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PACS. 33.10G - Vibrational analysis. 

Abstract. - The theorem stating that the number of nodal cells of a pure eigenfunction of a 
Hamiltonian with a smooth and uniformly bounded potential may change as the potential is 
continuously varied, is illustrated by constructing a particular two-dimensional Hamiltonian (two 
coupled oscillators) of which one of the eigenfunctions exhibits the nonconservation property. 
The analytical form of both the potential (a six-order polynomial) and the eigenfunction is 
given. 

Very little is known about the properties of the nodes of eigenfunctions of 
multidimensional systems. Paraphrasing Korsch [ 11 we may summarize the few established 
properties as follows (here n labels the nondegenerate eigenvalues, E,, n = 1,2,3, ..., 
ordered according to increasing magnitude; for simplicity, the properties are expressed for a 
two-dimensional case): 

1) The only state having no nodes is the ground state, n = 1. 
2) The number of nodal cells of the n-th eigenfunction is not larger than n [ 2 ] .  
3) The number of nodal cells does not necessarily increase with n. 
4) The nodal set is generically a manifold; in particular it means that in most cases nodal 

lines do not cross in the interior of the domain of the Hamiltonian; however, crossings of 
nodal lines are expected at  the boundary [3,4]. 

5 )  If q nodal lines cross, the crossing occurs a t  equal angles z/q, in particular a t  right 
angles for q = 2 [51. 

6)  The total length of the nodal lines in state n is bounded from below and increases 
with n faster than n1l2[6] .  

7) For a Hamiltonian with a uniformly bounded potential and a given energy the 
volumes of the nodal cells are bounded from below [7] (strictly greater than zero). 

An additional property which has been discussed is whether or not the number of nodal 
cells of a given eigenfunction is conserved when a parameter of the Hamiltonian is 
continuously varied. A proof that this number is conserved (adiabatic invariant) has been 
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given by Robnik [7], but was very soon later on criticized by him as containing a gap [SI 
(events such as the merging of two nodal cells along an (N - 2), (N  - 3), ..., O-dimensional 
boundary in an N-dimensional configuration space were not considered, and indeed we shall 
construct below our counterexample in that way). Numerical calculations performed by 
Korsch [l] for a rectangular .*billiard), deformed into a parallelogram demonstrated that the 
number of nodal cells can change when deforming boundary conditions. A similar conclusion 
may be drawn from a number of numerical calculations done to study the connection between 
nodal patterns of nodal lines of eigenfunctions in the semi-classical regime and .quantum 
chaos. (see, e.g., [9-111). However, it is generally considered that the number of nodal cells in 
almost all cases is a conserved quantity, particularly when the energy spectrum is 
nondegenerate [8]. To our knowledge, no exact eigenfunction of a nontrivial system changing 
its number of nodal cells under a smooth variation of the potential has been exhibited so 
far. 

The motivation of the present work takes its origin in a recent proposal [12] of computing 
the fundamental excitations of coupled oscillators with quantum Monte Carlo (QMC). In this 
scheme-relying essentially on a generalization of the fured-node approach for excited 
states-a basic assumption on the nodal structure of eigenfunctions associated with 
fundamental excitations was made. More precisely it was assumed that their nodes divide the 
N-dimensional space (N oscillators) into exactly two domains. Such an assumption was 
considered as reasonable since, by their very definition, the fundamental excitations are 
connected continuously (when decreasing the coupled part of the potential) to the 
fundamental excitations of some N uncoupled oscillators which, indeed, have this property. 
However, although numerical calculations for some model and realistically coupled 
anharmonic oscillators (compared to the exact results obtained by diagonalizing H using a 
large enough Hermite-Gaussian basis set) have strongly supported our basic assumption, an 
eventual breakdown of the conservation property could occur. Let us now construct such a 
situation for a system of two coupled oscillators. 

We consider the following wave function: 

$(x, y, A) = f ( x ,  y, A )  exp [ - @b, y, jl)l, (1) 

where @ is a smooth and bounded function,fsome function determining the nodes of $ via the 
relation f =  0, and A a parameter controlling the deformation of the nodal pattern. The 
function @ is chosen so that $ describes a bound state, that is @ + + cc when I x I or I y I tend 
to infinity (a polynomial form for f being used here, the large-distance behaviour of $ is 
determined by @I. Let us choose f as the simplest function exhibiting the nonconservation 
property when varying A. We take 

(2) 
2 
27 

f =  y2 - x 3  - F(h)x  - - , 

where F(A) is some function of A.  Regarding the nodal structure o f f (o r  $) three different 
regimes have to be distinguished: 

i) When F(h)  > - 1/3 the nodes o f f  divide the plane into two regions. 
ii) At the critical value F(A) = - 1/3 the nodal line crosses itself a t  the singular point 

0(1/3,0). Note that f has been chosen so that the crossing is at  right angles as required by 
the property 5) stated above. 

iii) For F(1,) < - 1/3 the nodes divide the plane into three nodal cells. 
The three different regimes are represented in fig. 1. It should be pointed out that 

condition (7) forbids the emergence of an extra nodal cell from an isolated point of the plane 
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(the volume of a nodal cell cannot be arbitrarily small a t  a given energy). Deforming a nodal 
line in the way just described above circumvents this problem. The next step consists in 
showing that the wave function (1) may be interpreted as an eigenfunction of a physical 
Hamiltonian H ,  namely 

H$ = E $ ,  (3) 

where 

1 a2 H = - - - + 2 + V(X, y ,  A )  
2 [ a x .  

(4) 

and V is a bounded potential function to be determined. Using eqs. (l), (3)  and (4) V may be 
written as follows: 

1 1 Yf Vf 
2 f  f V = E +  2((V@)2-V"}+ -- - --.V@. 

The frst three terms of the r.h.s. of ( 5 )  are bounded a t  any finite distances and therefore do 
not introduce any difficulty (the imposition of the adequate large-distance behaviour of V and 
$ will be treated later). In contrast, dividing by f in  the last two terms may lead to unphysical 
divergencies in the potential at the nodes. Therefore, we shall seek a solution for @ 
verifying 

1 V 2 f  Vf 
2 f  f 

- V@ = K(x,  y )  , 

where K is any bounded function well behaved at  large distances. Equation (6) may be 
rewritten under the form 

with 

It turns out that there exists a polynomial solution of eq. (7) when K is also chosen to be 
polynomial. The simplest (lowest-order) form for K is 

the solution !#j having the form 
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The only nonzero coefficients aii are 

azo = - - 1 ( K o F  + - 3 ) ,  2F 

K1 K3F + -  a12 = - - 6 ’  4 

( l o g )  

(10h) 

K3 a22 = - - 

K3 
8 .  

6 ’  

U04 = - - 

In addition, the coefficients K O ,  K 1 ,  and K3 are related via the following equalities: 

( l l a )  

(lib) 9 K , = z ,  

Kz  = s ( 1  + 1 + 2 7 F 3 )  - -  27 ( l l c )  2 27P 8P ’ 

where 

is a strictly positive function of E.. In order to get an eigenfunction describing a bound state, 
the higher-order coefficients ~ 4 0 ,  ~ 0 4 ,  and aZ2 determining the large-distance behaviour of + 
and V must all be strictly positive. From eqs. (10) it follows that coefficients K2 and K3 must 
be strictly negative. Finally, since no particular conditions hold for KO and K 1 ,  any choice of 
strictly negative coefficients Kz and K3 verifying eq. ( l l c )  is a solution of our problem. We 
shall exemplify this by choosing K3 so that coefficient aI2 (eq. Clof)) vanishes, i .e .  K3 = 
= 3K1 /2F. From eqs. ( l l b ) ,  ( l l c ) ,  and ( l l d )  it is easy to check that this is a valid choice if F is 
taken to be negative. Note that the only requirement on F to obtain a wave function 
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Fig. 1. Fig. 2. 

Fig. 1. - Nodal pattern of the wave function 4, eq. (1). The three different regimes depending on 
parameter F are shown. Q is the singular point where the two nodal cells separate. 
Fig. 2. - Plot of the wave function 4 (see table 11). Note the zero contour line reproducing the 
nodes. 

exhibiting the nonconservation property is that F ,  while varying A, goes through the critical 
value of - 1/3. To summarize, we present the potential energy function and its excited 
eigenfunction of energy E in tables I and 11, respectively. In fig. 2 the wave function is drawn 
for the three different nodal regimes. Figure 3 presents the potential energy function at  the 
critical value F = - 1/3. No qualitative changes occur at  other values of parameter F. 
Finally, we would like to  point out that the solution obtained is a nondegenerate one. To see 
this, we have performed a careful variational calculation of the lowest eigenvalues by 
diagonalizing H using a large Hermite-Gaussian basis set. Results are presented in fig. 4. 
They indicate that the eigenfunction just constructed is nondegenerate (note that a crossing 



586 EUROPHYSICS LETTERS 

TABLE I. - Potential energy function of the coupled anharmonic oscillators: V(x, y) = q j x i y j .  
Here P F' - F/3  + 1/9.  i + j r 6  

21 1 3 3F 1 1 - + - - - + - + - - - 
2 p  3PF2 F 2  2P2 9FP2 PF 

63 1 9 - + - - - 
8P2 2P2F2 2PF2 

9 81F2 207 + - + -  CO2 = - - - 32P2F2 16P2 3 2 ~ 2  16PF 
1 

243 27 
32P2 32P2F2 c04 = - - - 

729 
128F2P2 c06 = 

9 3 
c12 = - + - 

4PF2 4FP2 

243 +--- 3 27 
16P2 16P2F2 4PF2 

e22 = - 

27 
8P2F 

C32 = - 

189 
C4p = - 

32F2P2 

81 
e24 = - 

8F2P2 

of levels of different symmetry, V is invariant under y + - y, occurs just before the critical 
value) and is the 4th excited state of H in the subspace of even symmetry. 
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TABLE 11. - Eigenfunction of the coupled anharmonic oscillators: P = F 2  - F/3  + 119. 

$ 4 ~  Y, A) = y2 - x 2  - F x  - - exp[- alOx - ~~x~ - u30x3 - u4,x4 - aozy2 - ~ ~ x ~ y ~ ]  

with 
( 27 2 ,  

1 1  

9F 3 

1 
U30 = - - 

2P 

3 
8PF 

ulo= - F  - 3p 
a z o =  - 4p - & + - 2F 

U40 = - - 

1 9F 
a02 = - - - 8PF 8P 

27 
U04 = - - 

32PF 

9 
a z 2 =  - 8pF 

J 

0 
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Fig. 3. Fig. 4. 

Fig. 3. - Plot of the potential energy function for F = - 113. Other values of F give a similar 
shape. 
Fig. 4. - Low-lying energies of potential V (table I) 11s. F (the arbitrary coefficient coo of V being set to 
zero). The constructed wave function $ is the 8th level when F > - 0.31 and the 7th for smaller values. 
Crossing of the two energy curves (of different symmetries) is indicated by an open circle. 
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