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Hubbard model on hypercubes
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Abstract

We present some exact results for the Hubbard model on d-dimensional hypercubes and fillings corresponding to
(N

­(¬)
"N, N

¬(­)
"1) with N arbitrary. Introducing a spin formalism associated with the symmetry operations of the

hypercube it is shown that the Hubbard model can be rewritten as a spin Hamiltonian defined on a d](N#1)
rectangular spin lattice. For the two-electron case (N"1) a logarithmic reduction of the active part of the Hilbert space
can be achieved. It is shown that a very important size reduction can also be achieved for N'1. ( 1999 Elsevier
Science B.V. All rights reserved.
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The Hubbard model is one of the simplest many-body
model used to describe strongly correlated fermions sys-
tems. Despite its formal simplicity, very little is known
about the exact solution for d-dimensional lattices in the
regime of intermediate dimensions 1(d(R, see, e.g.,
[1]. Here, we present some exact results for the Hubbard
model on the d-dimensional hypercube c

d
defined as the

set of N
4
"2d sites whose d coordinates are either 0 or 1.

Hypercubes are related to usual cubic lattices with peri-
odic boundary conditions: c

2d
is topologically equivalent

to a d-dimensional hypercubic lattice of linear size equal
to 4 with periodic boundary conditions [2] (i.e., c

2
is

equivalent to the 4-sites ring, c
4

equivalent to the two-
dimensional 4]4 cluster with periodic conditions [3],
etc.). In this paper we restrict ourselves to some specific
fillings corresponding to an arbitrary number N of elec-
trons with a given spin (say s

z
"1/2) and only one single

electron with opposite spin (say s
z
"!1/2). The case

N"1 (two electrons with opposite spins) has been pre-

sented in detail in Ref. [2]. The main result was that
a logarithmic reduction of the active part of the Hilbert
space can be achieved. More precisely, the non-trivial
(º-dependent) part of the spectrum can be expressed as
the solution of a family of single-impurity problems de-
fined on finite chains of size d@#1 (d@)d). In other
words, starting from the full initial Hamiltonian matrix
of size 22d (two particles and N

s
"2d sites) we end up with

a set of independent problems of size at most d#1
(logarithmic reduction). Here, we extend this result to an
arbitrary number N of electrons with a given s

z
-compon-

ent and show that in some regime the logarithmic reduc-
tion is still valid.

We consider the standard Hubbard model with
first-neighbor hopping term t and on-site interaction
energy º

H"!t +
WijXp

c`
ipcjp#º+

i

c`
i­
c
i­
c`
i¬
c
i¬
"¹(t)#»(º), (1)

for (N#1) electrons on c
d
. In contrast with our previous

work [2] we introduce here a spin-formalism to express
the action of the d reflections n

i
of the full point

symmetry group of the hypercube. To avoid confusion
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we distinguish with a label l3M1,2, NN, each of the
N spin-up particles, and denote the single spin-down
electron with the label 0. We introduce relative positions
for each particle l3M1,2,NN with respect to electron 0.
Relative positions generate a new hypercube and can be
labelled by an element of M0, 1Nd, or MB, CNd in a spin
language. Accordingly, a state of the system is labelled by
a configuration of a d](N#1) rectangular spin lattice.
A configuration for a given line defines a position on the
hypercube. More precisely, the 0th line describes the
position of the particle 0 whereas the line l3M1,2,NN
describes the relative positions of particle l. In this con-
text we introduce DaTl

i
, a3MB, CN as the ith coordinate

of the particle l on the hypercube (i3M1,2, dN,
l3M0,2,NN). In terms of the Pauli matrix pl

x,i
defined at

each site (i, l) of the spin lattice, the Hamiltonian can be
written

H"!t
d
+
i/1

p0
x,i

p1
x,i
2pN

x,i
!t

N
+
l/1

d
+
i/1

pl
x,i

#º

N
+
l/1

DBB2BTl lSBB2BD. (2)

The motion of the reference particle 0 is not coupled to
the rest of the system. Accordingly, the d operators
p0
x,i

commute with H. It follows that there are 2d rep-
resentations which can be labelled by a vector
(s0

1
,2, s0

d
)3M!1, 1Nd where s0

i
is one of the two eigen-

values of p0
x,i

. The Hamiltonian H being symmetric under
the permutation of the columns, each representation de-
pends only on the number of positive eigenvalues s0

i
. For

a given representation corresponding to p eigenvalues
equal to one (p"0,2, d), the Hamiltonian reads

H
p
"!t

p
+
i/1

p1
x,i
2pN

x,i
#t

d
+

i/p`1

p1
x,i
2pN

x,i
!t

N
+
l/1

d
+
i/1

pl
x,i

#º

N
+
l/1

DBB2BTl lSBB2BD. (3)

For the particular case N"1, the Hamiltonian takes
the simpler form

H
p
"!2t

p
+
i/1

p1
x,i
#ºDBB2BT1 1SBB2BD. (4)

H
p
is the sum of a free part and an impurity contribu-

tion expressed via a projection operator. In other words,
the initial problem reduces to an effective one-electron
problem (with a “renormalized” hopping term !2t) on
a p-dimensional hypercube with an impurity at the ori-
gin. Let us denote by S

p
the fully symmetric subspace

(under permutation of the sites). Since the impurity term
is non-zero only in S

p
, the trivial (º-independent) part of

the spectrum is obtained by considering the restriction of

H to the orthogonal subspace SM
p
:

H
S
M
p
"!2t

p
+
i/1

p1
x,i

. (5)

Now, in order to get the º-dependent part of the
spectrum we introduce a set of (p#1) properly sym-
metrized states Dl'(l"02p) spanning S

p
. They are

built as follows

DlT"
1

Jp! l! (p!l)!
+

P|S(p)

PD(B)l, (C)p~lT, (6)

where S(p) denotes the permutation group for p objects.
Using a second quantification formalism the Hamil-
tonian can be written

H
Sp
"!2t

p
+
l/0

J(p!l)(l#1)a`
l`1

a
l
#h.c#ºa`

0
a
0
. (7)

This Hamiltonian describes a tight-binding model on
a one-dimensional chain of length p#1 with an impurity
site at the origin. Using the Koster—Slater approach [4]
the one-particle Green’s function can be calculated [2]. It
can be shown that the eigenvalues of H

Sp
satisfy the

relation

1

2p

p
+
l/0

(p
l
)

E#2tp!4tl
"

1

º

, (8)

where (p
l
) is the binomial coefficient. This equation gives

the non-trivial part of the spectrum.
In the two-electron case (N"1) the logarithmic reduc-

tion of the size of the Hilbert space is possible because the
spin Hamiltonian (4) is symmetric under the exchange of
columns, i.e. all sites are equivalent. Such a symmetry
property remains valid in the general case. More pre-
cisely, the general spin Hamiltonian (3) H

p
is symmetric

both under the set of permutations of the p first columns
(denoted S`

p
) and the set of permutations of the d!p

last columns (denoted S~
d~p

). As a consequence, eigenvec-
tors of H

p
must be built within the different irreducible

representations (IR) of the tensorial product S`
p
?S~

d~p
.

Derivation of RIs based on Young tableaux is quite
technical and will be presented in detail elsewhere [5]. As
a representative example, let us just consider the most
symmetric RI obtained as the product of the two fully
symmetric RIs of both groups. In this case, an arbitrary
configuration of the spin lattice is entirely characterized
by a set of positive integers (n

1
,2, n

2N) with +2N

i/1
n
i
"d.

Indeed, a column has only 2N different configurations
and the numbers n

i
just give how many times a given

configuration i appears in the full spin lattice configura-
tion. As an important consequence, the size of the repres-
entation cannot exceed d2N. This result obtained for the
most symmetric RI is in fact general [5]. Now, depending
on the relative magnitude of N and d a more or less
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important reduction of the size of the Hilbert space is
obtained. In the favorable case N;d, the reduction is
logarithmic. Finally, let us mention that, in order to take
into account the Pauli principle, eigenvectors need to be
antisymmetrized with respect to the exchange of lines.
This can be done by applying the corresponding fully
antisymmetric projector.
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