
Lanczós-Type Algorithm for Quantum Monte Carlo Data

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 Europhys. Lett. 16 249

(http://iopscience.iop.org/0295-5075/16/3/005)

Download details:

IP Address: 86.221.86.45

The article was downloaded on 24/09/2010 at 18:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/16/3
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


EUROPHYSICS LETTERS 

Europhys. Lett., 16 (3), pp. 249-254 (1991) 
14 September 1991 

Lancz6s-Type Algorithm for Quantum Monte Carlo Data. 

M. CAFFAREL(*)(**), F. X. GADEA(***) and D. M. CEPERLEY(**) 
(*) Laboratoire Dynamique des Interactions MolBculaires, UniversitS Paris VI 
75252 Paris Cedex 05, France 
(**I Department of Physics and NCSA, University of Illinois at Urbana-Champaign 
Urbana, IL  61801 
(***) Laboratoire de Physique Quantique, Universit6 Paul Sabatier 
31062 Toulouse Cedex, France 

(received 11 March 1991; accepted 11 July 1991) 

PACS. 31.15 - General mathematical and computational developments. 
PACS. 31.50 - Molecular solids. 
PACS. 05.30F - Fermion systems and electron gas. 

Abstract. - A method for accelerating the rate of convergence of the long-time (or small- 
temperature) limit of quantum Monte Carlo approaches is presented. To do that, a variation of 
the Lanczbs algorithm suitable for QMC data is introduced. This algorithm allows one to extract 
more information from correlation functions at  small times, thus avoiding large statistical 
fluctuations associated with large times. It is first applied to an exactly soluble system and then 
to the LiH molecule. Calculations using both the fixed-node and nodal-release approaches are 
discussed. 

Quantum Monte Carlo (QMC) methods have proved to be powerful techniques for solving 
the Schrodinger equation. They have been applied to a variety of problems [l] such as the 
study of quantum liquids and solids, the electron gas or the electronic structure of small 
molecules. In each case, very accurate results for some properties of these systems have 
been obtained. Although there exists a number of variants of QMC methods, the common 
idea in the approaches we consider here consists in projecting out the ground-state 
component of a known trial wave function,YT, by applying a suitable projection operator to 
this function (exp [- tH] in diffusion Monte Carlo (DMC) or 1/(H - E)" in Green's function 
Monte Carlo (GFMC) methods, H denoting the Hamiltonian operator) and then letting the 
projecting parameter (t or n) go to infinity. Within the framework of DMC methods used in 
this work, this projection procedure takes the form 

exp[-tH]YT~'Yo+O(exp[-tAEl),  as t + a ,  (1) 

where Yo denotes the ground-state wave function and AE is the gap in energy between the 
f i s t  two eigenstates having a nonzero overlap with the trial wave function. 

This long-time limit may be difficult to perform. Certainly the most well-known 
illustration of such a difficulty is the so-called sign problem occurring in exact simulations of 
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fermion systems. This problem has been discussed in detail in many places (see, e.g., [2-41). 
It can be summarized as follows. Fermion matrix elements of the operator exp[-tH] 
decompose as a difference of two boson contributions corresponding to even and odd 
permutations of the particle labels. At large times t (or low temperatures), the two boson 
contributions nearly cancel and the resulting fermion contribution becomes rapidly 
exponentially smaller than the statistical fluctuations. Accordingly, only reasonably small 
values o f t  may be used in eq. (1) in a fermionic simulation and convergence of the limit may 
not be possible in practice. Even in bosonic-type calculations the long-time limit can be 
difficult to handle for quantities other than the energy, particularly for systems involving a 
large number of bosons. For example, to compute ground-state expectations of operators 
not commuting with H requires a similar projection at large time (see, for instance, the 
discussion in [51). 

In this work we propose a new procedure for taking advantage of the information 
contained in data at small values of the projecting time t, thus minimizing the effect of 
statistical fluctuations at large times. We shall present this procedure within the framework 
of a variant of the DMC approach-the pure diffusion Monte Carlo method [6]-although 
any other Monte Carlo scheme could be employed without essential changes. Consider the 
projected trial wave function at  time t :  

- 
YT(t) E exp [ - tH] YT . (2) 

With quantum Monte Carlo techniques, quantum averages with respect to FT Ray be 
computed. In what follows the norm n(t) of YT(t/2) and the average h(t) of H over YT(t/2) 
will be used: 

These matrix elements of exp [- tH] may be computed as stochastic averages over a set of 
drifting random walks generated by using a Langevin equation. Denoting (. . .>DRW the 
stochastic average, n(t) and h(t) may be written in the following form: 

Here w = YT/YG is a weight factor involving the trial wave function, YT, and the guiding 
function, YG, a strictly positive function responsible for importance sampling; EL' = HYTIYT 
is the local energy associated with YT, E &  = HYG/YG is the local energy associated with YG, 
and R(s) stands for the drifting random walk in the 3N-dimensional configuration space. The 
normalization factor appearing on the right-hand side of each expression will be immaterial 
in what follows. Equations (4) are a generalization of the well-known Feynman-Kac formula. 
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For a detailed presentation and derivation of these formulae, the reader is referred to 
previous works[6]. At this point, we would like to emphasize two situations that will be 
encountered in what follows. When YG is chosen to be I YT 1 ,  random walks generated by the 
Langevin equation are trapped in subdomains of the configuration space delimited by the 
(3N - 1)-dimensional nodes of the trial wave function YT and no change of sign for the 
weight factor occurs. This stable approach is called fixed-node approximation, since the 
nodes are in general approximate. On the other hand, when YG is chosen to be strictly 
positive everywhere, no approximation is made but weights have no longer a definite sign 
for fermions. This exact but unstable method will be referred to as the nodal-release 
approach. More details about both approaches may be found elsewhere [3,6]. 

The standard way of extracting the exact energy from a set of QMC data {n(ti), h(ti)}i=l,N 
consists in looking at the ratio 

To do that, matrix elements are computed up to values of t necessary to reach the 
convergence. The main point of this work is to use information contained in h, n at smaller t. 
This is important due to the increase of statistical fluctuations as t goes to infinity. This idea, 
which in fact takes its origin in the somewhat different context of effective Hamiltonian 
theory[7], is implemented here in a quite simple way. 

Let us define the following basis set of size n consisting of the projected trial wave 
function evaluated at n different times: 

For finite n, such a basis set is in general linearly independent and may be used to 
diagonalize H. To perform the diagonalization, the matrix elements Hij of H and Nij of the 
unity operator between two arbitrary functions of the basis set are needed. It is easy to 
check that such matrix elements may be in fact trivially expressed in terms of the matrix 
elements (3) as follows: 

Hij (  ti> 1 H I @ ~ ( h ) )  = h(ti h) ( 6 ~ )  
and 

~ i j  ( @ T ( ~ J  I @T(h>) = n(tl+ . (6b) 

This is important since it means that no extra quantities beyond the usual matrix elements 
(eq. (3)) are required. Then once H and N are estimated with QMC, the generalized 
eigenvalue problem is solved by standard numerical methods. At this point, it is important 
to emphasize that the algorithm proposed here is nothing but a variation of the well-known 
Lanczos algorithm with YT playing the role of the initial vector and exp [- tH] playing the 
role of H .  Using the terminology of Krylov spaces [8], this can be rephrased by saying that 
H is diagonalized within the Krylov subspace { Y T ,  exp [- t l H l  YT, ..., exp [- t,Hl YT} 
instead of the Krylov subspace {YT, HYT,  ..., Hn-' YT} as in the Lanczos algorithm. Note 
that the standard method described by (5 )  may be viewed as a r a t h y  trivial case for which H 
is diagonalized within the one-dimensional subspace defined by YT(t/2). 

Let us first present the application of this approach to an exactly solvable problem, 
namely the harmonic oscillator described by the Hamiltonian H = - (1/2)(d2/dx2) + (112) Kx2.  
The trial wave function is chosen to be Gaussian (different from the exact solution) and since 
the kernel of exp [- t H ]  is also Gaussian, exact expressions for matrix elements (3) may be 
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TABLE I. - Comparison between the Lanczk-type algorithm and the stun&ard method fm the 
hamumic oscillator. Hamiltonian comesponding to K = 3.0, trial wave function (") with k = 1. 

This work Standard method ( b )  Exact 

Basis set (') Eigenvalues Basis set (7 Eigenvalues 

{0.0,0.02) A0 = 0.88 (0.02) 
Al=5.1 

{0.0,0.02,0.04} A0 = 0.8668 { O W  

{0.0,0.02,0.04,0.06} A0 = 0.8661 (0.06) 

A1 = 4.4 
A2 = 9.4 

A1 = 4.34 
A2 = 7.86 
A3 = 13.9 

{0.0,0.02,0.04,0.06,0.08} Aoz0.86603 (0.08) 
A1 = 4.331 
A2 = 7.80 
A3 = 12.0 
A4 = 18.4 

A0 = 1.0 

A0 = 0.98 

A0 = 0.96 

A0 = 0.95 

A0 = 0.94 A0 = 0.8666025.. . 
A1 = 4.3301 ... 
A2 = 7.794 ... 
A3 = 11.2 58... 
A4 = 14.72.. . 

(a) YT = ( k / ~ ) ' ' ~  exp [- (flI.2) 2'1. 
( b )  Equation (5). 
(e )  Basis set deiined as {tl, h, ..., t-} = (exp[- t ,H]  'PT, expr-  h H ]  'PT, ..., exp[- t,,m FT}, see text. 

obtained. Table I presents results obtained when using a basis set of increasing size and 
compared to those resulting from (5) using only the last component of the set. For the case of 
the Lancz6s-type algorithm all the eigenvalues are given. A few remarks are in order. First, 
it is clear that the lowest eigenvalue in the Lancz6s approach converges quite rapidly toward 
the exact energy. This is in sharp contrast with the standard method which would require 
much larger times to achieve the convergence. A way of understanding this may be put as 
follows. Diagonalizing H within the subspace {tl, 4, , . . , tn} may be viewed as constructing 
the best wave function written in the form of a linear combination of the projected trial wave 
function defined at different times, ck YT(tk). This combination has much more variational 

freedom than the one-state approach using only { tn}  and therefore the resulting improv- 
ement in energy may be important. 

A second point worth mentioning is that excited-state energies may also be obtained in 
principle. Results presented in table I show a good convergence of excited-state eigenvalues 
toward their respective limit, at least for the first two. Note that, according to the 
MacDonald variational theorem applying for linear variational calculations [9], all the 
eigenvalues A d t )  are always greater than the corresponding exact eigenvalue of the 
Hamiltonian, the equality would be obtained by letting t go to infinity. How far Ai( t )  is from 
Ei = Ai(m) for a given time t depends essentially on the overlap between the exact excited- 
state and the trial wave function. The problem of evaluating excited-state energies will not 
be discussed further, since the obtained results are not representative of the typical case 
where matrix elements have statistical errors. However, note that this approach may be 
readily generalized to the multiple-state method for computing excited-state properties of 
Ceperley and Bernu [lo]. 

k 
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Fig. 1. - Fixed-node energy as a function of the projecting time t for the LiH molecule for both the 
standard method (0) and the proposed Lancz6s-type method (U). The dashed line indicates the exact 
energy. The small difference between the energy obtained for large times and the exact energy is due 
to the fixed-node error. Energy and time in atomic units. The curves are only a guide to  the eye. 

Fig. 2. - Nodal-release energy as a function of the projecting time t for the LiH molecule for both the 
standard method (0) and the proposed Lancz6s-type method (U). The dashed line indicates the exact 
energy. Large fluctuations at large times in the standard method result from the fermion sign 
problem. Energy and time in atomic units. The curves are only a guide to the eye. 

Let us present a realistic application to the LiH molecule involving quantum Monte Carlo 
evaluation of matrix elements (3). In order to deal with the fermionic constraints, we have 
used both the approximate fixed-node and exact nodal-release approaches. Figure 1 
presents the convergence of the fixed-node energy as a function of the projecting time t for 
both the standard method ( 5 )  (upper curve) and the proposed method (lower curve). With 
the Lancz6s-type approach convergence is reached at times - 1.6 a.u., while the standard 
method requires times greater than 3a.u. Statistical errors for both curves have been 
obtained by computing the dispersion of results over a set of independent calculations. 

There is a serious numerical problem in applying this scheme to Monte Carlo results. 
When t goes to infinity the projected trial wave function FT(t) converges exponentially fast 
to @,,, eq. (1). Accordingly, projected trial wave functions at large times become almost 
identical. Hence the matrices become nearly singular and, because of the finite precision on 
machine, it is not possible to use basis sets of arbitrary size if there is any statistical error on 
the matrix elements. We circumvented this problem by employing basis sets small enough 
to lead to well-conditioned matrices. For the case presented in fig. 1, the successive basis 
sets employed are: {O.O}, {0.0,0.4}, {0.0,0.4,0.8}, {0.0,0.4,1.2}, ..., and {0.0,0.4,2.8} 
with At = 0.005 a.u. as time step. The energy obtained in both calculations is - 8.0691(6) 
((99 zk 0.71% of the correlation energy is recovered). 

Figure 2 presents our calculations using the exact nodal-release procedure. The positive 

guiding function used here is of the form YG = Y$ + 0 np(ri), where np denotes the 

Hartree density corresponding to the trial wave function YT. The switching parameter 8 has 
been chosen to have a value of 0.48 so as to minimize both statistical fluctuations on the local 
energy EL = H Y G I Y G  and fluctuations arising from crossings and recrossings of nodes [31. 
The upper curve of fig. 2 represents the variation of the energy ws. the projecting time as 

7 
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obtained with the standard method (5). The fermion sign problem is evident as t becomes 
greater than 2.0 a.u. The lower curve has been obtained by applying our algorithm with the 
successive basis sets: {O.O}, {0.0,0.2}, {0.0,0.2,0.4}, {0.0,0.2,0.6}, {0.0,0.2,0.8}, and 
{0.0,0.2, 1.0) with At = 0.005 a.u. Within statistical fluctuations the convergence is reached 
for t - 2.0 u.a., that is before statistical fluctuations arising from the sign problem become 
too pathological. The resulting energy is Eo = - 8.070(1), compared with the exact 
nonrelativistic energy of - 8.0699 [ll].  

These good results should be taken with caution. The main point to emphasize is that by 
using a linear variational calculation the energy is expressed as a lowest eigenvalue which is 
a nonlinear function of the matrix elements (3). The stability of the eigenvalue with respect 
to statistical errors has been obtained here at the expense of a high-quality evaluation of the 
matrix elements. I t  is not clear whether such a quality can be obtained for fermionic systems 
involving a large number of particles. However, the results presented here are important 
since they demonstrate that QMC data at  small times, that is before the sign catastrophe 
occurs, may eventually contain enough information for computing exact fermionic ground- 
state properties. In a forthcoming work, a more stable and general method for taking 
advantage of this information will be presented [E].  
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