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Exact Diagonalization Approach to Correlated Fermions in Infinite Dimensions:
Mott Transition and Superconductivity
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We present a powerful method for calculating the thermodynamic properties of infinite-
dimensional Hubbard-type models using an exact diagonalization of an Anderson model with a
finite number of sites. The resolution obtained for Green's functions is far superior to that of
quantum Monte Carlo calculations. We apply the method to the half-filled Hubbard model for a
discussion of the metal-insulator transition, and to the two-band Hubbard model where we find
direct evidence for the existence of a superconducting instability at low temperatures.
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Following the pioneering work of Metzner and Voll-
hardt [1], the limit of large dimensions for models of
strongly correlated fermions has received much attention.
In this limit, the highly intricate quantum many-body
problem simplifies considerably and leads to a nontrivial
mean-field theory [2]. Remarkably, this limit captures
many features of the physics in finite dimensions and
gives a very successful description of quantum fiuctua-
tions.

In spite of the considerable simplification obtained in
taking the large D limit, the mean-field equations still
have to be solved numerically. Up to now, all calcula-
tions [3—5] have relied on the Hirsch-Fye quantum Monte
Carlo (QMC) algorithm [6]. A major limitation of this
scheme is the difliculty of accessing low temperatures,
where statistical and finite time-step discretization errors
of the QMC algorithm become very important.

In this paper, we present a powerful exact diagonal-
ization method for solving these mean-field equations.
We find that the resolution obtained for thermodynamic
Green's functions is far superior to that of QMC cal-
culations and that essentially the exact solution of the
model is obtained, except at very small frequencies. Hav-
ing at our disposal such a unique method, we investi-
gate two important physical issues for which no defi-
nite answers have been given so far. First, we consider
the metal-insulator transition in the half-filled Hubbard
model, where our numerical results are indicative of a
second-order transition at zero temperature. Second, we
establish the instability of the normal state of the two-
band Hubbard model [7] with respect to singlet super-
conductivity at large U and small doping (the regime of
relevance for high-T, superconductors) and also an in-
stability towards triplet superconductivity in the large
doping regime n 2.

For concreteness, we explain the method in the single-
band Hubbard model on a Bethe lattice of infinite con-

nectivity z ~ oo. The Hamiltonian is written as
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0' cr, l=2

+ ) (VlaI d + H.c.),
cr,l=2

the function Gp(iso„) being given by the U = 0 Green's
function of the impurity

Gp(iso„) = GpA"d(iso„)
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Given the infinite number of degrees of freedom of the
models defined in Eq. (1) and Eq. (3), it is evident that
strict self-consistency can only be obtained with a contin-
uous Anderson model, i.e., with n, = oo. Our algorithm
is based on the observation that a systematic approxima-
tion (i.e., fit) of Gp(ilo) with a finite-n, Anderson model

H = —) ct c, +H.c.+U) n, tn;t. (1)
(li) ~

2Z"'
The calculation of the single-site properties of the Hub-
bard model, in this limit reduces to the self-consistent de-
termination of the on-site Green's function G(ice) of the
Hubbard model and of a bath Green's function Gp(ilo),
which describes the interaction on the single site with the
external environment. G(iso) and Gp(iso) are related by
a self-consistency condition which (in the paramagnetic
normal state, on the Bethe lattice) reads

Gp (ilo) = ill+ P —G(iv))/2. (2)

As is well known [8], the on-site Green's function of
the Hubbard model may be interpreted as the Green's
function of an Anderson model
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gives extremely good results. We stress from the begin-
ning that we perform a fit of the imaginary-frequency
Green's functions only.

In practice, we approximate any Go (iu) by a function
Go

" (iu) with a finite number n, of sites. This can be
cast into a minimization problem in the variables ei and
Vi. In this work, we choose the following cost function:

~m4LX

x'= ) IGo'(i~ ) —Go '""'(i~ )I (5)
+mcLx + 1

p

where n is chosen sufBciently large [~„))
max~(ei)] [9]. We search for the parameters e~ and Vi

minimizing the y2 in Eq. (5) with a standard conjugate
gradient method.

For a small number of sites, n, & 6, the Green's
function G(i~„) can be obtained exactly from the com-
plete set of eigenvectors and eigenvalues of the Anderson
Hamiltonian equation (3). The procedure

G-i( )
& (s) G-i And( )

«(s)
G( )

«(s) G i(. )

(6)
is then iterated to convergence.

Beyond n, = 6, the size of the Hilbert space be-
comes too large for an explicit diagonalization of the An-
derson Hamiltonian. However, the calculation of zero
temperature Green's functions is still possible by means
of the Lanczbs algorithm [10], which allows us to easily
calculate G(iso) and Go(iu) up to n, 10 om a work sta-
tion. The fit with the Anderson model is performed as
before. We simply replace the Matsubara frequencies by
a fine grid of imaginary frequencies, which correspond to
a "fictitious" inverse temperature p (u„= (2n+ 1)vr jp).
P introduces a low-frequency cutoff in an obvious way.

The following observations are made:
(1) We notice in general very small differences between

G& (LJ) and G&
" (iu) as expressed by small minimal

values of y in Eq. (5). yz decreases by approximately
a constant factor each time we add one more site. This
means that exponential convergence in n, is observed.

(2) The extensive comparisons with QMC [5] which
we have undertaken indicate that, even at finite tem-
perature, exact diagonalization is by far the superior
method for this problem. Using exact diagonalization
at n, = 3, . . . , 6, very precise values of the Green's func-
tion G(r) can be obtained in a few minutes on a work
station, which it has taken us days to check by QMC [11].

(3) Using the Lanczos algorithm at T = 0 we can go
higher in n„and the quality of fit can be ameliorated
by another 2 orders of magnitude. To illustrate, we dis-

play in Fig. 1(a) the low-frequency part of G& (i~) and

Go
"

(iw) for U = 2 at P = 200 [see also Fig. 3(a)
for the two-band Hubbard case] Notice th. e systematic
amelioration of the fit. Furthermore, the bath Green's
function Gs [the Green's function obtained from Eq.
(2), once G(uu) has been computed] is extremely inde-
pendent of n„especially at high frequency. Already at
u = 0.11, e.g. , G'p varies by less than 0.0001 between
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FIG. l. (a) Go(iu) and Go
" in the Hubbard model

at U = 2 at small frequency for n, = 6, 8, 10. Note the
systematic improvement of the solution. The maximal mis6t
between the two functions is 0.082 for n, = 6. (b) Density of
states p(u) for U = 2 (e = 0.01). We compare with the IPT
density of states [12]. Inset: Comparison of the integrated
densities of states between exact diagonalization and IPT.

n, = 6, 8, and 10. The same convergence is observed
for the physical Green's function G(ice) in which v/e are
ultimately interested.

(4) Even though the method has been geared exclu-
sively at the calculation of thermodynamic Green's quan-
tities, it is very interesting to consider the dynamic prop-
erties, e.g. , the one-particle spectral densities p(u)
—ImG(~+ ie)i7r. We have computed p(~) (r4=10) for
different values of U. In the Fermi-liquid regime at mod-
erate U, the excitation spectrum of our finite-size An-

derson model consists of a large number of peaks, which
are grouped into three well-separated structures: a cen-
tral quasiparticle peak and two broad high-energy satel-
lite features, corresponding to the formation of the upper
and lower Hubbard bands. At sufliciently large U a Mott
insulator gap is observed, and far fewer peaks contribute
to the spectrum. Figure 1(b) gives the spectral density
as obtained at U = 2. The dashed line represents the
results given by the iterated perturbation theory (IPT)
approximation. This method is based essentially on the
use of a weak coupling calculation to second order in U
of Z which gives an interpolation between the small and
large U limits (exclusively at half filling and in the para-
magnetic phase) [8,12,13]. We also present the integruted
density of states corresponding to Lanczos and IPT. The
agreement between both curves is seen to be excellent,
provided we average over a small frequency interval. This
indicates that the spectral density, as calculated by our
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FIG. 2. Quaaiparticle weight Z as a function of U for the
half-filled Hubbard model. The curve gives the IPT approx-
imation, which predicts a first-order transition. The crosses
give the results for n, = 10, with the corresponding results for
n, = 6, 8 at two points. The inset shows the small-~ behav-
ior of ImE(~) for n, = 6, 8, 10 from which the quaaiparticle
weight is calculated. Note the excellent convergence with n, .

method, contains coarse-grained information about the
exact solution, and can be very useful in cases in which
IPT cannot be applied.

Let us now give a more quantitative discussion of the
metal-insulator transition. Figure 2 presents some results
for the quasiparticle spectral weight Z calculated from
the slope of the self-energy Z = Go —G . In the
inset of Fig. 2 we present the data for ImZ(i~) at small
frequencies from which the spectral weight is extracted
[ImZ(ice) (1 —1/Z)u + ]. To get a truly stabilized
slope of Z we have found it necessary to reach very large
values of P. The main plot compares the results at n„=
10 with IPT. On a few points we give in addition the
results at n, = 6 and n, = 8. Given the extremely
good agreement between the values of Z calculated with
n,, = 8 and 10, we are very confident of the numerical
values presented.

As discussed in Ref. [12], the IPT approximation leads
to a first-order Mott-Hubbard transition (cf. Fig. 2),
and the quasiparticle weight Z jumps discontinuously at
U 3.6. We have only found limited evidence for such a
scenario within the present approach. At n, = 6, we are
unable to stabilize two solutions at the same values of
the physical parameters (the coexistence of two solutions
is indicative of a first-order phase transition). At n, = 8,
and using a fictitious temperature of P = 120, we find
a coexistence region within a very small interval of U:
4.45 & U & 4.60 [14]. Even though the question of the
order of the transition will have to await a more detailed
investigation, it seems to us to be difficult to reconcile
our numerical results with an abrupt zero-temperature
transition anywhere close to U = 3.6. Let us reiterate
the fact that the results presented in Fig. 2 are at zero
temperature and that P only serves as a frequency cutofF.

We now consider the very important issue of supercon-

ductivity in Hubbard-type models in infinite D. We have

looked for it in the single-band model defined above, and
in the two-band Hubbard model defined by the Hamilto-
nian [7]

) t,~d, p~ +H.c. +ep ) p~ p~
i&D,j&P,cr j&P,cr

+eg ) d, d;~+Up) n;)n";I,
i QD, cr ~eD

(7)

where the hopping is scaled as t,z 1/v 2z. In Eq. (7)
(d, p ) represent two atomic orbitals on difFerent sub-
lattices (D, P) of a bipartite lattice with z ~ oo which,
as before, is taken to be the infinitely connected Bethe
lattice.

In the standard Nambu notation, 4&t = (dt, dl) (equiv-
alently for @p) the d-orbital Green's function can be writ-
ten as a 2 x 2 matrix

D(~) = —&(@~(~)+g(~))= I F ( ). G ( )
$ Gg(~) Fg(u)

(8)
and the self-consistency equations for the Green's func-
tions are given by [7]

Dp (Nd~) = lcd~ + (p —tg)tT3 tpg cF3P(t~„)mrs )

P (ted~) = Qd~ + (p —Ep)03 '—t 'g 0'sD(Qd~)cps

(note that Dp and D are 2 x 2 matrices and that Dp
denotes the matrix inverse).

In the presence of superconducting order, the Green's
functions D(ku„) and Dp(iu„) may be viewed as impu-
rity Green's functions of an efFective Anderson model in
a superconducting medium, which we fit by a general's
tion of Eq (4), m. odified by an explicit pairing between
all the sites [11].

We are interested in the normal state exclusively as
a starting point for a linear stability analysis and in-

vestigate the regime close to the normal solution. An
example of the excellent quality of the normal state so-
lution [15] is presented in Fig. 3(a). Here, Re[Gyp(tu)]
and Re[G&Ap"~(iu)] are displayed. The "fictitious" tem-

perature is P = 250, Ug = 8, ep —eg = 4, p = 3.5, and
the density corresponds to the lightly doped regime of
the two-band model (n 1.3). We now consider the
stability analysis of the normal state solution. A pos-
sible way of studying this stability is to calculate the
pairing susceptibility. An alternative way used here is
to establish the stability properties of the solution by
introducing small superconducting terms in the Ander-
son Hamiltonian, and following the evolution under sub-
sequent iterations [7]. Under such conditions, the nor-
mal state solutions very quickly acquire nonzero values of
F(u), which indicate a superconducting instability. More
rigorously, and in order to study quantitatively the ef-
fects of increasing n„we may calculate the largest eigen-
value, and the corresponding eigenvector of the matrix
BF(ku) "+ /OF(ice)" close to the normal state, where the

l547



VOLUME 72, NUMBER 10 PHYSICAL REVIEW LETTERS 7 MARCH 1994

I
I/

P

0
V

II,=4

n, =5

n, -6

(b)
fermion superconductors.

We acknowledge helpful discussions with 3. Bellissard,
A. Georges, G. Kotliar, D. Poilblanc, and T. Ziman. This
work was supported by DRET Contract No. 921479.

0 (). ] 0 2 0. '3 0 4 0.;)

FIG. 3. (a) Real part of Gq e (i~) and Gq o(ia) for

n, = 4, . . . , 8 (two-band model: Uq = 8, p = 3.5, e„—ez = 4).
(b) Largest eigenvector of the matrix BF(i~)"+ /BF(iv)"
close to the normal state solution for n, = 6, 7, and 8 (singlet
sector). The corresponding eigenvalues are A,„2in all
three cases.

superscripts on the F's indicate two subsequent iterations
of the self-consistency loop. We have done such calcula-
tions, which correspond to the well-known procedure of
extracting the largest eigenvalue and eigenvector of a ma-
trix with the "power method. " We are able to identify
a linear regime at small F(iu), with the largest eigen-
value always of the order Am~„2. The corresponding

(rescaled) eigenvectors for n, = 6, 7, 8 are plotted in Fig.
3(b). Clearly, the agreement between these completely
independent curves is excellent. We have checked this
result in a variety of ways [by changing P, the precise
form of the function used in Eq. (5), and the doping].
This leads us to the conviction that the normal state so-
lution of the d = oo model at small doping is indeed
unstable with respect to singlet superconductivity. We
have performed a completely analogous stability analysis
for the lightly doped (n ~ 1.2 and n ~ 1.4) regime of the
corresponding one-band Hubbard model for a number of
values of the interaction (U = 2, 4, 6, 8). In sharp con-
trast to the two-band Hubbard model, we have found no
indication of a superconducting instability in that case.

We have also studied the point investigated previously

[7], i.e. , values of the physical parameters correspond-
ing to a total density of n 2, where the Hubbard in-

teraction is just large enough to create a large overlap
between the upper Hubbard band of the d-level and the
p-level band. There our evidence for singlet superconduc-
tivity is very limited (at least for frequencies larger than

1/200). However, we have on that point found very
clear evidence for superconductivity in the triplet sector.
Following the procedure outlined above (at T = 0), we

find consistently that any small superconducting term,
in addition to the normal state solution, blows up at a
rate which corresponds to a largest eigenvalue of 1.8
of the matrix BF(iu)"+i/BF(i~)" [16] (typical values of
parameters are Ug = 4.5, p = e„—eg = 4, P = 200). Su-
perconducting order of this kind has been first proposed
by Berezinskii [17] in the context of sHe, and, very re-
cently by Coleman, Miranda, and Tsvelik [18] for heavy-
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