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Abstract. In this work we discuss several key aspects for an efficient implemen-
tation and deployment of large-scale quantum Monte Carlo (QMC) simulations
for chemical applications on petaflops infrastructures. Such aspects have been
implemented in the QMC=Chem code developed at Toulouse (France). First, a
simple, general, and fault-tolerant simulation environment adapted to QMC algo-
rithms is presented. Second, we present a study of the parallel efficiency of the
QMC=Chem code on the Curie machine (TGCC-GENCI, CEA France) show-
ing that a very good scalability can be maintained up to 80 000 cores. Third, it is
shown that a great enhancement in performance with the single-core optimization
tools developed at Versailles (France) can be obtained.

1 Introduction

Quantum Monte Carlo (QMC) is a generic name for a large class of stochastic ap-
proaches solving the Schrödinger equation by using random walks. In the last forty
years they have been extensively used in several fields of computational physics and
are in most cases considered as state-of-the-art approaches. However, this is not yet the
case in the important field of computational chemistry where the two “classical” com-
putational methods are the Density Functional Theory (DFT) and post-Hartree-Fock
methods. For a review of QMC and its status with respect to the standard approaches,
see e.g. [1]. In the recent years several applications for realistic chemical problems have
clearly demonstrated that QMC has a high potential in terms of accuracy and in ability
of dealing with (very) large systems. However, and this is probably the major present
bottleneck of QMC, simulations turn out to very CPU-expensive. The basic reason is
that chemical applications are particularly demanding in terms of precision: the en-
ergy variations involved in a chemical process are typically several orders of magnitude
smaller than the total energy of the system which is the quantity computed with QMC.
Accordingly, the target relative errors are typically 10−7 or less and the Monte Carlo
statistics needed to reach such a chemical accuracy can be tremendously large.

Now, the key point for the future is that this difficulty is expected to be largely
overcome by taking advantage of the remarkable property of QMC methods (not valid
for standard methods of chemistry) of being ideally suited to HPC and, particularly, to
massive parallel computations. In view of the formidable development of computational



platforms this unique property could become in the near future a definite advantage for
QMC over standard approaches.

The stochastic nature of the algorithms involved in QMC enables to take advan-
tage of today and tomorrow’s computer architectures through the following aspects: i)
Data structures are small inducing a fairly small memory footprint (less than 300 MiB
per core for very large systems) and data accesses are organized to maximize cache
usage: spatial locality (stride-one access) and temporal locality (data reuse), ii) Most
of the computation can be efficiently vectorized making full use of the vector capa-
bilities of recent processors, iii) Network communications can be made non-blocking,
iv) Access to persistent storage is negligible and can be made non-blocking, v) Differ-
ent parallel tasks can be made independent of each other so as to run asynchronously,
vi) Fault-tolerance can be naturally implemented. All these features which have been
implemented in the QMC=Chem code developed at Toulouse[2] are required to take ad-
vantage of large-scale computing grids[3] and to achieve a very good parallel efficiency
on petascale machines.

In section 2 a short overview of the mathematical foundations of the QMC method
employed here is presented. For a more detailed presentation the reader is referred to [1]
and references therein. Section 3 is devoted to the presentation of the general structure
of the simulation environment employed for running QMC=Chem on an arbitrary com-
putational platform. A preliminary version of such an environment has been presented
in [3]. Here, we present an improved implementation where the network communica-
tions are now fully handled by a client-server implementation and the computational
part is isolated in multiple instances of a single-core Fortran program. These modifi-
cations allow the program to survive failures of some compute nodes. In section 4 the
results of our study of the parallel efficiency of the QMC=Chem code performed on the
Curie machine (TGCC-GENCI, France) thanks to a PRACE preparatory access[4] are
presented. In section 5 the results of the optimization of the single-core performance
are discussed. The optimization was performed after a static assembly analysis of the
program and a decremental analysis.

2 Overview of a QMC Simulation

In the simulations discussed here, the basic idea is to define in the 3N-dimensional
electronic configuration space a suitable Monte Carlo Markov chain combined with a
birth-death (branching) process to sample a target probability density from which exact
(or high-quality) quantum averages can be evaluated. In our simulations we employ
a variation of the Fixed-Node Diffusion Monte Carlo (FN-DMC) method, one of the
most popular versions of QMC. In short, we aim at solving the electronic Schrödinger
equation written as

H Ψ0(r1, . . . ,rN) = E0Ψ0(r1, . . . ,rN) (1)

where H is the molecular Hamiltonian operator, Ψ0(r1, . . . ,rN) the N-electron wave
function, and E0 the total electronic energy.

To do that, the basic idea is to construct a stochastic process having the density

π(r1, . . . ,rN) =
Ψ0(r1, . . . ,rN)ΨT (r1, . . . ,rN)∫

. . .
∫

dr1 . . .drNΨ0(r1, . . . ,rN)ΨT (r1, . . . ,rN)
(2)
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Fig. 1. Graphical representation of a QMC simulation. Each process generates blocks, each block
being composed of Nwalk walkers realizing Nstep Monte Carlo steps.

as stationary density. Here, ΨT — called the trial wavefunction — is some good known
(computable) approximation of Ψ0. The role played by the trial wavefunction is cen-
tral since it is used to implement the “importance sampling” idea, a fundamental point
at the heart of any efficient Monte Carlo sampling of a high-dimensional space. In
the important case of the total energy, it can be shown that the exact ground-state
energy E0 may be expressed as the average of the so-called local energy defined as
EL(r1, . . . ,rN)≡ H ΨT

ΨT
over the density π .

In brief, the stochastic rules employed are as follows:

1. Use of a standard Markov chain Monte carlo chain based on a drifted Brownian
motion. The role of the drift term is to push the configurations (or “walkers” in
the QMC terminology) towards the regions where the trial wavefunction takes its
largest values (importance sampling technique).

2. Use of a birth-death (branching) process: the walkers are killed or duplicated a
certain number of times according to the magnitude of the local energy (low values
of the local energy are privileged).

It can be shown that by iterating these two rules for a population of walkers the
stationary density π (Eq. 2) is obtained. Note that in the actual implementation in
QMC=Chem, a variation of the FN-DMC method working with a fixed number of walk-
ers is used[5].

Denoting as X = (r1, . . . ,rN) a walker in the 3N-dimensional space, the random
trajectories of the walkers differ from each other only in the initial electron positions
X0, and in the initial random seed S0 determining the entire series of pseudo-random
numbers.

The main computational object is a block. In a block, Nwalk independent walkers
realize random walks of length Nstep, and the energy is averaged over all the steps of
each random walk. Nstep is set by the user, but has to be taken large enough such that



the positions of the walkers at the end of the block can be considered independent from
their initial positions. A new block can be sampled using the final walker positions as
X0 and using the current random seed as S0. The block-averaged energies are Gaus-
sian distributed and the statistical properties can be easily computed. The final Monte
Carlo result is obtained by super-averaging all the block-averages. If the block-averages
are saved to disk, the final average can be calculated by post-processing the data and
the calculation can be easily restarted at any time. As all blocks are completely in-
dependent, different blocks can be computed asynchronously on different CPU cores,
different compute nodes and even in different data centers. Figure 1 shows a picto-
rial representation of three independent CPU cores computing blocks sequentially, each
block having different initial conditions.

The core of QMC=Chem is a single-core Fortran executable that computes blocks
as long as a termination event has not been received. At the end of each block the results
are sent in a non-blocking way to a central server, as described in the next section.

3 The Client/Server Layer

In the usual MPI implementations, the whole run is killed when one parallel task will not
be able to reach the MPI Finalize statement. This situation occurs when a parallel task
is killed, often due to a system failure. For deterministic calculations where the result
of every parallel task is required, this mechanism is convenient since it immediately
stops a calculation that will not give the correct result. In our case, as the result of the
calculation of a block is a Gaussian random variable, removing the result of a block
from the simulation is not a problem since doing that does not introduce any bias in
the final result. Therefore, if one compute node fails, the rest of the simulation should
survive.

A second disadvantage of using MPI libraries is that all resources need to be avail-
able for a simulation to start. In our implementation, as the blocks can be computed
asynchronously we prefer to be able to use a variable number of cores during the simu-
lation in order to reduce the waiting time in the batch queue.

These two main drawbacks lead us to write a lightweight TCP client/server layer in
the Python language to handle all the network communications of the program and the
storage of the results in a database. The Python program is divided into three distinct
tasks shown in figure 2, the first and second tasks running only on the master compute
node.

The first task is a manager that watches periodically the database associated with
the running simulation. The manager computes the running averages and error bars, and
checks if the stopping condition of the calculation is reached. The stopping condition
can be for instance a threshold on the error bar of the energy, a condition on the total
execution time, etc. If the stopping condition is reached, a stopping flag is set in the
database.

The second task is a data server. This task contains two threads: one network thread
and one I/O thread. The network thread periodically sends a UDP packet to the con-
nected clients to update their stopping condition and to check that they are still running.
The network thread also receives the block averages and puts them in a queue. Simulta-
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Fig. 2. The communication architecture of QMC=Chem.

neously, the I/O thread empties this queue by storing in the database the block averages.
At any time, a new client can connect to the data server to request the input files and par-
ticipate to a running calculation. Another way to increase the number of running cores
is to submit another run reading and writing to the same database. As the managers read
periodically the content of the database, each simulation is aware of the results obtained
by the other simulations. This allows the use of multiple managers and data servers that
can be submitted to the batch scheduler as independent jobs in order to gather more and
more computing resources as they become available.

The third task is a forwarder. Each compute node (as well as the master node) has
only one instance of the forwarder. The forwarder has different goals. The first goal is
to spawn the computing processes (single-core Fortran executables) and to collect the
results via Unix pipes after a block has been computed. Then, it sends the results to
the data server while the computing processes are already computing the next block.
If every compute node sends directly the results to the data server, the master node is
flooded by small packets coming from numerous sources. Instead the forwarders are
organized in a binary tree structure, and the second goal of a forwarder is to collect
results from other forwarders and transfer them in a larger packet to its parent in the
binary tree. Using this structure, the data server has much fewer connected clients, and
receives much larger packets of data. All the nodes of the forwarder tree can possibly
connect to all their ancestors if the parent forwarder does not respond.

On massively parallel machines an MPI launcher is used to facilitate the initializa-
tion step. The launcher sends, via the MPI library, the input files and Python scripts to
all the slave nodes allocated by the batch scheduler. The files are written in a RAM disk
on every node (the /dev/shm location). The reason for this copy is to avoid too many
simultaneous I/O on the shared file system, and also to avoid I/O errors if the shared file
system fails, if a local disk fails or is full. The MPI launcher then forks to an instance
of a forwarder that connects to the data server.



Fig. 3. Number of computed blocks as a function of the number of CPU cores for a fixed compu-
tation time.

4 Parallel Efficiency

Using the design described in the previous section, the parallel section of the program is
expected to display a parallel efficiency of about 100% since there is no blocking state-
ment. In this section, we investigate in some detail how the initialization and finalization
steps impact the parallel efficiency of QMC=Chem.

For that, a small benchmark was set up during a PRACE preparatory access on the
Curie machine (TGCC-GENCI, France).[4] On this machine, all the compute nodes
were equipped with the same processors, namely four Intel Nehalem 8-core sockets.
Two important parameters are to be kept in mind. First, we chose to run a short simu-
lation for which the average CPU time required to compute one block is 82 seconds.3

Second, we have chosen to send the stopping signal after 300 seconds (during the fourth
block). When the forwarders receive the stopping signal, they wait until all the working
CPU cores finish their current block. Hence, in this study the ideal wall time for perfect
scalability should be 328 seconds.

The additional time T (Ncore) with respect to the ideal time can be expressed as

T (Ncore) = W (Ncore)−
C(Ncore)

Ncore
(3)

where Ncore is the number of cores, W (Ncore) is the wall time and C(Ncore) is the CPU
time, both measured for Ncore cores. With 10 000 cores, 149 seconds are needed for the

3 This is not representative of a real simulation since it is far too small: the time spent in net-
work communications will be over-estimated compared to real simulations where the time to
compute one block is typically much greater (10 minutes and more).



initialization and finalization steps. For this 7 minutes benchmark, a parallel efficiency
of 69% was obtained. However, as the parallel section has an ideal scaling, one can
extrapolate the parallel efficiency one would obtain for a one hour run. If the stopping
signal occurs after one hour, each core would have computed 44 blocks. The total CPU
time would be C̃(Ncore) = 11C(Ncore). As the additional time T (Ncore) does not depend
on the number of computed blocks, the wall time would be W̃ (Ncore) = T (Ncore) +
C̃(Ncore)/Ncore. A parallel efficiency of 96% would be obtained for a one-hour run on
10 000 CPU cores (figure 3).

More recently, we were given the opportunity to test QMC=Chem on the thin nodes
of the Curie machine (80 000 Sandy Bridge cores), for a real application on a biological
molecule made of 122 atoms and 434 electrons (the largest application ever realized
using all-electron Diffusion Monte Carlo). Using 51 200 cores for 3 hours, the paral-
lel efficiency was 79%. After the runs were finished, we realized that for such a large
molecular system, the CPU time needed to compute one block had quite large fluctua-
tions due to the implementation the dense-sparse matrix product presented in the next
section. This implementation considerably reduces the total wall time (which is what
the end user wants), but slightly reduce the parallel efficiency. This problem has been
solved by making the number of Monte Carlo steps per block non-constant. Neverthe-
less, these runs confirm that a good scaling can still be obtained for a real simulation.

5 Single-Core Efficiency

Our choice in the implementation of the QMC algorithms was to minimize the memory
footprint. This choice is justified first by the fact that today the amount of memory per
CPU core tends to decrease and second by the fact that small memory footprints allows
in general a more efficient usage of caches. Today, the standard size of the molecular
systems studied by QMC methods and published in the literature usually comprise less
than 150 electrons. For a 158 electron simulation, the binary memory footprint (includ-
ing code and data) per core is only 9.8 MiB. To check the memory footprint of much
larger systems, a few Monte Carlo steps were performed successfully on a molecular
system containing 1731 electrons; such a large system only required 313 MiB of mem-
ory per core. For a system beyond the largest systems ever computed with all-electron
QMC methods, the key limiting factor is only the available CPU time and neither the
memory nor disk space requirements. This feature is well aligned with the current trends
in computer architecture for large HPC systems.

As the parallel scaling is very good, single-core optimization is of primary impor-
tance: the gain in execution time obtained on the single-core executable will also be
effective in the total parallel simulation. The Fortran binary was profiled using stan-
dard profiling tools (namely gprof[6] and Scalasca[7]). Both tools exhibit two major
hot spots in the calculation of a Monte Carlo step. The first hot spot is a matrix inver-
sion, and the second hot spot is the product of a constant matrix A with five different
matrices B1 . . .B5. These two bottlenecks have been carefully optimized for the x86
micro-architectures, especially the for the AVX instruction set of the Sandy Bridge pro-
cessors.



To measure the performance of the matrix inversion and the matrix products, small
codelets were written. The final results are given in table 1, compared to the perfor-
mance of the single core executable, with different molecular system sizes. Compu-
tational complexity (with respect to FP operations) of the matrix inversion is O(N3

e )
where Ne is the number of electrons. Exploiting the sparse structure of the right matri-
ces in the matrix matrix products, computational complexity of such products is reduced
to O(N2

e ) with a prefactor depending on Nbasis, the size of the basis set used to describe
the wave function.

The matrix inversion is performed in double precision (DP) using the Intel MKL
library, an implementation of the LAPACK[9] and BLAS[10] APIs. To maximize MKL
efficiency, arrays were padded to optimize array alignment (lined up on 256 bit bound-
aries) and the leading dimension of the array is chosen to be a multiple of 256 bits to
ensure that all the column accesses are in turn properly aligned.

For the matrix matrix products, similar alignment/padding techniques were used.
Loops were rearranged in order to use full vector length stride-one access on the left
dense matrix and then blocked to optimize temporal locality (i.e. cache usage).

An x86 64 version of the MAQAO framework[11] was used to analyze the binary
code and to generate best possible static performance estimates. This technique was
used not only on the matrix matrix products but also on all of the hottest loops (i.e.
accounting at least for more than 1% of the total execution time). This allowed us to
detect a few compiler inefficiences and to fix them by hard coding loop bounds and
adding up pragmas (essentially for allowing use of vector aligned instructions).

Then, the DECAN tool[12] was used to analyze performance impact of data access.
For that purpose, for each loop, two modified binaries were automatically generated: i)
FPISTREAM: all of AVX load instructions are replaced by PXOR instructions (to avoid
introduction of extra dependencies) and all of the AVX store instructions were replaced
by NOP instructions (issuing no operation but preserving the binary size). FPISTREAM
corresponds to the ideal case where all of the data access are suppressed. ii) MIS-
TREAM: all of the AVX arithmetic instructions were replaced by NOP instructions.
By comparing cycle counts of FPISTREAM, MISTREAM binaries with the original
binary, potential performance problems due to data access (essentially cache misses)

Table 1. Single core performance (GFlops/s) of the two hot routines: inversion (DP), matrix
products (SP), and of the entire single-core executable. Measurements were performed on an
Intel Xeon E31240, 3.30GHz, with a theoretical peak performance 52.8 GFlops/s (SP) and 26.4
GFlops/s (DP). The values in parenthesis are the percentages with respect to the peak. The turbo
feature was turned off, and the results were obtained using Likwid performance tools.[8]. 1As the
matrix to invert is block-diagonal with two Ne/2×Ne/2 blocks, the inversion runs on the two
sub-matrices.

System sizes Matrix inversion1 Matrix products Overall performance
Ne = 158, Nbasis = 404 6.3 (24%) 26.6 (50%) 8.8 (23%)
Ne = 434, Nbasis = 963 14.0 (53%) 33.1 (63%) 11.8 (33%)
Ne = 434, Nbasis = 2934 14.0 (53%) 33.6 (64%) 13.7 (38%)
Ne = 1056, Nbasis = 2370 17.9 (67%) 30.6 (58%) 15.2 (49%)
Ne = 1731, Nbasis = 3892 17.8 (67%) 28.2 (53%) 16.2 (55%)



could be easily detected. Such an analysis revealed that for most of the hot loops, data
access was accounting for less than 30% of the original time, indicating an excellent
usage of the caches. Measurement of the binaries were performed directly with the
whole application running allowing to take into account runtime context for the loops
measured.

6 General Conclusion

In December 2011, GENCI gave us the opportunity to test our program on Curie (TGCC-
GENCI, France) while the engineers were still installing the machine. At that time, up
to 4 800 nodes (76 800 cores) were available to us for two sessions of 12 hours. As the
engineers were still running a few benchmarks, our runs were divided into 3-hour jobs
using 400 nodes (6 400 cores). In this way the engineers were able to acquire resources
while our job was running. This aspect points out the importance of our flexible parallel
model, but makes it impossible to evaluate rigorously the parallel efficiency. At some
point, all the available nodes were running for our calculation during several hours.
As we had previously measured a sustained performance of 200 GFlops/s per node
for this run, we can safely extrapolate to a sustained value of ∼960 TFlops/s (mixed
single/double-precision) corresponding to about 38 % of the peak performance of the
whole machine for a few hours. As the machine was still in the test phase, we experi-
enced a few hardware problems and maintenance shutdowns of some nodes during the
runs. Quite interestingly, it turns out to be an opportunity for us to test the robustness of
our program: it gave us the confirmation that our fault-tolerant scheme is indeed fully
functional.

In this work we have presented a number of important improvements implemented
in the QMC=Chem program that beautifully illustrate the extremely favorable compu-
tational aspects of the QMC algorithms. In view of the rapid evolution of computational
infrastructures towards more and more numerous and efficient processors it is clear that
such aspects could be essential in giving a definite advantage to QMC with respect to
other approaches based on deterministic linear algebra-type algorithms.
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