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The Hubbard model is exactly solved for two particles ond-dimensional hypercubes. It is shown that the
spectrum can be separated into two parts: a trivial~U-independent! part resulting from symmetries of hyper-
cubes and a nontrivial part expressed as a single-impurity problem on a set of finite chains of sized811
(d8<d). The exact expression for the one-particle Green’s function is given. Finally, we discuss the extension
of these results to standard hypercubic lattices with periodic boundary conditions.@S0163-1829~98!51520-2#

One of the most widely used models to describe strongly
correlated fermion systems is the Hubbard model and its
various extensions. Unfortunately, only limitedexact infor-
mation about its physical properties is available. For the one-
dimensional lattice the celebrated solution of Lieb and Wu1

provides the exact eigenspectrum of the model. In the oppo-
site limit of large dimensions investigated very recently,2

some almost exact results have also been obtained. However,
for intermediate dimensions, and particularly for the very
important two-dimensional case believed to be relevant to
high-Tc superconductivity, very little, is at our disposal.
Most of the results reported so far have been obtained either
from numerical solutions on very small clusters~subject to
important finite-size effects! or by using a variety of approxi-
mate analytical methods~with domains of validity and/or
systematic errors difficult to evaluate!.3

In this paper we present an exact solution for the Hubbard
model with first-neighbor hopping termt and on-site inter-
action energyU
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for two particles with opposite spins (Sz50) on a
d-dimensional hypercubegd defined as the set ofN52d

sites whosed coordinates are either 0 or 1. Although our
solution is yet limited to the two-electron case, to exhibit
exact results for a truly interacting system in a dimension
greater than 1 is clearly of primary interest. This is particu-
larly true since hypercubes are related to the usual cubic
lattices with periodic boundary conditions:g2d is topologi-
cally equivalent to ad-dimensional hypercubic lattice of lin-
ear size equal to 4 with periodic boundary conditions, noted
Z4

d ~i.e.,g2 is equivalent to the four-site ring,g4 is equivalent
to the two-dimensional 434 cluster with periodic
conditions,4,5 etc.!. To solve the above Hamiltonian we first
use an Abelian subgroup of the fullgd point group, to block
diagonalize the initial matrix of size 22d into 2d blocks of
size 2d. Quite interestingly, these smaller submatrices corre-
spond to a simple family of effective one-electron Hamilto-

nians defined ongd8 (d8<d), some of which have a single-
impurity site. In a second step, we show how to further
reduce these matrices into smaller blocks of sized811 ~in-
stead of 2d), corresponding to finite chains of sized811
with one impurity site at one end and new specific hopping
terms. Using a standard approach for impurity problems we
provide a closed expression sum rule for the eigenspectrum.
We also derive the exact expression for the one-particle
Green’s function. Finally, the extension of these results to
hypercubic lattices with periodic boundary conditions is
briefly discussed.

Let us defineLd , an Abelian subgroup of the fullgd
point group, generated by thed reflectionsp i into perpen-
dicular (d21)-dimensional planes meeting at thegd center.
It is easy to show thatLd has 2d elements~owing to the
commutativity between the mirror operations!, and that the
orbit of a generic point underLd is a hypercubegd . Let us
number theLd elementsL by integers between 0 and 2d

21, in the following way:L being a product of mirrorsp i ,
let L be the number, written in base two, whose correspond-
ing i th digits are equal to 1 (p1 is L51, p1p2p3 is L57,
etc.!. Let us also locate the sites according to their number-
ing in base two: Thei th coordinate is equal to thei th digit.
Now, the action of the symmetry operationL, onto a sites,
noted as the ‘‘special product’’L•s, translates into the fol-
lowing digit operation: each time a digit equals 1 inL, it
switches the corresponding digit ins. For example, in three
dimensions, 7•156, with corresponds in coordinates to
p1p2p3~0,0,1!5~1,1,0!. To construct the irreducible repre-
sentations~irreps! and the character table ofLd , it is useful
to remark that this group is isomorphic tod times the tenso-
rial product with itself of the two-element groupZ2
5$E,p1%5L1 .6 The Ld irreps ~unidimensional sinceLd is
Abelian! are easily obtained as tensor products of the two
irrepsG0 andG1 of Z2 . Now, theN irreps can be labeled by
integersM , through their base-two decomposition, by order-
ing the different occurrences ofZ2 in the tensorial product,
and fixing the corresponding digit to 0 or 1, whether the
irrepsG0 andG1 occur.

Let us first consider the one-electron tight-binding spec-
trum with hopping termt. Each eigenstate belongs to a given
irrep of Ld , and reads
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wheremM ,r is the number of digits equal to 1 simultaneously
in M andr ~we have used the above defined special product
• to denote the action of the symmetry operationR onto the
basis kets!. Since all the sites are equivalent, it is sufficient to
consider the interaction of the site number 0 with itsd first
neighbors that have exactly one digit equal to 1 and belong
to the setVd5$v j52 j , j 50, . . . ,d21%. As a result, one finds
that the eigenenergies read
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M52t~d22NM !, ~3!

whereNM is the number of digits equal to 1 inM . SinceM
runs from 0 to 2d21, thegd spectrum consists ofd11 lev-
els, from2dt to dt, with equal spacing 2t ~the degeneracy
of a EM level being given by a standard binomial coeffi-
cient!.

Let us now consider the two-electron case (Sz50!. The
full Hamiltonian matrix, of size 22d, is readily block diago-
nalized into 2d blocks of size 2d, associated with each rep-
resentationM . For a givenM , one constructs a basis with 2d

kets uM ,l &
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where u i↑, j↓& represents a configuration with electron↑ at
site i and electron↓ at site j . Depending on the parity of the
number of digits equal to 1 and common to integersM andl ,
it can be shown thatuM ,l & is either symmetric~even num-
ber! or antisymmetric~odd number! with respect to the ex-
change of position of electrons. Accordingly,uM ,l & corre-
sponds either to a singlet or a triplet state. It is clear thatU
only occurs in̂ M ,0uV(U)uM ,0&, while the kinetic part reads
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In the latter expression, we have decoupled the terms where
the ↓ spin jumps~first part! from those where the↑ spin
jumps. In the latter part~sum overj ! the only nonvanishing
term corresponds tor • l 5v j•r • l 8→ l 85v j• l , which meansl
and l 8 neighbors~recall that the group is Abelian and its
elements are their own inverse!. One finally gets that the
nonvanishing kinetic terms read
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The block matrix associated with the irrepM corresponds
therefore to an effective one-electron tight-binding Hamil-
tonian, with sites labeled byl , kets uM ,l &, and hopping
terms given by the above expression~6!. A simple case is
provided by the identity irrepM50, for which x r

M51 for
any r . The effective HamiltonianH (0) corresponds to a hy-
percubegd , with one ‘‘impurity’’ site ~with diagonal term
U) and a constant hopping term22t. We now show that the
other irreps correspond to the effective HamiltonianH (M ) on

hypercubesgd8 with d8,d. One has to evaluate the right-
hand part of Eq.~6!. By definition of thev j ~mirrors that
connect a site to one of its first neighbors!, r andv j•r differ
by one digit, which depends onj , not onr . If this digit takes
the value 1 in the base-two decomposition ofM , then
x r

Mxv j •r
M 521 for anyr , and the correspondingH (M ) matrix

element vanishes.H (M ) therefore corresponds to agd in
which families of parallel edges have been cut~those or-
thogonal to the mirrors labeled by the digits 1 in the decom-
position of M ). Figure 1 displays graphically this general
result ford52 andd53.

So, at this step, the spectrum is solved in terms of one-
electron tight-binding models on hypercubes of dimension
lower or equal tod. The only nontrivial contributions corre-
spond to those parts, in the hypercube decomposition, which
contain the impurity site.7 We now show how to further
greatly reduce their complexity.

To do that it is convenient to reexpress the effective
Hamiltonian H @hereafter we will drop the superscript~0!
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since only theM50 case has finally to be considered# in the
one-electron basis, Eq.~2!. It is easy to verify thatH can be
written in the form

H5Diag~e!1
U

N
I N , ~7!

where Diag~e! is a diagonal matrix whose entries are the 2d

free electron solutions of the hypercube with hopping 2t ~so-
lution at U50! and I N is theN3N matrix with unit entries
for all i and j . The latter part is nothing but a projection
operator on the eigenstateuv0& with energyU, andH can be
rewritten

H5Diag(e)1Uuv0&^v0u, ~8!

with (v0) i5(1/AN) i 51, . . .,N.
To proceed further we define for each subspace corre-

sponding to a given valuee i ~there ared11 such subspaces
of degeneracygi , the binomial coefficient! a basis consisting
of the normalized vectorsv1

( i )5(1/Agi)(1,. . . ,1) and a set of
vectors $vk

( i ) ,kÞ1% spanning the subspace orthogonal to
v1

( i ) . In this new basis only the (d11) vectorsv1 have a
nonzero overlap withuv0&, andH, of dimension 2d, decom-
poses into a diagonal matrix having 2d2(d11) trivial solu-
tionse i , and a residualU-dependent part, notedH, given by
the matrix of linear size (d11) written in the form

H5Diag(e)1Uuv&^vu[H01V, ~9!

whereuv& has componentsv i5Agi /N and thee’s represent
now the (d11) distinct free-electron energies:

e i522t~d22i ! i 50, . . . ,d. ~10!

An alternative representation consists of going back to the
basis where the potential operatorV is diagonal.H is then
found to be tridiagonal ~one-dimensional tight-binding
model! with off-diagonal hopping term given byt i ,i 11

52tA(d2 i )( i 11), i 50 to d21 and a diagonalU contri-
bution at the initial site~here numbered 0!. In other words,

the problem is mapped onto a single-impurity problem on a
finite chain of linear size (d11). Figure 2 illustrates this
result ford<3.

It is known that the eigenspectrum of single-impurity
problems can be expressed under the form of a sum rule
expression using the Koster-Slater approach.8 This result can
be briefly reobtained as follows. First, the following operator
identity is invoked:
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1
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, ~11!

wherez is an arbitrary complex number andGvv
(0) is the un-

perturbed Green’s function given byGvv
(0)5^vu(H0

2z)21uv&. Then, using this identity, the fully interacting
Green’s functionGvv(z) can be written as

Gvv~z!5
Gvv

~0!~z!

11UGvv
~0!~z!

. ~12!

Searching for poles ofGvv(z) we get

1

N (
i 50

d
gi

E2e i
5

1

U
. ~13!

Equation~13! is the final closed expression determining the
nontrivial part of the spectrum. It is easily shown that this
equation admits (d11) distinct solutions, which we shall
denote as Spect(d)(U).

To summarize, the set of 22d eigenvalues of the hyper-
cubegd consists of aU-dependent part given by the collec-
tion of the nontrivial spectra at dimensions lower or equal to
d:

%

i 50

d S d
i D Spect~ i !~U !, ~14!

~note that here the binomial coefficient counts the number of
occurrences ofg i hypercubes with an impurity site in the
decomposition of the initialgd , see Fig. 1! and a trivial
U-independent part given byEl52t l , l 52d, . . . ,d with
degeneracy:

gl5 (8
i 5u l u

d F 2d2 iS i
l 1 i

2
D 21G S d

i D , ~15!

the prime in(8 indicating that the summation overi is done
with an increment of 2. Formula~15! can be obtained by
tracing back the contributions due to the different irreps and
those issued from the internal symmetry of hypercubes

FIG. 1. Graphical illustration of the effective HamiltonianH (M )

associated with the irrepM . Full circles correspond to impurity
sites with a diagonal termU, full edges to hopping terms equal to
22t, and dotted lines to the edges that are cut in the given irrep.~a!
d52, the four irreps are depicted.~b! d53, only four irreps among
the eight are shown.

FIG. 2. Graphical illustration of the single-impurity one-electron
problems associated with the nontrivial part of the spectrum~the
general formula is given in the text!.
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@trivial solutions extracted when passing from Eq.~8! to Eq.
~9!#. Eigenenergies correspond either to singlet or triplet
states. SinceU only connects basis statesuM ,l & with l 50
~see above!, triplet states are not sensitive toU and only
singlet states belong to theU-dependent part of the spec-
trum. The ground-state energy is not degenerate and corre-
sponds to the lowest solution in Spect(d)(U). Note also that
in the limit of large dimensions, and after proper renormal-
ization of the parameters of the Hamiltonian, an infinite-
dimensional model can be defined, as done recently for a
number of correlated fermions models, see Ref. 2.

Let us now consider dynamical properties. We are inter-
ested in evaluating the one-particle Green’s function defined
by

Gk
~d!~z,U ![^c0uak

1

H2z
ak

†uc0&, ~16!

where uc0& denotes the one-particle ground state consisting
of one electron of given spin andak

† creates one electron of
opposite spin in a one-particle state, notedk. Hereafter,k
varies from 0 tod and labels one of the (d11) degenerate
subspaces of the one-electron problem, the ground state cor-
responding tok50. Now, note that vectorak

†uc0& belongs to
the subspace corresponding to the decomposition on hyper-
cubes of dimension (d2k). There exist 2k different families
of hypercubes having such a dimension~see Fig. 1! among
which only one has theU-impurity site. Accordingly, we get
the following result:
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~d!~z,U !5
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1

2kDG0
~d2k!~z,U50!.

~17!

Now, we need to evaluate the fundamental quantity

G0
(d8)(z,U) with Hamiltonian~9!, the dimensiond8 ranging

from 0 to d. For that we note that the ketu0&[a0
†uc0& rep-

resents the~first! basis element corresponding to the diagonal
energye0 in representation~9!. Projecting out identity~11!
onto vector u0& and expressing the different quantities in
terms of the noninteracting spectrum we get

G0
~d8!~z,U !5

1

e0
~d8!2Z

2
U

2d8~e0
~d8!2z!2S 11

U

2d8 (
i 50

d8 gi

e i
~d8!2z

D .

~18!

This equation together with Eqs.~10! and~17! give the exact
one-particle Green’s function of the problem.

Generalization of this approach to higher fillings is pres-
ently under investigation. We have already found that the
existence of large fractions ofU-independent eigenvalues is
still valid for some specific fillings. However, the underlying
structure for theU-dependent part of the spectrum is more
difficult to elucidate.

Returning to the two-electron case, we would like to men-
tion that by using rotations instead of reflections, a similar
calculation can be done for standardd-dimensional hypercu-
bic lattices of linear sizeL and periodic boundary conditions
(ZL

d). We have found that the problem can still be mapped
onto a family of Ld single-impurity one-electron effective
problems defined on the very same latticeZL

d . Each irrep
corresponds to a value of ad-dimensional integer vectorM
(Mi50, . . . ,L21), or more physically, to a value for the
total momentumK5(2p/L)M . The only difference be-
tween irreps lies in the value of the hopping term that de-
pends explicitly onM . More precisely, for each irrep labeled
by K , Eq. ~13! now reads
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1
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~K ! 5
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U
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where the noninteracting energiese (K ) are given by

en
~K !524t(

i 51

d

cos~Ki /2!cos~ki1Ki /2!, ~20!

with K5(2p/L)M and k5(2p/L)n. In contrast with hy-
percubes, the sum in Eq.~19! runs overLd values and cannot
be further reduced. Note that, since the effective hopping
term varies with the irrep~and can even vanish!, both local-
ized and resonant states~irreps by irreps! may be present.
Finally, it is worth noticing that in thed51 case the Bethe
ansatz equations for two particles1

tan
k1L

2
5

U

2t~sin k12sin k2!
, ~21!

with E522t(cosk11cosk2) and k11k25(2p/L)M (M
50, . . . ,L21), can be recovered from Eq.~19! after simple
but tedious algebra.
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