi
metallic phase dominated by short-range superconduc
correlations!, which disappears at some finite value of t
coupling. Finally, Sikkema and Affleck8 have presented
some numerical results for the one-particle gap as a func
of V using the density matrix renormalization-grou
~DMRG! method with open boundary conditions. Usin
samples up toL560, they concluded that there is no spi
gap transition at a nonzero positive value ofV and that the
standard low-energy picture given by the perturbat
renormalization-group approach is valid. Although we rea
in this work essentially the same conclusions, we shall
low here a quite different route. In particular, our DMR
calculations are done with periodic boundary conditio
~PBC! instead of open BC. This will allow us to study i
detail the very peculiar behavior of the pair hopping at sm
couplings~large correlation lengths!. This point is discussed
in Sec. IV.

At the heart of the controversy is the question of knowi
whether the long-distance, low-energy physics of the p
hopping model is different from that of the usual attracti
Hubbard model. As we shall see in the next section all st
dard approaches lead to the same conclusion: the low-en
sector of both Hamiltonians should be similar under
trivial correspondenceU522V. At half filling it is known
~an exact result! that no phase transition at a nonzero va
of U exists for the attractive Hubbard model. How can t
PH model exhibit a different behavior? This should res
from a highly nontrivial process involving nontrivial excita
tions. Note also that the exotic gapless phase is suppose
exist at an arbitrary small value of the hopping paramete
domain where the high-energy degrees of freedom are
expected to play an important role. In order to settle do
the controversy we propose to make a systematic compar
of the physics of the pair-hopping and attractive Hubb
models at low energy. To do so, we have calculated the
and charge velocities of the two models using both the d
sity matrix renormalization-group method with period
boundary conditions for large systems and Lanczo´s calcula-
tions with twisted boundary conditions for smaller system
Our results show that there are some important difference
the finite-size behavior of the two models. Using the fram
work of the Luttinger liquid we propose an interpretation
the origin of the controversy between the perturbative
prediction and the numerical results for small chains p
sented up to now.

The paper is structured in the following way. In Sec.
we briefly present the results of a number of approac
illustrating the very close similarity between the attracti
Hubbard model and the pair-hopping model. In Sec. III,
present our numerical results using the Luttinger liqu
theory and the twisted boundary conditions method on b
models for chains up toL512 sites. Then, using the DMRG
method we generalize the results presented for small ch
at some larger chains up toL542 sites. In Sec. V, we dis
cuss the results and comment on what we believe to be
origin of the controversy. We conclude that~1! both models
are indeed equivalent at low energy in the thermodyna
limit and that there is no phase transition at finiteV and half
filling in the PH model and~2! for small systems there exist
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a transient regime specific to the PH model and respons
for the unconventional behavior of this model.

II. PAIR-HOPPING AND ATTRACTIVE HUBBARD
MODELS

The Hamiltonian~1.1! for the pair-hopping model de
scribes a competition between the usual kinetic term (t term!
corresponding to single-electron hopping and aV term cor-
responding to the hopping of spin-singlet pairs, the range
both types of hopping being limited to nearest neighbo
WhenV/t is large (V.0), the pair-hopping term dominate
and the model becomes equivalent to spinless fermions~for
an even number of electrons!. The ground state is massivel
paired and there is a gap of orderV in the one-particle spec
trum ~binding energy of the pairs!. In the opposite limit,
V/t!1, the one-particle hopping dominates and the pa
tend to be destroyed. This type of competition is very simi
to that encountered in the attractive Hubbard model
scribed by the Hamiltonian

H52t (
^ i , j &s

@cis
† cjs1H.c.#1U(

i
ni↑ni↓ . ~2.1!

Here also we have a competition between a one-elec
hopping and the formation of spin-singlet pairs. However,
contrast with the PH model, pairs have no intrinsic mobil
~uncorrelated mobility via thet term!. The physics of the
attractive Hubbard model is well understood since this mo
admits an exact solution via the Bethe ansatz technique
particular, it is known that the effect of the on-site interacti
is rather drastic: a gap in the one-particle spectrum open
for any nonzero value of the interactionU ~negative or posi-
tive! at half filling. It is usually thought that a similar situa
tion should occur in the PH model. This opinion is support
by the fact that standard approximate approaches applie
both Hamiltonians lead quite systematically to the sa
physics at low energy under the trivial corresponden
U↔22V. However, as already emphasized, this idea
been recently challenged. The purpose of the next few s
tions is to shed some light on this controversy. Here,
would like to briefly illustrate, by applying some standa
methods, why the correspondence between both mode
usually taken for granted.

A first approach to consider is the mean-field approxim
tion. Defining the superconducting order parameter
P5^gnduci↓ci↑ugnd&, where ugnd& denotes the BCS-type
ground state, we consider the quantum fluctuations aro
this value and construct the approximate mean-field Ham
tonian by keeping only the terms that are of first order w
respect to the fluctuations. The following Hamiltonian is o
tained:

HMF5(
k,s

«~k!ck,s
† ck,s24VPD(

k
@ck,↑

† c2k,↓
† 1ck,↓c2k,↑ #

14VP2DLD, ~2.2!

where«(k)524t(m51
D cos(k•em), em being the unit vector

in direction m, and D the dimension of space. The ma
observation is that this Hamiltonian is identical to that o
tained in the case of the Hubbard model9 with the substitu-
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tion U522V. Introducing the elementary excitations in th
usual way, we can compute the dependence of the gapD in
energy of the system, we get

D;te2ct/uVu for V→0, where c is a positive constant

and

D;V for V→`. ~2.3!

Clearly, in this approach both models are equivalent and
gap opens up atV/t50 with a standard behavior.

We have also considered the large-dimension limit of
pair-hopping model. This recent approach can be seen
sort of dynamical mean-field theory. Although this limit ma
seem rather academic, practical calculations have illustr
the fact that a great part of the physics of low-dimensio
systems is captured.10,11 Once again, in that approximatio
we have found that the equations reduce to those of the
responding attractive Hubbard model withU522V. In fact,
this is not really surprising since, because of the structur
the Fermi hypersurface in the limit of large dimensions,
effects of the high-energy excitations that could be resp
sible for nontrivial processes are strongly suppressed.

As we shall see in Sec. V the renormalization-group~RG!
flows in the weak-coupling limit are also identical for th
two models@Eq. ~5.1!# with, here also, the same correspo
dence between couplings. Only the initial values of the c
pling constants, are model dependent.

Finally, one can try to find out whether the PH model h
an exact solution via the Bethe ansatz. The essential ste
to compute the two-particleS matrix from the Schro¨dinger
equation and then to verify whether theSmatrix satisfies the
Yang-Baxter condition. Denoting byAs1 ,s2

(p1 ,p2) the am-
plitude of the two-particle wave function written in terms
a combination of plane waves, defining as usual the tw
particleSmatrix as

As2 ,s1
~p2 ,p1!5 (

s18 ,s28
S

s2 ,s28

s1 ,s18~p1 ,p2!As
18 ,s28

~p1 ,p2!,

~2.4!

forcing the wave function to obey the Schro¨dinger equation,
and imposing the continuity condition of the wave functio
we get the following expression for theSmatrix:

S
s2 ,s28

s1 ,s18~p1 ,p2!5
sinap12sinap2

sinap12sinap22 iVcos@a~p11p2!#

3ds1 ,s18
ds2 ,s28

2
iVcos@a~p11p2!#

sinap12sinap22 iVcos@a~p11p2!#

3ds1 ,s28
ds2 ,s18

. ~2.5!

It is easy to verify that theS matrix just given does no
satisfy the Yang-Baxter condition.12 Now, the important
point is that theS matrix ~2.5! is identical to that of the
Hubbard model with the substitutionU→22Vcos@a(p1
1p2)]. The lattice spacinga gives a natural high-energ
cutoff, 1/a, in the problem. In the low-energy regime, i.e
e

e
a

ed
l

r-

of
e
n-

-

s
is

-

,

pi!1/a, both approaches lead to the same equations and
two models related byU522V should be equivalent.

To summarize, mean-field approximation, large-D limit,
weak-coupling renormalization-group, and Bethe ansatz
proaches indicate that the PH model and theU522V attrac-
tive Hubbard model should be equivalent in the low-ene
regime.

III. LUTTINGER LIQUID BEHAVIOR: AN EXACT
DIAGONALIZATION STUDY ON SMALL SYSTEMS

In this part we are interested in evaluating the Lutting
liquid parameters for both the pair-hopping and attract
Hubbard models. As is well known the long distance beh
ior of one-dimensional gapless fermion systems can be s
ied by making use of the concept of ‘‘Luttinger liquid.’
Within the framework of this theory the low-energy prope
ties are given by an effective Luttinger model describi
collective spin and charge density oscillations. The gene
form of the effective Hamiltonian can be obtained by writin
the 1D fermion model in momentum space, restricting ex
tations and interactions to lie close to the Fermi surface,
looking for the important processes. As is well known on
four processes survive~in the renormalization-group sense!:
one describing backward scattering of oppositely mov
electrons with couplingg1, one describing forward scatterin
of oppositely moving electrons with couplingg2, one de-
scribing umklapp scattering with couplingg3, and, finally,
one describing forward scattering of electrons moving in
same direction with couplingg4. ~Notations are those o
Refs. 13 and 14.! Taking the continuum limit of the fermion
Hamiltonian and, then, bosonizing the Fermi fields, one g

Hb5Hr1Hs1H11H3 , ~3.1!

whereHn (n5r,s) are two free Bose Hamiltonians descri
ing the spin (n5s) and charge (n5r) collective excita-
tions:

Hn5E dXF un

2pKn
~]Xfn!21

unpKn

2
Pn

2G ~3.2!

andH1 andH3 are the terms corresponding to the backwa
and umklapp scattering contributions, respectively,

H15
2g1

~2pa!2
E dXcos~A8fs! ~3.3!

and

H35
2g3

~2pa!2
E dXcos~A8fr!. ~3.4!

Here,fr (fs) is the Bose field describing the charge~spin!
excitations, andPr (Ps) is its canonical conjugated field
The coefficientsur (us) are the charge~spin! excitation ve-
locities, and the parametersKr andKs are some constant
that can be shown to be related to the~nonuniversal! expo-
nents of the power-law behavior of the correlation functio
In Eqs.~3.3! and ~3.4! a is a short-distance cutoff.14

In the free-fermion case,Kr5Ks51 and ur5us5vF
52tsin@(p/2)n#, where n5N/L is the electron density
When interactions are switched on, theu and theK param-



be
a
sp
ta
in

fi-
a
o

th

an

ging
en
s
tion
of
el

a

.
cz
p t

s,

s.

.
czo
to

s,

s.

54 17 417ONE-DIMENSIONAL PAIR HOPPING AND ATTRACTIVE . . .
eters are renormalized. In particular, the two velocities
come different, charge and spin excitations do not propag
at the same speed. This phenomenon is known as the
charge separation in one-dimensional systems. All the de
concerning the Luttinger liquid theory can be found, e.g.,
Refs. 14 and 13 and references therein.

In order to compute numerically the Luttinger coef
cients, we have used their expressions in terms of spin
charge compressibilities and stiffnesses of the system. M
precisely, for the charge degrees of freedom we have

1

k
5

p

2

ur

Kr
, Dr52urKr , ~3.5!

wherek is the compressibility of the system andDr is the
charge stiffness, and for the spin degrees:

1

x
5

p

2

us

Ks
, Ds52usKs , ~3.6!

wherex is the spin susceptibility of the system andDs the
spin stiffness. These quantities can be computed from
spectrum of the system by using the relation15

FIG. 1. Charge velocityur as a function of the coupling
Crosses, pair-hopping model, squares, Hubbard model. Lan´s
calculations with twisted boundary conditions. Chains of sizes u
12 sites.

FIG. 2. Spin velocityus as a function of the coupling. Crosse
pair-hopping model; squares, Hubbard model. Lanczo´s calculations
with twisted boundary conditions. Chains of sizes up to 12 site
-
te
in-
ils

nd
re

e

Dn5p
]2E0

]wn
2 U

wn50

, ~3.7!

wherewr is a charge twist in the system@i.e., the system has
twisted boundary conditions such ascj1L,s

† 5exp(iwr)cj,s
† #,

and ws is a spin twist in the system @i.e.,
cj1L,s
† 5exp(isws)cj,s

† #, and

1

k
5

1

2L

]2E0

]n2
,

1

x
5

1

2L

]2E0

]sZ
2 , ~3.8!

with n5(N↑1N↓)/L and sZ5(N↑2N↓)/L. By computing
these quantities for different values of the interaction, we c
deduce the behavior of the Luttinger parametersun andKn

as a function of the coupling strength.
We have applied this approach to systems of sizes ran

from L54 to L512. The ground-state energies have be
calculated using a standard Lanczo´s procedure. The result
are presented in Figs. 1–5. Each figure shows the varia
of the corresponding Luttinger coefficient as a function
the interaction, both for the attractive Hubbard mod
~squares! and for the pair-hopping model~crosses!. Figure 1
gives the variation of the charge velocity,ur , as a function
of U or V. At small coupling both curves are linear with

o
o

FIG. 3. Charge parameterKr as a function of the coupling
Crosses, pair-hopping model; squares, Hubbard model. Lan´s
calculations with twisted boundary conditions. Chains of sizes up
12 sites.

FIG. 4. Spin exponentKs as a function of the coupling. Crosse
pair-hopping model; squares, Hubbard model. Lanczo´s calculations
with twisted boundary conditions. Chains of sizes up to 12 site
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very good accuracy. More precisely, we findur;21V/2
andur;21U/4, for the pair-hopping and Hubbard mode
respectively. For stronger couplings, small corrections to
earity show up. Both behaviors are typical of a regime w
no charge gap. As we shall see later, these results ar
perfect quantitative agreement with the prediction of the L
tinger liquid theory@Eqs.~5.2! and ~5.3!#. Data for the spin
velocities are rather different. As can be seen in Fig. 2 t
distinct behaviors for the spin velocity are obtained. In t
case of the attractive Hubbard modelus decreases uniformly
from the free fermion value to zero at large coupling.
contrast, a maximum aroundV50.55t is found for the pair-
hopping model. Both models recover a similar behavior
tween approximatelyV51 andV51.5. Note that the transi
tion value observed in Refs. 4 and 6 lies within this interv
We shall discuss further this important difference of behav
for us in Sec. V. Figures 3 and 4 demonstrate that the c
stantsKr andKs behave essentially the same way in bo
models. As already mentioned, in the Luttinger liquid theo
these constants are related to the exponents of the powe
behavior of correlation functions. Accordingly, this comm
behavior would suggest that both models have the s
phases. In Fig. 5, the behavior of the spin stiffness of
pair-hopping model as a function of the size is displayed
very interesting feature is that this quantity can be exa
computed for the Hubbard model. The formula is16

Ds~L !5~21!L/211L1/2D~U !e2L/js~U !

with

js
21~U !5

4

UE1
`

dy
ln~y1Ay221!

cosh~2py/U !

and

D~U !;HA~2/pjs! for U→0

0.147 376U for U→`
~3.9!

This function is plotted in Fig. 5, forU/t522, with the
corresponding quantity for the pair-hopping model,
V/t51. The similarity between the two curves is striking.
the case of the Hubbard model, the oscillations around z

FIG. 5. Spin stiffnessDs as a function of the coupling. Crosse
pair-hopping model, squares, Hubbard model. Lanczo´s calculations
with twisted boundary conditions. Chains of sizes up to 12 si
The dotted line is just a guide to the eye.
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are related to the existence of a gap in the spin spectrum
the case of a gapless mode, the corresponding curv
smooth and never changes sign. Accordingly, we have h
strong evidence in favor of the existence of a spin gap in
pair-hopping model.

At this point, our results are contradictory. On one han
most of the results indicate that both models are quite sim
~behavior ofur , Kn , and spin stiffnesses!. On the other
hand, the spin velocities at small sizes for both models d
play a different behavior. A closer look at spin degrees
freedom at larger sizes is therefore necessary.

IV. LUTTINGER LIQUID BEHAVIOR: A DMRG STUDY
FOR LARGER SYSTEMS

Conformal field theory~CFT! is a powerful theory to de-
scribe the physics of 1D quantum~or 2D statistical! critical
systems. Once conformal invariance is supposed, CFT
vides a general framework relating finite-size scaling
physical quantities to thermodynamic properties.17–19 In this
work we shall essentially compare our data for excitat
gaps with the predictions of CFT. This will allow us to chec
whether or not our data are compatible with the existence
a critical regime for the pair-hopping model. Denotingn the
gapless excitation under consideration andun the velocity of
the corresponding critical mode, the finite-size scaling
pression of the excitation gapDn predicted by CFT is

Dn5
2pun

L
, ~4.1!

whereL is the system size. For a finite system at a giv
filling, the spin gap is defined as

Ds5E0~N↑11,N↓21!2E0~N↑ ,N↓!,

whereNs is the number ofs-spin electrons. Physically, i
gives the change in ground-state energy produced when
ping one spin, the charge number being kept fixed.

In order to calculate the spin gaps we have used the d
sity matrix renormalization-group method.20 DMRG is a
powerful technique to compute low-energy properties
quantum lattice systems. This method has been applied
success to several problems including the spin-1/2 Heis
berg chains,20 the spin-1 chains,21 the one-dimensiona
Kondo insulator,22 the two-chain Hubbard model,23 etc. The
results obtained are very accurate and the method allows
to treat systems of sizes a few times larger than those ac
sible with exact diagonalization techniques. Essentia
DMRG is a real-space numerical renormalization-group p
cedure. It differs from standard approaches in the way t
states of individual blocks are chosen. Instead of keeping
lowest eigenstates of the block considered as isolated f
the outside world, the kept states are the most proba
eigenstates of the density matrix associated with the bl
considered as a part of the whole system. It is easy to s
that doing this is equivalent to constructing the most accu
representation of the complete state of the system: block
the rest of the system. For a detailed and very clear pre
tation of the method the reader is referred to Ref. 20. Th
exist different ways of choosing the configuration of bloc
used for the density matrix calculations. In particular, th

s.
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choice will depend on the type of boundary conditions us
Here, all calculations have been done by using perio
boundary conditions~PBC!. We have chosen the superbloc
configurationBldBl

Rd with Bl118 5Bld as proposed in Ref
20 for PBC.Bl represents a block consisting ofl sites,Bl

R is
the reflected block~right interchanged with left!, andd rep-
resents a single site. All notations are those of Ref. 20
what follows we shall denote byM the number of eigen-
states of the density matrix that are kept.

Very recently, Sikkema and Affleck have present
DMRG calculations for the pair-hopping model.8 Their cal-
culations have been performed using open boundary co
tions ~OBC!. When the correlation length is finite and calc
lations with L@j are possible using OBC is usual
preferable~calculations with OBC are less demanding th
with PBC, the convergence as a function ofM being much
more rapid!. In the regime of smallj, Sikkema and Affleck
have shown that their data are consistent with the predic
of the standard perturbative RG flow. In this work we sh
use PBC in a regime where the correlation lengths are la
~small values of V!. As we shall see now, this will allow u
to study the very peculiar behavior of the pair-hoppi
model at small couplings.

To begin with we present some DMRG calculations
the attractive Hubbard model. The value of the Coulo
interaction,U521.1, has been chosen to correspond
V52U/250.55, the value for which the spin velocity of th
PH model is maximum; see Fig. 2. Since the Hubbard mo
admits an exact solution our results can be compared to
exact values obtained by solving the Lieb-Wu equation24

The inset of Fig. 6 shows how the DMRG spin gapDs

converges to the exact valueDs50.9297 for a chain of 14
sites as a function ofM , the number of states kept. Her
M ranges fromM516 toM5112. Clearly, the convergenc
of the DMRG values is quite good. In addition, this cur
provides a useful check of the validity of our code. The m
plot displays the variation of the spin gap as a function
1/L. The studied sizes are ranging fromL56 to L542. We

FIG. 6. Spin gap vs inverse of the system size for the attrac
Hubbard model atU/t521.1 using DMRG with periodic boundary
conditions for different values ofM ~see text!. Inset shows the
convergence of the spin gap as a function ofM at L514 sites. The
value at 1/M50 is the exact value calculated by solving th
Lieb-Wu equations.
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did not consider the system sizes corresponding to a mult
of 4 since, in this case, the ground state is degenerate,
causing a strong boundary frustration effect~which, of
course, disappears in theL→` limit !. For each size, we plo
the value of the DMRG spin gap for a number of kept sta
M596,M5112, andM5` ~exact Lieb-Wu value!. Let us
first consider the exact solution. Looking at theL→` limit,
we observed a very small gap as expected. In this regime
systems considered (L56–42! are in an effective quasicriti-
cal regime with a spectrum structure remaining close to
conformal tower structure. This allows us to write the fo
lowing ansatz:

Ds~L !5Ds
`1

2pus

L
, ~4.2!

valid in the regimea!L!j, and whereus should be con-
sidered as an effective spin velocity. The results obtained
in excellent agreement with the behavior predicted by f
mula ~4.2! with a spin velocity very close to the free valu
In addition, for small systems (L56,10) the spin velocity
obtained from the slope of the spin gap is in very go
agreement with the value obtained in the preceding sec
~within 1.5%! based on a completely independent evaluati

Let us now consider the DMRG results. We have o
served that, for large enough values ofM , the linear behavior
of the spin gap as a function of 1/L is recovered. In Fig. 6 we
show typical results forM596 andM5112. The value of
the spin velocity obtained from differentM are displayed in
Fig. 8 and are slightly smaller than the free value of 2. Th
results are consistent with a convergence to the exact valu
largeM . However, it is not possible from DMRG results t
get an accurate estimate of the value of the gap itself. Ind
although we have a good convergence of the results fo
given size as a function ofM ~see inset of Fig. 6!, the ex-
trapolated value of the gap using different sizes is a v
sensitive quantity. In fact, it is not reasonable to discrimin
between a small but finite gap and a strictly vanishing g
We clearly see in Fig. 6 that the extrapolated gap is not a
converged as a function ofM . In order to get converged
values we would need much larger values ofM , which are
clearly beyond of reach of present computers.

In Fig. 7 we present DMRG calculations for the pa
hopping model atV50.55. Results of the spin gap as a fun

e FIG. 7. Spin gap vs inverse of the system size for the p
hopping model atV/t50.55 using DMRG with periodic boundary
conditions for different values ofM ~see text!.
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17 420 54MATHIAS VAN DEN BOSSCHE AND MICHEL CAFFAREL
tion of 1/L are presented forM596, 112, and 144. Here
again we clearly see a quasicritical regime very well d
scribed by formula~4.2!. As already emphasized for the a
tractive Hubbard model, the accessible values ofM do not
allow a direct conclusion on the existence or not of a fin
spin gap. However, the data provide an estimate of the
fective spin velocity via the slope of the curves. The sp
velocities obtained are plotted forM584, 96, 112, and 144
in Fig. 8. It is remarkable that the results are rather differ
for both models. As already noticed, for the Hubbard mo
the values ofus are slowly varying and always smaller tha
the free fermion value. In contrast, for the PH modelus is
quite important for small values ofM and decreases un
formly for increasingM . Only when large enough values o
M are used, spin velocities of both models become com
rable. We shall comment more on this point in the next s
tion.

V. DISCUSSION

Let us summarize the results obtained. For small si
(L54–12! we have computed the Luttinger paramete
ur ,us ,Kr ,Ks ,Dr , andDs as a function of the interaction
for both the attractive Hubbard and pair-hopping mode
Regarding charge degrees of freedom all results for b
models are consistent with the existence of a vanish
charge gap for arbitrary values of the interaction and with
fact that the low-energy charge sectors of both models
very similar. These results are in agreement with the con
sions of previous works.

Now, regarding spin degrees of freedom the situation
not so clear. For small sizes our results show that parame
Ks andDs for both models are almost identical~see Figs. 4
and 5!. In particular, in the case of the PH model we clea
see the oscillations ofDs around zero as a function of th
sizeL, a behavior that is usually interpreted as resulting fr
the existence of a gap. However, data for the spin velocity
the PH model do not display the expected behavior o
system with a gap. In contrast with the case of the attrac
Hubbard model for whichus decreases uniformly from th
free fermion value to zero at large coupling~a typical behav-
ior for a finite system with a finite gap in the thermodynam
limit !, we have observed a clear enhancement ofus when the
pair-hopping term is switched on. AtV;0.55t the spin ve-

FIG. 8. Spin velocityus computed from DMRG data as a func
tion of 1/M .
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locity of the PH model reaches a maximum and then
creases to zero. A similar behavior is recovered for b
models at approximatelyV.1.5. In order to understand
whether this surprising result has something to do with
existence of a gapless phase we have computed the spin
for larger systems using a DMRG approach with perio
boundary conditions. Extracting from the spin gaps so
effective spin velocity~meaningful only when correlation
lengths are much larger than lattice sizes! we have, here also
systematically obtained larger spin velocities for the P
model. In contrast, in the case of the Hubbard model the s
velocities are rather constant and are close to the free fe
ion value at small coupling. However, a remarkable resul
that the abnormally large values ofus for the PH model tend
to disappear when sufficiently accurate representations o
ground state of the system are considered~large number of
states kept for the density matrix!. Accordingly, our results
are consistent with the fact that the unconventional beha
of spin excitations of the PH model is a transient effect s
cific to this model.

Now, it is quite interesting to discuss our results with
the renormalization-group framework. As discussed very
cently by Sikkema and Affleck, contradictory results ha
been reported from the RG analyses of the phase diagra
the PH model. Using standard notations~see Ref. 13!, to
cubic order, the RG equations for the four coupling consta
of the continuum-limit Hamiltonian are

2
dgs
dl

5gs
21 1

2 ~gs1g4!gs
2 ,

2
dgr

dl
5g3

21 1
2 ~gr2g4!g3

2 ,

2
dg3
dl

5grg31
1
4 ~gr

21g3
222grg4!g3 ,

2
dg4
dl

5 3
4 ~grg3

22gs
3!,

~5.1!

where l52 lnL, L being the ultraviolet cutoff. It is impor-
tant to emphasize that these equations are identical for
models. The only difference lies in the initial values of th
coupling constants. To the lowest-order weak-coupling lim
the initial values are

vF52tgr52gs5g35g4

52V/pvF ~pair-hopping model! ~5.2!

vF52tgs52gr5g35g45U/pvF ~Hubbard model!.

O(V2) corrections are given in Refs. 5 and 6. When solvi
the RG equations, a standard approach consists in cons
ing thatg4 simply shifts the spin and charge velocities a
cording to

ur5vF~11g4/2!, ~5.3!

us5vF~12g4/2! ~5.4!

and then can be dropped from the RG equations. Doing
and using the initial conditions Affleck and Marston ha
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remarked thatgs50 is not a stable fixed point and that sta
ing with gs,0 (V.0) thengs flows to strong coupling, thus
indicating the opening of a gap in the spin excitations.
contrast, Hui and Doniach have kept theg4 constant in the
RG equations and integrated them using the initial condit
at orderO(V2). By doing this they obtained thatgs50 be-
comes a stable fixed point provided thatg4,22. For
0,V/t,1 the fixed point was obtained withg4;22.5. This
new phase was interpreted as having no gap for single
ticles and spin excitations. For a full discussion of the co
troversy the reader is referred to Ref. 8. However, whethe
not we keep the coupling constantg4 in the RG equations, it
is clear that it is difficult to draw firm conclusions usin
weak-coupling RG equations in a strong-coupling regi
~fixed point withg4;22.5). Nonperturbative results are e
sential to support any reasonable scenario. Let us discus
numerical results from that point of view. Figure 1 show
very clearly that the charge velocity for both models follow
exactly the behavior predicted by Eqs.~5.2! and ~5.3! with
the correct slope. The charge degrees of freedom are ga
and the effect of the coupling constantg4 is to renormalize
the charge velocity. Figure 2 forus for small sizes is con-
sistent with the fact that a spin gap exists for the attrac
Hubbard model. The behavior ofus is not linear at small
U as would be the case for a critical system. In additi
us decreases uniformly as a function ofU. In contrast, as
already pointed out we have found a different behavior
the PH model. At small sizes (L56–10! and small coupling,
us is larger than the free fermion value. This is also true
larger systems (L514–42! when approximate ground-sta
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†Electronic address: mc@lct.jussieu.fr
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The Hubbard model is exactly solved for two particles ond-dimensional hypercubes. It is shown that the
spectrum can be separated into two parts: a trivial~U-independent! part resulting from symmetries of hyper-
cubes and a nontrivial part expressed as a single-impurity problem on a set of finite chains of sized811
(d8<d). The exact expression for the one-particle Green’s function is given. Finally, we discuss the extension
of these results to standard hypercubic lattices with periodic boundary conditions.@S0163-1829~98!51520-2#

One of the most widely used models to describe strongly
correlated fermion systems is the Hubbard model and its
various extensions. Unfortunately, only limitedexact infor-
mation about its physical properties is available. For the one-
dimensional lattice the celebrated solution of Lieb and Wu1

provides the exact eigenspectrum of the model. In the oppo-
site limit of large dimensions investigated very recently,2

some almost exact results have also been obtained. However,
for intermediate dimensions, and particularly for the very
important two-dimensional case believed to be relevant to
high-Tc superconductivity, very little, is at our disposal.
Most of the results reported so far have been obtained either
from numerical solutions on very small clusters~subject to
important finite-size effects! or by using a variety of approxi-
mate analytical methods~with domains of validity and/or
systematic errors difficult to evaluate!.3

In this paper we present an exact solution for the Hubbard
model with first-neighbor hopping termt and on-site inter-
action energyU

H52t (
^ i j &s

cis
† cj s1U(

i
ci↑

† ci↑ci↓
† ci↓

5T~ t !1V~U !, ~1!

for two particles with opposite spins (Sz50) on a
d-dimensional hypercubegd defined as the set ofN52d

sites whosed coordinates are either 0 or 1. Although our
solution is yet limited to the two-electron case, to exhibit
exact results for a truly interacting system in a dimension
greater than 1 is clearly of primary interest. This is particu-
larly true since hypercubes are related to the usual cubic
lattices with periodic boundary conditions:g2d is topologi-
cally equivalent to ad-dimensional hypercubic lattice of lin-
ear size equal to 4 with periodic boundary conditions, noted
Z4

d ~i.e.,g2 is equivalent to the four-site ring,g4 is equivalent
to the two-dimensional 434 cluster with periodic
conditions,4,5 etc.!. To solve the above Hamiltonian we first
use an Abelian subgroup of the fullgd point group, to block
diagonalize the initial matrix of size 22d into 2d blocks of
size 2d. Quite interestingly, these smaller submatrices corre-
spond to a simple family of effective one-electron Hamilto-

nians defined ongd8 (d8<d), some of which have a single-
impurity site. In a second step, we show how to further
reduce these matrices into smaller blocks of sized811 ~in-
stead of 2d), corresponding to finite chains of sized811
with one impurity site at one end and new specific hopping
terms. Using a standard approach for impurity problems we
provide a closed expression sum rule for the eigenspectrum.
We also derive the exact expression for the one-particle
Green’s function. Finally, the extension of these results to
hypercubic lattices with periodic boundary conditions is
briefly discussed.

Let us defineLd , an Abelian subgroup of the fullgd
point group, generated by thed reflectionsp i into perpen-
dicular (d21)-dimensional planes meeting at thegd center.
It is easy to show thatLd has 2d elements~owing to the
commutativity between the mirror operations!, and that the
orbit of a generic point underLd is a hypercubegd . Let us
number theLd elementsL by integers between 0 and 2d

21, in the following way:L being a product of mirrorsp i ,
let L be the number, written in base two, whose correspond-
ing i th digits are equal to 1 (p1 is L51, p1p2p3 is L57,
etc.!. Let us also locate the sites according to their number-
ing in base two: Thei th coordinate is equal to thei th digit.
Now, the action of the symmetry operationL, onto a sites,
noted as the ‘‘special product’’L•s, translates into the fol-
lowing digit operation: each time a digit equals 1 inL, it
switches the corresponding digit ins. For example, in three
dimensions, 7•156, with corresponds in coordinates to
p1p2p3~0,0,1!5~1,1,0!. To construct the irreducible repre-
sentations~irreps! and the character table ofLd , it is useful
to remark that this group is isomorphic tod times the tenso-
rial product with itself of the two-element groupZ2
5$E,p1%5L1 .6 The Ld irreps ~unidimensional sinceLd is
Abelian! are easily obtained as tensor products of the two
irrepsG0 andG1 of Z2 . Now, theN irreps can be labeled by
integersM , through their base-two decomposition, by order-
ing the different occurrences ofZ2 in the tensorial product,
and fixing the corresponding digit to 0 or 1, whether the
irrepsG0 andG1 occur.

Let us first consider the one-electron tight-binding spec-
trum with hopping termt. Each eigenstate belongs to a given
irrep of Ld , and reads
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uM &5
1

A2d (
RPLd

xR
MR(u0&)5

1

A2d (
r 50

N21

~21!mM ,rur •0&,

~2!

wheremM ,r is the number of digits equal to 1 simultaneously
in M andr ~we have used the above defined special product
• to denote the action of the symmetry operationR onto the
basis kets!. Since all the sites are equivalent, it is sufficient to
consider the interaction of the site number 0 with itsd first
neighbors that have exactly one digit equal to 1 and belong
to the setVd5$v j52 j , j 50, . . . ,d21%. As a result, one finds
that the eigenenergies read

EM5 (
j 50

d21

xv j

M52t~d22NM !, ~3!

whereNM is the number of digits equal to 1 inM . SinceM
runs from 0 to 2d21, thegd spectrum consists ofd11 lev-
els, from2dt to dt, with equal spacing 2t ~the degeneracy
of a EM level being given by a standard binomial coeffi-
cient!.

Let us now consider the two-electron case (Sz50!. The
full Hamiltonian matrix, of size 22d, is readily block diago-
nalized into 2d blocks of size 2d, associated with each rep-
resentationM . For a givenM , one constructs a basis with 2d

kets uM ,l &

uM ,l &5
1

A2d (
RPLd

xR
MR(u0↑,l↓&)

5
1

A2d (
r 50

N21

x r
Mu(r •0)↑,(r • l )↓&, ~4!

where u i↑, j↓& represents a configuration with electron↑ at
site i and electron↓ at site j . Depending on the parity of the
number of digits equal to 1 and common to integersM andl ,
it can be shown thatuM ,l & is either symmetric~even num-
ber! or antisymmetric~odd number! with respect to the ex-
change of position of electrons. Accordingly,uM ,l & corre-
sponds either to a singlet or a triplet state. It is clear thatU
only occurs in̂ M ,0uV(U)uM ,0&, while the kinetic part reads

^M ,l uTuM ,l 8&5
1

2d (
r 50

N21

(
r 850

N21

x r
Mx r 8

M

3^~r •0!↑~r • l !↓uTu~r 8•0!↑,~r 8• l 8!↓&

5
1

2d (
r 50

N21 Fx r
Mx r

M^~r •0!↑~r • l !↓uTu~r •0!↑,~r • l 8!↓&

1 (
j 50

d21

x r
Mxv j •r

M

3^~r •0!↑~r • l !↓uTu~v j•r •0!↑,~v j•r • l 8!↓&G . ~5!

In the latter expression, we have decoupled the terms where
the ↓ spin jumps~first part! from those where the↑ spin
jumps. In the latter part~sum overj ! the only nonvanishing
term corresponds tor • l 5v j•r • l 8→ l 85v j• l , which meansl
and l 8 neighbors~recall that the group is Abelian and its
elements are their own inverse!. One finally gets that the
nonvanishing kinetic terms read

^M ,l uTuM ,v j• l &52
t

2d (
r 50

N21

~11x r
Mxv j •r

M !, ~6!

The block matrix associated with the irrepM corresponds
therefore to an effective one-electron tight-binding Hamil-
tonian, with sites labeled byl , kets uM ,l &, and hopping
terms given by the above expression~6!. A simple case is
provided by the identity irrepM50, for which x r

M51 for
any r . The effective HamiltonianH (0) corresponds to a hy-
percubegd , with one ‘‘impurity’’ site ~with diagonal term
U) and a constant hopping term22t. We now show that the
other irreps correspond to the effective HamiltonianH (M ) on

hypercubesgd8 with d8,d. One has to evaluate the right-
hand part of Eq.~6!. By definition of thev j ~mirrors that
connect a site to one of its first neighbors!, r andv j•r differ
by one digit, which depends onj , not onr . If this digit takes
the value 1 in the base-two decomposition ofM , then
x r

Mxv j •r
M 521 for anyr , and the correspondingH (M ) matrix

element vanishes.H (M ) therefore corresponds to agd in
which families of parallel edges have been cut~those or-
thogonal to the mirrors labeled by the digits 1 in the decom-
position of M ). Figure 1 displays graphically this general
result ford52 andd53.

So, at this step, the spectrum is solved in terms of one-
electron tight-binding models on hypercubes of dimension
lower or equal tod. The only nontrivial contributions corre-
spond to those parts, in the hypercube decomposition, which
contain the impurity site.7 We now show how to further
greatly reduce their complexity.

To do that it is convenient to reexpress the effective
Hamiltonian H @hereafter we will drop the superscript~0!
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since only theM50 case has finally to be considered# in the
one-electron basis, Eq.~2!. It is easy to verify thatH can be
written in the form

H5Diag~e!1
U

N
I N , ~7!

where Diag~e! is a diagonal matrix whose entries are the 2d

free electron solutions of the hypercube with hopping 2t ~so-
lution at U50! and I N is theN3N matrix with unit entries
for all i and j . The latter part is nothing but a projection
operator on the eigenstateuv0& with energyU, andH can be
rewritten

H5Diag(e)1Uuv0&^v0u, ~8!

with (v0) i5(1/AN) i 51, . . .,N.
To proceed further we define for each subspace corre-

sponding to a given valuee i ~there ared11 such subspaces
of degeneracygi , the binomial coefficient! a basis consisting
of the normalized vectorsv1

( i )5(1/Agi)(1,. . . ,1) and a set of
vectors $vk

( i ) ,kÞ1% spanning the subspace orthogonal to
v1

( i ) . In this new basis only the (d11) vectorsv1 have a
nonzero overlap withuv0&, andH, of dimension 2d, decom-
poses into a diagonal matrix having 2d2(d11) trivial solu-
tionse i , and a residualU-dependent part, notedH, given by
the matrix of linear size (d11) written in the form

H5Diag(e)1Uuv&^vu[H01V, ~9!

whereuv& has componentsv i5Agi /N and thee’s represent
now the (d11) distinct free-electron energies:

e i522t~d22i ! i 50, . . . ,d. ~10!

An alternative representation consists of going back to the
basis where the potential operatorV is diagonal.H is then
found to be tridiagonal ~one-dimensional tight-binding
model! with off-diagonal hopping term given byt i ,i 11

52tA(d2 i )( i 11), i 50 to d21 and a diagonalU contri-
bution at the initial site~here numbered 0!. In other words,

the problem is mapped onto a single-impurity problem on a
finite chain of linear size (d11). Figure 2 illustrates this
result ford<3.

It is known that the eigenspectrum of single-impurity
problems can be expressed under the form of a sum rule
expression using the Koster-Slater approach.8 This result can
be briefly reobtained as follows. First, the following operator
identity is invoked:

(H2z)215(H02z)212
U

11UGvv
(0)(z)

3
1

(H02z)
uv&^vu

1

(H02z)
, ~11!

wherez is an arbitrary complex number andGvv
(0) is the un-

perturbed Green’s function given byGvv
(0)5^vu(H0

2z)21uv&. Then, using this identity, the fully interacting
Green’s functionGvv(z) can be written as

Gvv~z!5
Gvv

~0!~z!

11UGvv
~0!~z!

. ~12!

Searching for poles ofGvv(z) we get

1

N (
i 50

d
gi

E2e i
5

1

U
. ~13!

Equation~13! is the final closed expression determining the
nontrivial part of the spectrum. It is easily shown that this
equation admits (d11) distinct solutions, which we shall
denote as Spect(d)(U).

To summarize, the set of 22d eigenvalues of the hyper-
cubegd consists of aU-dependent part given by the collec-
tion of the nontrivial spectra at dimensions lower or equal to
d:

%

i 50

d S d
i D Spect~ i !~U !, ~14!

~note that here the binomial coefficient counts the number of
occurrences ofg i hypercubes with an impurity site in the
decomposition of the initialgd , see Fig. 1! and a trivial
U-independent part given byEl52t l , l 52d, . . . ,d with
degeneracy:

gl5 (8
i 5u l u

d F 2d2 iS i
l 1 i

2
D 21G S d

i D , ~15!

the prime in(8 indicating that the summation overi is done
with an increment of 2. Formula~15! can be obtained by
tracing back the contributions due to the different irreps and
those issued from the internal symmetry of hypercubes

FIG. 1. Graphical illustration of the effective HamiltonianH (M )

associated with the irrepM . Full circles correspond to impurity
sites with a diagonal termU, full edges to hopping terms equal to
22t, and dotted lines to the edges that are cut in the given irrep.~a!
d52, the four irreps are depicted.~b! d53, only four irreps among
the eight are shown.

FIG. 2. Graphical illustration of the single-impurity one-electron
problems associated with the nontrivial part of the spectrum~the
general formula is given in the text!.
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@trivial solutions extracted when passing from Eq.~8! to Eq.
~9!#. Eigenenergies correspond either to singlet or triplet
states. SinceU only connects basis statesuM ,l & with l 50
~see above!, triplet states are not sensitive toU and only
singlet states belong to theU-dependent part of the spec-
trum. The ground-state energy is not degenerate and corre-
sponds to the lowest solution in Spect(d)(U). Note also that
in the limit of large dimensions, and after proper renormal-
ization of the parameters of the Hamiltonian, an infinite-
dimensional model can be defined, as done recently for a
number of correlated fermions models, see Ref. 2.

Let us now consider dynamical properties. We are inter-
ested in evaluating the one-particle Green’s function defined
by

Gk
~d!~z,U ![^c0uak

1

H2z
ak

†uc0&, ~16!

where uc0& denotes the one-particle ground state consisting
of one electron of given spin andak

† creates one electron of
opposite spin in a one-particle state, notedk. Hereafter,k
varies from 0 tod and labels one of the (d11) degenerate
subspaces of the one-electron problem, the ground state cor-
responding tok50. Now, note that vectorak

†uc0& belongs to
the subspace corresponding to the decomposition on hyper-
cubes of dimension (d2k). There exist 2k different families
of hypercubes having such a dimension~see Fig. 1! among
which only one has theU-impurity site. Accordingly, we get
the following result:

Gk
~d!~z,U !5

1

2k G0
~d2k!~z,U !1S 12

1

2kDG0
~d2k!~z,U50!.

~17!

Now, we need to evaluate the fundamental quantity

G0
(d8)(z,U) with Hamiltonian~9!, the dimensiond8 ranging

from 0 to d. For that we note that the ketu0&[a0
†uc0& rep-

resents the~first! basis element corresponding to the diagonal
energye0 in representation~9!. Projecting out identity~11!
onto vector u0& and expressing the different quantities in
terms of the noninteracting spectrum we get

G0
~d8!~z,U !5

1

e0
~d8!2Z

2
U

2d8~e0
~d8!2z!2S 11

U

2d8 (
i 50

d8 gi

e i
~d8!2z

D .

~18!

This equation together with Eqs.~10! and~17! give the exact
one-particle Green’s function of the problem.

Generalization of this approach to higher fillings is pres-
ently under investigation. We have already found that the
existence of large fractions ofU-independent eigenvalues is
still valid for some specific fillings. However, the underlying
structure for theU-dependent part of the spectrum is more
difficult to elucidate.

Returning to the two-electron case, we would like to men-
tion that by using rotations instead of reflections, a similar
calculation can be done for standardd-dimensional hypercu-
bic lattices of linear sizeL and periodic boundary conditions
(ZL

d). We have found that the problem can still be mapped
onto a family of Ld single-impurity one-electron effective
problems defined on the very same latticeZL

d . Each irrep
corresponds to a value of ad-dimensional integer vectorM
(Mi50, . . . ,L21), or more physically, to a value for the
total momentumK5(2p/L)M . The only difference be-
tween irreps lies in the value of the hopping term that de-
pends explicitly onM . More precisely, for each irrep labeled
by K , Eq. ~13! now reads

1

Ld (
n150

L21

••• (
nd50

L21
1

E2en
~K ! 5

1

U
, ~19!

where the noninteracting energiese (K ) are given by

en
~K !524t(

i 51

d

cos~Ki /2!cos~ki1Ki /2!, ~20!

with K5(2p/L)M and k5(2p/L)n. In contrast with hy-
percubes, the sum in Eq.~19! runs overLd values and cannot
be further reduced. Note that, since the effective hopping
term varies with the irrep~and can even vanish!, both local-
ized and resonant states~irreps by irreps! may be present.
Finally, it is worth noticing that in thed51 case the Bethe
ansatz equations for two particles1

tan
k1L

2
5

U

2t~sin k12sin k2!
, ~21!

with E522t(cosk11cosk2) and k11k25(2p/L)M (M
50, . . . ,L21), can be recovered from Eq.~19! after simple
but tedious algebra.
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We investigate the metal-insulator transition of the one-dimensional SU(N) Hubbard model for repulsive
interaction. Using the bosonization approach a Mott transition in the charge sector at half filling (kF

5p/Na0) is conjectured forN.2. Expressions for the charge and spin velocities as well as for the Luttinger-
liquid parameters and some correlation functions are given. The theoretical predictions are compared with
numerical results obtained with an improved zero-temperature quantum Monte Carlo approach. The method
used is a generalized Green’s function Monte Carlo scheme in which the stochastic time evolution is partially
integrated out. Very accurate results for the gaps, velocities, and Luttinger-liquid parameters as a function of
the Coulomb interactionU are given for the casesN53 andN54. Our results strongly support the existence
of a Mott-Hubbard transition at anonzerovalue of the Coulomb interaction. We findUc;2.2 for N53 and
Uc;2.8 for N54. @S0163-1829~99!00728-6#
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I. INTRODUCTION

Although the metal-insulator transition has certainly be
one of the most studied phenomenon in condensed-m
physics, it is only in recent years that important progress
been achieved. This is mainly due to careful experimen
and numerical studies but also to the improvement of
theoretical tools.1–3 It has been proved extremely difficult t
investigate the effect of strong correlations in dimensio
greater than 1, and it is only quite recently that, thanks t
new dynamical mean field, our understanding has subs
tially progressed.4 For one-dimensional systems, the situ
tion is rather different: There exist powerful analytical a
numerical approaches at our disposal. Moreover, from
experimental point of view, the Mott-transition can be re
ized in organic conductors5 and quantum wires.6 Therefore,
one may expect to gain a lot of information on the physics
the metal-insulator transition.

In one dimension, it has been recognized very rapidly t
umklapp processes are at the heart of the problem. In
Abelian bosonization formalism, one can draw a general
consistent picture of the Mott transition. Indeed, the cha
properties are expected to be described, in the absenc
umklapp contributions, by a Luttinger liquid with only tw
independent parameters: The charge velocityuc and the
charge exponentKc that controls the decay of correlatio
functions. These quantities, which are nonuniversal, co
pletely characterize the low-energy properties of a o
dimensional system.7,8 Within this framework, the effect of
umklapp processes are investigated in perturbation the
PRB 600163-1829/99/60~4!/2299~20!/$15.00
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and one can write down an effective theory that describes
Mott transition as well as a full description of the transpo
properties for any commensurate filling.9,10 The only param-
eter that controls the transition is the~in general unknown!
Luttinger charge exponentKc and the transition is predicte
to be universal of the Kosterlitz-Thouless~KT! type.

Most of the theoretical work ind51 focused on the prop
erties of the standard SU~2! Hubbard model which is known
to be a Mott insulator at half filling from its exact solution.11

An extension of this model was considered by introduc
long-range hopping or finite-range interaction~nearest-
neighbor interaction, for instance!.2 In the present work, we
study a most natural generalization of the usual Hubb
model: Instead of considering fermions with a two-valu
spin index@with SU~2! symmetry# we generalize to the cas
of an arbitrary SU(N) spin index. Apart from the theoretica
interest it is important to emphasize that these additio
degrees of freedom are realized physically through orb
degeneracy as, for example, in Mn oxides.3 In this paper, we
shall study the phase diagram of the one-dimensional SUN)
Hubbard model for repulsive interaction and at half fillin
corresponding to one ‘‘electron’’ per site. The Hamiltonia
on a finite chain withL sites that we shall consider reads

H52t(
i 51

L

(
a51

N

~cia
† ci 11a1H.c.!1

U

2 (
i 51

L S (
a51

N

niaD 2

, ~1!

where the fermion annihilation operator of spin indexa
51, . . . ,N at sitei is denoted bycia and satisfies the canon
cal anticommutation relation
2299 ©1999 The American Physical Society
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$cia ,cjb
† %5dabd i j . ~2!

The density of speciesa at the i th site is defined bynia

5cia
† cia . In the following, we shall consider that the neare

neighbor hopping (t) and the on-site interaction (U) are
positive.

The Hamiltonian~1! is not exactly solvable by the Beth
ansatz forN.2 and arbitraryU. It is, however, possible to
solve the generalization of the Lieb-Wu Bethe ansatz eq
tions for fermions carrying a SU(N) spin index.12,13 The re-
sult is that for anyN.2, there exists a Mott-Hubbard tran
sition from a metallic phase to an antiferromagne
insulating phase at afinite value of the couplingU. The
transition is found to be offirst order in contrast with the
accepted view that the metal-insulator transition in o
dimensional systems should be of the KT type. The poin
that a projection onto the subspace of states having at m
two electrons at each site is crucial for the use of the Be
ansatz approach. The other configurations are automatic
excluded by the Pauli principle in the SU~2! Hubbard model
whereas forN.2 it is no longer the case. As a consequen
it is believed that the lattice model associated with
SU(N) generalization of Lieb-Wu Bethe ansatz equatio
should coincide with an integrablenonlocal version of the
SU(N) Hubbard model~1!.12,13 Although one naturally ex-
pects that the true SU(N) Hubbard model will share som
properties with its nonlocal partner, in particular the ex
tence of a metallic phase at small enoughU, the first-order
character of the transition could take its origin in the non
cality of the interaction. In any case, in order to study Eq.~1!
one must abandon the exact Bethe ansatz approaches
resort to two powerful techniques available in one dime
sion: the bosonization and numerical approaches. As
shall show, none of these techniques is by itself sufficien
demonstrate the existence of the Mott transition. Regard
bosonization, the mere existence of the metal-insula
transition—even in the simplest scenario of a KT pha
transition—relies on the knowledge ofU dependence of the
Luttinger parameterKc , a nonuniversal quantity which ca
only be computed in a perturbative expansion inU. In other
words, bosonization cannot tell uswhethera given lattice
model will undergo a Mott-U transition. However, it define
a rich theoretical framework in which many qualitative a
quantitative predictions are obtained. This provides an es
tial guide for the numerical investigation of a particular la
tice model. Regarding numerical investigations the situat
is also not fully satisfactory. Beyond the evident problem
memory and CPU time limitations, it is well known that it
very difficult to characterize a KT phase transition. As w
shall emphasize later, it is almost impossible to discrimin
between the opening of a charge gap atU50 and at a finite
positive U, even when very accurate numerical data are
our disposal. The strategy employed in this work will cons
in combining both approaches. Very strong evidence will
given in favor of a metal-insulator transition occurring at
finite positive value of the interactionU for N.2.

Various numerical methods can be used to study
ground-state properties of Hamiltonian~1!. In exact diago-
nalization methods14 the exact ground-state eigenvector
calculated. Unfortunately, the rapid increase of the size
the Hilbert space restricts severely the attainable sys
-
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sizes. In order to treat bigger systems two types of appro
are at our disposal: The density matrix renormalization gro
~DMRG! method and the stochastic approaches.

Since its discovery a few years ago the DMRG meth
has been extensively used for studying various o
dimensional systems and coupled chain problems~for a re-
view, see Ref. 15, for a detailed presentation of the meth
see Refs. 16,17!. DMRG is a very efficient real-space nu
merical renormalization-group~RG! approach. The funda
mental point which makes the method successful is the w
that ‘‘important’’ degrees of freedom are chosen at each
iteration. Instead of keeping the lowest eigenstates of the
block considered as isolated from the outside world~as it
was usually done in previous approaches!, the states which
are selected are the most probable eigenstates of the de
matrix associated with the block considered as a part of
whole system. The main error of DMRG is related to t
finite number of states kept at each iteration of the algorith
In order to get the exact property the extrapolation to
infinite number of states has to be performed. At least for
and quasi-1D problems, and for systems having a small n
ber of states per site, the errors obtained are small. Note
that DMRG works especially well when open boundary co
ditions are used. For periodic boundary conditions, errors
significantly larger.

In this paper we use an alternative approach based o
stochastic sampling of the configuration space. Such
proaches are referred to as quantum Monte Carlo~QMC!
methods. There exists a large variety of QMC approache
first set of methods is defined within a finite-temperatu
framework ~path-integral Monte Carlo, world-line Monte
Carlo, etc., see, e.g., Ref. 18!. In these approaches, the ma
systematic error is the high-temperature approximation a
ciated with the Trotter break-up19 ~Trotter or short-time er-
ror!. When interested in obtaining the zero-temperature pr
erties the number of ‘‘time slices’’ to consider must be tak
large and the computational effort becomes important. P
tical calculations have shown that the method is much l
accurate than DMRG, at least for one-dimensional syste
In the second type of approaches used here, the stoch
sampling is directly defined within a zero-temperature fram
work. These methods are usually referred to as a Gre
function Monte Carlo~GFMC! or projector Monte Carlo. For
systems having a nodeless ground-state wave function as
the case here, the GFMC method can be extremely powe
The basic idea is to extract from a known trial wave functi
cT its exact ground-state componentc0 . To do that an op-
eratorG(H) acting as a filter is introduced. Statistical rule
are defined in order to calculate stochastically the action
the operatorG on a given function. Apart from statistica
fluctuations, the GFMC method is an exact method. It d
not require an extrapolation to zero temperature as in fin
temperature schemes. In addition, there exists a so-ca
zero-variance property for the energy: The better the t
wave functioncT is, the smaller the statistical fluctuation
are. In the limit of an exact wave function, the statistic
fluctuations entirely disappear~zero-variance property!. As
an important consequence, by choosing a good enough
wave function very accurate calculations can be perform
~see, for example, Ref. 19!. Note that, in contrast with
DMRG, the efficiency of GFMC does not depend on t
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specific type of boundary conditions chosen and that
number of states per site is not a critical parameter of
simulation. Here, it is an important point since the SU(N)
model displays 2N states per site@for the SU~4! case treated
here it gives 16 states per site#.

In order to improve further the accuracy of the approa
we present a generalized version of the GFMC method
which the dynamics of the Monte Carlo process is partia
integrated out. More precisely, we generalize an idea in
duced by Trivedi and Ceperley in their GFMC study of t
S51/2 Heisenberg quantum antiferromagnet.19 In the GFMC
method the probability that the random walk remains a c
tain number of times in the same configuration is descri
by a Poisson distribution. It is then possible to sample
corresponding ‘‘trapping time’’ from this distribution and t
weight the expectations values according to it. As remar
by Trivedi and Ceperley, doing this can lead to a consid
able improvement in the simulation. This is particularly tr
when the wave function is localized~largeU regime for our
model, systems with deep potential wells, etc.!. Here, we
show that the method can be improved further by integra
out exactly the time evolution associated with this trapp
phenomenon. Once this is done we are left with a rand
walk defined by an ‘‘escape transition probability’’ connec
ing nonidentical configurations~the system never remains i
the same configuration! and a modified branching term re
sulting from the time integration. Note that introducing tra
ping times in averages helps a lot when optimizing the
rameters of the trial wave function. Finally, we present
original method for computing the Luttinger-liquid param
eters within a QMC scheme. We show that these parame
can be obtained from a series of ground-state calculation
total energies ofreal—but not necessarily Hermitian—
Hamiltonians. In this way we escape from the difficulty
calculating with QMC ground-state energies of thecomplex
Hamiltonians resulting from the definition of the charge a
spin stiffnesses. Although it is difficult to compare the ef
ciency of our generalized GFMC approach with DMR
~since the quality of GFMC simulations is too much depe
dent on the quality of the trial wave function used! we be-
lieve that the accuracy of our results is comparable or e
better to what can be done with DMRG. In any case, our d
are sufficiently accurate to conclude to the existence o
metal-insulator phase transition in the model studied.

Very recently, Beccariaet al.20 have proposed a QMC
algorithm based on the use of Poisson processes. Thei
proach contains similar ideas. However, in contrast with
present approach no importance sampling is used and
integration of the Poisson dynamics is performed. It sho
also be noted that the use of Poisson processes for descr
the time evolution of systems trapped in some configura
is not restricted to quantum systems. Krauth and collabo
tors have proposed related ideas within the context of c
sical Monte Carlo simulations.21,22

The organization of the paper is as follows. In Sec. II
bosonization approach of the SU(N) Hubbard model will be
given. Some of the results have already been obtained
Affleck23 whereas additional new ones will also be useful
compare with the numerical simulations. The purpose of S
III is to give a presentation of the GFMC method togeth
with our generalization based on the partial integration of
e
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dynamics. The practical implementations of the GFMC a
proach for the Hamiltonian~1! will be discussed in Sec. IV
and the numerical results forN52,3,4 will be presented in
Sec. V. Finally, Sec. VI gives a summary of the work t
gether with a comparison between the physical results
tained for the SU(N) Hubbard model and those correspon
ing to its nonlocal integrable version. In the Appendix w
give some details of computation occurring in Sec. II.

II. THE SU „N… HUBBARD MODEL

In this section, we shall use a bosonization approach~for
recent reviews see Refs. 8,24! to study the SU(N) Hubbard
model. Before doing that, let us first discuss the symmet
of the model.

The Hamiltonian~1! has a U~1!^SU(N) symmetry:

cia˜eiucia ,

cia˜Uabcib , ~3!

where the matrixU belongs to SU(N). These symmetries
express the conservation of the charge and spin invaria
under a SU(N) rotation. The associated generators are giv
by the following operators:

N5(
i ,a

nia ,

S A5(
i
S i

A , ~4!

with

S i
A5cia

† T ab
A cib , ~5!

where the summation over repeated indexes~except for lat-
tice indexes! is assumed in the following. In the latter equ
tion, the N221 matricesT A are the generators of the Li
algebra of SU(N) in the fundamental representation. The
satisfy the commutation relation

@T A,T B#5 i f ABCTC, ~6!

f ABC being the structure constants of the Lie algebra and
generators are normalized according to Tr(T AT B)5dAB/2.
The conservation law associated with the U~1! symmetry al-
lows to study the Hamiltonian~1! for a fixed densityn. The
Coulomb interaction can thus be rewritten, up to a const
in terms of the SU(N) spin operator:

U

2 S (
a51

N

niaD 2

52
UN

N11
S i

AS i
A , ~7!

where we have used the identity

T ab
A T de

A 5
1

2 S daedbd2
1

N
dabddeD . ~8!

The relation~7! makes explicit the SU(N) invariance of the
model.

The Hamiltonian~1! is not exactly solvable by the Beth
ansatz forN.2 and arbitraryU, even if, as already empha
sized, some integrable nonlocal extension of Eq.~1! with a
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SU(N) symmetry can be considered. The situation is simp
in the limit U˜` and at half filling ~one ‘‘electron’’ per
site!, i.e., whenkF5p/Na0 (a0 being the lattice spacing!. In
that case, it can be shown that Eq.~1! reduces to the SU(N)
Heisenberg antiferromagnetic chain for which an exact so
tion is available. As shown by Sutherland,25 this latter model
is critical with N21 massless bosonic modes with the sa
velocity. In the conformal field theory~CFT! language, the
central charge of the model in the infrared~IR! limit is c
5N21 and using a non-Abelian bosonization of Eq.~1!,
Affleck23 identifies the nature of the critical theory in th
spin sector as the SU(N)1 Wess-Zumino-Novikov-Witten
~WZNW! model. In the following, we shall present bo
non-Abelian and Abelian bosonization approaches of
SU(N) Hubbard model~1! at half filling and give a numbe
of results that will be essential for discussing the numer
data presented in Sec. V.

A. Continuum limit

In the continuum limit, the spectrum around the tw
Fermi points6kF is linearized and gives rise to left-movin
fermionscaL and right-moving fermionscaR . In this low-
energy procedure, the lattice fermion operatorscia are ex-
pressed in terms of these left-right moving fermions as

cia

Aa0

˜ca~x!;caR~x!eikFx1caL~x!e2 ikFx, ~9!

where x5 ia0 . In this continuum limit, the noninteractin
part of the Hamiltonian~1! corresponds to the Hamiltonia
density ofN free relativistic fermions

H052 ivF~ :caR
† ]xcaR :2:caL

† ]xcaL : !, ~10!

where the normal ordering< with respect of the Fermi sea i
assumed and the Fermi velocityvF is given by

vF52ta0 sin
p

N
. ~11!

In the continuum limit, the SU(N) spin operator~5! decom-
poses into a uniform and a 2kF contribution

S i
A

a0
˜S A~x!.J A~x!1@e2ikFxN A~x!1H.c.#, ~12!

where the 2kF contribution is given by

N A5caL
† T ab

A cbR , ~13!

whereas the uniform part readsJ A5JR
A1J L

A with

JR(L)
A 5:caR(L)

† T ab
A cbR(L) : . ~14!

These left-right SU(N) spin currents obey the following op
erator product expansion~OPE! ~see the Appendix!:

lim
x˜y
JR(L)

A ~x!JR(L)
B ~y!;

2dAB

8p2~x2y!2 7
f ABC

2p~x2y!
JR(L)

C ~y!

~15!
r

-

e

e

l

which shows that they satisfy the SU(N)1 Kac-Moody~KM !
algebra.24,26 In the same way, the total charge density(ania
reads in the continuum limit

(
a

nia˜a0
1/2$J 0~x!1@e22ikFxcaR

† ~x!caL~x!1H.c.#%,

~16!

whereJ 05JR
01J L

0 and

JR(L)
0 5:caR(L)

† caR(L) : ~17!

are the U~1! right and left charge currents. These curren
satisfy the OPE

lim
x˜y
JR(L)

0 ~x!JR(L)
0 ~y!;2

N

4p2~x2y!2
~18!

andJR(L)
0 belongs to the U(1)N KM algebra.

With these identifications, it is not difficult to show~see
the Appendix! that the free part of the Hamiltonian~10! can
be expressed only in terms of spin and charge currents~the
so-called Sugawara form!:

H05H0s1H0c ~19!

with

H0s5
2pvF

N11
~ :JR

AJR
A :1:J L

AJ L
A : ! ~20!

and

H0c5
pvF

N
~ :JR

0JR
0 :1:J L

0J L
0 : !. ~21!

At the level of the free theory, spin and charge degrees
freedom decouple. The symmetry of the free Hamilton
H0 in the continuum limit is therefore enlarged to giv
U(1)L ^ SU(N)L ^ U(1)R^ SU(N)R . The HamiltonianH0s
is nothing but the Sugawara form of the SU(N)1 WZNW
model.24,26 It is a conformaly invariant theory with centra
chargec5N21 (N21 massless bosons!. The contribution
H0c describes the U~1! charge degrees of freedom and h
central chargec51 ~1 massless boson!.

The nontrivial part of the problem stems from the Co
lomb interaction~7!. At sufficiently smallU!t, from Eq.
~7!, we see that its contribution will be given by the OPE

V~x!52Ua0

N

N11
lim
e˜0
S A~x1e!S A~x!. ~22!

From Eq.~12!, there are three contributions toV:

V5V01V2kF
1V4kF

. ~23!

The first term is the uniformk50 component while the oth
ers contain oscillating factorse62ikFx ande64ikFx. Neglect-
ing all oscillatory contributions, we are thus left with th
uniform partV0 . Performing the necessary OPE’s~see the
Appendix!, one finds that the total effective low energ
Hamiltonian density separates into two commuting cha
and spin parts
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H5Hc1Hs ~24!

with

Hc5
pvc

N
~ :JR

0JR
0 :1:J L

0J L
0 : !1GcJR

0J L
0 ~25!

and

Hs5
2pvs

N11
~ :JR

AJR
A :1:J L

AJ L
A : !1GsJR

AJ L
A , ~26!

where the renormalized velocities are

vs5vF2
Ua0

2p
,

vc5vF1~N21!
Ua0

2p
~27!

and the current-current couplings in the charge and the
sectors are given by

Gc5
N21

N
Ua0 ,

Gs522Ua0 . ~28!

Apart from a velocity renormalization, the effect of the Co
lomb interaction is exhausted in the two marginal inter
tions in both charge and spin sectors. WhenU.0, the spin
current-current interaction is marginal irrelevant. At the
fixed pointGs* 50 the Hamiltonian in the spin sector is th
of the SU(N)1 WZNW model. On the other hand, th
current-current interaction in the charge sector is exa
marginal since one can diagonalizeHc with a Bogolioubov
transformation to recover the Tomonaga-Luttinger Ham
tonian. Therefore,Hc describes the line of fixed points of th
Luttinger liquid.

From the above analysis we conclude that the SU(N)
Hubbard model at half filling is massless for smallU.0.
The spin sector is described by the SU(N)1 WZNW model
while the charge sector is a Luttinger liquid with contin
ously varying exponents. The main point in the above ana
sis is the absence of umklapp terms which, whenN52,
opens a gap in the charge sector for an infinitesimal valu
the interaction. At this point it is worth recalling that th
main approximation made in the above analysis is the om
sion of the oscillating contributionsV2kF

andV4kF
. This is a

reasonable assumption as far asU is not too large. However
one expects, on general grounds, that umklapp proce
should contribute at sufficiently largeU and that a Mott tran-
sition to an insulating phase should occur at a finiteUc .
Indeed, in theU˜` limit, we have an insulating phas
where the spin degrees of freedom are described by
SU(N) Heisenberg antiferromagnet. We shall return to t
point later. For now let us concentrate on the properties
the metallic phase.
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B. The metallic phase

At this point, we introduceN chiral bosonic fieldsfaR(L) ,
a5(1, . . . ,N), using the Abelian bosonization of Dira
fermions24

caR(L)5
ka

A2p
:exp~6 iA4pfaR(L)!:, ~29!

where the bosonic fields satisfy the commutation relat
@faR ,fbL#5 ( i /4) dab . The anticommutation between fe
mions with different spin indexes is realized through t
presence of Klein factors~here Majorana fermions! ka with
the following anticommutation rule:$ka ,kb%52dab . As in
the N52 case, it is suitable to switch to a basis where
charge and spin degrees of freedom single out. To this e
let us introduce a charge bosonic fieldFcR(L) andN21 spin
bosonic fieldsFmsR(L) , m5(1, . . . ,N21) as follows:

FcR(L)5
1

AN
~f11¯1fN!R(L) ,

FmsR(L)5
1

Am~m11!
~f11¯1fm2mfm11!R(L) .

~30!

The transformation~30! is canonical and preserves th
bosonic commutation relations. The inverse transformatio
easily found to be

f1R(L)5
1

AN
FcR(L)1 (

l 51

N21
F lsR(L)

Al ~ l 11!
,

faR(L)5
1

AN
FcR(L)2Aa21

a
F (a21)sR(L)

1 (
l 5a

N21
F lsR(L)

Al ~ l 11!
, a52, . . . ,N21,

fNR(L)5
1

AN
FcR(L)2AN21

N
F (N21)sR(L) . ~31!

In this new basis, the Hamiltonian density in the spin sec
at the SU(N)1 fixed point reads

Hs* 5
us

2 (
m51

N21

@ :~]xFms!
2:1:~]xQms!

2:#, ~32!

whereus is the spin velocity at the fixed point and

Fms5FmsL1FmsR,

Qms5FmsL2FmsR. ~33!

This representation makes clear the fact that the cen
charge in the spin sector is indeedc5N21.

Let us now concentrate on the charge sector. It is
difficult to show, using Eqs.~17!, ~29!, and ~30! that the
charge current expresses as
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JR(L)
0 5AN

p
]xFcR(L) . ~34!

Therefore, the Hamiltonian density~25! in the charge secto
reads

Hc5
vc

2
@ :~]xFc!

2:1:~]xQc!
2:#

1~N21!
Ua0

p
]xFcL]xFcR , ~35!

where we have introduced the total charge bosonic fieldFc
5FcR1FcL and its dualQc5FcL2FcR . The Hamiltonian
~35! can be written in the Luttinger-liquid form

Hc5
uc

2 S 1

Kc
:~]xFc!

2:1Kc :~]xQc!
2: D , ~36!

where the charge exponentKc and the renormalized charg
velocity uc are given by

Kc5
1

A11~N21!Ua0 /pvF

,

uc5vFA11~N21!Ua0 /pvF. ~37!

The U dependence of the Luttinger parametersKc and uc
given in the above expressions should not be taken too
ously. Indeed, the continuum limit approach is strictly spe
ing valid only providedU/t!1. In this regime one has

Kc;12~N21!
Ua0

2pvF
,

uc;vF1~N21!
Ua0

2p
. ~38!

The physically relevant question is now what happens
higher values of the interactionU. In the absence of um
klapp terms, the accepted view is that the effect of inter
tion corresponds to a renormalization of the Luttinger para
etersKc and uc as well as the spin velocityus which have
therefore to be thought as phenomenological parameter
the Landau coefficients in the Fermi-liquid theory.7,8 These
parameters completely characterize the low energy prope
of the metallic phase as we shall see now. Let us first disc
the electronic Green’s function defined by

Gab~x,t!5^ca
†~x,t!cb~0,0!&, ~39!

t being the imaginary time. This correlation function can
computed using Eqs.~9!, ~29!, and~31!. After some calcula-
tions, one finds

Gab~x,t!;
dab

2p F 1

x21uc
2t2Ga/2F exp~ ikFx!

~ ix1uct!1/N~ ix1ust!121/N

1
exp~2 ikFx!

~2 ix1uct!1/N~2 ix1ust!121/NG , ~40!

where the exponenta is given by
ri-
-

r

-
-

as

es
ss

a5
1

2NKc
~12Kc!

2. ~41!

This allows us to give an estimate of the single particle d
sity of states which is related to the electronic Green’s fu
tion at x50:

r~v!;uvua. ~42!

Similarly, Kc determines the singularity of the momentu
distributionna(k) around the Fermi pointkF :

na~k!5na~kF!1Cte sgn~k2kF!uk2kFua ~43!

and the momentum distribution function has a power l
singularity at the Fermi level unlike a standard Fermi liqu
This anomalous power law behavior for any finite value ofN
is inherent of a Luttinger liquid.

The computation of the SU(N) spin-spin correlation func-
tion

DAB~x,t!5^S A~x,t!S B~0,0!& ~44!

is more involved. It can be shown that the leading asymp
ics of this correlation function is given by the 2kF part

DAB~x,t!;dAB
cos~2kFx!

~x21uc
2t2!Kc /N~x21us

2t2!121/N
. ~45!

We deduce from the above correlation function the low te
perature dependence of the NMR relaxation rateT1

1

T1T
;T2/N12Kc /N22. ~46!

As seen, once theU dependence of the Luttinger param
etersuc , Kc , andus is known, the low energy properties o
the metallic phase are entirely determined. These parame
are nonuniversal and cannot be obtained for arbitraryU by
the continuum limit approach. AlthoughKc,1 when U
.0, one does not know its minimum value. It is only in th
N52 case, that the Luttinger parameters can be extra
from the exact solution.27–29WhenN.2 no exact solution is
available and one has to use numerical computations to
mate these parameters. This will be done for the two ca
N53 andN54 in Sec. V. Before doing that, let us discu
the Mott transition that should occur in the problem for
finite critical value of the repulsionU for N.2.

C. The Mott transition

The very difference between theN52 and N.2 cases
lies in the fact that there is no umklapp term at half filling
the bare Hamiltonian in the continuum limit. The reason
this is that these terms came with oscillating factors and w
omitted for small value of the repulsion. However, in the R
strategy one has to look at the stability of the Luttinger fix
line and any operator that is compatible with the symme
of the problem should be taken into account: they will
generated during the renormalization process. In our pr
lem, the important symmetries are the SU(N) spin rotation
invariance, chiral invariance and translation invariance.
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From Eqs.~9!, ~29!, and~30!, one easily finds that unde
a translation by one lattice site, the charge fieldFc is shifted
according to

Fc˜Fc1Ap

N
. ~47!

Therefore one can add any operator in the charge sector
is invariant under the transformation~47! and will be neces-
sary generated by higher order in perturbation theory. T
operator with the smallest scaling dimension that is invari
under Eq.~47! is

Humklapp52Gu:cos~A4pNFc!:. ~48!

Other operators, with higher scaling dimensions, that cou
spin and charge degrees of freedom may also be inclu
This is the reason why one cannot exclude the possibility
a charge density wave~CDW! instability. For instance, such
processes are present in the extended SU~2! Hubbard model
at half filling.30 Although it requires some formal proof, w
expect that, due to the fact that in the present model
interaction is local in the density, the leading umklapp co
tribution should only affect the charge sector. We ha
checked that this is indeed true for the particular casesN
53 and N54.31 We have shown indeed by perturbatio
theory that the oscillating contributionsV2kF

andV4kF
gen-

erate 6kF and 4kF processes forN53 and N54, respec-
tively. Up to irrelevant operators, the only contribution w
found is precisely Eq.~48! with N53 andN54. In any case
in what follows, we shall thus make the hypothesis, fi
made by Affleck,23 that all the effects of high energy pro
cesses are exhausted by Eq.~48! for the general SU(N) case.
Consequently, the effective Hamiltonian density in the s
sector is still given by the SU(N)1 WZNW model and the
effective Hamiltonian in the charge sector is now

Hc5
uc

2 S 1

Kc
:~]xFc!

2:1Kc :~]xQc!
2: D

2Gu:cos~A4pNFc!:. ~49!

Rescaling the fields asFc˜FcAKc andQc˜Qc /AKc, the
Hamiltonian ~49! in the charge sector becomes the Ham
tonian of the sine-Gordon model

Hc5
uc

2
@ :~]xFc!

2:1:~]xQc!
2:#2Gu:cos~A4pNKcFc!:.

~50!

Since the scaling dimension of the cosine term in Eq.~50! is
Du5NKc , we deduce that a gap opens in the charge se
when

Kc5
2

N
. ~51!

On the other hand, whenKc,2/N, the umklapp term is ir-
relevant and the system remains in the metallic phase
scribed in the preceding subsection. Therefore, asU in-
creases,Kc will decrease from 1 atU50 to Kc52/N at a
critical value of the interactionUc where a Mott transition to
an insulating phase occurs. Within this scheme, the ph
hat

e
t

le
d.
f

e
-
e

t

n

-

or

e-

se

transition is expected to be of the KT type. Of course wh
U.Uc , Kc vanishes so that the jump is 122/N and is uni-
versal. The present approach cannot give an accurate v
of Uc . However, one can get a rough estimate ofUc using
Eqs.~11!, ~37!, and~51!:

Uc

t
5

p

2

N224

N21
sin

p

N
. ~52!

In the insulating phase, the charge fieldFc is locked in a
special well of the sine-Gordon model~50! and the leading
asymptotics of the SU(N) spin-spin correlation functions is
now

DAB~x,t!;l1dAB
cos~2kFx!

~x21us
2t2!121/N

, ~53!

where l1 is a nonuniversal constant stemming from t
charge degrees of freedom. One recovers the result pr
ously derived by Affleck.23 The NMR relaxation rate be
haves now as 1/(T1T);T2/N22. Finally, let us note that there
are other harmonics 4kF ,6kF , . . . , in the SU(N) spin den-
sity ~12! that will be generated by higher orders in perturb
tion theory. Together with the uniform contribution wit
scaling dimension 1, these terms will give subleading pow
law contributions in the SU(N) spin-spin correlation func-
tion ~53!. These operators correspond to the primary fields
SU(N)1 WZNW transforming to another representation
SU(N) than the fundamental one. One should recall that
the SU(N)1 WZNW, there areN21 primary fields.26 A pri-
mary field f̃a (a51, . . . ,N21) of SU(N)1 transforms ac-
cording to theath basic representation of SU(N) ~Young
tableau witha boxes and a single column! and has scaling
dimensionDa5a(N2a)/N. We thus expect the following
asymptotics forDAB with some nonuniversal constants (la):

DAB~x,t!;2
dAB

8p2 S 1

~ust2 ix !2
1

1

~ust1 ix !2D
1dAB(

a51

N21

la

cos~2akFx!

~x21us
2t2!a2a2/N

~54!

up to logarithmic contributions originating from the margin
irrelevant current-current interaction in the spin sector.32

We end this subsection by giving the low-temperature
pression of the uniform susceptibilityx and the specific hea
of the SU(N) Hubbard model in the insulating antiferroma
netic phase. The continuum density that describes the be
ior of the SU(N) spins degrees of freedom in a unifor
magnetic fieldH is given by

HH5
us

2 (
m51

N21

@ :~]xFms!
2:1:~]xQms!

2:#2H (
m51

N21

Jm, ~55!

where we have neglected the marginally irrelevant curre
current interaction. In Eq.~55!, we have considered a un
form magnetic field along the diagonalTm (m51, . . . ,N
21) generators of SU(N) that span the Cartan subalgebra
SU(N). According to our normalization convention, the
can be written inN3N diagonal matrices as follows:
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Tm5
1

A2m~m11!
diag~1,1,. . . ,2m,0, . . . ,0! ~56!

with m51, . . . ,N21 and2m is located on them11 ele-
ment of the diagonal. Using the bosonization corresponde
~29! and the canonical transformation~31!, the total density
Hamiltonian~55! in a magnetic field can be written as

HH5
us

2 (
m51

N21

@ :~]xFms!
2:1:~]xQms!

2:#

2
H

A2p
(

m51

N21

]xFms. ~57!

Doing the substitution

]xFms˜]xFms1
H

A2pus

, ~58!

we obtain the expression of the uniform susceptibility of t
SU(N) Heisenberg antiferromagnet

x5
N21

2pus
~59!

which is nothing butN21 times the uniform susceptibility
of the SU~2! Heisenberg antiferromagnet. This result is ea
to understand since the critical theory in the spin sector c
responds toN21 decoupled massless bosonic modes.
nally, using the general formula of the specific heat at l
temperatures for a conformaly invariant theory,33 one has for
the SU(N) Heisenberg antiferromagnet

CV5
p~N21!

3us
T. ~60!

Before closing this section, it is important to emphas
that the Mott transition expected in the bosonization
proach relies on the full expression ofKc(U) as function of
the interaction. However, one should stress that this par
eter cannot be obtained for arbitraryU within this approach
and only in the weak coupling limitU!t where the model is
in its metallic phase. To conclude in favor of the existence
a Mott transition for a finite value of the Coulomb intera
tion, one has thus to computeKc(U) of the lattice model by
an independent approach. Since the SU(N) Hubbard model
with N.2 is not exactly soluble, one cannot determine
expressionKc(U) by the Bethe ansatz as for the standa
Hubbard model.27–29 We shall thus compute the valu
Kc(U) of the lattice model using very accurate numeric
calculations based on QMC methods described in the n
section. In Sec. V, we shall then compare the numerical
sults with the predictions of the bosonization approach gi
in this section to conclude on the existence of a Mott tran
tion in the model.

III. THE NUMERICAL APPROACH

In this section we present our improved zero-tempera
Green’s function Monte Carlo method used for comput
ground-state properties. In the first part a sketchy but s
ce
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contained presentation of the basic GFMC method is giv
In addition to introducing our notations for the next part, th
section will enable the interested reader to understand al
practical aspects of the method. The second part is dev
to the presentation of the generalized GFMC method itse

A. Green’s function Monte Carlo

As already noticed in the Introduction the basic idea
the GFMC method is to extract from a known trial wav
function ucT& the exact ground-state componentuc0&. To do
that an operatorG(H) acting as a filter is introduced. Fo
continuum problems standard choices areG(H)
5exp(2tH) ~diffusion Monte Carlo! or G(H)51/@1
1t(E2H)# ~Green’s function Monte Carlo!. For a lattice
problem or any model with a finite number of states~finite
matrix! a natural choice to consider is

G~H![12t~H2ET!, ~61!

wheret plays the role of a timestep~a positive constant! and
ET is some reference energy. Ift is chosen sufficiently smal
and ucT& has a nonzero overlap with the ground state,
exact ground state is filtered out as follows:

lim
P˜`

G~H!PucT&;uc0&. ~62!

This result is easily obtained by expandingucT& within the
complete set of eigenstates ofH.

In Monte Carlo schemes, successive applications of
operatorG(H) on ucT& are done using probabilistic rules
These rules are implemented in configuration space wh
the trial wave function and matrix elements ofH are easily
evaluated. In what follows we shall denote byu i & an arbitrary
configuration of the system. To give an example, in act
calculations presented below we consideru i &5u i (1)&¯u i (N)&
with u i (a)&[un1a , . . . ,nLa& whereL is the number of sites,a
the SU(N) color index, andnia the occupation number o
site i (nia50 or 1! for the speciesa.

In this work Hamiltonians considered are of the form

H5T1V, ~63!

whereT is the kinetic term~a nondiagonal operator! andV is
a ~diagonal! potential term. For fermions in one dimension
is known that by choosing a suitable labeling of the sit
nonzero matrix elements of the kinetic term can all be ma
negative

^ i uTu j &<0 ~ iÞ j !. ~64!

A most important consequence of this property is that
exact ground state has a constant sign. In other words, s
lations presented here are free of the sign problem.

Let us now introduce the following transition probability

Pi˜ j~t!5cT~ j !^ j u@12t~H2EL!#u i &
1

cT~ i !
, ~65!

wherecT( i ) are the components of the vectorucT&, cT( i )
[^ i ucT&, andEL is a diagonal operator called the local e
ergy and defined as follows:

^ i uELu j &5d i j EL~ i !
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with

EL~ i !5
^ i uHucT&

^ i ucT&
. ~66!

Note the important relation associated with the definition
the local energy

~H2EL!ucT&50. ~67!

To define a transition probabilityPi˜ j must fulfill the two
following conditions. First, the sum over final states( j Pi˜ j
must be equal to 1. Here, this is true as a direct consequ
of Eq. ~67!. Second,Pi˜ j must be positive. To see this an
for later use, let us distinguish between the casesi 5 j and
iÞ j .

For i 5 j we have

Pi˜ i~t!511tTL~ i !, ~68!

whereTL( i )[EL( i )2Hii . Using Eq.~63!, TL( i ) can be re-
written as

TL~ i !5
^ i uTucT&

^ i ucT&
, ~69!

TL( i ) is called the local kinetic energy. Because of Eq.~64!
it is a negative quantity and the transition probability can
made positive by takingt sufficiently small. More precisely
the time step must verify

0,t,Min i@21/TL~ i !#. ~70!

Note that the upper bound is a nonzero quantity for a fin
system. On the other hand, wheniÞ j we have

Pi˜ j~t!52tHi j

cT~ j !

cT~ i !
~ iÞ j !, ~71!

a positive expression sincecT( i ) is chosen to be positive an
off-diagonal termsHi j are negative@Eq. ~64!#.

Using expressions~68! and ~71! for the transition prob-
ability random walks in configuration space can be gen
ated. By averaging over configurations, statistical estima
for various quantities can be defined. A first important e
ample is the calculation of the variational energy associa
with ucT& ~variational Monte Carlo!. The variational energy
is defined as

Ev~cT!5
^cTuHucT&

^cTucT&
. ~72!
f

ce

e

e

r-
s

-
d

Here, it is rewritten as

Ev~cT!5 lim
K˜`

1

K (
i 51

K

EL~ i !5^^EL&& (P) , ~73!

where^^¯&& (P) is the stochastic average over configuratio
u i & generated using the transition probabilityP, K being the
number of configurations calculated. Equation~73! holds be-
causecT( i )2 is the stationary density of the stochastic pr
cess, that is,

(
i

cT~ i !2Pi˜ j~t!5cT~ j !2 ; j . ~74!

This property is directly verified by using expressions~65!
and ~67!.

As already pointed out, the estimate of the exact energ
based on the stochastic calculation of@12t(H
2ET)#nucT&, Eq. ~62!. Introducing between each operator
the product the decomposition of the identity over the ba
set 15( i u i &^ i u and making use of the definition of the tran
sition probability, Eq.~65!, we get the following path inte-
gral representation:

@12t~H2ET!#PucT&5 (
i 0¯ i P

cT~ i 0!2 )
k50

P21

Pi k˜ i k11

3 )
k50

P21

wi ki k11

1

cT~ i P!
u i P&, ~75!

where the weightswi j are defined as follows:

wi j [
^ i u@12t~H2ET!#u j &
^ i u@12t~H2EL!#u j &

~76!

or, more explicitly,

wi j 51, iÞ j ,

wii 5
12t~Hii 2ET!

12t@Hii 2EL~ i !#
, i 5 j . ~77!

From Eq.~62! the exact energy can be obtained as

E05 lim
P˜`

^cTuH@12t~H2ET!#PucT&

^cTu@12t~H2ET!#PucT&
, ~78!

which is rewritten here in terms of stochastic averages a
E05 lim
P˜`

K K EL~ i P! )
k50

P21

wi ki k11L L
(P)

Y K K )
k50

P21

wi ki k11L L
(P)

. ~79!
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In order to compute the averages appearing in that exp
sion two strategies can be employed. First, formula~79! can
be directly used as it stands: Paths are generated usin
transition probability and the local energy at each step
weighted by the quantityW5Pkwi ki k11

. This approach
where the number of configurations is kept fixed and
weights are carried out along trajectories is usually refer
to as the pure diffusion or Green’s function Monte Ca
method. For extended systems such as those considered
this approach is not optimal. Indeed, it is important to sam
less frequently regions of configuration space where the t
weight is small and to accumulate statistics where it is lar
To realize this, a birth-death process~or branching process!
associated with the local weight is introduced. In practice
consists in adding to the standard stochastic move define
the transition probability, a new step in which the curre
configuration is destroyed or copied a number of times p
portional to the local weight. Denotingmi j the number of
copies~multiplicity! of the statej , we take

mi j [ int~wi j 1h!, ~80!

where int(x) denotes the integer part ofx, andh a uniform
random number on (0,1). Adding a branching process ca
viewed as sampling with a generalized transition probabi
Pi˜ j* (t) defined as

Pi˜ j* ~t![Pi˜ j~t!wi j

5cT~ j !^ j u@12t~H2ET!#u i &
1

cT~ i !
. ~81!

Of course, the normalization is not constant~the population
fluctuates! and P* is not a genuine transition probability
However, we can still define a stationary density for it. Fro
Eq. ~81! we see that the stationary condition is obtain
when ET is chosen to be the exact energyE0 , and that the
density is cT( i )c0( i ). Accordingly, by using a stabilized
population of configurations the exact energy may be n
obtained as

E05^^EL&& (P,w) . ~82!

Note the use of an additional subscriptw in the average to
recall the presence of the branching process.

At this point, we shall not expand further the method. F
more details regarding the implementation of GFMC to l
tice systems the interested reader is referred to Refs.
34–36. Let us just emphasize on two important aspe
First, there exists a so-called zero-variance property for
energy: The better the trial wave functioncT is, the smaller
the statistical fluctuations are. In the limit of an exact wa
function for which the local energy is a constant, fluctuatio
entirely disappear~zero variance!. From this important re-
mark follows that in any QMC method, it is crucial to opt
mize as much as possible the trial wave function used.
course, in practice, a compromise between the complexit
the wave function and the gain in reduction of variance
to be found.

Once a good trial wave function has been chosen, the o
room left for improvement is the implementation of the d
namical process itself. In the algorithm presented here
only dynamical parameter which can be adjusted is the t
s-
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step t. In a configurationu i & associated with a small loca
kinetic energyTL( i ), the system remains in this configura
tion a relatively large time and a large value oft is necessary
to help the system to escape from it. Unfortunately, beca
of the constraint~68! (Pi˜ i must be positive! configurations
with a high local kinetic energy impose a small value oft. In
order to circumvent this difficulty, we propose to integra
out exactly the time evolution of the system when trapped
a given configuration. This idea is developed in the n
section.

B. GFMC and Poisson processes

Consider the probability that the system remains in
given configurationi a number of times equal ton. It is
given by

Pi~n![P~ i 15 i ,t; . . . ;i n5 i ,t; i n11Þ i ,t!

5@Pi˜ i~t!#n@12Pi˜ i~t!#. ~83!

Pi(n) defines a normalized discrete Poisson distribution.
terms of the local kinetic energy it can be rewritten as

Pi~n!52tTL~ i !exp$n ln@11tTL~ i !#%, ~84!

where the integern runs from zero to infinity. To describe
transitions towards statesj different from i we introduce the
following escape transition probability:

P̃i˜ j5
Pi˜ j~t!

12Pi˜ i~t!
, j Þ i . ~85!

Using Eqs.~68! and ~69! P̃i˜ j is rewritten in the most ex-
plicit form

P̃i˜ j5
Hi j cT~ j !

(kÞ iHikcT~k!
, j Þ i . ~86!

Note that this transition probability is positive, normalize
and independent of the time-stept. Now, by using both
probabilitiesPi(n) and P̃i˜ j , the path integral representa
tion of G(H)PucT&, formula ~75!, can be rewritten as

@12t~H2ET!#PucT&

5 (
( i ,n)PCP

cT~ i 0!2F )
k50

l 21

Pi k
~nk!P̃i k˜ i k11GPi l

~nl !

3)
k50

l

wi k

nk
1

cT~ i l !
u i l&, ~87!

where the sum is performed over the set of all families
states (i 0¯ i l) with multiplicities (n0¯nl) verifying
(k50

l 21 (nk11)1nl5P. In a given family successive state
are different and the variablenk represents the number o
times the system remains in configurationi k . The set of all
families is denotedCP and an arbitrary element is writte
( i ,n)[( i 0¯ i l ,n0¯nl). Since off-diagonal weights are
equal to 1, Eq.~77!, a shortened notation for the diagon
weightswi[wii has been introduced.

Now, let us remark that the time stept plays a role in the
path integral formula~87! only when the system is trappe
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into a given configuration. Indeed, both the escape proba
ity P̃ and the off-diagonal weightwi j are independent oft.
As an important consequence the limitt˜0 andP˜` with
Pt5t can be done exactly. In this limit the discrete Poiss
processPi(n) defined in Eq.~84! converges to a continuou
Poissonian distribution for the variableu5nt

Pi~u!5
1

ū i

e2u/ ū i. ~88!

In this formulaū i represents the average time spent in c
figuration i . In what follows we shall refer to it as the ave
age trapping time, its expression is

ū i521/TL~ i !. ~89!

The fact thatū i is inversely proportional to the local kineti
energy is explained as follows. When the kinetic energy
small the system is almost blocked in its configuration anū
is large. In contrast, when a large kinetic energy is availa
the system can escape easily from its current configura
and ū is small. As already remarked the escape transit
probability is independent oft and is therefore not affecte
by the zero-time-step limit. Finally, after exponentiating t
product of weights, the path integral can be rewritten in
form

e2t(H2ET)ucT&

5 (
i 0¯ i l

E
0

1`

du0¯E
0

1`

du lcT~ i 0!2

3F )
k50

l 21

Pi k
~uk!P̃i k˜ i k11GPi l

~u l !e
2(k50

l uk„EL( i k)2ET…

3
1

cT~ i l !
u i l& ~90!

with the constraint that the trapping times verify(k50
l uk

5t.
In order to compute ground-state properties the limit

˜` must be performed, Eq.~62!. In this limit the constraint
(k50

l uk5t can be relaxed and, quite remarkably, integ
tions over the Poisson distributions for the different trapp
times can be performed. For large enough timet we obtain

e2t(H2ET)ucT&; l˜` (
i 0¯ i l

cT~ i 0!2)
k50

l 21

P̃i k˜ i k11)k50

l

w̃i k

3
21

TL~ i l !

1

cT~ i l !
u i l&, ~91!

where the new integrated weightsw̃ are found to be

w̃i5
TL~ i !

ET2Hii
. ~92!

In the same way as before the exact energy can be obta
as
il-

n

-

s

e,
n
n

e

-
g

ed

E05 lim
t˜`

^cTuHe2t(H2ET)ucT&

^cTue2t(H2ET)ucT&
. ~93!

In terms of stochastic averages it gives

E05 lim
l˜`

K K EL~ i l !ū i l )k50

l

w̃i kL L
( P̃)

Y K K ū i l )k50

l

w̃i kL L
( P̃)

,

~94!
where configurations are generated using the escape tr
tion probability P̃.

As in the standard approach it is preferable to simulate
weights via a branching process. Here also, the refere
energyET stabilizing the population is given by the exa
energyE0 . The new stationary density is written as

p~ i !;cT~ i !c0~ i !/ ū i ~95!

up to an immaterial normalization constant. Finally, our e
timator for E0 is

E05
^^ū iEL~ i !&& ( P̃,w̃)

^^ū i&& ( P̃,w̃)

, ~96!

where configurations are generated usingP̃ and branched
with w̃. Note that the variational energy can be recovered
removing the branching process (w̃51)

Ev~cT!5
^^ū iEL~ i !&& ( P̃)

^^ū i&& ( P̃)

. ~97!

IV. COMPUTATIONAL DETAILS

In this section some important aspects of the pract
implementation of the GFMC approach to the SU(N) Hub-
bard model are presented.

A. Hardcore boson Hamiltonian

The Hamiltonian considered here is the one-dimensio
SU(N) Hubbard model described by Eq.~1!. Simulations are
performed for a finite ring of lengthL. In one dimension the
sites can be labeled in such way that the hopping term c
nects only sites represented by consecutive integers. A
consequence no fermion sign appears, except eventu
when a fermion crosses the boundary (1˜L or L˜1). By
choosing either periodic or antiperiodic boundary conditio
this sign can always be absorbed and our model~1! becomes
equivalent to a model made up with hardcore bosons
described by

H52t(
i 51

L

(
a51

N

ci 11a
1 cia1H.c.1

U

2 (
i

S (
a

niaD 2

, ~98!

wherecia
1 creates a hardcore boson of colora on sitei , nia is

the occupation numbernia5cia
1cia , andcL1 ia

1 [cia
1 .

B. Trial wave function

As already emphasized a most important aspect of
Monte Carlo scheme is the choice of a good trial wave fu
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tion. To guide our choice, let us consider the exact solut
at U50. In this case the ground state is obtained by fillingN
independent Fermi seas consisting of planes waves with
mentakn52pn/L (n50,61, . . . ). For agiven type of fer-
mion, the ground state can be written as a Vandermo
determinant37 and the following expression for the groun
state is obtained:

c0
U50~ i 1 , . . . ,i P!5 )

l , l 8
sinFpL ~ i l2 i l 8!G , ~99!

where i 1 , . . . ,i P are the positions of theP fermions on the
chain, i k51, . . . ,L. In terms of occupation numbers the s
lution can be rewritten as

f~n1 , . . . ,nL!5e
tnWA0nW /2, ~100!

where the matrixA0 of size (L3L) is given by

A0~ i ,i 8!5 lnUsinFpL ~ i 2 i 8!GU. ~101!

Note that Eqs.~100! and~101! describe a system of particle
interacting via a logarithmic potential~one-dimensional Log
gas!. The exact ground-state wave function of the compl
SU(N) model at U50 is simply obtained by writing the
product of theN wave functions~100! associated with each
color.

When the Coulomb interaction is switched on, we ha
chosen to take the same functional form as before forcT

cT~nW ![e
tnW AUnW /2. ~102!

Here,AU is an arbitrary matrix of size (NL3NL). Taking
into account the translational and SU(N) symmetries, at
most L12 independent variational parameters can be
fined. In all GFMC calculations presented in this paper
entire set of parameters has been systematically optimi
To do that, we have generalized the correlated samp
method of Umrigaret al.38 along the lines presented in th
preceding section. To be more precise, the set of config
tions used to calculate the quantities to be minimized~varia-
tional energy or variance ofH, see Ref. 38! are generated
using the escape transition probability and weighted with
corresponding average trapping times. Doing this, the ef
tive number of configurations is increased and the optim
tion process is facilitated. We have found that large numb
of parameters can be easily optimized.

C. O„L … algorithm

In the occupation-number representation the numerica
fort for calculating the trial wave functioncT(nW ) is of order
O(L2). To evaluate the local energy the Hamiltonian has
be applied to the vectorucT&. Since a given configurationunW &
is connected byH to aboutO(L) states, the total computa
tional cost per Monte Carlo step is aboutO(L3). In fact, this
cost can be reduced toO(L). To do that, we introduce the
following set of 2NL11 variables:

~nW ,nW U ,n0![S nW ,AUnW ,
tnW AUnW

2 D . ~103!
n
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Using this representation, the wave function is given byen0.
Configurations connected by the Hamiltonian differ fro
each other by removing a particle of a given colora on a site
i and putting it on a neighboring sitej . In the occupation-
number language it corresponds to add one to the compo
ja and remove one to the componentia of vector nW . For
convenience let us introduce the vectordW ( ia) whose compo-
nents are zero except the componentia which is equal to 1.
Using the new variables just defined we have

~nW ,nW U,n0!˜S nW 1dW ( ja)2dW ( ia),nW U1AUdW ( ja)2AUdW ( ia),

n01
t~dW ( ia)2dW ( ja)!AU~dW ( ia)2dW ( ja)!

2

2 tnW U~dW ( ia)2dW ( ja)! D . ~104!

In the simulation the set of new variables is stored
each configuration. At each Monte Carlo step they are re
tualized using Eq.~104!. Finally, the numerical effort is lim-
ited to O(L).

V. RESULTS

Let us now present the results for the SU~2!, SU~3!, and
SU~4! Hubbard models. SU~2! results have been obtained b
solving numerically the Lieb-Wu equations.11 Other results
have been obtained with the GFMC method presented in
previous section. In all calculations we have sett51.

A. Charge gaps

The finite-size charge gapDc(Ne ,L) is defined as

Dc~Ne ,L ![E0~Ne11,L !1E0~Ne21,L !22E0~Ne ,L !,
~105!

whereE0(Ne ,L) is the total ground-state energy of a ring
lengthL with Ne electrons. In this expressionNe61 means
that a fermion of an arbitrary color is added to or remov
from the system. DenotingN the number of colors, calcula
tions are done for a number of fermions of each color eq
to L/N, and therefore for a total densityn[Ne /L equal to 1.
In order to get the exact charge gap the limitL˜` must be
performed. As usual this is done by calculating charge g
for different sizes and extrapolating to infinity. Here, SU~3!
and SU~4! calculations have been done forL59,12,18,27
and L58,16,24,32, respectively. The finite-size gaps ha
been found to converge almost linearly as a function of
inverse of the size. Accordingly, the limitL˜` of the gap
has been obtained from a fit of the data with a linear
quadratic function of 1/L. Figure 1 presents the charge ga
obtained forN52,3,4 as a function of the Coulomb intera
tion U.

A first important remark concerns the quality of th
Monte Carlo simulations. As it can be seen in Fig. 1, t
error bars on the different gaps are quite small. A typi
value is about 0.001. Errors are small because total ener
are calculated with a very high level of accuracy. For e
ample, for the SU~4! model withL532 andU50.5, we get
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E0(32,32)5252.13056(15) for a total number of eleme
tary Monte Carlo steps equal to 83107. Clearly, the relative
error of about 331026 is very small. In the largeU regime
where the trial wave function is not expected to be as goo
for small U, we still get excellent results. For example, f
U54.5 we get E0(32,32)5223.7118(13) (1.63108 MC
steps! with a relative error of about 631025. Using the stan-
dard GFMC method~presented in Sec. III A! we get, forU
50.5, E0(32,32)5252.13050(40) and, for U54.5,
E0(32,32)5223.7210(110)@in both cases the maximum
time-step allowed has been chosen, see Eq.~70!#. The im-
provement resulting from the new approach, particularly
largeU, is noticeable. Finally, using the approach of Trive
and Ceperley19 ~introduction of the Poisson process b
no integration in time! we get for U50.5 E0(32,32)
5252.13041(22) and for U54.5, E0(32,32)
5223.7121(30). These results illustrate the improvem
resulting from the time integration.

Having at our disposal such accurate results we can tr
find out whether or not a gap opens for a nonzero value ofU.
Considering only continuous transitions, two scenarios
possible. A first possibility is to open a gap for any non-ze
value of U. In that case we write the gap versusU as fol-
lows:

Dc5C exp~2G/U !. ~106!

A second scenario consists in looking for the existence o
KT-type transition at a finite valueUc of the Coulomb inter-
action. In that case the gap is written as

Dc5CKT expS 2
GKT

AU2Uc
D ~107!

for U.Uc and zero otherwise. The three sets of results h
been fitted either using Eqs.~106! or ~107!. The fitting pro-
cedure used is a standard one, based on the minimizatio
a chi-square type function including statistical errors. O
most important conclusion is that all sets of data can
correctly represented within our small statistical errors eit
using the gapful representation, Eq.~106!, or using a KT
scenario, Eq.~107!, with a not too large value ofUc . For

FIG. 1. Charge gaps as a function of the interactionU for the
SU~2!, SU~3!, and SU~4! Hubbard models. The values of the ga
have been extrapolated toL˜` ~see text!.
as
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example, using Eq.~106! possible representations are (C
525.313,G511.318), (C5274.634,G526.745), and (C
5515.649,G532.755), for N52, 3, and 4, respectively
Although no clear physical content can be given to the m
nitude of coefficients, it is nevertheless satisfactory to ver
that in the case of SU~2!, the gapful~106! leads to not too
large values for the coefficients. This should be contras
with the SU~3! and SU~4! cases for which the parameters a
important. Within a KT scenario all data can also be ve
well fitted. In the case of SU~2! where we know for sure tha
no KT transition exists, the ‘‘critical value’’ issued from ou
fits ranges from 0 to about 0.5. For example, a possible r
resentation is given by (CKT5541.310,GKT511.053, and
Uc50.384). For the SU~3! model accurate representation
can be obtained with a value ofUc ranging from 0 to about
2.3 For Uc52.2 ~the value we shall propose later for th
critical value! we get (CKT545.050,GKT56.567, andUc
52.2). For SU~4! the interval is larger. Allowed values
range from 0 to about 2.9. ForUc52.8 ~our proposed value
see below! we get (CKT517.889,GKT55.144, and Uc
52.8). In contrast with the gapful representation, it shou
be noted that coefficients are now much larger for the SU~2!
model than for the SU~3! and SU~4! models.

In conclusion, using accurate values of the gaps no c
clusions can be reasonably drawn about the existence o
of a KT-type transition at a finite value ofU. Numerical
evidence based on other quantities are therefore called
~see next sections!. From the fitting of our data the only
conclusion we are allowed to draw is that a KT transition
only possible within the range~0,2.3! for SU~3! and within
the range~0,2.9! for SU~4!. In addition to this, if such a
transition actually occurs in both models, we should expe
difference for the critical values given byUc@SU(4)#
2Uc@SU(3)#;0.5– 0.6~see Fig. 1!.

B. Spin gap

The spin gap is defined as the change in ground-s
energy produced when destroying a fermion of a given co
and creating a fermion of a different color@in the SU~2! case
it consists in flipping one spin#. Note that in this process th
charge number is kept fixed. For a finite system we have

Ds~Ne ,L ![E0~Ne61,L !2E0~Ne,L !, ~108!

whereNe61 involves an arbitrary pair of electrons of di
ferent colors~one created, one destroyed!.

For the SU~2! case the system is known from the exa
solution to be gapless for an arbitrary value of the interact
strengthU. For a number of colors greater than 2, it is
open question. This is an important point since the existe
of a gapful regime would very likely indicate the existen
of a coupling between spin and charge degrees of freed
In all calculations performed forN53 and 4, and for a cou-
pling constantU ranging from very small to very large val
ues ~up to U510) no evidence for the existence of such
gap has been found. Thus, it can be quite safely conclu
that the spin sector of SU(N) N52,3,4 is gapless for an
arbitrary interaction in full agreement with the bosonizati
prediction. To illustrate this point we present in Fig. 2
typical behavior for the spin gap of SU~3! as a function of
1/L at the relatively large valueU54.5 ~at least two times
greater than the maximal value expected forUc in the charge
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sector!. The behavior of the gap is essentially linear a
extrapolation to the origin leads to a vanishing gap.

C. Luttinger-liquid parameters

In this section we present calculations of the Lutting
liquid parametersuc andKc . For that we shall make use o
their relations with the compressibilityk and charge stiffness
Dc of the system. For a model withN colors @SU(N)# we
have the following relations:

puc

Kc
kn25

N

2
~109!

and

Dc5NucKc , ~110!

wheren5Ne /L (Ne total number of electrons! is the elec-
tron density. The compressibilityk is defined as the secon
derivative of the ground-state energyE0 with respect to the
density of particles

1

k
5

1

L

]2E0

]n2
. ~111!

A convenient finite-size approximation of the compressib
ity is

k5
L

Ne
2 S E0~Ne1N,L !1E0~Ne2N,L !22E0~Ne ,L !

N2 D 21

,

~112!

where Ne6N in E0 means thatN fermions—one of each
color—are added to or removed from the system.

The charge stiffness is given by

Dc5
p

L

]2E0

]w2 U
w50

, ~113!

wherew is a charge twist in the system. This charge twis
imposed by introducing the following twisted boundary co
ditions:

FIG. 2. Spin gap as a function of 1/L for the SU~3! Hubbard
model atU54.5. The solid line is a linear fit of the data.
r

-

s
-

ci 1La
1 5eiwcia

1 , ~114!

for an arbitrary sitei and colora.
By calculating with GFMC total ground-state energies f

different numbers of electrons, formula~112! allows a direct
calculation of the compressibility. In contrast, the GFM
calculation of the charge stiffness is more tricky due to
presence of a complex hopping term at the boundary.
circumvent this difficulty we resort to the second-ord
perturbation-theory expression of the charge stiffness.
have

Dc5
p

L S ^2T&22(
kÞ0

z^kuJu0& z2

Ek2E0
D , ~115!

whereT52t((ci 11a
1 cia1H.c.) is the kinetic-energy opera

tor, J52 i t ((ci 11a
1 cia2H.c.) is the paramagnetic curren

operator,̂ ¯& denoting the expectation value in the grou
state, all quantities being evaluated atw50. To evaluate the
kinetic term we make use of the Hellman-Feynman theor
^T&5E02U(]E0 /]U). In practice, the following finite-
difference expression is used:

^T&5E02US E0~U1dU !2E0~U2dU !

2dU D , ~116!

FIG. 3. uc as a function ofU for the SU~2! Hubbard model.

FIG. 4. uc as a function ofU for the SU~3! Hubbard model.
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with dU small enough to make higher-order contributio
negligible.

The second-order part of formula~115! can be reinter-
preted back as the second-derivative of the total ground-s
energy of a new Hamiltonian consisting of the origin
Hamiltonian plus a perturbation associated with the flux
eratorJ. This leads to the relation

(
kÞ0

u^kuJu0&u2

E02Ek
5

1

2

]2Ẽ0~l!

]l2 , ~117!

whereẼ0 is the ground-state energy of the new Hamiltoni
defined by

H̃52~ t1l!(
ia

~ci 11a
1 cia!2~ t2l!(

ia
~ci 21a

1 cia!1V~U !

~118!

andV(U) is the potential part of the problem. Using form
las ~117! and~118! the charge stiffness can now be obtain
from a series of GFMC ground-state calculations of to
energies ofreal Hamiltonians@more precisely,E0 , E0(dU),
andE0(2dU) for H, andẼ0(l) for H̃, Eq. ~118!#. It should
be emphasized that the new HamiltonianH̃ is real but not
symmetric: Left-moving and right-moving electrons do n

FIG. 5. uc as a function ofU for the SU~4! Hubbard model.

FIG. 6. Kc as a function ofU for the SU~2! Hubbard model.
te
l
-

l

t

have the same velocity. Of course, such a property is ea
implemented within a QMC framework.

Figures 3–8 present the Luttinger parametersuc and Kc
for the SU~2!, SU~3!, and SU~4! Hubbard models as a func
tion of the interactionU and for different sizesL. For the
SU~2! model, parameters have been obtained by compu
ground-state energies issued from the standard Lieb-
equations @computation of the compressibility, formul
~112!# and from their generalization to the case of twist
boundary conditions as presented by Shastry
Sutherland39 @computation of the charge stiffness, formu
~113!#. For the SU~3! and SU~4! models we have followed
the general route just presented above.

A first striking result emerging from the figures is th
strong qualitative differences between the general beha
of Luttinger parameters of the SU~2! model on the one hand
and of the SU~3! and SU~4! models, on the other hand. Le
us first have a look at the charge velocityuc .

In the SU~2! case the charge velocity has been calcula
for various values ofU and for the sizesL56, 10, 14, 18,
and 22. Results are presented in Fig. 3. The upper cu
corresponds toL56, the lower one to the maximum size
L522. In between, the curves are ordered according to
magnitude ofL. For a given sizeL, the charge velocity is
found to decrease as a function ofU. For a givenU, uc also
decreases as a function of the sizeL. Such a behavior is

FIG. 7. Kc as a function ofU for the SU~3! Hubbard model.

FIG. 8. Kc as a function ofU for the SU~4! Hubbard model.
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quite typical of a gapped system in which collective cha
excitations are damped away. In the limit of large sizes,
charge velocity is expected to vanish for a nonzero value
the interaction. The charge velocities of the SU~3! model,
Fig. 4, and of the SU~4! model, Fig. 5, display a very simila
behavior which is dramatically different from the one o
served for SU~2!. Starting from their free value atU50
@uc5) and uc5& for SU~3! and SU~4!, respectively#,
they increase as a function ofU with a finite slope at the
origin. After some critical value ofU both velocities go
down quite rapidly. In the first part of the curves~small and
intermediate values ofU) the charge velocity is found to
converge quite rapidly as a function of the size. All curv
presented cannot be distinguished within statistical err
Although the calculations presented here are limited to s
tems with a maximum size ofL527 @SU~3!# or L532
@SU~4!# some preliminary calculations at larger siz
strongly suggest that the values plotted are indeed c
verged. Such results strongly support the existence of a
less phase for the SU~3! and SU~4! models. At larger values
of U the situation is rather different. The charge velocit
decrease quite rapidly both as a function ofU and as a func-
tion of L. This behavior indicates the existence of a gapp
phase. In order to be more quantitative let us have a loo
the value of the slope at the origin. The theoretical predict
can be obtained from Eqs.~38!. For SU~3! the slope at the
origin is found to be 0.32~1!, 0.32~1!, and 0.33~2! for L59,
18, and 27, respectively. These results are in perfect ag
ment with the theoretical prediction of 1/p .0.318. For the
SU~4! model the slope at the origin is found to be 0.46~1!,
0.47~1!, and 0.45~2! for L516, 24, and 32, respectively
Here also, the results are in perfect agreement with the
oretical prediction of 3/2p .0.477. Let us now consider ou
results forKc . Here also, there exists a common behavior
the cases SU~3! and SU~4!, and a different one for SU~2!. In
the latter case, Fig. 6,Kc decreases either as a function ofU
or as a function of the size. The slope at the origin,U50, is
essentially zero andKc is expected to vanish at large size
except, of course, in the free case. Once again, this beha
is typical of a gapped system. In the two other cases,
situation is rather different. In the same way as for the cha
velocity, two regimes can be distinguished, see Figs. 7 an
At small and intermediateU, the values ofKc are found to
be very well converged within statistical errors as a funct
of the sizeL. The curve is smooth with a finite slope at th
origin. In the second regime corresponding to larger val
of U the curvesKc versusU go down as a function of the
size. Clearly, this latter regime corresponds to a gap
phase. Having nearly exact values ofKc up to some critical
valueUc for SU~3! and SU~4!, the next logical step consist
in comparing these values to the predictions of bosonizat
A first important prediction was the opening of a gap in t
charge sector for a value ofKc equal to 2/N, Eq.~51!. In Fig.
7 corresponding to the SU~3! case, a dashed line has be
drawn at the valueKc52/3. The intersection of this line with
the curves ofKc appears at aboutUc;2.2. A most remark-
able result is that this value ofU is both consistent with the
critical value extracted from the calculation of the char
gaps, Fig. 1, but also with the fact that it lies in the domain
U where the values ofKc begin not to converge as a functio
of the size~a fact usually interpreted as resulting from t
e
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existence of a finite correlation length!. A very similar situ-
ation is obtained in the SU~4! case. Using the same type o
arguments,Uc is found to be around 2.8. When studyin
charge gaps we had observed a difference ofUc , Fig. 1,
between SU~3! and SU~4! of between 0.5 and 0.6. This is i
very good agreement with what is found here from indep
dent data onKc . A second prediction which can be tested
the estimate of the value ofUc itself. Formula~52! gives

Uc5
p

2

N224

N21
sin

p

N
.

For N53 andN54 one getsUc53.40 andUc54.44, re-
spectively. As already pointed out, these estimates mus
considered with caution. However, it should give the corr
trend as a function ofN. Here, if we look at the ratio
Uc@SU(4)#/Uc@SU(3)# we get about 1.31 from the theore
ical estimate and about 1.27 from our data. The agreeme
excellent. Another point which can be checked is the va
of the slope at the origin. For the SU~3! case, it is found to be
20.18(1), 20.19(1), and20.19(2) forL59, 18, and 27,
respectively. These results are in very good agreement
the theoretical prediction of2 1/)p .20.183 given by Eq.
~38!. For SU~4! we find a slope of20.31(1), 20.33(1), and
20.32(2) forL516, 24, and 32, respectively. These resu
are also in total agreement with the theoretical prediction
2 3/2&p .20.337.

Finally, it can be very useful for interested readers to g
some compact and accurate representations of the Lutti
parametersKc and uc as a function ofU. For both param-
eters a minimal representation we may think of~see Sec.
II B ! is

Kc5
1

A11k1U1k2U2
,

uc5vFA11u1U1u2U2. ~119!

For SU~3! we obtain

k150.33452,k250.08789,

u150.37929,u2520.025509.

Note that these values are not too far from the bare va
corresponding to Eqs.~37!, k1

05u1
052/pvF .0.36755,k2

0

5u2
050.

For SU~4! we obtain

k150.62065,k250.12298,

u150.71486,u2520.052705

to compare to the bare values given byk1
05u1

053/pvF

.0.675237,k2
05u2

050.
As already discussed we have found no evidences for

opening of a spin gap in the case of the SU~3! and SU~4!
models. In other words, the system remains critical with
spect to the spin degrees of freedom for any value of
interaction. For these models the slope at the origin is p
dicted to be equal to2 1/2p .20.159 @Eq. ~27!#. Once
again, this value has been recovered using our nume
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data. To compute the spin velocity we have used the form
expressing the spin gap as a function of the size for a crit
system28

us5
Ds~Ne ,L !

2pL
. ~120!

For SU~3! and SU~4! we get for the slope20.18(2) and
20.18(3), respectively, in very good agreement with th
theoretical prediction.

A final piece of information which can be extracted fro
our data is related to the way the total ground-state ene
converges to its asymptotic value. To be more precise,
known that the ground-state energy per sitee0(L) of a Lut-
tinger liquid is expected to behave as28

e0~L !.e0~1`!2
p

6L2 (i
ui , ~121!

where ( iui denotes the total velocity associated with
critical excitations. In the free case,N degrees of freedom
are critical, and the total velocity is equal toNvF . When the
interaction is turned on, it is possible to follow the evolutio
of the total velocity as a function ofU. This has been done
for the SU~3! model. Taking our data for the sizesL59, 18,
and 27 the ground-state energy has been fitted with a f
adapted to Eq.~121!, e05a2b/L2. From this fit an effective
number of critical modes can be defined as

Neff5
6b

pvF
.

The result is presented in Fig. 9. Although the transition
not as sharp as for the Luttinger parameters, the loss of
critical mode~passing from 3 to 2! is clearly seen whenU
varies from zero to infinity. A similar curve may be obtaine
for the SU~4! case.

VI. CONCLUDING REMARKS

In this work, we have studied the SU(N) generalization of
the one-dimensional Hubbard model for repulsive interact

FIG. 9. Effective number of critical modes as a function ofU
for the SU~3! Hubbard model.
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at half filling. Using a combination of bosonization an
QMC results, we have clearly shown that the SU(N) Hub-
bard model forN.2 behaves very differently from the
SU~2! case. Strong numerical and theoretical evidences h
been given in favor of a Mott transition, between a meta
and an insulating phase, occurring for a finite value of
Coulomb repulsionUc.0 for N.2.

The picture emerging from the bosonization approa
consists in a spin-charge separation at low energy. The
degrees of freedom are critical for arbitraryU and described
by the SU(N)1 WZNW model with a central chargec5N
21 (N21 gapless bosonic modes!. The effective theory as-
sociated with the charge degrees of freedom corresponds
sine-Gordon model atb254pNKc(U). For a small value of
the Coulomb interactionU, the interaction is irrelevant. The
charge sector is then critical and described by a mass
bosonic field. In this weak coupling phase, the system
metallic with anomalous power law behaviors in the physi
quantities typical of a Luttinger liquid. For a finite value o
the interactionUc such thatKc(Uc)52/N, a KT phase tran-
sition to an insulating phase is expected in the bosoniza
approach. In this strong-coupling phase, the charge bos
field becomes locked and the infinite discreteZ` symmetry
related to the periodicity of the potential of the sine-Gord
model is spontaneously broken. The only degrees of freed
that remain critical in this strong coupling phase are theN
21 spin modes and after integrating out the massive cha
degrees of freedom, the low-energy theory of the model c
responds to the SU(N) Heisenberg antiferromagnet.

Very accurate numerical simulations based on a gene
zation of the GFMC method and fully optimized trial wav
functions have been performed to obtain the spin and cha
gaps, and the Luttinger-liquid parameters as a function of
Coulomb interaction for the SU~2!, SU~3!, and SU~4! Hub-
bard models. A metal-insulator phase transition at a fin
value Uc is clearly seen for SU~3! (Uc;2.2) and SU~4!
(Uc;2.8) in contrast with the standard SU~2! case. In addi-
tion all the results obtained forN53 and N54 are fully
consistent with the theoretical framework drawn in Sec.
This provides an accurate test of the bosonization appro
to the SU(N) Hubbard model for small and large values
U. It is therefore natural to expect that the physical pictu
emerging from the two cases studied here can be extende
arbitrary values ofN. Thus one may conclude that the o
currence at a finite value of the interaction of a Mott tran
tion of the KT type isgenericin the SU(N) Hubbard model
for N.2 at half filling. In addition, it should be emphasize
that the calculations of the Luttinger parametersKc and uc
presented in Sec. II B are of very good quality~in particular
they are converged as a function of the size! and thus provide
an accurate characterization of the low-energy propertie
the metallic phase of the SU~3! and SU~4! Hubbard models.

Let us now compare our results with the exact solution
the integrable model based on the SU(N) generalization of
the Lieb-Wu Bethe ansatz equations.12 As discussed in the
Introduction, an exact solution of an SU(N) generalization of
the Hubbard model is available. Although the underlying l
tice Hamiltonian of the model is not known, it involves ve
likely long-range interactions that dynamically exclud
three-electron configurations. The question that natur
arises is whether the physics described by the latter mod
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similar, whenN.2, to that of the lattice SU(N) Hubbard
model that we have studied in this paper. At half filling, t
SU(N) integrable model undergoes afirst-order phase tran-
sition, as one variesU, from a metallic to an insulating
phase.13 This is in disagreement with the KT transition pr
dicted by our analysis. In the metallic phase the integra
model is a Luttinger liquid for everyN ~Refs. 13,41! with the
same physical properties as those obtained by the boso
tion approach for the SU(N) Hubbard model. However, th
charge stiffnessKc obtained from the Bethe ansatz equatio
varies between 1/N and 1 asU decreases fromUc to 0.13,41

The value at the transition (Kc51/N) is thus two times
larger than the value obtained for the SU(N) Hubbard
model. This clearly confirms that the integrable model diffe
from the lattice SU(N) Hubbard model in the charge secto
As already pointed out, this difference should result from
presence of nonlocal interactions in the lattice model ass
ated with the integrable SU(N) model.

Regarding perspectives, it is clearly of interest to furth
explore the phase diagram of the SU(N) Hubbard model:
case of an attractive interaction, dependence on the fill
etc. For an attractive interaction at half filling, bosonizati
predicts that a phase transition should also occur asuUu var-
ies. For incommensurate fillings, it is easy to see, within
bosonization framework, that the system is a Luttinger liq
for arbitraryN and positiveU where the leading asymptotic
of the electronic Green’s function and spin-spin correlat
coincide with those computed in the metallic phase. The s
ation is less clear for commensurate fillingskF5pn/(Na0)
(N/n being an integer!. In the bosonization approach, a ga
opens in the charge sector forKc52n2/N. The existence of
a Mott transition for commensurate fillings clearly requir
the full knowledge ofKc(U,n) of the lattice model. Some
preliminary calculations show that there is a very spec
commensurate filling,n5N/2, where no Mott transition ex
ists and for which the charge and spin degrees of freedom
massive forN.2 and arbitraryU.40

Let us end by noting a very interesting connection b
tween the metal-insulator transition predicted in the SU(N)
Hubbard model and the existence of plateaux in magnet
tion curves of spin ladders under a strong magnetic field.42–44

Using the Jordan-Wigner transformation, one can indeed
terpret the SU(N) Hubbard model as aN-leg S51/2XY spin
ladder in a uniform magnetic field along thez axis and
coupled in a symmetric way by Ising interaction. The re
tion between the Fermi momenta and the magnetization^M &
~normalized such that the saturation value is61) is kF
5p(12^M &)/(2a0). The Mott transition found in this work
for the SU(N) Hubbard model at half filling corresponds
the appearance of plateaux at^M &5(N22)/N in the mag-
netization curves of the previousN-leg XY spin ladder.
Moreover, the existence of a Mott transition for the SU(N)
Hubbard model at commensurate filling will give addition
plateaux located at̂M &5(N22n)/N in the magnetization
curves of the corresponding spin ladder.
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APPENDIX

In this appendix, we give some details of computations
establish the separation of spin and charge~24! at the Hamil-
tonian level in the continuum limit of the SU(N) Hubbard
model and fix the expressions ofuc,s andGc,s given by Eqs.
~27!, ~28!.

1. Sugawara form of the free Hamiltonian

To begin with, we shall recall some basic things on t
SU(N) non-Abelian bosonization~for a review see Refs. 23
24,26!. As seen in Sec. II A, the chiral SU(N) spin current
JR,L

A can be expressed in terms ofN right-left moving fer-
mionscaR,L :

JR(L)
A 5:caR(L)

† T ab
A cbR(L) : . ~A1!

The left- ~right-! moving fermions are holomorphic~antiho-
lomorphic! fields of the complex coordinate (z5t1 ix, t
being the imaginary time!: caL(z),caR( z̄). These fields are
defined by the following OPE’s:

caL
† ~z!cbL~v!;

dab

2p~z2v!
1:caL

† cbL :~v!

1~z2v!:]caL
† cbL :~v!1¯,

caR
† ~ z̄!cbR~v̄ !;

dab

2p~ z̄2v̄ !
1:caR

† cbR :~v̄ !

1~ z̄2v̄ !: ]̄caR
† cbR :~v̄ !1¯ ~A2!

with ]5]v , ]̄5]v̄ and there are no singularities in the OP
when one does the fusion of two operators belonging to
ferent sectors.

Let us now consider the OPE between two left SU(N)
spin currents, for instance,

J L
A~z!J L

B~v!5:caL
† T ab

A cbL :~z!:cdL
† T de

B ceL :~v!

5T ab
A T de

B caL
† ~z!ceL~v!cbL~z!cdL

† ~v!.

~A3!

Using the OPE’s~A2!, the commutation relation~6!, and the
normalization of the generators of the SU(N) Lie algebra,
one obtains

J L
A~z!J L

B~v!;
dAB

8p2~z2v!2
1

i f ABC

2p~z2v!
J L

C~v!.

~A4!

In the same way, we find for the right spin current

JR
A~ z̄!JR

B~v̄ !;
dAB

8p2~ z̄2v̄ !2
1

i f ABC

2p~ z̄2v̄ !
JR

C~v̄ !.

~A5!
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Evaluating these OPE at equal time, one recovers the O
~15! showing thatJR,L

A are SU(N)1 spin current. With the
same procedure, one can compute the OPE between
charge currentJR,L

0 using its definition~17! in terms of the
underlying fermions

J L
0~z!J L

0~v!;
N

4p2~z2v!2
,

JR
0~ z̄!JR

0~v̄ !;
N

4p2~ z̄2v̄ !2
~A6!

so that the charge currentJR,L
0 belongs to the U(1)N KM

algebra.
The next step is to obtain the Sugawara form~20!, ~21! of

the free part of the Hamiltonian (H0). Let us consider, for
instance, the left sector of the theory since we shall ob
the same result for the right part with the substitutionL

˜R, (z,w)˜( z̄,v̄) and]˜ ]̄. We need now the following
OPE for the spin sector:

J L
A~z!J L

A~v!5:caL
† T ab

A cbL :~z!:cdL
† T de

A ceL :~v!

5
1

2 S daedbd2
1

N
dabddeD

3caL
† ~z!ceL~v!cbL~z!cdL

† ~v!, ~A7!

where we have used the relation~8!. Using Eq. ~A2! and
keeping also the first regular terms in the fusion, we get

J L
A~z!J L

A~v!;
N221

8p2~z2v!2 1
N11

2N
:caL

† caLcbLcbL
† :~v!

2
N221

2pN
:caL

† ]caL :~v!. ~A8!

Therefore, one obtains

:J L
AJ L

A
ª

N11

2N
:caL

† caLcbLcbL
† :2

N221

2pN
:caL

† ]caL :. ~A9!

In the same way, we obtain for the left charge current

:J L
0J L

0
ª2:caL

† caLcbLcbL
† :2

1

p
:caL

† ]caL :. ~A10!

One can eliminate the four fermions terms by considering
following combination:

p

N
:J L

0J L
0 :1

2p

N11
:J L

AJ L
A
ª2:caL

† ]caL :. ~A11!

Since one has]caL52 i ]xcaL within our convention, the
identity ~A11!, the so-called Sugawara form, states that
free Hamiltonian ofN relativistic left-moving fermions can
be written only as a function of left current-current terms.
the right part, we have also a similar identity

p

N
:JR

0JR
0 :1

2p

N11
:JR

AJR
A
ª2 i :caR

† ]xcaR :. ~A12!
E

the

in

e

e

Collecting all terms, we finally obtain the Sugawara form
the free HamiltonianH0 ~10!:

2 i ~ :caR
† ]xcaR :2:caL

† ]xcaL : !

5
p

N
~ :JR

0JR
01J L

0J L
0 : !1

2p

N11
~ :JR

AJR
A1J L

AJ L
A : !.

~A13!

2. Sugawara form of the SU„N… Hubbard Hamiltonian

We shall now investigate the effect of the Hubbard int
action in the continuum limit to fix the expressions~27! and
~28! of the velocities (uc,s) and the coupling constant
(Gc,s). Using the continuum description of the SU(N) spin
density~12!, the interacting part~7! is given by dropping all
oscillatory contributions:

V052
Ua0N

N11
~ :J A<J A:1:N A<N A†:1:N A†<N A: !.

~A14!

The OPE between the 2kF parts of the spin density can b
computed using Eqs.~13! and ~A2! as in the previous sub
section. We find up to constant terms

:N A:~z,z̄!:N A†:~v,v̄ !1:N A†:~z,z̄!:N A:~v,v̄ !

;2
N221

2pN

z2v

z̄2v̄
:caL

† ]caL :~v!

2
N221

2pN

z̄2v̄

z2v
:caR

† ]̄caR :~v̄ !

2:caL
† caLcbR

† cbR :~v,v̄ !

1
1

N
:caL

† cbLcbR
† caR :~v,v̄ !. ~A15!

Using Eqs.~A9!, ~A10! and similar equations in the righ
sector together with the definition of the charge current~17!,
we end with

J AJ A1N AN A†1N A†N A;2
N221

2N2 ~ :JR
0JR

01J L
0J L

0 : !

1
1

N
~ :JR

AJR
A1J L

AJ L
A : !

12
N11

N
JR

AJ L
A

2
N221

N2 JR
0J L

0 . ~A16!

As a consequence, the continuum limit of the SU(N) Hub-
bard model at half filling exhibits the spin-charge separat

H5Hc1Hs ~A17!

with



the

2318 PRB 60ASSARAF, AZARIA, CAFFAREL, AND LECHEMINANT
Hc5
pvc

N
~ :JR

0JR
0 :1:J L

0J L
0 : !1GcJR

0J L
0 ~A18!

and

Hs5
2pvs

N11
~ :JR

AJR
A :1:J L

AJ L
A : !1GsJR

AJ L
A . ~A19!

The renormalized velocities are given by

vs5vF2
Ua0

2p
,

ev

.

,’’
an

t
.-J

a

vc5vF1~N21!
Ua0

2p
, ~A20!

whereas the current-current couplings in the charge and
spin sectors are written as

Gc5
N21

N
Ua0 ,

Gs522Ua0 . ~A21!
s
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We present a general approach to greatly increase at little cost the efficiency of Monte
algorithms. To each observable to be computed we associate a renormalized observable (im
estimator) having the same average but a different variance. By writing down the zero-var
condition a fundamental equation determining the optimal choice for the renormalized observa
derived (zero-variance principle for each observable separately). We show, with several exa
including classical and quantum Monte Carlo calculations, that the method can be very powerful.
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Since the pioneering work of Metropoliset al. [1]
Monte Carlo methods have been widely used in ma
areas of natural sciences. At the root of Monte Car
methods lies a very efficient stochastic method for calc
lating many-dimensional integrals (or sums) written und
the general form

�O� �

R
S dxp�x�O�x�R

S dxp�x�
, (1)

where O�x� is some arbitrary observable (real-value
function) defined on the configuration spaceS (continuous
or discrete) andp�x� some probability distribution. In
Monte Carlo methods the integrals are evaluated usin
large but finite set of configurations�x�i��i�1,N distributed
according top and generated by a step-by-step stochas
procedure (Markov chain),

�O� �
1
N

NX
i�1

O�x�i�	 1 dO , (2)

wheredO is the statistical error associated with the finit
statistics. For a large enough numberN of Monte Carlo
steps, standard statistical arguments lead to the follow
expression of the error:

dO � K
s�O�
p
N

, (3)

where K is some positive constant proportional to th
amount of correlation between configurations, ands�O�
is a measure of the fluctuations of the observable,

s�O� �
p

�O2� 2 �O�2 . (4)
In this Letter, it is shown that by introducing a suitabl

renormalized observablẽO�x� the statistical error can be
drastically reduced and even suppressed, thus definin
zero-variance principle for the Monte Carlo calculatio
of observables. To realize this, a trial operatorH and a
trial functionc�x� are introduced (a trial matrix and a tria
vector in the discrete case). The operatorH is supposed to
be Hermitian (in all practical applications, real symmetric
and is chosen such thatZ

dy H�x, y�
q

p� y� � 0 . (5)

On the other hand, the trial functionc�x� is a rather arbi-
trary function which is simply supposed to be integrabl
0031-9007
99
83(23)
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Now, the renormalized observablẽO�x� associated with
the observableO�x� is defined as follows:

Õ�x� � O�x� 1

R
dyH�x, y�c� y�p

p�x�
. (6)

As a direct consequence of Eq. (1) and of the ve
definition of the Hermitian operatorH, Eq. (5), we have
the important property

�Õ� � �O� . (7)

In other words, both quantitiesO�x� and Õ�x� can be
used as estimators of the desired average. However,
statistical errors, which are controlled bys�O� ands�Õ�,
can be very different. The optimal choice for�H, c� is
obtained by imposing the renormalized function to b
constant and equal to the exact average. This leads
the following fundamental equation:Z

dy H�x, y�c� y� � 2�O�x� 2 �O�	
q

p�x�

, s�Õ� � 0 . (8)

At this point it should be emphasized that the idea
using renormalized estimators for reducing the variance
not new. A number of applications have been perform
using various “improved” estimators having a lower var
ance (see, e.g., [2,3]). The basic idea is to construct n
estimators by integrating out some intermediate degre
of freedom and, therefore, removing the correspondi
source of fluctuations. However, to the best of our know
edge, no general and systematic approach based on a z
variance principle and valid for any type of Monte Carl
methods has been proposed so far.

In this work the following strategy is proposed. Firs
a Hermitian operatorH verifying (5) is chosen. Second,
some approximate solution of Eq. (8) is searched for. T
various parameters enteringc are then optimized by mini-
mizing the fluctuations of the renormalized observab
over a finite set of points distributed according top

and obtained from a short Monte Carlo calculatio
Finally, a standard much longer Monte Carlo simulatio
is performed using̃O�x� instead ofO�x� as estimator.
© 1999 The American Physical Society
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Choice of H.—Clearly, a large variety of choices are
possible for the trial operator H. For Monte Carlo algo-
rithms satisfying the detailed balance condition (in prac-
tice, the vast majority of MC schemes) a very natural
choice is at our disposal. Denoting p�x ! y� the tran-
sition probability distribution defining the Monte Carlo
dynamics, the detailed balance condition is written as
p�x�p�x ! y� � p� y�p� y ! x� for all pairs �x, y� in
configuration space. A most natural operator to con-
sider is

H�x, y� �

s
p�x�
p� y�

�p�x ! y� 2 d�x 2 y�	 . (9)

From the detailed balance condition it follows that the op-
erator H is symmetric, H�x, y� � H�y, x�. The fundamen-
tal property (5) is verified since the sum-over-final states
for a transition probability is equal to one. For continu-
ous systems Schrödinger-type Hamiltonians can also be
considered

H � 2
1
2

dX
i�1

≠2

≠x2
i

1 V �x� , (10)

where V �x� is some local potential constructed to fulfill
condition (5):

V �x� �
1

2
p

p�x�

dX
i�1

≠2
p

p�x�
≠x2

i
, (11)

where d is the number of degrees of freedom. Note that
in Eq. (10), H is written using the standard quantum-
mechanical notation for a local Hamiltonian in the x-space
realization.

Choice of c .—Once the operator H has been chosen,
the optimal choice for c is the exact solution of the funda-
mental equation. Of course, in practice only approximate
solutions are available. What particular form to choose
for c is very dependent on the problem at hand, on the
type of observables considered, and also on the form cho-
sen for the trial operator H. However, a most important
point to be stressed is that the global normalization fac-
tor associated with c is a pertinent parameter of the trial
function. Minimizing the fluctuations of the renormalized
function s�Õ� with respect to it, we get

s�Õ�2 � s�O�2 2

DO�x�
R

dy H�x,y�c� y�
p

p�x�

E2

D≥R
dy H�x,y�c� y�
p

p�x�

¥2E . (12)

The correction to s�O�2 being negative, we obtain the
important result that, whatever the choice made for
the trial function (even the most unphysical one), the
optimization of the multiplicative factor always leads to
a reduction of the statistical error.

Our first application concerns the Monte Carlo calcu-
lation of the internal energy of the standard 2D Ising
model at various temperatures and linear sizes L �
5, 10, 20, and 25. The observable considered is the en-
ergy function given by E�S� � 2
P

�i,j� SiSj (coupling
constant J � 1, sum limited to nearest neighbors, and
periodic boundary conditions). The probability distribu-
tion is p�S� � exp�2bE�S�	 with b � 1
kBT . Here,
S � �S1, . . . , SN � with Si � 61, and N � L 3 L is the
total number of spins. Simulations have been performed
using a Swendsen-Wang–type algorithm [4] (nonlocal up-
dates of clusters of spins). To construct the trial operator
H we have chosen to use the transition probability dis-
tribution of Monte Carlo algorithms with local updates
(“heat-bath” -type algorithms). The probability of flipping
the spin Si � 61 at site i is given by

p�Si ! eSi� �
ebeSiS̃i

ebSiS̃i 1 e2bSi S̃i
, (13)

where e � 1 (no flip) or 21 (flip), and S̃i is the sum
of neighboring spin values. With this choice and using
Eq. (9) the fundamental equation (8) can be rewritten
under the form

NX
i�1

p�S ! TiS� �Q�S� 2 Q�TiS�	 � E�S� 2 �E� ,

c�S� � Q�S�
q

p�S� ,
(14)

where the application Ti (i � 1, . . . ,N) describes a flip
at site i, and is defined by Ti�S1, . . . , Si , . . . , SN � �
�S1, . . . , 2Si , . . . , SN �. At b � 0 (T � `) the transition
probability distribution becomes constant and the exact
solution is easily found to be Q�S� � E�S�
2. For finite
temperatures some approximate solution has to be found.
Here we introduce for Q�S� a polynomial expansion up to
the fourth order in the variables X �

PN
i�1 Si (magneti-

zation) and Y �
PN

i�1 g�SiS̃i� [“generalized energy,” the
usual energy being recovered for g�x� � x]. Precisely,
we have chosen the form Q�S� � e2Z

P
n1m#4 cnmX

nYm

where Z �
PN

i�1 h�SiS̃i�. The set of variational parame-
ters of c consists of all coefficients cnm of the polynomial
plus the ten possible values of functions g and h. All
coefficients have been optimized by minimizing the fluc-
tuations of the renormalized energy s�Ẽ� defined by (4)
and calculated from 2000 to 5000 different spin configu-
rations S�i� drawn according to p . Finally, the last step
consists in performing a long Monte Carlo simulation to
compute accurately the various quantities. The number
of clusters built varies from 106 (for the larger size) to
2 3 108 (for the smaller size). Results are presented in
Table I. Three different temperatures have been consid-
ered. T � 3 corresponds to the low-temperature regime,
T � Tc � 4
 ln�

p
2 1 1� is the critical temperature for

the infinite lattice, and T � 8 is in the high-temperature
regime of the model. At T � 3, our representation is
extremely good whatever the size of the lattice consid-
ered. The variance associated with the renormalized en-
ergy is drastically reduced with respect to the bare value
and the gain in computational effort can be as great as
�360. Here, the gain in computational effort is defined
as the ratio of the squared statistical errors �dẼ
dE�2. In
4683
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TABLE I. Internal energies for the 2D Ising model at different temperatures. N is the number of sites. Statistical uncertainties
on the last digit are indicated in parentheses.

Size 5 3 5 10 3 10 20 3 20 25 3 25 ` 3 `

T � 3

s�E�2
N 1.789(1) 1.777(2) 1.78(1) 1.79(1)
s�Ẽ�2
N 0.012 5(4) 0.006 1(1) 0.006 0(2) 0.006 1(2)

Ratio of variances �143 �291 �297 �293
�E
N� 23.902 044�31� 23.902 200�55� 23.902 17�21.4� 23.902 42�29�
�Ẽ
N� 23.902 020�2.4� 23.902 229�3� 23.902 25�1.2� 23.902 22�1.5�

Gain in computational effort a �167 �336 �318 �360
�E
N� Exact value 23.902 021 4 . . . 23.902 233 1 . . . b

T � Tc � 4.538 37 . . .

s�E�2
N 18.581(4) 25.97(3) 33.1(2) 35.3(2)
s�Ẽ�2
N 0.215(2) 4.85(1) 16.5(1) 16.9(2)

Ratio of variances �86 �5.4 �2.0 �2.1
�E
N� 23.073 34�13� 22.952 14�33� 22.890 2�12� 22.880 0�14�
�Ẽ
N� 23.073 45�1.3� 22.952 36�13� 22.890 8�7� 22.878 8�8�

Gain in computational effort a �100 �6.4 �3 �3.1
�E
N� Exact value 23.073 439 6 . . . 22.828 427 1 . . . b

T � 8

s�E�2
N 13.17(1) 10.96 11.1(2) 10.9(3)
s�Ẽ�2
N 0.041 0.455 0.8(1) 0.9(1)

Ratio of variances �321.2 �24 �13.9 �12
�E
N� 21.164 40�33� 21.115 56�48� 21.115 6�20� 21.116 5�25.6�
�Ẽ
N� 21.163 48�1.6� 21.115 02�8.2� 21.114 5�4.4� 21.114 5�5.6�

Gain in computational effort a �425 �34 �20.7 �20.9
�E
N� Exact value 21.163 492 6 . . . 21.114 544 4 . . . b

aSee text for definition.
bReference [5].
other words, according to Eq. (3) it represents the factor
by which it would be necessary to increase the number
of Monte Carlo steps in the standard approach to get the
same accuracy. Note that for L � 5 our Monte Carlo
value coincides with the exact one (computed by exact
numeration of the 2N configurations) with an accuracy of
less than 1026. Note also that our MC values converge
as the size is increased to the exact infinite-lattice value
as given by the Onsager solution [5]. At T � 8 (high-
temperature regime) our representation is not as good, but
still very satisfactory. As a function of the size, the gain
in computational effort converges and a value of about
20 is gotten. At the infinite-lattice critical value the re-
sults are less spectacular but still of interest. A converged
value of about 3 for the gain in efficiency is obtained. At
this temperature the correlation length for the spin vari-
ables diverges and more accurate representations for the
solution of Eq. (14) are needed. Starting from our basic
equation built from a transition probability corresponding
to local moves we need to resort to approximate solutions
which contain in some way the collective spin excitations.
Alternatively, we can change our fundamental equation
by resorting to a nonlocal transition probability density,
and then to a new operator H. A natural choice is, of
course, the transition probability of the Swendsen-Wang
4684
algorithm used here to generate configurations. Prelimi-
nary calculations show that statistical fluctuations are in-
deed strongly decreased. However, to sum up analytically
all contributions corresponding to the different Swendsen-
Wang clusters (action of H on c) is very time consuming,
and the advantages of the method can be lost. Some ap-
proximate scheme is clearly called for; this is left for fu-
ture development. Finally, a last important point is that
the gain in computational effort is found to be systemati-
cally greater (by about 50%) than the corresponding ra-
tio of variances. This result is a direct consequence of
the fact that the integrated autocorrelation time known
to control the amount of correlation between successive
measurements (see, e.g., [3]) has been decreased when
passing from the bare observable to the renormalized one.
Note that a similar behavior has also been obtained in
applications based on improved estimators [2,3]. With-
out entering into the details, it can be shown that this re-
sult is directly related to the fact that the fluctuations of
the renormalized observable are much smaller than in the
bare case.

The second application illustrates the method in the case
of a continuous configuration space (calculation of multi-
dimensional integrals). We have calculated a mean en-
ergy as it appears in the so-called variational Monte Carlo
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TABLE II. Energy of the helium atom. All quantities are
given in atomic units. Statistical uncertainties on the last digit
are indicated in parentheses.

Variational Monte Carlo

s�EL�2 0.040 9(2)
s�ẼL�2 0.006 88
Ratio of variances �5.9
�EL� 22.896 71�4.8�
�ẼL� 22.896 74�1.6�
Gain in computational effort a �9

Exact Green’s function Monte Carlo b

s�EL�2 0.041 1(9)
s�ẼL�2 0.008 55(8)
Ratio of variances �4.9
�EL� 22.903 745�99�
�ẼL� 22.903 734�33�
Gain in computational effort a �9
Exact energy 22.903 724 377 . . . c

aSee text for definition.
bReference [9].
cReference [10].

(VMC) methods [6]. Starting from a quantum Hamilton-
ian HQ (to be distinguished from our trial operator H) and
a known trial-wave function cT , our purpose is to compute
the variational energy Ey associated with cT . Ey can be
easily rewritten as an average over the probability distribu-
tion c

2
T , Ey � �EL� where EL � HQcT
cT is called the

local energy. Here, we consider the case of the helium

atom described by the Hamiltonian HQ � 21
2� �=1
2

1

�=2
2
� 2 2
r1 2 2
r2 1 1
r12 (atomic units) with usual

notations. As trial wave function a standard form has been
chosen [7],

cT ��r1, �r2� � exp

∑
ar12

1 1 br12
2 c�r1 1 r2�

∏
1s�r1�1s�r2� ,

(15)
where 1s�r� is the Hartree-Fock orbital as given by
Clementi and Roetti [8], and the variational parame-
ters have been chosen to be a � 0.5, b � 0.522, and
c � 0.0706. As already remarked, a natural choice for the
trial Hamiltonian H is a Schrödinger operator admitting
cT as ground state, Eqs. (10) and (11). Regarding c

we have chosen a form similar to the trial wave function
multiplied by some function of the potential energy.
Configurations are generated using a standard Metropolis
algorithm with local moves constructed using a Langevin
equation [7]. Results are presented in Table II. It is seen
that the introduction of the renormalized local energy
increases the efficiency of the Monte Carlo calculation by
about 1 order of magnitude.
In the last application it is shown that the method can
even be used in exact (zero-temperature) quantum Monte
Carlo (QMC) calculations. In QMC a combination of
diffusion and branching process is used to construct a
stationary density proportional to cTc0, where c0 is the
exact unknown ground-state wave function. By averaging
the local energy over this distribution, an estimate of the
exact energy E0 is obtained [6]. Although the analytical
form of the stationary density is no longer known, a
renormalized function whose average is identical to that
of the bare local energy can still be defined, ẼL � EL 1

�H 2 E0�c
cT , where H admits cT as eigenvector,
HcT � 0. Calculations have been done using the exact
Green’s function Monte Carlo of Ceperley and Alder [9].
Results are presented in Table II. They are of a quality
similar to that obtained in the variational case. About
1 order of magnitude in computer time has been gained.

To conclude, we have presented a simple and powerful
method to greatly increase at little cost the efficiency
of Monte Carlo calculations. The examples presented
have been chosen to illustrate the great versatility of
the method (discrete and continuous configuration spaces,
classical or quantum Monte Carlo, local or nonlocal
Monte Carlo updates). Although our examples have only
been concerned with total energies, let us emphasize
that the zero-variance principle is valid for any type of
observable including important quantities such as local
properties other than energy, differences of energies,
spatial correlation functions, etc.
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In this paper we discuss various aspects of diffusion Monte Carlo methods using a fixed number of walkers.
First, a rigorous proof of the divergence of pure diffusion Monte Carlo~PDMC! methods~DMC without
branching in which the weights are carried along trajectories! is given. Second, a bias-free Monte Carlo method
combining DMC and PDMC approaches, and based on a minimal stochastic reconfiguration of the population,
is discussed. Finally, some illustrative calculations for a system of coupled quantum rotators are presented.

PACS number~s!: 02.70.Lq, 75.40.Mg
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I. INTRODUCTION

Quantum Monte Carlo~QMC! methods are powerful ap
proaches to compute the ground-state properties of quan
systems. They have been applied with success to a g
variety of problems including quantum liquids and solid
nuclear matter, spin systems, the electron gas, the electr
structure of small atoms and molecules, etc.~see, e.g., Refs
@1–4#!. The basic idea of QMC is to extract from a know
trial vectorucT& its exact ground-state componentuc0&. This
is realized by using an operatorG(H) acting as a filter,

lim
L→`

G~H!LucT&;uc0&, ~1!

where H is the Hamiltonian operator of the system. F
problems defined in a continuous configuration space
forms for G(H) are usually introduced; they define the tw
following types of approaches.

~i! Diffusion Monte Carlo~DMC! methods

G~H!5e2t(H2ET). ~2!

~ii ! Green’s function Monte Carlo~GFMC! methods

G~H!5
1

11t~H2ET!
, ~3!

whereET is some reference energy andt plays the role of a
time step. For lattice problems or any problem described
a Hamiltonian matrix in a finite linear space, a most natu
choice is

G~H![12t~H2ET! ~4!

and the method is usually referred to as lattice Green’s fu
tion Monte Carlo. Note that the denomination ‘‘project
Monte Carlo’’ is also found in the literature to refer to any
the previous variants of the method. For simplicity we sh
use here the general denomination ‘‘diffusion Monte Carl
for QMC methods based on Eq.~1! and present our result
for a finite linear space with the choice~4! for the operator
G(H). All results presented in this paper can be straightf
wardly generalized to continuous models.
PRE 611063-651X/2000/61~4!/4566~10!/$15.00
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In a Monte Carlo scheme, successive applications
G(H) are done using probabilistic rules. In short, it is bas
on the fact that the quantity

Pi→ j* ~t![cT~ j !^ j u@12t~H2ET!#u i &
1

cT~ i !
~5!

can be viewed as a ‘‘generalized’’ transition probability a
can be used to sample stochastically the action ofG(H) on
an arbitrary vector. This statement can be made more exp
by rewriting Pi→ j* (t) under the form

Pi→ j* ~t![Pi→ j~t!wi j , ~6!

where

Pi→ j~t![cT~ j !^ j u@12t~H2EL!#u i &
1

cT~ i !
~7!

is now a genuine transition probability:Pi→ j (t)>0 and
( j Pi→ j51 ~the latter condition is not fulfilled byPi→ j* , ex-
cept whenucT& is the exact ground state! and where the
quantitywi j is defined as follows:

wi j [
^ i u@12t~H2ET!#u j &
^ i u@12t~H2EL!#u j &

. ~8!

In both expressionsEL is the so-called local energy whic
plays an important role in any QMC scheme

EL~ i !5
^ i uHucT&

^ i ucT&
. ~9!

In order to apply stochasticallyG(H), two type of ap-
proaches have been considered. A first type of approac
consists in using the transition probabilityPi→ j to generate
successive states and then introducing at each step the q
tity wi j as a weight in the averages~‘‘to carry’’ the weights!.
In this type of approaches the number of configurations~or
‘‘walkers’’ ! is constant by the very definition of the stocha
tic process. These methods are usually referred to as pure~no
branching! diffusion Monte Carlo~PDMC! methods. In the
second type of approach a birth-death~or branching! process
associated with the local weight is introduced. In practice
4566 © 2000 The American Physical Society
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consists in adding to the stochastic move defined by the t
sition probability, a new step in which the current config
ration is destroyed or copied a number of times proportio
to the local weightwi j . In these methods—generically re
ferred to as the diffusion Monte Carlo method—the num
of configurations is no longer constant. Remark that
theory there is no need to go beyond the pure diffus
Monte Carlo method. In practice, this is not true since
numerical experience has shown that for extended an
complex systems, the efficiency~computer time needed t
achieve a given accuracy! is drastically reduced when con
figurations are let to go to regions of configuration spa
where the weights are small. In other words, it is import
to sample less frequently regions where the total weigh
small and to accumulate statistics where it is large. This
the basic reason which motivates the introduction of
branching process and justifies the widespread use of D
compared to PDMC methods. Now, since in DMC the nu
ber of walkers can fluctuate, some sort of population con
is required. Indeed, nothing prevents the total populat
from exploding or collapsing entirely. Various solutions
this problem have been proposed. The most employed
proaches consist either in performing from time to time
random deletion/duplication step or in varying slowly t
reference energy to keep the average number of walkers
proximately constant. In both cases, a finite bias is int
duced by the population control step. In order to minim
this undesirable source of error it is important to control
size of population as rarely as possible and in the most ge
way @1#.

Very recently, following an idea introduced by Hetherin
ton @5#, Sorella and co-workers@6–8# have reconsidered th
use of stochastic reconfiguration in diffusion Monte Car
Their motivation is to combine the best of both worlds: ef
ciency of DMC and absence of bias as in PDMC. Th
approach is derived within a PDMC framework~the walkers
‘‘carry’’ some weight! but the population is ‘‘reconfigured’
using specific rules. The reconfiguration is done in a s
way that the number of walkers is kept constant at each s

In this work we present a number of results regard
diffusion Monte Carlo methods and stochastic reconfigu
tion strategies. First, we present a rigorous proof that
PDMC method is expected to diverge as the simulation t
and the number of iterationsL @as defined by Eq.~1!# are let
to go to infinity. This result is not surprising and has alrea
been realized by a number of authors. However, to
knowledge no rigorous arguments have been given so fa
clarify this point. In general, it is stated in a more or le
detailed fashion that the variance of the product of weig
wi j explodes as the number of iterations is made large. Q
interestingly, the derivation of the proof of the divergence
PDMC presented here shows that this result is in fact
from being trivial. In particular, the proof of the divergenc
requires some care from a mathematical point of view. S
ond, we present a variant of the stochastic reconfigura
method which we consider to be a minimal bias-free QM
method combining efficiently PDMC and DMC ideas. Th
approach is built such as to minimize as much as possible
fluctuations associated with the reconfiguration step and
to recover the PDMC and DMC methods as two well-defin
n-
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limits. Finally, we illustrate and compare the respecti
qualities and drawbacks of the different approaches on s
numerical examples.

The organization of the paper is as follows. In Sec. II w
give the basic ingredients of the diffusion Monte Carlo me
ods. Section III is devoted to the derivation of the proof
the divergence of PDMC approaches. Section IV discus
the construction of a DMC method including a minimal r
configuration process. In Sec. V some practical calculati
for a system of coupled quantum rotators are shown. Ca
lations are intended to illustrate the important aspects of
various DMC approaches discussed in this work. Finally
summary of our results is presented in Sec. VI.

II. DIFFUSION MONTE CARLO METHODS

In this section we give a very brief account of the ma
aspects of diffusion Monte Carlo methods. This part is
sentially designed to introduce formulas and notations u
in the following sections. It will also enable the nonexpert
understand the major steps of DMC approaches. For m
detailed presentations of the implementation of DMC to l
tice ~finite! systems the reader is referred to Refs.@9–12#.

A. Pure diffusion Monte Carlo

As already mentioned in the Introduction the basic idea
QMC approaches is to extract from a known trial vectorucT&
its exact ground-state componentuc0&. Note that such ap-
proaches are in a very close relation with power-type me
ods in which the ground-state eigenvector is obtained
applying a large number of times the matrix on an arbitra
initial vector. Here, the major difference is that the basic s
~matrix times a vector! is no longer done exactly~the size of
the linear space is too large! but in a probabilistic way using
a Markov chain. Once the ground-state eigenvector has b
determined, a number of properties can be obtained. As
important example, the energy is given by

E05 lim
L→`

^cTuH@12t~H2ET!#LucT&

^cTu@12t~H2ET!#LucT&
. ~10!

Using the basic formula relating the matrix elements of
Hamiltonian and the ‘‘generalized’’ transition probability a
ready presented in the Introduction, Eqs.~5!–~8!, we easily
get

E05 lim
L→`

,

K K EL~ i L! )
k50

L21

wi ki k11L L Y K K )
k50

L21

wi ki k11L L . ~11!

In this formula the symbol̂ ^•••&& denotes the stochasti
average over all realizations of the Markov chain describ
by Pi→ j , Eq. ~7!. It is easily checked that the stationa
density of the process verifying

(
i

P i Pi→ j~t!5P j ~12!

is given by
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P i5cT~ i !2. ~13!

The probability of a given realization of the chain corr
sponding toL steps and a total time oft5Lt is

P@ i 0→ i 1→••• i L21→ i L#5P i 0
Pi 0→ i 1

~t!•••Pi L21→ i L
~t!.
~14!

Remark that in the limitP→` andt→0 with t5Lt fixed,
this probability defines a functional measure on the set o
‘‘trajectories’’ of time-length t. View from that point, for-
mula ~11! is nothing but a generalized version of the we
known Feynman-Kac formula@13–15#. Using the ergodic
~recurrent! property of the Markov chain, the sum-over-a
trajectories restricted to a finite time interval can be rewrit
as a sum alongone singlearbitrary infinite realization of the
chain

E05 lim
L→`

1

L (
j 51

L

EL~ j !)
k50

j 21

wkk11

1/L (
j 51

L

)
k50

j 21

wkk11

, ~15!

where different states are denoted for simplicity
@0,1,2, . . . ,L#. In practice, numerical calculations are bas
on this formula which is particular simple to implement on
computer. Now, for later use, let us remark that the ba
equation~11! can be rewritten as a simple sum-over sta
under the form

E05(
i

EL~ i !Pi /(
i

Pi , ~16!

where the probabilityPi associated with a given statei is
given by

Pi[ lim
L→`

(
i 0 ,i 1 , . . . ,i L21

P@ i 0→ i 1→••• i L21→ i L# )
k50

L21

wi ki k11
,

~17!

where, for simplicity of notation, statei is identified to state
i L . By using Eqs.~7!, ~8!, ~13!, and ~14! it can be verified
that Pi is given by

Pi5cT~ i !c0~ i ! ~18!

up to an immaterial normalization constant. Note that wh
the weights are all taken to be equal to one,Pi reduces to the
stationary densityP i of the Markov chain as it should be.

B. Diffusion Monte Carlo

In the pure DMC method just described the number
configurations is kept fixed and the weights are carried
along random sequences of states. In DMC approaches
weight is introduced directly into the stochastic process v
birth-death or branching process. In practice, it consists
adding to the standard stochastic move of the PDMC met
a new step in which the current configuration is destroyed
copied a number of times proportional to the local weig
Denotingmi j the number of copies~multiplicity! of the state
j, we take
ll

n

s

ic
s

n

f
t

the
a
f
d
r
.

mi j [ int~wi j 1h!, ~19!

where int(x) denotes the integer part ofx, andh a uniform
random number on (0,1). In theory, such a process is pr
erly defined only for an infinite number of walkers. O
course, in practice only a large but finite number of walke
~a population! is considered. Adding a branching process c
be viewed as sampling directly with the generalized tran
tion probabilityPi→ j* (t) defined above, Eq.~5!. The fact that
its normalization is not constant is responsible for the flu
tuations of population. However, a stationary density for t
modified process can still be defined. By writing the statio
ary condition

(
i

Pi Pi→ j* ~t!5Pj ~20!

we see from Eq.~5! that this relation is fulfilled ifET is
chosen to be the exact energyE0 and for the following sta-
tionary density:

Pi5cT~ i !c0~ i !. ~21!

By using a stabilized population of configurations the ex
energy may be obtained as

E05^^EL&&w . ~22!

Note the use of an additional subscriptw in the average to
recall the presence of the branching process. Formally,
pressions~16! and ~22! for the estimate of the exact energ
in PDMC and DMC methods, respectively, are identical. T
same for the expressions of the probabilityPi of a given state
i in both approaches, Eqs.~18!,~21!. However, there is an
essential difference which distinguishes both methods. T
is the way that this probability is realized stochastically.
PDMC, the stationary density of the Markov chain isP
5CT

2 and Pi represents some effective probability obtain
from averaging the weights along trajectories of infin
time-length, formula~17!. In DMC, the probabilityPi is re-
alized by the stochastic process itself. There is no nee
introduce additional weights in averages@see formula~22!#.
As a consequence, the DMC approach is a much more st
method from a numerical point of view. The price to pay f
that is the introduction of a bias resulting from the popu
tion control ~done either by random deletion/duplication
smooth variation of the reference energy, see discussio
the Introduction!. In contrast, with PDMC there is no nee
for population control. However, as we shall see in the n
section, the method is intrisically unstable.

III. DIVERGENCE OF THE PDMC

In this section it is shown that the estimate of the effect
probability Pi associated with a given statei as defined in
PDMC, Eq.~17!, does not converge to a finite determinist
value. Let us defineln( i )(n>1) the product of weights be
tween the (n21)th andnth occurences of statei in the Mar-
kov sequence:

ln~ i ![ )
l 5Nn21

Nn21

wi l i l 11
, ~23!
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whereNk denotes the time index of the Markov chain. Let
denoteXn( i ) the total weight associated with all states o
curing between timeNn21 and timeNn

Xn~ i ![ (
k5Nn21

Nn

)
l 5Nn21

k21

wi l i l 11
. ~24!
.
n

s
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f
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e
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ti
q
n

-
As an important consequence of the Markov property
pairs of random variables@Xn( i ),ln( i )# are independent and
equidistributed~same law!. Only random variablesX andl
corresponding to the same indexn and same statei are de-
pendent. Using the ergodic property of the chain and pre
ous definitions, expression~17! for Pi can be rewritten as
Pi~n![
l1~ i !1l1~ i !l2~ i !1•••1l1~ i !l2~ i !•••ln~ i !

X1~ i !1l1~ i !X2~ i !1•••1l1~ i !l2~ i !•••ln21~ i !Xn~ i !
~25!
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when the numbern of occurences of statei becomes large
Now, our problem is to determine whether or not this qua
tity has a well-defined limit asn goes to infinity. For reason
we shall understand later, two different cases must be dis
guished. DenotingE@ ln(l)# the finite expectation value o
the random variablel we consider separately the two cas
uE@ ln(l)#u.0 and E@ ln(l)#50. Note that the time or stat
indices are not specified since all random variablesl are
independent and of the same law.

A. zE† ln l‡zÌ0

Let us first consider the caseE@ ln l#.0. After some el-
ementary manipulations the inverse ofPi(n) as expressed by
Eq.~25! can be rewritten in the equivalent form~same law!

1

Pi
5

X1~ i !1
X2~ i !

l2~ i !
1

X3~ i !

l2~ i !l3~ i !
1•••1

Xn~ i !

l2~ i !•••ln~ i !

l1~ i !111
1

l2~ i !
1

1

l2~ i !l3~ i !
1•••

1

l2~ i !•••ln~ i !

.

~26!

Note that, while deriving this expression, subscripts of r
dom variables have been interchanged. Such a manipula
is allowed since random variables are independent and e
distributed. To proceed further we define the following qua
tities:

Yn[
X2~ i !

l2~ i !
1

X3~ i !

l2~ i !l3~ i !
1•••1

Xn~ i !

l2~ i !•••ln~ i !

and

Zn[11
1

l2~ i !
1

1

l2~ i !l3~ i !
1•••1

1

l2~ i !•••ln~ i !
.

~27!

We then have

1

Pi
5

X11Yn

l11Zn
~28!

and

Yn

Zn
5

X21Yn21

l21Zn21
. ~29!
-

n-

-
on
ui-
-

Let us now suppose that 1/Pi converges to a constant. The
it follows that in the limit of largen, the random variables
Yn /Zn and (X11Yn)/(l11Zn) converge to the same con
stant. Now, since (Yn ,Zn) are independent of (X1 ,l1) @and
the same for (Yn21 ,Zn21) and (X2 ,l2)# it follows that the
random variables (X1 ,l1) must reduce to some constant
and the same for all (Xi ,l i). This result shows that, excep
in the trivial case where the weights are equal to one~no
branching!, Pi cannot converge to a well-defined limit asn
goes to infinity. Note that similar arguments can be given
the caseE(ln l),0, after the transformationl i→1/l i .

Now, the important remark is that all these arguments
valid only if the random variableZn converges to a finite
distribution. For our purposes, the convergence ofYn has not
to be considered here since the two conditions (Zn converges
and Pi finite and different from zero! implies the conver-
gence ofYn . In the caseE@ ln l#.0 the convergence ofZn is
a consequence of the law of large numbers. Indeed, acc
ing to this theorem, for a given realization of the Marko
chain there exist two constantsC.0 andb.1 such that

l1~ i !•••ln~ i !>Cbn ~30!

for n large enough. As a consequenceZn converges to a
positive andfinite distibution almost surely. In the cas
E@ ln l#50 this is no longer true:Zn tends to infinity for large
n and no direct constraint on the law of random variablesXi
or l i can be drawn. As a consequence, this case mus
treated separately. Before doing that, let us emphasize
this case is in fact general. Indeed, the expectation valu
ln l does not depend on the particular state~as a result of the
Markov property! and by multiplying all weights by a suit
able constant we can always imposeE(ln l)50.

B. E„ ln l…Ä0

To treat this case we try to depart as less as possible f
the previous case. For that we introduce some new quant
gn( i ) which will play a role similar to that played by quan
tities ln( i ), except that by their very definitiongn( i )>C
whereC is some constant strictly greater than 1. As a dir
consequenceE(ln g).0 and arguments similar to those em
ployed previously will be invoked.

Let us definegn( i ) as the product of weightswi ki k11
be-

tween two occurences of statei such that the ratio of the tota
product of weights at the two occurences is greater than
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constantC.1. gn( i ) can be written as

gn~ i !5 )
l 5Nf(n21)

Nf(n)21

wi l i l 11
, ~31!

wheref(n) denotes thef(n)th occurence of statei verify-
ing the condition associated with the thresholdC. More pre-
cisely,f(n) is defined as

f~n!5 inf(k.f(n21)11)H )
l 5Nf(n21)11

Nk

wi l i l 11
.CJ . ~32!

Note that the functionf(n) is well defined@successive val-
ues off(n) are finite# because we have
es

-
f
t

th
-
e

sup1<k<n(
l 51

k

ln l l~ i !→1`

as n→1` for a given realization.

~33!

This property is a consequence of the theorem~40! which
will be presented later. Roughly speaking, what is done h
is to extract from the full set of occurences of statei a subset
of occurences~labeled by the functionf) corresponding to a
series of ‘‘stopping times’’ along the random sequence. O
more, as a result of the Markov property the random va
ablesgn( i ) are independent and equidistributed. In additio
from their very definitiongn( i )>C.1. Using previous defi-
nitions we can rewritePi as
Pi~n![
U1~ i !1g1~ i !U2~ i !1•••1g1~ i !g2~ i !•••gn21~ i !Un~ i !

V1~ i !1g1~ i !V2~ i !1•••1g1~ i !g2~ i !•••gn21~ i !Vn~ i !
, ~34!
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whereUn( i ) represents the sum of the products ofl( i ) be-
tween the occurencesf(n21) andf(n)

Un~ i ![ (
k5Nf(n21)

Nf(n)

)
l 5Nf(n21)

k

l l~ i ! ~35!

andVn the sum of all weights between the two occurenc

Vn~ i ![ (
k5Nf(n21)

Nf(n) F )
l 5Nf(n21)

k

l l~ i !GXk~ i !

lk~ i !
. ~36!

The triplets (Un ,Vn ,gn) are independent and equidistrib
uted. After some elementary manipulations the inverse oPi
as expressed by Eq.~34! can be rewritten in the equivalen
form ~same law!

1

Pi
5

V11Tn

U11Wn
~37!

and

Tn

Wn
5

V21Tn21

U21Wn21
~38!

with the following definitions:

Tn[
V2~ i !

g2~ i !
1

V3~ i !

g2~ i !g3~ i !
1•••1

Vn~ i !

g2~ i !•••gn~ i !

and

Wn[
U2~ i !

g2~ i !
1

U3~ i !

g2~ i !g3~ i !
1•••1

Un~ i !

g2~ i !•••gn~ i !
.

~39!

In order to complete the proof we need to show that
series associated withWn converges to some finite distribu
tion ~as already discussed in the preceding section, the d
e

ri-

vation of the convergence ofTn is not necessary!. If Zn con-
verges we can conclude~same arguments as before! that Pi
converges to a finite~deterministic! value only if the ratio
Vn /Un is a constant, which is not the case. To do that let
first introduce the following theorem.

Theorem. Let Xl be a family of independent, equidistrib
uted and centered~zero mean! random variables. If all mo-
ments of the random variables are finite we have

sup1<k<n(
l 51

k

Xl

na
→1` as n→1` ;a,

1

2
. ~40!

This theorem is a consequence of the central-limit theor
Using rough arguments we can say that the sum of the in
pendent variables in the numerator converges to so
Gaussian distribution with a variance proportional ton and
that the greatest value is expected to behave as the sq
root of the varianceAn. As a consequence, the ratio of th
numerator and denominator must diverge as soon aa
.1/2. Although these arguments are correct, a rigorous d
vation is actually not so simple. It requires some mathem
cal care which is beyond the scope of this work. The deri
tion will be presented elsewhere@20#. Now, the important
point is that the random variables lnll(i) verify the hypoth-
eses of the theorem. They are independent, equidistrib
~with zero mean!, and as a consequence of the finite variati
of the weights and ‘‘stopping times’’@as defined by the func
tion f(n)# all their moments are finite. Using the fact th
f(n) is a series extracted from the full series of occuren
of statei we obtain the following property:

sup1<k<f(n)F(
l 51

k

ln l l~ i !G
f~n!a

→1` as n→1` ;a,
1

2
~41!
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or, equivalently,

(
l 51

n

ln g l~ i !

f~n!a
→1` as n→1` ; a,

1

2
. ~42!

Note that, in the particular casea50, we recover the prop
erty ~33!, a result which guarantees that the functionf(n) is
well defined. From its definition~35! the seriesUn( i ) is a
sum of at most~but not equal! f(n) terms all smaller than
the constantC except the last one which isgn( i ). Therefore,
we have

0<Un~ i !<Cf~n!1gn~ i !. ~43!

From this relation we can write

0<
Un~ i !

g2~ i !•••gn~ i !
<

Cf~n!

g2~ i !•••gn~ i !
1

1

g2~ i !•••gn~ i !
.

~44!

The series of general term 1/g2( i )•••gn( i ) is convergent
since allgn( i ) are greater or equal toC.1. Regarding the
other termAn[Cf(n)/g2( i )•••gn( i ) we can write as a re
sult of Eq.~42! that there exists a constantM (a) such that

f~n!<MF(
l 51

n

ln g l~ i !G1/a

for 0,a,
1

2
. ~45!

Therefore, we have

Cf~n!

g2~ i !•••gn~ i !
<CMg1~ i !

F ln )
l 51

n

g l~ i !G1/a

)
l 51

n

g l~ i !

. ~46!

From the fact that the function@ ln x#1/a/x decreases forx
large enough and thatg l.C it follows that An is bounded
from above byCMg1( i )@n ln C#1/a/Cn, the general term of a
convergent series. Finally, we can conclude that the se
Wn converges to some finite positive distribution. This res
completes our proof of the nonconvergence of the PDM
estimate of the effective probabilityPi .

IV. DMC WITH MINIMAL STOCHASTIC
RECONFIGURATION

As seen in the previous section PDMC is intrinsica
unstable. As already remarked, the basic reason for that is
increase of variance of the products of weights as a func
of the number of iterations~or projecting time!. However, as
illustrated by a number of applications performed using t
type of approaches~e.g., Refs.@15,11,16–19#! the method
has proven to be very useful. This is the case when the
wave function is accurate enough to allow the converge
of the various averages before large fluctuations associ
with large projecting times arise. When convergence
achieved no finite bias due to a population control proces
introduced. In order to make PDMC approaches effective
fluctuations of the weights must be decreased in some w
es
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n

s

al
e
ed
s
is
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Before considering this point, let us determine the dep
dence of the error as a function of the computational effor
a PDMC scheme. The fluctuations of the weight from ite
tion n to iterationn11 will be described by the varianceb2

defined as

b25

K S w(n11)

w(n) D 2L
K w(n11)

w(n) L 2 . ~47!

By definition b is greater or equal to one. The equality
obtained in the optimal case corresponding to cons
weights~no branching!. Let N be the total number of Monte
Carlo steps of the simulation~the computational effort is
proportional toN). The systematic error due to a finite pro
jecting time T ~number of iterationsL5T/t) is of order
exp(2TD) where D is the gap in energy of the model (D
5E12E0, whereE0 is the ground-state energy andE1 the
energy of the lowest state having a nonzero overlap with
trial wave function!. The statistical error due to the finit
statistics on some quantity evaluated at some fixed projec
time T is given by bT/AN/T. By equating both errors an
estimate of the relation between the computational effort~via
N) and a given accuracye can be obtained. In the large-N
limit the relation is easily found to be

e;
1

Ng/2

with

g5
D

ln b1D
. ~48!

When b51 ~no fluctuations of the weights! g51 and the
efficiency of the simulation is optimal: the standard 1/AN
law of diffusion processes is recovered. Asb is increased the
efficiency of the simulations can decrease quite rapidly. A
cordingly, to enhance the efficiency of PDMC the fluctu
tions of the weights must be decreased. An elegant solu
to this problem has been introduced more than ten years
by Hetherington@5#. The idea consists in carrying man
walkers simultaneously and introducing a global weight
sociated with the entire population instead of a local wei
for each walker. The global weightW is chosen to be the
average of the local weightswi l

Wi 1••• i M
[

1

M (
l 51

M

wi l
, ~49!

whereM is the number of walkers considered~to avoid con-
fusion between various indices only one subscript has b
used for individual weights!. By increasing the numberM of
walkers the fluctuations of the global weight is reduced a
b as defined in Eq.~47! is decreased. It is easy to check th
the quantity lnb decreases as the inverse of the number
walkers. As a consequence of Eq.~48! the gain in computa-
tional efficiency can be very important. Now, the meth
consists in defining a PDMC scheme in the enlarged lin
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space defined by the tensorial product (M times! of the ini-
tial linear space. In this new space the full transition pro
ability is defined as the tensorial product of individual tra
sition probabilities. Note that no correlation between t
stochastic moves of different walkers is introduced at t
level. Second, and this is the important point, each individ
weight carried by a walker is rewritten as a function of t
global weight

wi l
5w̃i l

~ i 1••• i M !Wi 1••• i M

with

w̃i l
~ i 1••• i M !5

wi l

Wi 1••• i M

. ~50!

This rewriting allows us to introduce the global weight as
weight common to all walkers and thus to define a stand
PDMC scheme in the tensorial product of spaces. To t
into account the new weightw̃i l

a so-called reconfiguration
process is introduced. At each step the total population oM
walkers is ‘‘reconfigured’’ by selecting with probability pro
portional tow̃ the same numberM of walkers. Note that, a
this point, some correlation between different walkers is
troduced. Now, let us discuss the two important limits of t
algorithm, namely, the case of an infinite number of walke
M→` and the case of constant weights,wi→1. WhenM
→` the global weight converges to its stationary ex
value. As a consequence, the different weightsw̃ associated
with each walker@as given by Eq.~50!# become independen
from each other and the reconfiguration process reduce
the usual branching process~19! without population control
and systematic bias since the population is infinite. In
limit wi→1 the method does not reduce to the stand
PDMC approach. Indeed, the reconfiguration step ‘‘recon
ures’’ the entire population whatever the values of t
weights. In order to improve the efficiency of such metho
this undesirable source of fluctuations must be reduced
the limit of the exact PDMC should be implemented in t
method. For that we divide the population of walkers in
two different sets. A first set of walkers corresponds to
walkers verifying w̃>1. These walkers can be potential
duplicated and will be called ‘‘positive’’ walkers. The othe
walkers verify 0<w̃,1, they can be potentially destroye
and will be called ‘‘negative walkers.’’ The number of re
configurations is defined as

NReconf5(
i 1

uw̃i21u5(
i 2

uw̃i21u, ~51!

where( i 1 (( i 2) indicates that the summation is done ov
the set of positive~negative! walkers. The equality in Eq
~51! is a simple consequence of the definition of positive a
negative walkers. In practice, an integer number of rec
figurations is obtained by considering int(Nreconf1h), where
h is a uniform random number on the interval~0,1!. Once
the number of reconfigurations has been drawn,Nreconf walk-
ers are added to or removed from the current population
drawing separatelyNreconfwalkers among the lists of positiv
and negative walkers. It is easily verified that by doing t
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no source of systematic error has been introduced and th
is equivalent to the original reconfiguration process of He
erington. However, in contrast with the latter the avera
number of reconfigurations is kept minimal and, cons
quently, the efficiency of the simulation is significantly e
hanced. In addition, the average number of reconfigurati
vanishes as the weights become constant. In other words
reconfiguration method reduces in this limit to the stand
PDMC method. In their recent work Calandra-Buonaura a
Sorella @7# ~CBS! have proposed to use a reconfigurati
process which is essentially identical to that of Hetheringt
except that the reconfiguration step is not necessarily don
each iteration. Besides reducing the finite bias on the stat
ary density they have shown that their approach allows
calculate efficiently ground-state correlation functions with
a forward walking approach. Here, our reconfiguration p
cess is built in order to minimize as much as possible
fluctuations of the weights at each step. As a conseque
the finite bias on the stationary density is also reduced
much as possible. In particular, and in contrast with the C
scheme, our algorithm is found to be optimal when the
configuration process is applied at each iteration.

V. AN ILLUSTRATIVE EXAMPLE

In this section we present some calculations illustrat
the various aspects of DMC approaches discussed in the
ceding sections. The system considered is a chain ofNs
coupled quantum rotators~one per site!. In the angular rep-
resentation the Hamiltonian is written

H[2(
i 51

Ns ]2

]u i
2

2
x

2 (
i 51

Ns

cos~u i 112u i !, ~52!

where (u1•••uNs
) are angular variablesu iPR/2pZ and pe-

riodic boundary conditions are used (uNs115u1). In this for-
mula x is a parameter defining the relative weight of t
potential and kinetic terms. It can be shown that the mo
described by this Hamiltonian has the same critical prop
ties as the two-dimensionalXY spin model@21#. The finite-
temperature Kosterlitz-Thouless~KT! classical phase transi
tion of the spin model is equivalent to a zero-temperat
quantum phase transition in the rotator model occuring
some critical value for the parameterx. Monte Carlo simu-
lations have been done in the angular momentum repre
tation. In this representationH is expressed in the discret
basis, u l 1••• l Ns

& ( l iPZ), consisting of the eigenvectors o
the angular momentum operators at different sites. We h

H5(
i 51

Ns

Ĵi
22

x

2 (
i 51

Ns

~f i 11
1 f i1H.c.!, ~53!

where the operators (f i
1 ,f i ,Ĵi) are defined as follows@Lie-

algebra ofO(2)#:

f i
1u l 1••• l i•••&5u l 1••• l i11•••&,

f i u l 1••• l i•••&5u l 1••• l i21•••&, ~54!

Ĵi u l 1••• l i•••&5 l i u l 1••• l i•••&.
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FIG. 1. PDMC calculation of
the energy as a function of th
projecting time.E0 is in units of

Ĵ2, Eqs.~53!,~54!.
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Here we are interested in calculating the ground-state en
of the model. Note that the ground state belongs to the f
damental representation ofO(2) corresponding to a tota
momentum equal to zero( i 51

Ns l i50. In what follows the
parameterx is taken to be 1.8, a value expected to be v
close to the exact critical value~see, Hameret al. @21#!. In
actual calculations we have takenNs56. By using exact
diagonalization methods~Lanczòs algorithm! and after ex-
trapolation to an infinite basis set (l i→`) we get E0
524.37367626~all digits converged! for parameters (x
51.8, Ns56).

In Fig. 1 a PDMC calculation of the exact energy is pr
sented. The trial wave function used is given by

cT5e2k(
i 51

Ns

l i
2
, ~55!
gy
n-

y

-

wherek is some positive parameter.
The unstable character of PDMC at large times is clea

illustrated. At zero-projecting time the variational energy a
sociated with the trial wave function is recovered with sm
fluctuations,Ev524.10284(25). The fact that this value
quite different from the exact one illustrates the poor qua
of the trial wave function. Now, when the projecting time
increased the estimate of the energy converges to the e
value~number of iterations of about 25!. For larger times the
estimate of the energy begins to wander and no stabiliza
is observed.

In Fig. 2 we present some DMC calculations perform
by using the standard branching process associated withwi j
@Eq. ~19!# and a population control step to keep the numb
of walkers under control. The population control has be
done by adjusting the reference energy to the fluctuation
population by using a formula of the type
f

FIG. 2. DMC calculation of

the exact energy as a function o
the size of the population.E0 is in

units of Ĵ2, Eqs.~53!,~54!.
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FIG. 3. PDMC with stochastic
reconfiguration method.E0 is in

units of Ĵ2, Eqs.~53!,~54!.
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ET~ t1t!5ET~ t !1K/t ln@M ~ t !/M ~ t1t!#, ~56!

whereM (t) is the total number of walkers at timet andK is
some positive constant. WhenM (t1t).M (t) the reference
energy is reduced and more walkers are killed at the n
step. In the opposite caseET is raised and more walkers ar
duplicated.

Calculations have been done with populations of differ
sizes ranging fromM540 to M5100. At M540 the bias is
small ~systematic error of about 1/1000! but much greater
than the statistical error. The error is seen to decrease a
size of the population is increased. ForM5100 it is smaller
than the statistical error. It should be emphasized that
magnitude of the systematic error is very dependent on
quality of the trial wave function. Here a quite simple tri
xt

t

the

e
e

wave function has been used. With more sophisticated
fully optimized forms the error would be much smaller.

In Fig. 3 we present a PDMC calculation with the origin
reconfiguration process of Hetherington. The number
walkers used isM550. When compared to the PDMC ca
culation of Fig. 1~same range for the projecting time! the
stabilization in time resulting from the use of the glob
weight and the reconfiguration process is clearly seen
chaotic behavior similar to that observed in Fig. 1 at lar
times is also expected but for much larger projecting tim

In the next figure, Fig. 4, we present our improved vers
for the stochastic reconfiguration process. The converge
as a function of time of the energy is very satisfactory a
the fluctuations are reduced. Note that the value of the
ergy at the origin~no projection! E0524.37115(16) is
FIG. 4. PDMC with minimal
stochastic reconfiguration.E0 is in

units of Ĵ2, Eqs.~53!,~54!.
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much closer to the exact result (E0524.37367•••) than in
the standard case~Fig. 3! E0524.36708(24). This result is
a direct consequence of the fact that the average numb
reconfigurations with our minimal scheme is much sma
than in the previous case. In other words, the effective nu
ber of walkers has been increased and, then, the finite bia
the stationary density has been reduced. Note that in the
of an infinite number of walkers the finite error on the ener
would entirely disappear.

VI. SUMMARY

In this paper we have discussed various aspects of d
sion Monte Carlo methods at fixed number of walkers. Fi
we have concentrated our attention on the so-called pure
fusion Monte Carlo~PDMC! methods in which no branchin
process is introduced~the weights are carried! and for which
the number of configurations is kept fixed at any level of
algorithm. As already remarked by a number of autho
PDMC methods are powerful, but they suffer from a sev
problem at large projecting times~rapid increase of the vari
ance!. In this paper this statement has been made much m
precise by showing that the statistical estimate of the ef
tr
of
r
-
on
it

y

u-
t,
if-

e
,
e

re
c-

tive probability associated with a given state as calculated
a PDMC scheme does not converge to a finite determini
value. This is in sharp contrast with what happens in DM
where a different —but biased— estimate is used for
same quantity. Quite interestingly, the derivation of the pro
turns out to be far from being trivial. In particular, it wa
necessary to deal in detail with a difficult case@E(ln l)50
with our notations# from which a convergent variant o
PDMC could have emerged. Second, based on an orig
estimate of the PDMC error@formula ~48!# we have dis-
cussed the most natural generalization of PDMC which
make the method effective for problems associated w
large fluctuations of the weights. By introducing stochas
reconfiguration processes as proposed by Hetherington
very recently reconsidered by Sorella and co-workers
have proposed an alternative approach to realize what ca
called a minimal stochastic reconfiguration DMC approa
The method has been designed to reduce as much as po
the statistical fluctuations associated with the reconfigura
process and also to recover both PDMC and DMC lim
The numerical calculations presented have illustrated the
lidity of such an approach.
ys.
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We present a simple and stable quantum Monte Carlo approach for computing forces between atoms
in a molecule. In this approach we propose to use as Monte Carlo estimator of the force the standard
Hellmann–Feynman expression~local force expressed as the derivative of the total potential energy
with respect to the internuclear coordinates!. Invoking a recently introduced zero-variance principle
it is shown how the infinite variance associated with the Hellmann–Feynman estimator can be made
finite by introducing some suitably renormalized expression for the force. Practical calculations for
the molecules H2 , Li2 , LiH, and C2 illustrate the efficiency of the method. ©2000 American
Institute of Physics.@S0021-9606~00!31330-7#
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I. INTRODUCTION

Over the recent years quantum Monte Carlo~QMC!
methods have become more and more successful in com
ing ground-state properties of atomic and molecular syst
~see, e.g., Refs. 1–3!. However, the vast majority of applica
tions has been limited to the calculation of the ground-s
total energy. Although this is clearly a most important qua
tity, other properties~dipole moments, forces, polarizabi
ities, etc.! are also of primary interest. In theory, there is
difficulty for computing such quantities within a QMC
framework. However, in practice, the convergence of
Monte Carlo calculations is much more slower and, the
fore, much more computationally demanding than the cas
the energy. Thus, only a limited number of calculations
properties can be found in the literature. The fundame
point allowing very efficient and accurate calculations of t
energy~compared to other properties! is the existence of a
so-called ‘‘zero-variance’’ property for this special obser
able. To understand this point, let us first briefly recall h
the energy is computed with QMC. In short, the energy
expressed as a simple average over some suitably ch
distribution

E05^EL&, ~1!

where the bracketŝ• • • & denote the statistical average a
EL is a local function defined as

EL~x!5HcT /cT , ~2!

and usually referred to as the local energy. Here,H denotes
the Hamiltonian under consideration andcT a trial wave
function. The distribution for the average defines the type
quantum Monte Carlo calculation performed. In variation
Monte Carlo~VMC! schemes, the distribution is construct

a!Electronic mail: assaraf@sissa.it
b!Electronic mail: mc@lct.jussieu.fr
4020021-9606/2000/113(10)/4028/7/$17.00
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to be proportional tocT
2 and Eq.~1! is nothing but an esti-

mate of the standard quantum-mechanical variational ene
associated with the trial wave function. In diffusion Mon
Carlo ~DMC! schemes, the stochastic rules employed to g
erate configurations are essentially similar to those of VM
except that a new step—a branching process—is adde
pass from the VMC distribution to the so-called ‘‘mixed
distribution given byf0cT , where f0 denotes the exac
ground-state wave function. In that case, Eq.~1! realizes an
exact estimate of the energy. From expression~1! it is clear
that the statistical error on the energy is directly related to
magnitude of the fluctuations of the local energy. In tu
such fluctuations depend on the ‘‘quality’’ of the trial wav
function. The closer the trial wave function is to the exa
one, the smaller these fluctuations are. In the limit of
exact trial wave function the local energy becomes stric
constant and the statistical error vanishes completely. Th
the result which is known as the ‘‘zero-variance’’ propert
In practice, this property is of great importance: very acc
rate calculations can be performed with a reasonable am
of computer time only if accurate enough trial wave fun
tions are at our disposal. When no particular trial wave fu
tion is used@cT51 in the preceding formula,~1!# the local
energy reduces to the total potential energy. In this case
statistical error on the energy is very important since the b
potential fluctuates enormously. Introducing a trial wa
function can be viewed as defining a ‘‘renormalizing proc
dure’’ applied to the bare potential in order to reduce
fluctuations. Of course, such a process is allowed only
cause both the bare potential~the total potential energy! and
the renormalized one~the local energy! have the same aver
age.

Very recently, we have generalized this zero-varian
property to any observable defined on the configurat
space.4 DenotingO some rather arbitrary observable we ha
shown that it is possible to constructin a systematic waya
renormalized observableÕ verifying:
8 © 2000 American Institute of Physics
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4029J. Chem. Phys., Vol. 113, No. 10, 8 September 2000 Forces with quantum Monte Carlo
^Õ&5^O& ~3!

and

s2~Õ!,s2~O! ~4!

wheres2(A) represents the variance of operatorA

s2~A![^~A2^A&!2&. ~5!

When usingÕ instead ofO as estimator of the observabl
the convergence of the calculations can be improved s
the statistical error on a finite Monte Carlo sample is direc
proportional to the variance of the quantity to be averag
As we shall see later, the renormalized observable depe
on two auxiliary quantities,H̃ andc̃ which play a role simi-
lar to that played byH andcT in the renormalized version o
the bare potential, Eq.~2!. Some preliminary classical an
quantum Monte Carlo calculations on simple systems h
shown that very important reduction of the computatio
effort can be achieved by using this general zero-varia
principle.4 In the present paper we apply this idea to t
problem of calculating forces between atoms in molecu
The calculation of forces is known to be a very difficult ta
for QMC methods.3 Some calculations limited to very sma
molecules ~typically H2 and LiH! have been reported.5,6

However, their extension to bigger systems is essentially
realistic. Note that very recently Filippi and Umrigar ha
presented a new method for computing forces.7 Their method
is based on a special transformation coordinates and a c
lated sampling approach. Here, we follow a quite differe
route. It is shown that forces can be computed in a v
natural way by using the standard Hellmann–Feynman~HF!
theorem. More precisely, the force is computed as the a
age of the local force, a quantity defined as the gradien
the potential energy with respect to the internuclear coo
nates. In previous works~see, e.g., discussion in Ref. 3! such
a possibility was excluded because of the uncontrolled
tistical fluctuations associated with the bare force~infinite
variance!. Here, it will be shown that with the help of th
generalized zero-variance principle, the pathological par
the force responsible for the infinite variance can be remo
exactly in a simple and general way. Once this is achieve
is possible to perform stable calculations of the forces
using standard variational and diffusion Monte Carlo me
ods. The first applications presented here illustrate the a
racy and efficiency of the method.

II. METHOD

To compute forces between atoms in a molecule we t
advantage of the Hellmann–Feynman theorem. Accordin
this theorem the average force defined as

^Fq&[2¹qE0~q! ~6!

is given by the expectation value of the gradient of the
tential ~local force!

^Fq&5
*dx f0

2~x,q!Fq~x,q!

*dx f0
2~x,q!

, ~7!

with
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Fq~x![2“qV~x,q!. ~8!

In these formulasq represents the set of the 3Nnucl nuclear
coordinates (Nnucl being the number of nuclei!, V the total
potential energy operator of the problem,E0(q) the total
ground-state energy for a given molecular geometry, andf0

the corresponding ground-state wave function.
As remarked by a number of authors, one of the ma

difficulties in computing forces by QMC via formulas~7!
and~8! is the presence of uncontrolled statistical fluctuatio
~see, e.g., Ref. 3!. Indeed, the variance of the Hellmann
Feynman estimator of the force is infinite. This is a simp
consequence of the fact that at short electron-nucleus
tancesr, the local force behaves asF;1/r 2, so that^F2&
5`. Various solutions to this problem have been propos
A common idea consists in introducing some sort of cut
when the electrons approach the nuclei.6 However, by doing
this a systematic error is introduced. In addition, to cont
this error is a very tricky problem since any extrapolati
procedure~cutoff going to zero! is ill-defined.

To escape from this difficulty we propose to replace t
standard expression of the local forceFq(x) by a ‘‘renormal-
ized’’ expression, F̃q(x), having the same average b
smaller fluctuations. It should be emphasized that the
crease in fluctuations will be dramatic here since, in contr
with the bare expression, the renormalized version will ha
now finite fluctuations. Let us give the explicit expressio
for the renormalized quantities. We shall consider two d
ferent cases. The first case corresponds to variational M
Carlo ~VMC! calculations. The distribution of walkers i
configuration space,p(x) is given by

pVMC~x!;cT
2~x!. ~9!

The second case corresponds to calculations within the
fusion Monte Carlo~DMC! approach. In that case the distr
bution employed is the so-called mixed distribution given

pDMC~x!;cT~x!f0~x!. ~10!

In the variational case and for a particular componentq we
consider the following renormalized expression:

F̃q~x!5Fq~x!1F H̃c̃

c̃
2

H̃cT

cT
G c̃

cT
, ~11!

whereH̃ is some rather arbitrary auxiliary Hermitian oper
tor and c̃ an arbitrary auxiliary function~supposed to be
square-integrable!. Note that the choice of the auxiliar
quantities depends on the particular componentq considered.
BecauseH̃ is Hermitian we havêcTuH̃uc̃&5^c̃uH̃ucT& and
it is an elementary exercise to check that the average valu
the bare and renormalized expressions over the VMC dis
bution ~9! are identical

^F̃q&5^Fq&. ~12!

Note that this result requires that both the trial function a
its first derivatives are continuous over the whole configu
tion space. These conditions are fulfilled by the trial wa
functions used in VMC schemes. Now, regarding the va
ances we have the following expression:
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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s2~ F̃q![^~ F̃q2^F̃q&!2&

5s2~Fq!12^Fq DH w&1^DH2 w2&, ~13!

where, for the sake of simplicity, we have used the followi
notations:

DH[F H̃c̃

c̃
2

H̃cT

cT
G ~14!

and

w[
c̃

cT
~15!

Now, let us show that, from an arbitrary auxiliary functio
c̃, we can always construct a renormalized expression h
ing a smaller variance. For that we consider the multipli
tive constant ofc̃, denoted herea, as a variational param
eter. Minimizing the variances2(F̃,a) with respect toa we
get the following optimal value:

aopt52^Fq DH w&/^DH2 w2& ~16!

and, therefore,

s2~ F̃,aopt!5s2~F !2^F DH w&2/^DH2 w2&, ~17!

In general, the quantitŷF DH w& will not be equal to zero.
As a consequence, equation~17! shows that, whatever th
quality of the auxiliary functionc̃ chosen, the use of th
optimized prefactor~16! always leads to a decrease of t
statistical fluctuations. Clearly, this gain in variance can
small but let us emphasize that it is a systematic gain.
course, this is only by choosing appropriate auxiliary fun
tions that large gains can be expected.

In the case of a diffusion Monte Carlo scheme the s
tionary distribution, Eq.~10!, is no longer known analytically
since it involves the unknown exact wave function which
stochastically sampled, and our general procedure wh
supposes the knowledge of the distribution cannot be rea
applied to. However, in the particular case of the mixed d
tribution, a renormalized expression can still be defined.4 A
natural choice is

F̃q~x!5Fq~x!1FHc̃

c̃
2E0G c̃

cT

, ~18!

whereE0 is some unbiased estimator of the exact grou
state energy. In this case also, it is quite easy to verify
the averages of the bare and renormalized estimators ove
mixed distribution~10! are equal

^F̃q&5^Fq&. ~19!

It should be emphasized that this result is valid only if t
wave functionf0 and its first derivatives are continuous e
erywhere. This is true for the exact solution of the proble
However, in general it will not be the case for the appro
mate solution obtained with a fixed-node diffusion Mon
Carlo calculation. We shall return to this important point
the next section.
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To make the connection with the variational case,
mark that the latter expression can be rewritten as

F̃q~x!5F̃q
VMC~x!1@EL2E0#w , ~20!

where EL represents the local energy function associa
with the trial wave functioncT , Eq. ~2!, andF̃q

VMC(x) is the
variational Monte Carlo expression of the renormaliz
force, Eq.~11!. Note that the correction between the VM
and DMC estimators in formula~20! consists of a product o
two quantities, namelyEL2E0 and w. The quantityEL

2E0 has a vanishing average and its statistical fluctuati
are in general much smaller than those ofw. Accordingly, it
is quite efficient to introduce a centered version of the va
ablew. Indeed, it can be easily shown that the fluctuations
the product are in this way greatly reduced. Our final vers
of the DMC force used in our calculations is therefore

F̃q~x!5F̃q
VMC~x!1@EL2^EL&#@w2^w&#. ~21!

Finally, it should be noted that the force calculated accord
to the preceding formulas are not exact since the DMC d
tribution is the mixed distribution instead of the exact on
This point is discussed later.

Now, in order to illustrate the method we consider t
case of a diatomic moleculeAB consisting of an atomA
~nucleus chargeZA) located at (R,0,0) and an atomB
~nucleus chargeZB) located at the origin. Note that the gen
eral case corresponding to an arbitrary number of nuclei d
not involve particular difficulties. It can be obtained b
straightforward generalization of what is presented belo
For a diatomic molecule we have the following expression
the force:F5(F,0,0), with

F~x!5
ZAZB

R2
2ZA (

i 51

Nelect ~xi2R!

ur i2Ru3
, ~22!

whereNelect is the total number of electrons andr i represents
the position of electroni. The second term on the right-han
side of Eq.~22! is responsible for the infinite variance con
tribution. Let us now show that this contribution can be e
actly removed. In what follows we shall write the auxiliar
function as

c̃~x!5QcT, ~23!

whereQ is some arbitrary function. Using this form it can b
verified that the simplest form forQ canceling the pathologi-
cal part of the bare force is the following:

Q5ZA (
i 51

Nelect ~xi2R!

ur i2Ru
. ~24!

Finally, we get for the renormalized force in the variation
case@Eq ~11!#:

F̃~x!5
ZAZB

R2
2“Q•“cT /cT , ~25!

with a similar expression in the DMC case@see Eqs.~18! and
~20!#. It can be checked that this latter expression has no
finite variance.
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As already mentioned the QMC calculations presen
here are done at two different levels of approximation. Fi
we present variational Monte Carlo calculations of the for
The average of the force is then obtained as

^F &VMC5
*dx cT

2~x!F~x!

*dx cT
2~x!

, ~26!

wherecT is the trial wave function, andF represents here
either the bare force,F5F, Eq.~7!, or the renormalized one
F5F̃, Eq. ~11!. We also consider averages over the mix
distribution as obtained in a diffusion Monte Carlo schem

^F &mixed5
*dx f0~x!cT~x!F~x!

*dx f0~x!cT~x!
, ~27!

wheref0 is the exact wave function. Here,F is given either
by Eq. ~7! or by Eq. ~18!. In order to get a more accurat
approximation of the unbiased exact force, correspondin
the densityf0

2, we shall also have recourse to the followin
‘‘hybrid’’ formula:

^F &.2^F &mixed2^F &VMC . ~28!

This formula is constructed so that the first-order contrib
tions in the differencef0(x)2cT(x) for the quantities
^F &mixed and^F &VMC compensate exactly~see, e.g., Ref. 3!.
From a practical point of view, expression~28! is particu-
larly interesting. Both quantities involved can be straightf
wardly computed in routine DMC and VMC calculation
Note that in principle it is also possible to get an exact e
mate of ^F & but it requires some more elaborate sche
involving some kind of forward-walking.3,8 We shall not
consider here such calculations, but let them for future p
lication.

III. A FEW REMARKS REGARDING THE PRACTICAL
IMPLEMENTATION

As seen in the preceding section we use both VMC a
DMC approaches in our actual computations. Regard
variational Monte Carlo no particular difficulties arise.
practice, the main weakness of the VMC approach lies in
fact that the average force obtained according to Eq.~26! is
quite dependent on the trial wave function used. This is p
ticularly true sincecT is optimized in order to improve the
total electronic energy but not its derivatives with respec
the internuclear coordinates. However, as illustrated by
practical calculations presented below~see Table II!, com-
bining DMC and VMC calculations of the force according
the hybrid formula, Eq.~28!, seems to represent a simple b
accurate solution to this problem.

Let us now consider the specific difficulties associa
with DMC calculations. In order to avoid the famous ‘‘sig
problem’’ for fermions9 all calculations presented here a
done using the stable but approximate fixed-node~FN!
method. In this approach the Schro¨dinger equation is solved
separatelyin each nodal domain~or ‘‘pocket’’ ! where cT

has a definite sign. When the trial wave function satisfies
tiling property10,11 all nodal domains are equivalent and r
lated by the permutational symmetry. When this is not
case, energies associated with each nodal domain can b
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
d
t,
.

d
:

to

-

-

i-
e

-

d
g

e

r-

o
e

t

d

e

e
dif-

ferent and the FN solution corresponds to the eigensolu
defined in the domain corresponding to the lowest ener
Without entering more into the details of the fixed-node a
proach~for that, see, e.g., Refs. 12 and 3! we just remark that
a most important point with FN calculations is that th
sampled fixed-node solution displays in general some
continuous derivatives at the nodes~zeroes ofcT). Because
of that, some mathematical care is necessary when integ
ing quantities~energy, derivatives of the energy, etc.! that are
defined over the entire configuration space; in other wor
the various nodal domains must be properly connected
first example illustrating this remark is the problem of t
validity of the Hellmann–Feynman~HF! theorem in fixed
node QMC calculations, a point which has raised some
cussion very recently.13–15Due to the presence of the disco
tinuity at nodes the HF theorem is not true in general in t
case. It can be shown that the theorem is valid only when
derivative of the total fixed-node energy with respect to
coordinateq is done without changing the nodes of the tr
wave function when varyingq.14 However, since in the
present work no finite difference expressions for the fixe
node energy are used, this point is in fact of no practi
importance. Let us just mention that the average force
tained in our fixed-node DMC calculations corresponds
the Hellmann–Feymnan force we would obtain by perfor
ing such finite differences fixed-node calculations with t
nodes kept fixed.

A second example of difficulties, which is here of fun
damental importance, concerns the validity of the equa
between the bare and renormalized expressions, Eq.~19!. To
clarify this point let us have a closer look at the condition w
would like to fulfill. Using expression~18! the condition can
be written as

^F̃&2^F&5^f0
FNu

~H2E0
FN!c̃

cT
ucT&50, ~29!

where E0
FN is the fixed-node energy. DenotingV a nodal

domain of the fixed-node solution we can write

^F̃&2^F&5E
V

dx f0
FN~H2E0

FN!c̃ . ~30!

Now, decomposingH under its kinetic and potential part
and invoking Green’s formula this quantity can be rewritt
as an integral over the nodal hypersurface

^F̃&2^F&52
1

2E]V
~f0

FN¹¢ c̃2c̃¹¢ f0
FN!dW S. ~31!

From this expression it is seen that a nonzero bias may
deed appear in a fixed-node calculation of the renormali
force. Clearly, a simple way of removing this bias is to u
auxiliary functions c̃ having the same nodes ascT and,
therefore, the same nodes asf0

FN . The actual simulations
presented below fulfill this condition.

Finally, let us end this section with some words abo
the nature of the errors introduced. Since the exact nodes
not known there is some difference between the exact
fixed-node functions
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Total energies in variational Monte Carlo@E0~VMC!# and diffusion Monte Carlo@E0~DMC!# with the trial wave functions employed here
Ec

VMC(%) andEc
DMC(%) are the percentages of correlation energy recovered in VMC and DMC.s2~VMC! is the variance of the local energy in VMC. Bon

lengths are in Bohrs and energies in Hartree atomic units. Statistical uncertainties on the last digit are indicated in parentheses.

Molecule E0~HF! E0 E0~VMC! s2~VMC! Ec
VMC(%) E0~DMC! Ec

DMC(%)

H2 (R51.4) 21.133 63 21.174 475 21.172 80~7.7! 0.0050~1! 95.8~2! 21.174 45~6.7! 99.9~2!
LiH ~R53.015! 27.987 28.070 21 28.055 54~26! 0.070~2! 82.37~3! 28.067 57~70! 96.8~8!
Li2(R55.051) 214.871 52 214.9954 214.9429~46! 0.196~1.2! 57.6~4! 214.9910~3.7! 96.4~3!

C2 (R52.3481) 275.4062 275.923~5! 275.581~2.9! 1.088~6! 33.8~6! 275.854~5.2! 87~1!

aFrom experimental data analysis.
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FN2f0 , ~32!

wheref0 andf0
FN are the normalized exact and fixed-no

solutions. The fixed-node bias can be evaluated as

^f0
FNuFuf0

FN&2^f0uFuf0&52^dfuFuf0&1O~df2!.
~33!

In other words, the fixed-node bias forF is of order 1 indf
in contrast with the FN bias on the energy which is of ord
2 in the same quantity. Finally, it is easy to see that the b
on the mixed average, Eq.~27!, is of order O(cT2f0

FN)
1O(df) while the bias on the ‘‘hybrid’’ estimator, Eq.~28!,
is of orderO@(cT2f0

FN)2#1O(df).

IV. RESULTS AND DISCUSSION

We present a number of variational Monte Carlo~VMC!
and diffusion Monte Carlo~DMC! calculations for the di-
atomic molecules H2 , LiH, Li 2 , and C2. Standard imple-
mentations of the VMC and DMC methods have been u
and will not be detailed here. For some general presenta
of these approaches the interested reader is referred fo
ample to Refs. 1, 3, and 16. As already indicated in
preceding section all DMC calculations have been do
within the fixed-node approach. Numerical experience sho
that the fixed-node error on the energy resulting from
approximate location of the trial nodes is rather small wh
good enough trial wave functions are used. As we shall
later, this will also turn out to be true when calculatin
forces. In order to remove the short-time error all DMC c
culations have been systematically performed with differ
time-steps and extrapolated to zero time-step. Regarding
trial wave function we have chosen a standard form cons
ing of a determinant of single-particle orbitals multiplied b
a Jastrow factor

cT5D↑D↓ exp(
a

(
^ i , j &

U~r ia ,r j a ,r i j !, ~34!

where the sum overa denotes a sum over the nuclei an
(^ i , j & a sum over the pair of electrons. Here, the functionU is
chosen to be

U~r ia ,r j a ,r i j !5s~xi j !1p(a)~xia!1c1xia
2 xj a

2

1c2~xia
2 1xj a

2 !xi j
2 1c3xi j

2 ~35!

with

xi j 5
r i j

11bsr i j
, xia5

r ia

11bar ia
,
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bs can take two different values depending on the spin of
pairs of electrons considered. The different parameters of
trial wave function have been optimized using the correla
sampling method of Umrigaret al.17 The total energies ob
tained at the variational and DMC levels are presented
Table I.

The calculations have been done at the experime
bond lengths. The quality of our trial wave functions is go
since a non-negligible part of the correlation energy is rec
ered at the variational level. Note that more sophistica
trial wave functions could be used~see, e.g., Ref. 18!.

At the heart of the zero-variance principle employ
here is the choice of the auxiliary quantitiesH̃ and c̃. Ex-
actly in the same way as for the total energy we need
construct some optimal choice guided by a zero-varia
equation. In the case of the energy the zero-variance equa
is nothing but the usual Schro¨dinger equation

EL~x!5HcT /cT5^EL&, ~36!

and the optimal choice~zero-variance! for cT is cT5f0 .
Here, the ideal zero-variance condition is written as

F̃q~x!5^Fq&. ~37!

In the variational case, using expression~11! this equation
can be written as

F H̃2
H̃cT

cT
G c̃52@ F̃q~x!2^F̃q&#cT . ~38!

In the DMC case, we have

@H2E0#c̃52@ F̃q~x!2^F̃q&#cT . ~39!

In this latter case we just need to construct an ‘‘accura
solution of this equation. In the variational case we ha
more freedom since the auxiliary operatorH̃ is also to be
chosen. Here, in order to demonstrate the feasibility and
simplicity of the approach we will consider the simple
choice possible for the auxiliary quantities. Regarding
auxiliary operator we will just chooseH̃5H. Regardingc̃
we choose the minimal form required to get a finite varian
of the force, namelyQ as given by~24!. Note that using such
forms for the auxiliary quantities there are no free parame
left. Our results are presented in Table II. Before discuss
these results let us first look at the convergence of the v
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 10 Mar
TABLE II. Forces at the experimental bond lengths~atomic units! for the four diatomic molecules considered

^F&VMC and^F&mixed are the standard forces obtained with VMC and DMC.^F̃&VMC,mixed are the same quantitie

obtained with the ‘‘renormalized’’ expression of the force, Eq.~18!. ^F̃& is the ‘‘hybrid’’ estimator combining
the VMC and DMC results, Eq.~28!. Statistical uncertainties on the last digit are indicated in parenthese

Molecule ^F&VMC ^F̃&VMC ^F&mixed ^F̃&mixed ^F̃&

H2 (R51.4) 0.06~7! 20.0047~1.5! 20.0034~10! 20.0041~3.6! 20.0035~5!
LiH ( R53.015) 20.037~12! 20.0263~2! 20.03~2! 20.0125~9! 20.0013~11!
Li2 (R55.051) 20.8~4! 20.196~1.8! 20.2~2! 20.096~2.5! 20.004~4!

C2 (R52.3481) 2~3! 20.101~22! 1.~4! 20.05~2! 20.00~4!
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ous estimators. Typical behaviors are shown in Figs. 1 an
Calculations are VMC calculations of the force~at experi-
mental length! for the two larger molecules treated her
namely Li2 and C2.

Both figures show the convergence of the estimators
the bare and renormalized forces, respectively, as a func
of the simulation time~a quantity proportional to the numbe
of Monte Carlo steps!. In both cases the difference betwe
the two curves obtained is striking. In the case of the b
force the estimator of the force converges with a lot of d
ficulty. The fluctuations are very large and at some pla
‘‘jumps’’ in the curves are observed. These jumps cor
spond in the simulation to some configurations where
electron approaches a nucleus. Their location and their m
nitude are very dependent on the sequence of random n
bers and initial conditions used. In fact, there is no hope
obtain a converged value of the bare force in a finite sim
lation time ~whatever its length be!. This behavior is of
course related to the infinite variance of the estimator. T
second curve associated with the renormalized force,
~11!, has an entirely different behavior. In sharp contr
with the bare case the convergence is now reached very
ily. At the scale of the figure the fluctuations of the cur
have almost disappeared.

Table II summarizes the various calculations we ha
performed. All calculations have been done at the exp
mental bond lengths, the expectation values of the force
therefore expected to be very close to zero.

The bare VMC and DMC values presented are repor
as given by the output of our program. However, as j
remarked they have to be considered with a lot of cauti
Indeed, the values are not and cannot be converged du
the infinite variance. Consequently, the values quoted
give a very rough estimate. Their actual values depe
strongly on the initial conditions and on the series of rand
numbers used. In contrast, the renormalized value are
fectly well-defined and the estimate of the average and of
statistical error are converged. At the variational level
average values of the renormalized forces are significa
different from zero. These values depend on the choice of
trial wave function. The mixed estimators are less depend
In our calculations the results display a systematic e
about 2 times smaller than the variational ones. Combin
both sets of values and using formula~28! to remove as
much as possible the dependence on the trial function
obtain very accurate estimates of the forces~column ^F̃&).
Except for the molecule H2 for which very small statistica
 2010 to 130.120.228.223. Redistribution subject to A
2.

,

f
on

e
-
s
-
n
g-
m-
o
-

e
q.
t
as-

e
i-
re

d
t
.
to

st
s

r-
e

e
ly
e
t.
r
g

e

errors have been obtained, our estimates of the force
essentially exact (.0) within error bars. Note that in the
three cases where a fixed-node error on the result is expe
~LiH, Li 2 , and C2) no significant bias on the results is ob
served. As already remarked in the introduction there
very few results to compare with in the literature. Regard
H2 we can cite the work by Reynoldset al.5 At the equilib-
rium distance, they obtained for the force a value
0.0009(24). Note that within statistical errors our~slightly
biased! result is compatible with this value. However, o
statistical error is about 5 times smaller. In the case of L
we get a much more accurate value than the one given
Vrbik and Rothstein,6 namely F50.12(16). Quite remark-
ably, our statistical error is about two orders of magnitu
smaller. Comparisons with the very recent results obtai
by Filippi and Umrigar7 are not easy because the quantit
calculated are different. In their work the authors present
error in the bond lengths obtained in their correlated DM
calculations and not the force like in the present work.
order to make some quantitative comparisons it is neces
to compute the dependence of our results on the distance

FIG. 1. Convergence of̂F&VMC and^F̃&VMC as a function of the simulation
time ~proportional to the number of Monte Carlo steps! for the Li2 molecule
at the equilibrium geometry,R53.015.
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define some estimate of the equilibrium distance. Suc
study is out of purpose here and is let for future investi
tion. Finally, let us emphasize that the auxiliary functi
used here is the simplest form allowing the reduction of
variance of the local force to a finite value. Clearly, mo
general and sophisticated forms for the auxiliary funct
can be introduced and optimized. There is no doubt that
nificantly smaller errors on the computed forces can
achieved.

In summary, we have presented a simple and stable
proach for computing forces within a QMC scheme. To
that, we propose to use the Hellmann–Feynman theorem
re-express the force as a standard local average of the g
ent of the potential. The force is computed approximat
using standard variational Monte Carlo and fixed-node dif
sion Monte Carlo approaches. To remove as much as
sible the dependence of the results on the trial wave fu
tions we resort to the commonly used ‘‘hybrid’’ estimat
combining both VMC and DMC results. In order to suppre
the unbounded statistical fluctuations associated with the

FIG. 2. Convergence of̂F&VMC and^F̃&VMC as a function of the simulation
time ~proportional to the number of Monte Carlo steps! for the C2 molecule
at the equilibrium geometry,R55.051.
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
a
-

e

g-
e

p-

to
di-
y
-
s-

c-

s
o-

cal force we apply to this observable a generalized ze
variance property. In practice, this idea is implemented
replacing the bare local force by some renormalized exp
sion depending on some auxiliary quantities. A simple p
cedure to construct the renormalized force~choice of auxil-
iary quantities! is presented. As emphasized, it is a gene
procedure: It can be performed without practical difficu
for an arbitrary molecular system. Introducing the simpl
form possible for the renormalized force~minimal form, no
free parameters! and using standard forms for the trial fun
tions we get very satisfactory results for some simple
atomic molecules. Applications to bigger systems and ca
lations away from the equilibrium geometry are now und
investigation.
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