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Hubbard model on d-dimensional hypercubes: Exact solution for the two-electron case

Michel Caffaref
CNRS-Laboratoire de Chimie Ttwque, UniversitePierre et Marie Curie, Tour 22-23, 4 place Jussieu, 75252 Paris Cedex 05, France

Remy Mosser
CNRS-Groupe de Physique des Solides, UniveRsiis 6 et Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France
(Received 13 March 1998

The Hubbard model is exactly solved for two particlesdsdimensional hypercubes. It is shown that the
spectrum can be separated into two parts: a trifirindependentpart resulting from symmetries of hyper-
cubes and a nontrivial part expressed as a single-impurity problem on a set of finite chains af4size
(d'=d). The exact expression for the one-particle Green’s function is given. Finally, we discuss the extension
of these results to standard hypercubic lattices with periodic boundary cond[i8#163-18208)51520-2

One of the most widely used models to describe stronghynians defined oy, (d’<d), some of which have a single-
correlated fermion systems is the Hubbard model and itémpurity site. In a second step, we show how to further
various extensions. Unfortunately, only limitecactinfor-  reduce these matrices into smaller blocks of slze 1 (in-
mation about its physical properties is available. For the onestead of &), corresponding to finite chains of siz€ +1
dimensional lattice the celebrated solution of Lieb and*wu with one impurity site at one end and new specific hopping
provides the exact eigenspectrum of the model. In the oppderms. Using a standard approach for impurity problems we
site limit of large dimensions investigated very receftly, provide a closed expression sum rule for the eigenspectrum.
some almost exact results have also been obtained. Howevéle also derive the exact expression for the one-particle
for intermediate dimensions, and particularly for the veryGreen’s function. Finally, the extension of these results to
important two-dimensional case believed to be relevant tdypercubic lattices with periodic boundary conditions is
high-T. superconductivity, very little, is at our disposal. briefly discussed.

Most of the results reported so far have been obtained either Let us defineAy, an Abelian subgroup of the fully

from numerical solutions on very small clustgsibject to ~ point group, generated by tteereflections; into perpen-
important finite-size effecisor by using a variety of approxi- dicular (d— 1)-dimensional planes meeting at thg center.
mate analytical methodéwith domains of validity and/or It is easy to show that\y has 2 elements(owing to the
systematic errors difficult to evaluate commutativity between the mirror operationand that the

In this paper we present an exact solution for the Hubbar@rbit of a generic point undek 4 is a hypercubeyy. Let us
model with first-neighbor hopping termand on-site inter- number theAy elementsL by integers between 0 and’2
action energyJ —1, in the following way:L being a product of mirrorsr;,

let L be the number, written in base two, whose correspond-
ing ith digits are equal to 14, isL=1, mym,m3 iSL=7,

H=—t E CiTonaJFUE CiTTCiTCiTlciL etc). Let us also locate the sites according to their number-
e ' ing in base two: Théth coordinate is equal to thi¢h digit.
=T(t)+V(U), (1) Now, the action of the symmetry operatitn onto a sites,

noted as the “special productles, translates into the fol-
for two particles with opposite spinsS{=0) on a lowing digit operation: each time a digit equals 1lin it
d-dimensional hypercubey defined as the set dil=2%  switches the corresponding digit é& For example, in three
sites whosed coordinates are either O or 1. Although our dimensions, 7+%6, with corresponds in coordinates to
solution is yet limited to the two-electron case, to exhibit 7, 7,75(0,0,)=(1,1,0. To construct the irreducible repre-
exact results for a truly interacting system in a dimensiorsentationgirreps and the character table df,, it is useful
greater than 1 is clearly of primary interest. This is particu-to remark that this group is isomorphic dotimes the tenso-
larly true since hypercubes are related to the usual cubigal product with itself of the two-element groug,
lattices with periodic boundary conditions,q is topologi- :{E,W1}=A1,6 The A4 irreps (unidimensional sincé 4 is
cally equivalent to al-dimensional hypercubic lattice of lin- Abelian) are easily obtained as tensor products of the two
ear size equal to 4 with periodic boundary conditions, notedrrepsI’, andI’; of Z,. Now, theN irreps can be labeled by
Zﬂ (i.e., v, is equivalent to the four-site rings, is equivalent integersM, through their base-two decomposition, by order-
to the two-dimensional #44 cluster with periodic ing the different occurrences &, in the tensorial product,
conditions?® etc). To solve the above Hamiltonian we first and fixing the corresponding digit to 0 or 1, whether the
use an Abelian subgroup of the ful}; point group, to block irrepsI"y andI'; occur.
diagonalize the initial matrix of size?d into 29 blocks of Let us first consider the one-electron tight-binding spec-
size 2. Quite interestingly, these smaller submatrices corretrum with hopping ternt. Each eigenstate belongs to a given
spond to a simple family of effective one-electron Hamilto-irrep of A4, and reads
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1 1 N1 Let us now consider the two-electron cas=£0). The
IM)=—= > xNR(|0))=—== >, (—1)™r|re0), full Hamiltonian matrix, of size 29, is readily block diago-
V29 REA V29 =0 nalized into 2 blocks of size 3, associated with each rep-

)

resentatiorM . For a givenM, one constructs a basis witH{ 2

wherem,, , is the number of digits equal to 1 simultaneously kets|M,1)
in M andr (we have used the above defined special product

« to denote the action of the symmetry operati®mnto the

basis kets Since all the sites are equivalent, it is sufficient to

consider the interaction of the site number 0 withdt§irst

neighbors that have exactly one digit equal to 1 and belong

to the seVy={v;=2/,j=0,...d—1}. As aresult, one finds
that the eigenenergies read

d-1
Ey= 2 xu;=~t(d=2Ny), 3
whereNy, is the number of digits equal to 1 M. SinceM
runs from 0 to 3—1, the y4 spectrum consists af+ 1 lev-
els, from—dt to dt, with equal spacing 2(the degeneracy

1
Tt e, RRIOTIL)

M,ly=
[M.1) Y

N—-1

_1 Mire .
—@20 XM(re0) 1, (rel) ), (@)

whereli1,j|) represents a configuration with electrprat
sitei and electron at sitej. Depending on the parity of the
number of digits equal to 1 and common to integdrandl,

it can be shown thatM,1) is either symmetrigeven num-
ben or antisymmetriclodd number with respect to the ex-
change of position of electrons. Accordingly,|) corre-

of a Ey level being given by a standard binomial coeffi- sponds either to a singlet or a triplet state. It is clear that

ciend.

-1

1 N
(MITIM1") =25 X
r=0

only occurs inlM,0|V(U)|M,0), while the kinetic part reads

N-1

M. M
> e
r'=0

X((re0)T(reD)L[T[(r"«0)T,(r"s1") 1)

-1

1N
53

M
~ Xr Xr

d-1
M_ M
+20 Xt Xojor
=

X((r+0) T (re1) [T (v;*r0) T (vjerel) ) .

M

((re0)T(reD) L[TI(re0)T,(rel")])

(5

In the latter expression, we have decoupled the terms wheieypercubesyy, with d’<d. One has to evaluate the right-

the | spin jumps(first par) from those where thg spin
jumps. In the latter partsum overj) the only nonvanishing
term corresponds toel =vjerel’—1’'=v;el, which meang

hand part of Eq(6). By definition of thev; (mirrors that
connect a site to one of its first neighbpns anduv «r differ
by one digit, which depends gn not onr. If this digit takes

and |’ neighbors(recall that the group is Abelian and its the value 1 in the base-two decomposition Mf, then

elements are their own invejseOne finally gets that the
nonvanishing kinetic terms read

N—1
t
(MAITIM vjel)=—=3 20 A+x'x.). (6

The block matrix associated with the irrdp corresponds

therefore to an effective one-electron tight-binding Hamil-

tonian, with sites labeled by, kets|M,l), and hopping
terms given by the above expressi@). A simple case is
provided by the identity irregM =0, for which )(P"=1 for

anyr. The effective Hamiltoniard(®) corresponds to a hy-
percubeyy, with one “impurity” site (with diagonal term
U) and a constant hopping term2t. We now show that the
other irreps correspond to the effective Hamiltoni4ft" on

X?"Xl'j’:.rz —1 for anyr, and the correspondirlg™) matrix

element vanishesH™) therefore corresponds to @y in
which families of parallel edges have been ¢titose or-
thogonal to the mirrors labeled by the digits 1 in the decom-
position of M). Figure 1 displays graphically this general
result ford=2 andd=3.

So, at this step, the spectrum is solved in terms of one-
electron tight-binding models on hypercubes of dimension
lower or equal tad. The only nontrivial contributions corre-
spond to those parts, in the hypercube decomposition, which
contain the impurity sité. We now show how to further
greatly reduce their complexity.

To do that it is convenient to reexpress the effective
HamiltonianH [hereafter we will drop the superscripd)
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FIG. 1. Graphical illustration of the effective Hamiltoni&H™
associated with the irreM. Full circles correspond to impurity
sites with a diagonal terrd, full edges to hopping terms equal to
—2t, and dotted lines to the edges that are cut in the given itagp.
d=2, the four irreps are depicteth) d= 3, only four irreps among
the eight are shown.

since only theM =0 case has finally to be considetda the
one-electron basis, EQ). It is easy to verify thaH can be
written in the form

H=Diag(e)+%IN (7)
where Diade) is a diagonal matrix whose entries are ttfe 2
free electron solutions of the hypercube with hoppindsb-
lution atU=0) and |y is the NX N matrix with unit entries
for all i andj. The latter part is nothing but a projection
operator on the eigenstgte,) with energyU, andH can be
rewritten

H= Dlag(e) + U|Uo><Uo|,
with (vo)i=(1//N) i=1,...N.

)

To proceed further we define for each subspace corr

sponding to a given value (there ared+ 1 such subspaces
of degeneracy; , the binomial coefficienta basis consisting
of the normalized vectors{’= (1/\/g;)(1,...,1) and a set of

vectors {v{’ ,k+#1} spanning the subspace orthogonal to

v(l'). In this new basis only thed+ 1) vectorsv, have a
nonzero overlap wittw o), andH, of dimension g, decom-
poses into a diagonal matrix having2(d+ 1) trivial solu-
tionse; , and a residudl -dependent part, noteéd, given by
the matrix of linear sized+ 1) written in the form

H=Diag(e) + U|v){(v|=Ho+V, (9)

where|v) has components;= y/g;/N and thee's represent
now the @+1) distinctfree-electron energies:
€=—2t(d—2i)

i=0,...d. (10)

An alternative representation consists of going back to the

basis where the potential operatdris diagonal.H is then
found to be tridiagonal (one-dimensional tight-binding
mode) with off-diagonal hopping term given by; ;.

=2ty(d—i)(i+1),i=0tod—1 and a diagonal contri-
bution at the |n|t|al sitgthere numbered)0 In other words,
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FIG. 2. Graphical illustration of the single-impurity one-electron
problems associated with the nontrivial part of the specttthm
general formula is given in the text

the problem is mapped onto a single-impurity problem on a
finite chain of linear size d+1). Figure 2 illustrates this
result ford=3.

It is known that the eigenspectrum of single-impurity
problems can be expressed under the form of a sum rule
expression using the Koster-Slater approthis result can
be briefly reobtained as follows. First, the following operator
identity is invoked:

u

(H—2)"'=(Ho—2) "'~ 170697

1 1
O " Gy Y

)"
wherez is an arbitrary complex number ai@&f®) is the un-
perturbed Green’s function given byG9=(v|(H,
—2)"Yv). Then, using this identity, the fully interacting
Green’s functionG,,(z) can be written as

G —ijg)(z) 12
vv(z)_ 1+UG(D?})(Z) ( )
Searching for poles oB,,(z) we get
d
1 1
N 2 — € U (13

Equation(13) is the final closed expression determining the
nontrivial part of the spectrum. It is easily shown that this

gequation admits d+1) distinct solutions, which we shall

denote as Spdét(U).

To summarize, the set of?2 eigenvalues of the hyper-
cubeyq consists of &J-dependent part given by the collec-
ton of the nontrivial spectra at dimensions lower or equal to

d/d
( ) Spect’(U), (14)
i= 0
(note that here the binomial coefficient counts the number of
occurrences ofy; hypercubes with an impurity site in the
decomposition of the initialyy, see Fig. 1 and a ftrivial
U-independent part given b, =2tl, |=—d,...,d with

d i

degeneracy:
g= S | 20-i] 1+i | —1 (d)
=2 -

the prime inY' indicating that the summation oveis done
with an increment of 2. Formulél5) can be obtained by
tracing back the contributions due to the different irreps and
those issued from the internal symmetry of hypercubes

(15
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[trivial solutions extracted when passing from E8).to Eq.  This equation together with Eq&L0) and(17) give the exact
(9)]. Eigenenergies correspond either to singlet or tripletone-particle Green’s function of the problem.
states. Sinc&J only connects basis staté¥l,l) with =0 Generalization of this approach to higher fillings is pres-
(see abovg triplet states are not sensitive td and only  ently under investigation. We have already found that the
singlet states belong to thd-dependent part of the spec- existence of large fractions &f-independent eigenvalues is
trum. The ground-state energy is not degenerate and corrstill valid for some specific fillings. However, the underlying
sponds to the lowest solution in SPEYtU). Note also that structure for theU-dependent part of the spectrum is more
in the limit of large dimensions, and after proper renormal-difficult to elucidate.
ization of the parameters of the Hamiltonian, an infinite- Returning to the two-electron case, we would like to men-
dimensional model can be defined, as done recently for &on that by using rotations instead of reflections, a similar
number of correlated fermions models, see Ref. 2. calculation can be done for standarddimensional hypercu-
Let us now consider dynamical properties. We are interbic lattices of linear sizé and periodic boundary conditions
ested in evaluating the one-particle Green’s function defineajZE). We have found that the problem can still be mapped
by onto a family of LY single-impurity one-electron effective
problems defined on the very same IattE%. Each irrep
(d) = 1o+ corresponds to a value ofdrdimensional integer vectivl
G (z,U)=(olax A=z ay| o), (16) esp ) 9
(M;=0,...L—1), or more physically, to a value for the
otal momentumK=(27/L)M. The only difference be-

where|#,) denotes the one-particle ground state consistin X S .
ween irreps lies in the value of the hopping term that de-

of one electron of given spin araj, creates one electron of > . :
opposite spin in a one-particle state, notedHereafter k pends explicitly orM. More precisely, for each irrep labeled

varies from 0 tod and labels one of thed(+ 1) degenerate by K, Eq. (13) now reads
subspaces of the one-electron problem, the ground state cor-
responding t&k=0. Now, note that vectmlwo) belongs to

-

-1 L-1 1 1

1
the subspace corresponding to the decomposition on hyper- Ld HEZO A E— e vk (19
cubes of dimensiond— k). There exist £ different families ! d n
of hypercubes having such a dimensi@ee Fig. 1 among ) , ) .
which only one has thel-impurity site. Accordingly, we get Where the noninteracting energie€” are given by
the following result:
d
(K)— _
GO(z,U)— Elk Gz U+ [ 1- ;R )ng_k)(z,uzo)_ en’=—4t> cogKi2)cogki+Ki2), (20

1

47 ~with K=(2#/L)M andk=(2#/L)n. In contrast with hy-
Now, we need to evaluate the fundamental quantityyercubes, the sum in EQL9) runs overl® values and cannot
ng')(z,u) with Hamiltonian(9), the dimensiord’ ranging  be further reduced. Note that, since the effective hopping
from 0 tod. For that we note that the kéd)=a]| ) rep-  term varies with the irreggand can even vanighboth local-
resents théfirst) basis element corresponding to the diagonalized and resonant staté€sreps by irreps may be present.
energye, in representatiori9). Projecting out identity(11) Finally, it is worth noticing that in thel=1 case the Bethe
onto vector|0) and expressing the different quantities in ansatz equations for two partictes
terms of the noninteracting spectrum we get

1 ¢ k,L _ U 21
Gy (zU)=—5— AN T ot(sink,—sinky)’ @)
60 _Z
U with E= —2t(cosk;+cosk,) and k;+k,=(27/L)M (M
- a : =0,...L—1), can be recovered from E¢L9) after simple
29" (0 22| 14 vy D _ 9 but tedious algebra.
0 29" =0 ei(d’)—z
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