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We present a detailed study of several hydrogen-bonded dimers consisting of H2O, NH3, and HF
molecules using the Symmetry Adapted Perturbation Theory~SAPT! at different levels of
approximations. The relative importance of each individual perturbational components and the
quality of the total interaction energies obtained are discussed. The dependence of the results on the
relative orientation of the molecules of the dimers and on the intermonomer distance is also
investigated. ©1995 American Institute of Physics.
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I. INTRODUCTION

It is well-known that evaluating intermolecular intera
tion energies with the level of accuracy required by the ph
ics and chemistry of complex molecular systems is very
ficult. There are two basic reasons for that. First,
interaction energy~defined as the difference between the
tal energy of the complex and the sum of the total energie
the individual noninteracting species! is really a tiny fraction
of the total energies involved. Typically, this fraction ca
vary from about 1027 ~weakly interacting van der Waal
complexes! to about 1024 ~strong hydrogen-bonded sys
tems!. Second, there is noexactmethod to computedirectly
this very small difference. In absence of such a proced
two different theoretical strategies are usually employed
first natural strategy consists in computing the total energ
each species separately~the complex and the individual mol
ecules! and then to subtract out these energies accordin
the very definition of the interaction energy~the so-called
supermolecularmethod!. To do that is difficult due to the
very high level of control required on the different sources
approximation of the particular method used to compute
total energies. Without entering into the technical deta
~choice of the basis set functions, finite-basis-set error, b
set superposition error~BSSE!, etc...! it is fair to say that
current state-of-the-artab initio calculations are not able t
reach the necessary level of accuracy, except of course
very small interacting species. A second quite natural
proach is to consider that the interaction energy is the re
of a very small physical perturbation of the isolated mon
mers and thus to employ some kind of perturbatio
method. This line of research has been intensively follow
during the last decades and has led to the so-called Sym
try Adapted Perturbation Theories~SAPT! ~see e.g., Refs. 1
2, or 3!, a variety of methods based on the usual Rayleig
Schrödinger perturbation theory supplemented by some te
nique to force the change of antisymmetry property of
wave function between the monomers and the interac
complex~as known there is not a unique way to do that a
then, various schemes have been proposed, see referen
Ref. 1!. It is this constraint which is at the origin of th
strong repulsion at short distances~exchange contributions!.
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b!E-mail: jc@dim.jussieu.fr
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In order to take account of the continuum contribution
present in the infinite sums involved in the perturbational
components ~except, of course, for the first-order!, a
variation-perturbation scheme is usually employed~it can be
shown that this can be reduced to a calculation in a suitabl
dimer basis set!.4,5 In their pioneering work on the use of
SAPT Jeziorski and van Hemert~JvH!4 have proposed to
compute the interaction energy using the following minimal
representation:

DEint;ERS
~1!1Eexch

~1! 1Eind
~2! 1Edisp

~2! , ~1!

where all quantities are computed using the wave function
issued from a SCF calculation of the monomers.ERS

(1) is the
standard Rayleigh–Schro¨dinger first-order component
~physically, the classical electrostatic interaction of the un-
perturbed charge distributions in the monomers!, Eexch

(1) is the
first-order exchange part resulting from the change of the
antisymmetry property of the wave function~physically, the
dominant part of the repulsive interaction at short distances!
and whereEind

(2) and Edisp
(2) are the second-order Rayleigh–

Schrödinger induction and dispersion energy, respectively
~physically, the energy of interaction of one monomer within
the electric field of the other, and the major attractive contri-
bution to the interaction energy for neutral systems, respec
tively!. It is important to emphasize that Eq.~1! describes the
main physical facts of the intermolecular interaction~electro-
static interaction, repulsive force, induction and dispersive
forces!. However, a number of corrections are neglected
when using Eq.~1!. The numerical experience shows that
their importance is very system-dependent. It is therefore
very important to compute them if a reliable~although ap-
proximate! answer for any interacting system and not just for
a specific class of systems is wanted. Three types of corre
tions may be distinguished:

~i! corrections to the exchange part due to effects beyon
the first-order,

~ii ! corrections due to higher-order perturbational
Rayleigh–Schro¨dinger components (ERS

(n) with n.2),
~iii ! corrections due to the intramolecular correlation ef-

fects.

A great deal of activity has been devoted to the calcula
tion of these corrections. First of all, it has been very soon
realized that the first-order exchange contribution was no
sufficient to give a proper description of the repulsive part a
80438)/8043/15/$6.00 © 1995 American Institute of Physicsct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8044 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
intermediate distances and different methods have been
posed to evaluate the second-order exchan
contributions.5–12Note that at much shorter distances no s
isfactory approach seems to exist.13 Incorporating these im-
portant contributions we arrive at the following decompos
tion

DEint
SAPT;ERS

~1!1Eexch
~1! 1Eind

~2! 1Eexch2 ind
~2! 1Edisp

~2!

1Eexch2disp
~2! , ~2!

which we shall refer to in the following as the SAPT decom
position. An alternative way of going beyond Eq.~1! is to
combine both perturbational and supermolecular worlds
follows:

DEint
hybrid;DESCF1Edisp

~2! 1Eexch2disp
~2! , ~3!

whereDESCF is the SCF binding energy computed with th
supermolecular method~corrected for the BSSE!. Such a
procedure is attractive since the SCF interaction energy
supposed to contain most of the second-order exchan
induction energy, some induction part of third- and highe
order perturbational terms and even some intramolecular
relation contribution introduced when doing a SC
supermolecular calculation,14 contributions which are all ne-
glected when using Eq.~1!. In the following we shall refer to
it as thehybridmethod. However, when resorting to Eq.~3!
it is important to realize that mixing both approaches ren
difficult the control on the errors made. How much of th
higher-order perturbational contributions, what part of t
exchange-induction energy, etc... is gotten with a SCF sup
molecular calculation is not easy to estimate. Note that it c
be argued that a pure perturbational treatment where in
vidual errors are in a better control may be preferable. In
same idea of incorporating nonperturbational effects it h
been proposed to include the so-called apparent correla
or self-consistency effects into the second-order induct
energy, Eind

(2) . 15–18 In short, it consists in resorting to a
coupled Hartree-Fock~CHF! which implicitly sums up to
infinity certain diagrams appearing in the many-body expa
sion of the induction energy. This is expected to give a be
approximation of the total induction energy. Note that th
can also be done for the exchange-induction part.19 Concern-
ing the explicit calculation of higher-order perturbation
components very little is found in the literature~see, refer-
ences in Refs. 1,20,21!. Finally, let us note that very recently
a great deal of attention has been focused on the calcula
of intramolecular correlation contributions to the interactio
energy.11,13,20,22–28The monomer Hamiltonians are decom
posed as a sum of the Fock operator and some residua
tramonomer correlation operator~Mo” ller-Plesset partion-
ning!. Using a many-body expansion framework a doub
perturbation theory~in the correlation operators of eac
monomer! may be written down for any of the interactio
components. Some calculations of the leading correction
the first- and second-order perturbational components h
been presented~see previous references!. Note also that
quantum Monte Carlo~QMC! techniques can be used t
computeexactlyperturbational quantities~in particular, the
intramonomer correlation effects can be fully taken into a
J. Chem. Phys., Vol. 103,Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
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count, see application to the He–He interaction in Refs.
21,29!. However, it should be noted that the method is in
practice limited to the case of two-electron systems because
of the celebrated fermionic ‘‘sign problem’’~see, e.g., Refs.
30,31!.

The purpose of this paper is to present a detailed study
of several hydrogen-bonded dimers~ranging from weak to
rather strong bonded-systems! using the perturbational for-
malism with different levels of description~two different
pure perturbational approaches and the hybrid method!.
More precisely, using the original formalism presented by
Hesset al.12 a few years ago we investigate the dependence
of the different perturbational contributions on the geometry
of the dimer~both the intermonomer distance and the relative
orientation! for five different hydrogen-bonded dimers~con-
sisting of H2O, NH3, and HF!. We discuss in detail the va-
lidity of the different representations for the interaction en-
ergy presented above and investigate the peculiar role of the
second-order exchange-induction energy.

The organization of the present paper is as follows. In
section II we give a rapid summary of the formalism used in
this work. In particular we give the rather unfamiliar expres-
sions for the exchange-induction and -dispersion energies de-
rived within SAPT theories by Hesset al.12 Section III con-
tains the computational details. In section IV, we present our
numerical results for the different contributions of the inter-
molecular interaction energy and a comparison between the
interaction energies obtained with the different approaches.
Finally, some conclusions are presented in section V.

II. METHOD

In this section we give a rapid overview of the formalism
used in this work; for a very detailed and self-contained pre-
sentation the reader is referred to the original work of Hess
et al.12 In the perturbation theory of interactions the total
Hamiltonian is decomposed asH5H01VAB whereH0 de-
notes the sum of the non-interacting Hamiltonians of the two
monomersA and B ~we shall consider here only dimers,
formulas can be trivially generalized to an arbitrary number
of monomers! andVAB is the intermolecular interaction po-
tential.

Following standard Symmetry Adapted Perturbation
Theories~SAPT! ~see, e.g., Refs. 1–3! and using standard
notations, the complete first- and second-order interaction
energies are written in the form:

E~1!5
^C0

AC0
BuVABAuC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
, ~4!

E~2!52
^C0

AC0
BuVABR0A~VAB2E~1!!uC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
, ~5!

whereR0 denotes the reduced resolvent ofH0 given by

R05(
i j

8
uC i

AC j
B&^C i

AC j
Bu

~Ei
A1Ej

B!2~E0
A1E0

B!
~6!

~the prime in(8 means as usual that the term corresponding
to i50 and j50 is excluded from the summation! andA is
the intersystem antisymmetrizer:
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8045Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
A512A8512P~1!1P~2!2...1~21!Nin fP~Nin f !
, ~7!

whereP(1)5( i
A( j

BPi j denotes the sum of all permutation
exchanging~space and spin! coordinates of electroni of mol-
eculeA with coordinates of electronj of moleculeB, and
similar definitions hold forP(2) ,P(3) ,... (Nin f denotes the
smallest ofNA andNB , the numbers of electrons of molecul
A andB, respectively!. The role played by the antisymme
trizerA is essential: it forces the correct antisymmetry of t
dimer wave function with respect to the exchange of ele
trons between both monomers. In formulas~4!–~6! C i

M (M
5A,B) are supposed to be theexacteigenfunctions of the
HamiltonianHM (M5A,B). In what follows we shall re-
strict ourselves to the use of approximate wave functions a
energies calculated at the SCF level. The role of the int
monomer correlation effects will not be considered here.

As usual the first-order interaction energy~Eq. ~4!! is
written as a sum of two contributions:

E~1!5ERS
~1!1Eexch

~1! , ~8!

where ERS
(1) ~the subscript RS stands for Rayleigh-

Schrödinger! can be interpreted as the energy of the elect
static interaction of the unperturbed charge distributions
the isolated monomers~this quantity is often referred to as
the electrostatic part or also as the first-order polarizat
energy! andEexch

(1) is the first-order exchange energy resultin
from the presence of the antisymmetrizer. Note that in
present work all multiple exchange of electrons~quantum-
mechanical tunneling! between moleculesA andB have been
considered when calculatingEexch

(1) .
In the same way the second-order perturbation ene

E(2) ~Eq. ~5!! is decomposed into two terms: the usu
second-order Rayleigh-Schro¨dinger~RS! perturbation energy
ERS
(2) ~obtained by settingA51 in Eq. ~5!! and the second-

order exchange energyEexch
(2) given by

Eexch
~2! [E~2!2ERS

~2!

52
^C0

AC0
Bu~VAB2E~1!!~A82^A8&!uF~1!&

^A&
, ~9!

where ^A8& and ^A& are the expectation values ofA8 and
A calculated with the ground-state wave functionC0

AC0
B and

F (1) stands for the first-order correction to the wave functi
in the perturbation theory

F~1!52R0V
ABC0

AC0
B . ~10!

Now, we shall suppose that multiple exchanges contr
ute weakly in the region around the equilibrium geom
try,6,14 so that only the leading contribution toEexch

(2) corre-
sponding to a single exchange of electrons between m
eculesA andB is considered. Thus, the approximate expre
sion forEexch

(2) used here is obtained by settingA8 5 P(1) in
Eq. ~9!. Neglecting terms which correspond to contributio
of order higher thanS2 ~whereSstands for overlap integrals
between orbitals of monomersA andB!, we get

Eexch
~2! 52^C0

AC0
Bu~VAB2^VAB&!~P~1!2^P~1!& !uF~1!&.

~11!

By rewriting F (1) ~Eq. ~10!! in the form:
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F~1!5C0
AF ind

B 1F ind
A C0

A1Fdisp
AB , ~12!

it is clear that the second-order exchange energy may b
decomposed into three terms

Eexch
~2! 5Eexch2 ind

~2! ~A→B!1Eexch2 ind
~2! ~B→A!1Eexch2disp

~2! .
~13!

The sum of the first two terms in Eq.~13! are referred to
as the exchange-induction energy andEexch2disp

(2) as the
exchange-dispersion energy. These two terms take their or
gin in the coupling between the induction or dispersion
forces and the electron exchange.

In order to compute these various perturbational quanti-
ties we have used the formalism presented in Ref. 12. In a
few words, the main idea is to express exchange contribu
tions as a combination of formal electrostatic interaction en-
ergies between suitably generalized charge distributions,
form particularly suitable for calculations. To do that, the
main ingredients used are:

~i! The possibility of reducing the action of the intersys-
tem antisymmetrizer~appearing in SAPT! on factorized SCF
wave functions to a sum of simple products of SCF determi-
nants corresponding to each subsystem, namely:

P~1!@CACB#5(
iPA

(
jPB

CAS bjai DCBS aibj D , ~14!

whereCA(ai
bj) denotes the Slater determinant of moleculeA

in which the occupied spin-orbitalai has been replaced by
the spin-orbitalbj of moleculeB, the summation is over the
spin-orbitals of determinantsCA ~here labeled byi! and
CB ~labeled by j!. Using Eq. ~14! all integrals involving
functions of the typeP(1)@CACB# are reduced to sums of
integrals involving simple productsCA(ai

bj) CB(bj
ai ) of ‘‘op-

posite transfer’’ determinants.
~ii ! The use of the so-called Longuet–Higgins represen-

tation of the interaction operatorVAB in terms of the molecu-
lar charge distributionsrM (M5A,B), namely:

VAB5E E rA~rWA!rB~rWB!

urWA2rWBu
drWAdrWB, ~15!

with

rM~rW !5rnuclear
M ~rW !1relectronic

M ~rW !

5 (
mPM

Zmd~rW2rWm!2 (
iPM

d~rW2rW i !, M5A,B.

~16!

~iii ! The possibility of using a variational-perturbation
method to compute efficiently the infinite sums involved in
the second-order expressions. In practice, this can be easi
implemented by making a variational calculation in a dimer
basis set.12

Let us now describe briefly the main steps followed to
derive the rather unfamiliar formulas used in this work to
compute the exchange-induction and dispersion energies.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8046 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
A. Exchange–induction energy

By using Eqs.~11! and~12!, Eexch2 ind
(2) (A→B) is written

as

Eexch2 ind
~2! ~A→B!52^C0

AC0
Bu~VAB2^VAB&!

3~P~1!2^P~1!& !uC0
AF ind

B &, ~17!

with a similar formula forEexch2 ind
(2) (B→A). A first point is

that it is possible to rewriteF ind
B in the form:

F ind
B 5 (

kPB
C0

BS f kB
bk

D , ~18!

where the summation runs over all occupied spin orbi
bk of monomerB and where the so-called ‘‘induction func
tions’’ f k

B’s are some well-defined linear combinations of t
virtual spin orbitals ofB ~one associated with each occupi
orbital!. Using Eq.~18! it is not difficult to show that the
exchange induction energy may be now written

Eexch2 ind
~2! ~A→B!52 (

kPB
~@VABP~1!#k2^VAB&@P~1!#k

2^P~1!&@V
AB#k), ~19!

with the notation

@O#k[K C0
AC0

BUOUC0
AC0

BS f kB
bk

D L , ~20!

whereO stands for an arbitrary operator. Now, by using t
fact that the action of the permutation operatorP(1) on a
product of two determinantsCA andCB may be expressed
as a linear combination of simple products of determina
corresponding to subsystemsA and B and by using the
Longuet-Higgins representation of the interaction opera
VAB ~Eqs.~15!,~16!! it is possible to show that the three bas
contributions in~19! may be written as some specific com
binations of electrostatic interactions between some gene
ized intermolecular charge densities. For example, we ob
for the major contribution12

@VABP~1!#k5(
iPA

(
jPB
jÞk

E E
f 00
A S bjai D f 00B S f kBai

bkbj
D

urA2rBu
drAdrB

1(
iPA

E E
f 00
A S f kB

ai
D f 00B S aibkD

urA2rBu
drAdrB, ~21!

where

f 00
A S bjai D[K C0

AUrA~rA!UC0
AS bjai D L ,

with similar definitions for the other generalized charge d
tributions involved in Eq.~21!. Finally, explicit expressions
for the generalized charge distributions in terms of mo
and bi-electronic integrals involving spin orbitalsai ,bj , and
f k
B may be easily obtained.
J. Chem. Phys., Vol. 103,Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
ls

e
d

e

ts

tor
c
-
ral-
ain

s-

o-

B. Exchange-dispersion energy

A similar route to that followed for the exchange-
induction energy can be used for the exchange-dispersio
component. WritingFdisp

AB ~see, Eq.~12!! as:

Fdisp
AB 5 (

kPA
(
lPB

(
rPA

(
sPB

ckl
rsC0

AS arakDC0
BS bsbl D , ~22!

where indicesk and l are associated with summations over
the corresponding set ofoccupiedspin orbitals whiles and l
refer to summations over the corresponding set ofvirtual
spin orbitals and whereckl

rs are some coefficients analogous
to the linear coefficients of the ‘‘induction functions’’ intro-
duced above, we can expressEexch2disp

(2) in a form very simi-
lar to Eq.~19!:

Eexch2disp
~2! 52 (

kPA
(
lPB

(
rPA

(
sPB

ckl
rs~@VABP~1!#kl

rs

2^VAB&@P~1!#kl
rs2^P~1!&@V

AB#kl
rs!, ~23!

with the notation

@O#kl
rs[K C0

AC0
BUOUC0

AS arakDC0
BS bsbl D L . ~24!

Exactly in the same way as before it is possible to write th
elementary contributions ofEexch2disp

(2) as a combination of
some electrostatic interactions between generalized char
distributions which are ultimately written in terms of mono-
and bi-electronic integrals. As an example, the major contr
bution toEexch2disp

(2) writes:

@VABP~1!#kl
rs5(

iPA
iÞk

(
jPB
jÞ l

E E
f 00
A S arbjakai

D f 00B S bsajblbj
D

urA2rBu
drAdrB

1(
iPA
iÞk

E E
f 00
A S arbsakai

D f 00B S aibl D
urA2rBu

drAdrB

1 (
jPB
jÞ l

E E
f 00
A S bjakD f 00B S bsarblbj

D
urA2rBu

drAdrB

1E E
f 00
A S bsakD f 00B S arbl D

urA2rBu
drAdrB, ~25!

and similar formulas for the other contributions.

III. COMPUTATIONAL DETAILS

A. Dimers

We have studied five different hydrogen-bonded dimer
made of the molecules H2O, NH3, and HF. The intramolecu-
lar geometry of the monomers has been taken to be the e
perimental geometry for isolated monomers~water molecule:
ROH51.8088 bohr, uHOH5104.87°; ammonia molecule:
RNH51.9219 bohr, uHNH5107.81°; HF molecule:
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8047Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
RHF51.71362 bohr!. In Figure 1, we present the differen
dimers in their equilibrium geometry as obtained by the pu
perturbational treatment~SAPT, see Eq.~2!!, note that
slightly different geometries can be obtained with other the
retical schemes, see discussion in the next section. In
work, we shall denoteA the proton acceptor molecule andB
the proton donor molecule. The dimer geometries will
described by the quantitiesuA , uB , and RAB where:

~i! uA defines the angle between the principal axes of
proton acceptor molecule~bisector in H2O, Cv axis in
NH3, and bond axis in HF! and the axisA...B con-
necting the two heavy atomsA andB.

~ii ! uB is the angle between the B-H bond axis of th
proton donor and the axisA...B.

~iii ! RAB is the ~intermolecular! distance between the two
heavy atomsA andB of the two monomers. The val-
ues of these different quantities at the SAPT equili
rium geometry are given in Figure 1.

The five different dimers have been chosen from ve
weak to rather strong hydrogen-bonded dimers. The l
bounded system is the dimer H2O...HNH2. In fact, there is
no experimental evidence of its existence. It is well-know
that NH3 acts as a proton acceptor when it is involved in
H-bonded system.32,33 For example, this is the case fo
H3N...HF,

34 NCH...NH3,
35 and HCCH...NH3.

36 There is so
far no known example of systems in the gas phase where

FIG. 1. The five hydrogen-bonded dimers studied. For a definition of
anglesuA anduB , see text.
J. Chem. Phys., Vol. 103,Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
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ammonia molecule acts as a proton donor. Here, the H2O...
HNH2 dimer has been studied as a prototype of a H-bonde
dimer with NH3 as a proton donor. A stronger but still weak
example of H-bonded dimer is~NH3)2 . Since the ammonia
molecule exhibits no tendency to proton donation, th
~NH3)2 complex is expected to be a case of H-bonded dime
not easy to treat. In this work a linear H-bonded structure ha
been chosen for the dimer. Earlierab initio calculations have
predicted such a structure.37,38 However, this picture is not
supported by microwave experiments,39,40 which predict a
cyclic structure. More recent theoretical~ab initio!
calculations41 indicate that cyclic and linear complexes are
almost degenerate in energy and that which one is found
be the most stable is extremely sensitive to details of th
basis set as well as to the amount of correlation effects i
cluded. In fact, three kinds of tunneling motions exist for the
ammonia dimer: interchange of thedonorandacceptorroles
of the monomers, internal rotation of the monomers abo
their C3 symmetry group andumbrellainversion tunneling.

42

A computational exploration of the six-dimensional
vibration-rotation-tunneling dynamics of~NH3)2 by van
Bladel et al.43 has concluded that the~NH3)2 structure can
be obtained from theab initio equilibrium structure by vibra-
tional averaging. Here, the radial evolution of the intermo
lecular interaction~and its components! of ~NH3)2 has been
mainly studied in order to compare the ammonia dimer wit
the dimer HOH...NH3. The dimers~H2O!2 and~HF!2 can be
considered as good examples of intermediate H-bond
dimers. Finally, we treat the H3N...HOH dimer as an ex-
ample of a rather strong H-bonded system.

B. Basis set

Our calculations for the different dimers have been pe
formed with a very large basis set~13s 8p 3d!/~7s 2p! con-
tracted into~8s 5p 3d!/~4s 2p! ~the first set of basis functions
corresponds to the heavy atom N, O, or F, the second to t
hydrogen atoms!. The basis set used has been taken from
Voisin44 and has been built as follows. First, based on atom
calculations the sets of primitives optimized by van Duijn
eveldt ~12s 7p!/~6s!,45 have been contracted into some re
duced set~7s 4p!/~3s!. Then, a set of diffuse functionss and
p has been added. Their exponents have been obtained
cording to the averaging procedure presented in Ref. 46. F
nally, to better describe the heavy atoms~N, O, and F!, three
polarization functionsd have been added according to the
rules proposed by Werner and Meyer.47 The two orbitalsp of
hydrogen are those given by Christiansen and McCullough.48

In order to evaluate the quality of our basis set we hav
performed a number of checks.

1. Basis-set quality: Some monomer properties

The SCF energy and dipole moment have been com
pared to the some recently estimated Hartree–Fock limits f
the three molecules~Table I!. Our values for the SCF ener-
gies appear to be quite close to the nearly-infinite-basis-s
results. The values of the dipole moments are also qui
good. It is important to emphasize that reproducing correct

he
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the permanent dipole moments is crucial since the interac
energy of hydrogen-bonded systems is dominated by
electrostatic interaction.

2. Basis-set quality: Some dimer properties

a. Complementary exchange energy.A very useful
quantity to evaluate the quality of a given finite basis set
computing intermolecular interactions is the so-cal
‘‘complementary exchange energy.’’ A very detailed prese
tation of this quantity can be found in references.1,50 How-
ever, since the use of this quantity is not very common, le
first give a short presentation of it. The complementary
change energy,ecompl2exch, is defined via the following for-
mula

E0[
^C0

AC0
BuHAuC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
5Ē0

01ecompl2exch

1
^C0

AC0
BuVABAuC0

AC0
B&

^C0
AC0

BuAuC0
AC0

B&
~26!

where

ecompl2exch5
^C0

AC0
Bu~Ē0

02H0!A8uC0
AC0

B&

^C0
AC0

BuAuC0
AC0

B&
. ~27!

In Eq. ~26! E0 denotes the total Heitler–London energy a
Ē0
0 the total energy corresponding to the approximate w

function uC0
AC0

B& for the unperturbed HamiltonianH0 .
WhenC0

M (M5A,B) are chosen to be the exact~ground-
state! wave functions of the monomers the complement
exchange energy vanishes and the Heitler–London inte
tion energy~defined asE02Ē0

0) coincides with the complete
first-order interaction energy. Note that, due to the prese
of the operatorA8 at the numerator,ecompl2exch decreases
exponentially as a function of the distance. This is the rea

TABLE I. SCF energies and dipole moments obtained with the basis
used in this work. Comparison with the corresponding near Hartree–F
limits. All energies in a.u. Dipole moments in Debye.

Molecule ESCF Enear HF limit mSCF mnear HF limit

H2O 276.0606 276.0673a 1.98 1.98a,b

NH3 256.2179 256.2246a 1.56 1.62a

HF 2100.064 2100.0706a 1.93 1.92a

aReference 49.
bReference 53.
J. Chem. Phys., Vol. 103,Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
ion
the

or
d
n-

us
x-

d
ve

ry
ac-

ce

on

why this quantity, which may be viewed as a correction to
the ordinary exchange energy, is called ‘‘complementary ex
change energy.’’ Now, the important property we shall use i
thatwithin the one-exchange approximationthe complemen-
tary exchange energy vanishes if and only if the approximat
functions used for the unperturbed monomers are the exa
Hartree–Fock solutions. Since for not too small intermono
mer distances the exact and one-exchange complementa
exchange energies are almost identicalecompl2exch is a good
indicator of how far an approximate SCF wave function built
from some given basis set is from the Hartree–Fock limit. O
course, for very small values ofecompl2exch it would be nec-
essary to consider the true one-exchange complementary e
ergy instead ofecompl2exch. In Table II we present for the
different dimers treated the values obtained forecompl2exch

at a few representative distances RAB . To compare with, we
also report the values of the Heitler–London exchange en
ergy defined as

Eexch2HL
~1! 5Eexch

~1! 1ecompl2exch. ~28!

The values obtained forecompl2exch are found to be rather
small when compared with typical values~see, e.g., Refs. 1
or 51!. This illustrates the good quality of the basis sets use
in this work.

b. Counterpoise correction at the SCF level. In a super-
molecular calculation of a complex the better the basis se
used for describing each monomer is, the smaller the basi
set-superposition error~BSSE! is. We have computed this
error by using the standard counterpoise method of Boys an
Bernardi,52 some of our results are displayed in Table III. As
a general rule, we get a very small counterpoise correction

c. Second-order dispersion energy. Szalewiczet al.53

pointed out that the use off functions improved considerably
the dispersion energy. Their estimate of the exact value wa
22.0 kcal/mol for the water dimer near the equilibrium dis-
tance~RO...O53. Å!. In a recent work, Rybaket al.20 have
obtained a value of21.90 kcal/mol by using a very large
basis set. Here, although nof functions are present in our
calculations, our 122 atomic-orbital dimer basis set leads, fo
the water dimer, to a value of21.89 kcal/mol which is al-
most identical to the value obtained by Rybaket al.and quite
close to the exact one estimated by Szalewiczet al.

set
ck
TABLE II. Complementary exchange energyecomp2exch and first-order Heitler–London exchange energy
Eexch2HL
(1) for some representative values of the distance RAB between the heavy atoms. Energies in kcal/mol,

distances in Å.

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

2.75 ecomp2exch 20.05 0.43 20.22 20.30 0.03
Eexch2HL
(1) 19.70 30.49 12.80 4.91 19.84

3.00 ecomp2exch 20.16 20.10 20.15 20.26 20.10
Eexch2HL
(1) 8.12 13.69 5.18 1.78 8.72

3.70 ecomp2exch 0.00 0.01 0.02 20.02 0.00
Eexch2HL
(1) 0.64 1.40 0.40 0.09 0.85
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Counterpoise-corrected SCF interaction energy,DECP
SCF , and counterpoise correction,eCP for some

representative distances. Energies in kcal/mol. Distances in Å .

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

2.75 DECP
SCF 3.84 5.84 22.46 23.64 22.78

eCP 0.09 0.10 0.10 0.20 0.10
3.00 DECP

SCF 20.01 0.60 23.65 23.48 24.54
eCP 0.05 0.06 0.06 0.16 0.06

3.70 DECP
SCF 21.38 21.73 22.50 21.90 23.29

eCP 0.02 0.03 0.02 0.11 0.02

Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
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IV. PERTURBATIONAL RESULTS

A. Total interaction energies at equilibrium
geometries

In Table IV we present the total interaction energies o
tained for the different dimers studied. We also present
optimized geometries, RAB , uA , anduB . We have used three
different approaches:

~i! The pure perturbational approach, SAPT, including
perturbational components up to the second-order

DEint
SAPT5ERS

~1!1Eexch
~1! 1Eind

~2!1Eexch2ind
~2! 1Edisp

~2!

1Eexch2disp
~2! . ~29!

~ii ! A truncated approach we shall refer to in the follow
ing as SAPTtrunc in which the exchange part of the
induction is neglected~this method will play an im-
portant role in the discussion to follow!

DEint
SAPTtrunc5ERS

~1!1Eexch
~1! 1Eind

~2!1Edisp
~2! 1Eexch2disp

~2! . ~30!

~iii ! The hybrid approach mixing the SCF interaction e
J. Chem. Phys., Vol. 103, NMar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
-
he

ll
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-

ergy ~counterpoise-corrected! and the complete dis-
persion contribution calculated with SAPT:

DEint
hybrid5DEint

SCF1Edisp
~2! 1Eexch2disp

~2! . ~31!

For the three different approaches the geometries ha
been optimized by varying the anglesu I ~I5A andB! and
the distance RAB around the estimated equilibrium geometry
(u I within 230° and130 ° aroundu I

exp using65° steps,
RAB within 20.40 Å and 0.4 Å around RAB

exp with 0.03 Å
steps!.

From a qualitative point of view, both SAPT,
SAPTtrunc , and the hybrid methods lead essentially to th
same results. The force of the hydrogen bond~importance of
the total interaction energy! for the dimers we have studied
may be classified as follows: H2O...HNH2 ,H3N...HNH2
,H2O...HOH; HF...HF,H3N...HOH, where the notation
X,Y means that the dimerX is less bounded than the dimer
Y. We verify the well-known result that NH3 acts preferen-
tially as a proton acceptor rather than a proton donor sinc
here H3N...HOH is much more stable than H2O...HNH2.
Note also that NH3 acts as a better acceptor than H2O since
TABLE IV. Intermolecular interaction energy,DEint , obtained from different methods~see text! at the corre-
sponding equilibrium geometry. The values ofuA , uB , and RAB are given together with the known experimen-
tal values. Energies in kcal/mol, distances in bohr.

H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

DEint
SAPT 22.09 22.50 24.22 23.75 25.19

DEint
SAPTtrunc 22.50 23.15 25.45 25.82 27.55

DEint
hybrid 22.49 23.13 25.31 24.89 26.76

DEint
exp -a -b 25.460.7c 24.960.1d ;6e

Req
SAPT 3.40 3.50 3.15 2.83 3.15

Req
SAPTtrunc 3.20 3.20 2.68 2.48 2.70

Req
hybrid 3.25 3.30 2.91 2.68 2.93

Req
exp -a -b 2.98f 2.68g 2.99h

uA 50° 0° 60° 68° 20°
uA
exp -a -b 60°f 62°g 11°,uA,23°h

uB 0° 0° 0° 0° 5°
uB
exp -a -b 0°f 11°g .13°h

aUnphysical molecule, see text.
bLinear H-bonded structure, no experimental values, see text.
cReference 55.
dReference 20.
eTo our knowledge no experimental value available. The value quoted is anab initio estimate given by Latajka
and Scheiner~Ref. 56!.
fReference 57.
gReference 58.
hReference 59.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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H3N...HOH is more stable than H2O...HOH. Concerning the
geometrical parameters it appears that the value of the a
uA defining the angle between the axesA...B ~A andB being
the heavy atoms of the complex! and the principal axis of the
proton acceptor depends strongly on the chemical nature
the acceptor. A value of about 60° has been obtained w
the proton acceptor is H2O or HF. A smaller value is obtained
when the proton acceptor is NH3. The value of the angle
uB characterizing the position of the bond A-H~A being N,
O, or F! of the proton acceptor is always very close to 0
The smallest distance RA...B between the two heavy atoms a
the equilibrium geometry has been obtained for the H
dimer. We get the following series: RF...F~HF!2 , RO...O

~H2O!2 , RN...N~NH3)2 . The equilibrium distance RA...B
calculated for the heterodimer involving NH3 and H2O in-
creases from the most stable dimer~H3N...HOH! to the less
stable one~H2O...HNH2).

From a more quantitative point of view, the first impo
tant point to note is that values of the interaction ener
DEinter , depend appreciably on the method used and/or
dimer considered. First, it is clear thatDEint

SAPT is always
smaller in magnitude thanDEint

hybrid or DEint
SAPTtrunc . The sys-

tematic difference is about 20%. The comparison betwe
DEint

SAPTtrunc andDEint
hybrid depends on the dimer. We can dis

tinguish three different cases:
~i! the weak H-bonded dimers case~including H2O...

HNH2 and ~NH3)2) for which DEint
SAPTtrunc andDEint

hybrid al-
most coincide.

~ii ! the intermediate case of medium H-bonded dime
~~H2O!2 and ~HF!2) for which we obtain two different re-
sults. For the~H2O!2 dimer the total interaction energy cal
culated with SAPTtrunc and the hybrid methods are almos
identical ~the difference is less than 3%!. This is a result
which has already been obtained by Refs. 4, 12, and
However, this is no longer true for the~HF!2 dimer for which
DEint

SAPTtrunc andDEint
hybrid are off by about 20%, therefore

the equality of these two quantities cannot be considered
general rule. We shall return to this important point later af
having presented the individual components of the inter
tion energy~sec. C below!.

~iii ! the rather strong H-bonded dimer, H3N...HOH, for
which an important difference between the truncated and
brids results is observed.

Regarding the equilibrium distance Req we find that the
SAPT results are systematically larger than those obtai
with the two other methods. Once again, the situation is
so clear when we compare the values obtained w
SAPTtrunc and the hybrid methods. Almost identical resul
have been obtained for the case of weakly bonded dim
while shorter distances have been calculated with
SAPTtrunc approach for the other dimers. If we compare wi
the known experimental values it is clear that the hyb
method is the method which gives the most plausible resu
Now, regarding the calculated angular parameters (uA and
uB) defining the relative position of the two molecule
within the H-bonded dimer we have systematically obtain
almost the same values with the three different procedu
We have also found that not only the equilibrium angles a
J. Chem. Phys., Vol. 103, NDownloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
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very similar but also the general shape of the interactio
energy curves with respect to the relative angles for a
dimers presented here. To illustrate this point we present
Figure 2 the energy curve obtained for the water dimer as
function of the angleuA . Clearly, there exists some impor-
tant radial dependence of the interaction energy on the pr
cedure used but a much smaller one for the relative positio
of the molecules. In what follows we study in more detai
this radial dependence.

B. Radial dependence of the perturbational
contributions

Keeping the angular parametersuA anduB of each dimer
fixed at their optimized values, we have investigated the r
dial dependence of the intermolecular interaction energy pe
turbational components.

Our main purpose is to study which contributions to the
interaction energy are actually dominant in stabilizing th
five studied complexes. We are also interested to trace ba
to its origin the poor stability of the dimer~NH3)2 and also
the very short F...F distance in the~HF!2 dimer.

In the next few tables we present the radial dependen
of the following contributions:

~i! ERS
(1) , Eexch

(1) and the complete first-order,E(1)SAPT

~Table V!;
~ii ! the second-order induction energyEind

(2) , its exchange
part Eexch2 ind

(2) , and the complete induction energy
Eind
(2)SAPT ~Table VI!;

~iii ! the second-order dispersion energyEdisp
(2) , its ex-

change partEexch2disp
(2) , and the complete dispersion

energyEdisp
(2)SAPT ~Table VII!.

We make the following comments on the results pre
sented in Tables V–VII:

~i! All contributions of the Rayleigh–Schro¨dinger ~RS!
treatment ~no exchange terms!, namely ERS

(1) , Eind
(2) , and

FIG. 2. Interaction energy curves,DEint , as a function ofuA ~see text! for
the water dimer as calculated by SAPT, SAPTtrunc , and the hybrid methods.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. First-order Rayleigh–Schro¨dinger energy,ERS
(1) , first-order exchange energy,Eexch

(1) , and complete
first-order,ESAPT

(1) 5 ERS
(1) 1 Eexch

(1) for different values of RAB . Energies in kcal/mol and distances in Å.

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

ERS
(1) 211.28 217.00 211.51 26.63 216.36

2.75 Eexch
(1) 19.75 30.07 13.10 5.21 19.87

E(1)SAPT 8.48 13.08 1.59 21.42 3.44
ERS
(1) 27.62 212.00 28.40 25.16 212.30

2.90 Eexch
(1) 11.40 18.90 7.40 2.98 12.23

E(1)SAPT 3.78 6.90 21.00 22.18 20.07
ERS
(1) 26.20 29.60 27.15 24.42 210.27

3.00 Eexch
(1) 8.32 13.80 5.33 2.04 8.83

E(1)SAPT 2.12 4.20 21.82 22.38 21.44
ERS
(1) 24.32 26.71 25.39 23.47 27.72

3.17 Eexch
(1) 4.54 8.02 2.84 1.06 5.03

E(1)SAPT 0.22 1.31 22.55 22.41 22.70
ERS
(1) 21.24 21.76 21.94 21.39 22.61

4.00 Eexch
(1) 0.21 0.52 0.12 0.03 0.31

E(1)SAPT 21.03 21.24 21.82 21.36 22.30

Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
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Edisp
(2) , have a stabilizing effect. Of course, the major con

bution is the electrostatic interaction energy which represe
between 55 and 70 % of the total RS contribution. When
compare the relative force of the RS interaction energy
the different H-bonded dimers we get the following ord
~NH3)2 . H3N...HOH, H2O...HNH2 . ~H2O!2, ~HF!2 .
For an average distance of RAB 53 Å, it appears that for the
dimers~H2O!2 and ~HF!2 the electrostatic energy represen
75% and 50% of the value obtained for~NH3)2; for the
dimers~H2O!2 and ~HF!2 , Eind

(2) represents 75% and 40% o
the value obtained for~NH3)2 , respectively; and for~H2

O!2 and ~HF!2 Edisp
(2) represents, 50% and 20% of Edisp

(2) of
~NH3)2 , respectively.

~ii ! The total first- and total second-order exchange c
tributions~including both induction and dispersion contrib
tions! reduce the stabilizing effect of the Rayleigh
Schrödinger terms just discussed. As expected, the m
exchange contribution results from the first-order excha
term which represents 80% of the total exchange contr
J. Chem. Phys., Vol. 103,¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subje
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tion at intermediate distances, while the second-order indu
tion and dispersion exchange components have been o
tained to represent 14% and 6% of the total exchang
respectively. Regarding the total exchange contributio
we obtain the following order:~NH3)2 . ~H2O...HNH2)
. ~H3N...HOH!.~H2O!2. ~HF!2 . We have investigated the
behavior of each individual exchange component as a fun
tion of the distance RAB . We have found that for distances
greater than 3 Å the exchange contribution may be very wel
represented via a single exponential function,Ce2a(R2R0).
The set of parameters obtained for the different dimers an
for the different components of the exchange part using th
results for RAB53.00, 3.17, 3.70, and 4.00 Å are given in
Table VIII ~note thatR0 has been chosen to be fixed at 3 Å!.
The values of the parameters depend essentially on the n
ture of the exchange contribution~first-order, exchange-
induction or exchange-dispersion! and on the chemical na-
ture of the molecules involved in the complex.
TABLE VI. Second-order induction energy,Eind
(2) , second-order exchange induction energy,Eind2exch

(2) , and
complete second-order induction,Eind

(2)SAPT5 Eind
(2)1Eind2exch

(2) for different values of RAB . Energies in kcal/mol
and distances in Å.

RAB H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

Eind
(2) 26.10 29.59 24.55 22.39 27.58

2.75 Eind2exch
(2) 4.27 6.30 2.81 1.36 4.70
Eind
(2)SAPT 21.83 23.29 21.74 21.03 22.88
Eind
(2) 23.26 25.69 22.49 21.38 24.63

2.90 Eind2exch
(2) 2.17 3.61 1.40 0.70 2.74
Eind
(2)SAPT 21.09 22.08 21.00 20.68 21.89
Eind
(2) 22.30 24.04 21.80 20.96 23.36

3.00 Eind2exch
(2) 1.48 2.49 0.95 0.45 1.91
Eind
(2)SAPT 20.82 21.55 20.85 20.51 21.45
Eind
(2) 21.22 22.30 21.00 20.54 21.99

3.17 Eind2exch
(2) 0.71 1.32 0.45 0.20 1.04
Eind
(2)SAPT 20.51 20.98 20.55 20.34 20.95
Eind
(2) 20.10 20.21 20.10 20.06 20.21

4.00 Eind2exch
(2) 0.02 0.07 0.02 0.01 0.06
Eind
(2)SAPT 20.08 20.14 20.08 20.05 20.15
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



TABLE VII. Second-order dispersion energy,Edisp
(2) , second-order exchange dispersion energy,Edisp2exch

(2) , and
complete second-order dispersion energy,Edisp

(2)SAPT5Edisp
(2) 1Edisp2exch

(2) for different values of RAB . Energies in
kcal/mol and distances in Å.

RAB
H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3...HOH

Edisp
(2) 24.63 26.78 23.38 21.46 24.82

2.75 Edisp2exch
(2) 1.28 2.28 0.82 0.24 1.35
Edisp
(2)SAPT 23.35 24.50 22.56 21.22 23.47
Edisp
(2) 23.19 24.88 22.32 21.00 23.45

2.90 Edisp2exch
(2) 0.77 1.45 0.48 0.14 0.88
Edisp
(2)SAPT 22.42 23.43 21.84 20.86 22.57
Edisp
(2) 22.59 23.93 21.89 20.79 22.77

3.00 Edisp2exch
(2) 0.57 1.07 0.34 0.09 0.64
Edisp
(2)SAPT 22.02 22.86 21.55 20.70 22.13
Edisp
(2) 21.79 22.74 21.31 20.53 21.93

3.17 Edisp2exch
(2) 0.33 0.64 0.19 0.05 0.38
Edisp
(2)SAPT 21.46 22.10 21.13 20.48 20.92
Edisp
(2) 20.34 20.54 20.24 20.10 20.38

4.00 Edisp2exch
(2) 0.02 0.05 0.01 0.00 0.03
Edisp
(2)SAPT 20.32 20.49 20.23 20.10 20.35
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~iii ! Clearly, at very short distances the repulsive e
change part of the first-order dominates the attractive
contribution. However, at sufficiently large distances the e
change part vanishes and only the electrostatic term surv
~it behaves as 1/RAB

3 ). Accordingly, the total first-order en-
ergy displays a minimum. The location of the minimum d
pends very much on the system studied. Looking at result
TableV we see that the weak H-bonded dimer~NH3)2 has a
shallow minimum at a relatively large distance~21.30 kcal/
mol with Req . 3.8 Å!. In contrast, the stronger-bounde
dimers~H2O!2 and~HF!2 have a larger total first-order inter
action energy~about22.50 kcal/mol!. The minimum region
of ~HF!2 is found to be quite broad within a range of value
between 2.9 Å and 3.3 Å.

~iv! The positive ~repulsive! exchange contributions
Eexch2 ind
(2) and Eexch2disp

(2) terms never dominate thei
Rayleigh–Schro¨dinger counterparts,Eind

(2) andEdisp
(2) . In fact,

the second-order RS terms tend to decrease the intermol
lar interaction energy and to push the equilibrium distan
RAB towards shorter distances, this effect is slightly reduc
by the second-order exchange terms whose main effect i
bring back RAB to more reasonable values. The effect of t
J. Chem. Phys., Vol. 103, NDownloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
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second-order exchange contributions is more important for
~NH3)2 than for the~HF!2 dimer ~see Tables IV, VI, and
VII !. In conclusion, the relative stability between the differ-
ent H-bonded dimers results from a subtle balance betwee
Rayleigh-Schro¨dinger and total exchange contributions.

C. Radial dependence of the total interaction energy:
A comparison between the different approaches

In Table IX we present the total interaction energy as
calculated within SAPT, SAPTtrunc and the hybrid methods
~Eqs. ~29!, ~30!, and ~31!! as a function of RAB . We also
present in Figures 3 and 4 the complete interaction energy
curves for two representative examples: the NH3 and HF
dimers. A number of remarks are in order. First, it is clear
that at very large distances the three approaches give th
same results for the total interaction energy and thus, the
same dissociative behavior. The results obtained by the dif
ferent methods at small and intermediate distances may b
quite different depending on the force of the hydrogen bond.
For the two weak H-bonded cases~H2O...HNH2 and
~NH3)2) the agreement between the truncated and hybrid
TABLE VIII. Parameters of the representationCe2a(R2R0) (R053 Å) for: ~a! the first-order exchange energy,
~b! the second-order exchange induction energy,~c! the second-order exchange dispersion energy. ParametersC
in kcal/mol anda in Å21.

H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

Eexch
(1)

a 3.685 3.280 3.777 4.205 3.351
C 8.404 13.910 5.397 2.121 8.860

Eexch2 ind
(2)

a 4.317 3.585 3.906 5.489 3.450
C 1.473 2.444 0.893 0.474 1.893

Eexch2disp
(2)

a 3.392 3.053 3.518 3.115 3.085
C 0.572 1.077 0.344 0.088 0.636
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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TABLE IX. Total interaction energy calculated with SAPT, SAPTtrunc and the hybrid methods, see text.
Energies in kcal/mol and distances in Å.

RAB
H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

DEint
SAPT 11.29 15.31 1.60 22.41 2.79

2.54 DEint
SAPTtrunc 1.31 2.04 25.11 25.73 27.14

DEint
hybrid 6.63 9.15 22.51 24.45 22.84

DEint
SAPT 3.31 5.26 22.71 23.67 22.90

2.75 DEint
SAPTtrunc 20.96 21.00 25.51 25.03 27.60

DEint
hybrid 0.50 1.35 25.02 24.86 26.26

DEint
SAPT 0.27 1.39 23.94 23.72 24.53

2.90 DEint
SAPTtrunc 21.90 22.22 25.34 24.42 27.27

DEint
hybrid 21.48 21.29 25.31 24.51 26.74

DEint
SAPT 20.72 20.21 24.20 23.59 25.02

3.00 DEint
SAPTtrunc 22.19 22.70 25.10 24.03 26.93

DEint
hybrid 22.03 22.25 25.19 24.18 26.68

DEint
SAPT 21.76 21.75 24.22 23.23 25.19

3.17 DEint
SAPTtrunc 22.46 22.97 24.68 23.42 25.57

DEint
hybrid 22.47 22.98 24.73 23.57 26.15

DEint
SAPT 21.83 22.27 22.84 22.01 23.72

3.70 DEint
SAPTtrunc 21.90 22.52 22.89 22.02 23.88

DEint
hybrid 21.92 22.53 22.90 22.07 23.88

DEint
SAPT 21.43 21.87 22.13 21.51 22.82

4.00 DEint
SAPTtrunc 21.45 21.93 22.14 21.51 22.86

DEint
hybrid 21.46 21.96 22.16 21.53 22.88
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results is very good except at small distances~see Figure 3!.
For the rather strong dimers~HF!2 and H2O...HOH the trun-
cated and hybrid curves appear to differ quite substantia
by about 20%. The water dimer appears as an intermed
species for which both methods are in reasonable agreem
a result which has been already obtained by Refs. 4, 12,
20. It should be noticed that for strong enough dimers
equilibrium distance obtained with the truncated method
systematically smaller than with the hybrid method. Rega
ing the SAPT results it is clear thatDEint

SAPT is always
smaller in magnitude thanDEint

hybrid or DEint
SAPTtrunc . The sys-

tematic difference for all dimers is about 20%. Note also th
the equilibrium distance obtained by the pure perturbatio
method is also systematically greater than with the two ot
methods. In order to discuss further these results it is imp

FIG. 3. Interaction energy curves,DEint , as a function of RAB for the
~NH3)2 dimer as calculated by SAPT~curve with open squares!,
SAPTtrunc ~solid squares!, and the hybrid methods~crosses!.
J. Chem. Phys., Vol. 103, N¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subjec
lly
ate
ent,
nd
e
is
d-

at
al
er
r-

tant to point out that the equality of the results obtained with
the truncated and hybrid methods should result from the fol
lowing equality:

DEint
SCF;E~1!1Eind

~2! , ~32!

whereE(1) is the complete first-order~electrostatic and ex-
change terms! andEind

(2) is the Rayleigh–Schro¨dinger part of
the induction energy. It has been argued that this equalit
should result from a fortunate cancellation between the ex
change part of the induction energy and some part of th
higher-order perturbational contributions which are implic-
itly included in a SCF supermolecular calculation of the in-
teraction energy.4 Despite the fact that it is roughly true for
the water dimer, our results clearly demonstrate that it is
wrong for the ~HF!2 and H3N...HOH dimers. To illustrate

FIG. 4. Interaction energy curves,DEint , as a function of RAB for the
~HF!2 dimer as calculated by SAPT~curve with open squares!,
SAPTtrunc~solid squares!, and the hybrid methods~crosses!.
o. 18, 8 November 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8054 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
this point we present in Figures 5 and 6 a comparison be-
tween the SCF interaction energy curve and the curve rep
senting the perturbational sumE(1)1Eind

(2) for the~NH3)2 and
~HF!2 dimers, respectively. For the NH3 dimer the overall
agreement between the two curves is strikingly good. In c
trast, for the~HF!2 dimer there is a clear disagreement, th
main feature being an important difference in the location
the minimum. Although the difference of minimum energie
is small ~about 0.2 kcal/mol! this difference at the new cor-
responding minima is magnified when the total dispersi
energy is added to lead to the complete interaction ene
Following the Morokuma decomposition~see e.g., Ref. 54!
the SCF interaction energy may be written as:

DEint
SCF5Eelec1Eexch2HL1Eind

SCF, ~33!

whereEelec is the electrostatic energy~identical toERS
(1)) as

calculated here with SAPT,Eexch2HL is the Heitler–London
exchange energy which reduces almost toEexch

(1)SAPTwhen a
very large basis set is used~see discussion on the comple
mentary exchange in Sec. III.B! andEind

SCF is by definition the

FIG. 5. Comparison between the SCF interaction energy curve~solid line
with crosses! and the curve representing the perturbational sumE(1)

1Eind
(2) ~dashed line with open squares! for the ~NH3)2 dimer.
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induction part of the SCF interaction energy. In order to dis-
cuss the status of the SAPT induction energy~including or
not the exchange contribution! with respect to the SCF in-
duction energy, we have presented in Table X the SCF in-
duction energy, the difference between the SCF induction
energy and the total SAPT induction energy~including ex-
change effects! and the same difference without the ex-
change terms, all quantities being given as a function of the
distance RAB . It immediately appears that at short and inter-
mediate distances, the three calculated values of the induc
tion energy are different. The nice agreement obtained for
the water dimer at RO...O53 Å betweenEind

SCF and Eind
(2) is

actually fortuitous. In fact,Eind
SCF should not be compared to

Eind
(2) because the so-calledapparent correlationor self-

consistency effects are included in the supermolecular
Hartree–Fock interaction energy but not in our computation
of Eind

(2) .15 As emphasized by Sadlej15 the second-order RS
induction energy calculated within SAPT methodology by
using the first-order perturbed wave function is equivalent to
that computed within a UnCoupled Hartree–Fock~UCHF!

FIG. 6. Comparison between the SCF interaction energy~solid line with
crosses! and the curve representing the perturbational sumE(1)1Eind

(2)

~dashed line with open squares! for the ~HF!2 dimer.
in
TABLE X. Comparison between the SCF induction energy and the perturbational induction energy. Energies
kcal/mol and distances in Å.

RAB
H2O...HNH2 H3N...HNH2 H2O...HOH HF...HF H3N...HOH

Eind
SCF 24.57 27.66 23.84 21.92 26.26

2.75 Eind2tot
(2) 2Eind

SCF 2.74 4.37 2.10 0.89 3.39
Eind
(2)2Eind

SCF 21.53 21.93 20.71 20.47 21.32
Eind
SCF 22.61 24.75 22.25 21.15 24.00

2.90 Eind2tot
(2) 2Eind

SCF 1.52 2.67 1.25 0.47 2.11
Eind
(2)2Eind

SCF 20.65 20.94 20.24 20.23 20.63
Eind
SCF 21.93 23.49 21.68 20.84 23.00

3.00 Eind2tot
(2) 2Eind

SCF 1.11 1.94 0.83 0.33 1.55
Eind
(2)2Eind

SCF 20.37 0.55 20.12 20.12 20.36
Eind
SCF 21.10 22.00 20.99 20.50 21.85

3.17 Eind2tot
(2) 2Eind

SCF 0.59 1.02 0.44 0.16 0.90
Eind
(2)2Eind

SCF 20.12 20.30 20.01 20.04 20.14
Eind
SCF 20.23 20.48 20.23 20.13 20.46

3.70 Eind2tot
(2) 2Eind

SCF 0.08 0.20 0.07 0.03 0.18
Eind
(2)2Eind

SCF 0.01 0.01 0.02 0.02 0.01
No. 18, 8 November 1995ct¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8055Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
perturbation scheme. In particular, the perturbation-induc
modification of the Hartree–Fock~HF! potential is not taken
into account. In a UCHF scheme, the results obtained
Eind
(2) are underestimated. Sadlej emphasizes that if both

perturbed and perturbed many-electron systems are descr
in the HF approximation, then the appropriate perturbat
theory is the Coupled Hartree–Fock~CHF! scheme. The in-
duction computed at the CHF level is usually denoted
Eind,resp
(2) , it sums up to infinity certain linear diagrams with

out rings and then fully accounts for the self-consisten
effects. The CHF scheme corrects the HF potential of
unperturbed systems but no correlation corrections are in
duced. The total exchange-induction contributions are a
present in the SCF induction energy. However, at the S
level, once again because of the self-consistency effects
getEexch2 ind,resp

(2) instead ofEexch2 ind
(2) . Finally, the SCF in-

duction contribution is written as:

DEind
SCF5Eind,resp

~2! 1Eexch2 ind,resp
~2! 1dEmixt , ~34!

wheredEmixt gathers all higher perturbational terms. A num
ber of calculations ofEind,resp

(2) andEexch2 ind,resp
(2) have been

presented~see references in Ref. 28!.
Although results obtained with the hybrid approach a

good it is important to realize that escaping from a pu
perturbational treatment has some drawbacks. How much
the higher-order perturbational contributions, what part
the exchange-induction energy, etc... is recovered from
SCF supermolecular calculation is not easy to estimate
may be argued that the good results obtained with the hyb
approach could result from a subtle balance between
glected contributions very different in nature. It is not cle
whether that balance will still hold when higher-order co
tributions will be evaluated. Of course, a similar problem
present in a pure perturbational scheme but it is importan
emphasize that the neglected quantities not taken into
count are much more clearly identified. Accordingly, in o
opinion it is still important to study the pure perturbation
treatments. From Tables IV and IX~in particular the com-
parisons with experimental values! it appears that the com-
plete pure perturbational treatment~SAPT! is the approach

FIG. 7. Comparison between the SCF interaction energy curve~solid line
with crosses! and the curve representing the perturbational sumE(1)

1Eind
(2)1Eexch2 ind

(2) ~dashed line with open squares! for the ~NH3)2 dimer.
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which gives the less plausible results. Results from the tru
cated approach demonstrate that the main part of the d
agreement betweenDEint

SAPT on one hand, andDEint
SAPTtrunc

and DEint
hybrid on the other hand, comes from the second

order exchange-induction energy which destroys the overa
quality of the results. To illustrate this point Figures 7 and
display a comparison between theDEint

SCF curve and the
curve representing the perturbational sum
E(1)1Eind

(2)1Eexch2 ind
(2) for the dimers H3N...HNH2 and

~HF!2 ~same curves as in Figures 5 and 6, except that th
exchange-induction energy has been added!. In Figure 7 it is
seen that the very good agreement found in Figure 5 is d
stroyed. This result shows that the calculated values f
Eexch2 ind
(2) are overestimated since for a weak dimer such a

H3N...HNH2 the perturbational contributions beyond the
second-order should be small and a perturbational descr
tion should be adequate. For stronger dimers like~HF!2 the
clear disagreement between the two curves does not nec
sarily mean that we are in trouble~higher-order terms cer-
tainly play a role! but there is no reason not to believe that
in that case also, the exchange-induction term has been ov
estimated. Let us have a closer look to our estimate of th
exchange-induction energy. Within the one-exchange a
proximation used in this workEexch2 ind

(2) is calculated as a
sum of three terms~see Sec. II, Eq.~19!!. The analysis of our
results has shown that the first term is positive and represe
the major part ofEexch2 ind

(2) while the sum of the second and
third terms is negative and essentially reducesEexch2 ind

(2) by a
quantity which depends on RAB . For instance, for the
H3N...HOH dimer this quantity has been calculated to b
24%, 15% and 11% for RAB 52.54 Å, 2.75 Å, and 2.93 Å,
respectively. Quite similar results have been obtained wi
the other dimers. The sum of the two last terms entering in
Eexch2 ind
(2) ~see Eq.~19!! may be rewritten as

ERS
~1!(

k
F (
iPA

Si f
k
B

AB
Sik
AB1 (

jPB
Sj f

k
A

AB
Sjk
ABG1Eind

~2! (
iPA

(
jPB

uSi j
ABu2.

~35!

From Eq.~35! we see that an underestimation of the last term
related to the induction part leads to an overestimation of th

FIG. 8. Comparison between the SCF interaction energy curve~solid line
with crosses! and the curve representing the perturbational sumE(1)

1Eind
(2)1Eexch2 ind

(2) ~dashed line with open squares! for the ~HF!2 dimer.
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8056 Langlet, Caillet, and Caffarel: Hydrogen-bonded dimers
exchange-induction energy. If, as emphasized by Sadl15

the induction part is underestimated within the SAPT tre
ment, then, it is plausible that there exists some reduc
effect for the exchange-induction energy related to the ind
tion part. In other words, higher-order terms~related to the
apparent correlation effects! would contribute significantly to
the total exchange-induction energy. Besides this effect,
can also argue that the one-exchange approximation is
valid for intermediate and large intermolecular distances
some bias could be introduced by neglecting multiple
changes. The neat effect of the neglect of multiple excha
terms is not easy to estimate.

Finally, we would like to end with some remarks abo
the intramonomer correlation effects on the results prese
here. Quite recently a number of studies have addressed
problem of evaluating the intramonomer correlations con
butions to the interaction energy.11,13,20,22–28Although a com-
plete knowledge of all contributions is not at our dispos
the calculations made so far show clearly the importance
such effects. Of course, this is expected for the electros
energy of hydrogen-bonded systems which depends es
tially on the magnitude of the permanent dipoles of the m
ecules known to be overestimated at the SCF level. Howe
it is more surprising to get even stronger corrections for
exchange contribution to the first-order.13 Some important
effects~about 0.5 kcal/mol! have also been obtained for th
dispersion and induction part~20.42 kcal/mol forEdisp

(22) and
20.60 kcal/mol forEind

(22) in the case of the water dimer,20 the
second superscript indicating the perturbational order in
Mo” ller-Plesset expansion!. These results are of particular im
portance for the discussion just presented on the excha
induction. As mentioned above, an underestimation of
induction energy leads to an overestimation of the exchan
induction. Accordingly, the neat effect of the intramonom
correlation could be a reduction of the exchange-induct
energy. However, it should be noted that there is an oppo
trend for the electrostatic energy, although this effect is pr
ably less pronounced. This discussion illustrates the fact
there is still much room left to fully understand the intrica
balance between the different contributions to the interac
energy.

V. CONCLUSIONS

In this work we have presented a detailed perturbatio
study of several hydrogen-bonded dimers consisting
H2O, NH3, and HF molecules. Three different approach
have been used to compute the interaction energy: a
perturbational approach,DEint

SAPT, including all perturba-
tional components up to the second-order calculated at
SCF level, a so-called truncated approach,DEint

SAPTtrunc , in
which the exchange part of the induction is not consider
and the hybrid approach,DEint

hybrid , in which the supermo-
lecular SCF interaction energy~counterpoise-corrected! is
supplemented by the complete dispersion contribution ca
lated with SAPT~both Rayleigh-Schro¨dinger and exchange
contributions!. The quality of the large basis sets used h
been checked by computing a number of properties for b
the monomers and the corresponding dimers~SCF monomer
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energies, dipole moments, complementary exchange ene
gies, etc...!. From a qualitative point of view, the physical
results obtained with the three approaches are essentia
similar. The relative force of the different hydrogen bonds
are in agreement with experimental results and, in particula
the acceptor or donor properties are correctly reproduce
From a quantitative point of view, a number of differences
emerge when using the different approaches. These quanti
tive differences are particularly important for the radial prop-
erties, much less for the angular ones. A general result a
ready emphasized by some authors is that, at the level
approximation employed here~SCF level, perturbational
components up to the second-order only, etc.!, the hybrid
approach seems to be the most reliable approach~see Table
IV !. The pure perturbational approach including the main
contributions up to the second-order~calculated at the SCF
level! gives the less plausible results. Clearly, some of th
neglected contributions must be introduced to get better re
sults. In particular, the second-order exchange-induction e
ergy is certainly overestimated. We have argued that th
quantity is very probably reduced by some intramonome
correlation contribution. However, it is important to empha-
size that the error on the known experimental quantities is i
general of the same order of magnitude as the dispersion
the results obtained using the different approaches. Accor
ingly, there is still no clearcut conclusion on which method is
the best at the present time. To analyze further the impo
tance of each perturbational components is therefore esse
tial if we want to reach in a controlled way the asymptotic
regime of the perturbational expansion of the intermolecula
interaction energy.
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