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Using a recently proposed quantum Monte Carlo method theexactfirst-, second-, and third-order
Rayleigh–Schro¨dinger interaction energies of the He–He interaction have been calculated for
internuclear distances in the range 1.5- to 7.0 bohr. Putting together these new data with the bestab
initio results available, the relative importance of the different contributions appearing in the
perturbational expansion of the He–He interaction energy is discussed. In particular, the results
show that the third-order Rayleigh–Schro¨dinger term and the intra-atomic correlation contribution
to the second-order component play a significant role. For intermediate and large distances
~including the equilibrium distance!, it is found that the perturbational expansion limited to the
complete first- and second-order, plus the third-order Rayleigh–Schro¨dinger energy agrees with the
best known values of the total interaction energy of the helium dimer. ©1996 American Institute
of Physics.@S0021-9606~96!02610-X#

I. INTRODUCTION

The determination of the intermolecular potential be-
tween chemically nonbonding atoms and molecules is a
problem of fundamental importance in the field of molecular
physics. However, even in the case of the interaction be-
tween two helium atoms—the simplest inert gas pair—the
problem is known to be difficult and has been the subject of
numerous papers spanning a period from the late twenties to
the present time~see, e.g., Ref. 1 for a historical review!.

Two mainstreams in the methods of calculation can be
distinguished: the supermolecular and the perturbational
methods. In the supermolecular method the energy of inter-
action is obtained by subtracting from the total energy of the
interacting molecules~the supermolecule! the sum of the en-
ergies of each monomer. Since the energies involved cannot
be evaluated exactly one is confronted with the difficulty of
obtaining a very small number as the difference of two huge
numbers, both being known only approximately. As has been
stated by van Lentheet al.,2 for an accurate evaluation of the
interaction energy usingab initio techniques three require-
ments should be fulfilled: saturation of the basis set, satura-
tion of the configuration set, and effective elimination of the
basis set superposition error. In practice, it turns out to be
hard to meet these requirements, even for a relatively small
system such as the helium dimer. Nevertheless, according to
Liu and McLean,3 ‘‘... one seems to have come close to
writing the end of the chapter on helium dimer potentials.’’
Aziz and Slaman4 have fitted model potentials to the super-
molecularab initio energies of interaction calculated by Vos
et al.5 and by Liu and McLean.3 With these potentials the
prediction of a variety of accurate experimental data such as
the

second virial coefficient, viscosity and thermal conductivity
was attempted. The agreement with experiment can be con-
sidered excellent,1 although, as has been stated by Aziz and
Slaman,4 ‘‘... small failures nevertheless remain.’’ In this
context it is important to keep in mind the remark made by
Anderson et al.,1 regarding a result given by Liu and
McLean,3 ‘‘... that one should be a little nervous about the
estimated uncertainty of60.03 K in the interaction potential
when the calculated total energy is 1200 K above the exact
total energy.’’ Finally, van Mourik and van Lenthe6 very re-
cently presented the results of full configuration interaction
calculations for the helium dimer employing large basis sets,
which contain up toh-type basis functions, including bond
functions. Their results probably are the best at present for
the He2 interaction energy. At the equilibrium distance,
R55.6 bohr, the interaction energy was calculated to be
234.67mhartree with an error of60.03mhartree.

Quantum Monte Carlo~QMC! methods also can be used
to compute molecular energies. Lowther and Coldwell,7 us-
ing a variational QMC approach have calculated the energy
of interaction for internuclear distances ranging from 4.5- to
15 bohr using a 189-term Hylleraas-type atomic wave func-
tion from which a fully correlated dimer wave function was
constructed. They found a very good energy of interaction at
the minimum of the potential of235.561.5mhartree which
agrees well with the more recent values of234.64mhartree
~Liu and McLean3!, 234.42 mhartree ~Vos et al.5!, and
234.67mhatree~van Mourik and van Lenthe6!. Exact QMC
supermolecular calculations have been done by Ceperley and
Partridge,8 for the small internuclear distances, ranging from
1.0–3.0 bohr, and by Andersonet al.1 for distances greater
than 3 bohr. The results obtained by Anderson1 fully agree
with those of Liu and McLean,3 Voset al.,5 and van Lenthe.6

It should be emphasized that the difficult problems con-
nected with the use of a basis set inab initio calculations are
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absent in exact QMC calculations. The only input is the so-
called trial wave function. It is important to realize that, al-
though the statistical error is directly related to the quality of
the trial wave function, the statistical estimate of the energy
is not biased by a particular choice of the input trial wave
function.

A very natural alternative approach to supermolecular
methods is to consider the interaction energy as the result of
a very small physical perturbation of the isolated monomers
and thus to employ some kind of perturbational method. At
this point, it is worthwhile to recall that, at the equilibrium
distance of the helium dimer in which we are interested here,
the interaction energy represents only approximately 631026

of the total dimer energy. Such a tiny fraction clearly justifies
the use of perturbational methods. This line of research has
been intensively followed during the last decades and has led
to the so-called symmetry adapted perturbation theories
~SAPT! for intermolecular interactions~see, e.g., Refs. 9, 10
or 11!. Within this framework the intermolecular Coulomb
potential is treated as a perturbation, and the interaction en-
ergy is directly given as a sum of perturbational components.
This type of approach does not involve the typical difficulties
of the supermolecular method mentioned above. Each pertur-
bational component can be split into an exchange and a
Rayleigh–Schro¨dinger ~RS! or polarization contribution. A
number of methods have been designed to calculate these
contributions. A general feature is that exchange contribu-
tions are more difficult to obtain than the RS contributions
since they require a wave function of good quality also in the
outer region of the system, a region which is not necessarily
very well described by wave functions obtained from a varia-
tional principle on the energy. Note that a quite complete
review of the perturbation approach to van der Waals com-
plexes has recently been published by Jeziorski, Moszynski,
and Szalewicz.12 Unfortunately, the use of perturbational ap-
proaches is limited because the computation of the perturba-
tional components is not easy to do. Even in the case of the
helium dimer, only the first- and second-order contributions
have been considered in practice.13,14Of these two, the first-
order term has been evaluated accurately since the wave
function for the dimer is a simple product of the ground state
monomer wave functions and these functions can be chosen
to approximate the exact result very closely.13 Contrary to
the first-order energy of interaction, the higher-order terms
are given in sum-over-states representations and the excited-
states must be known~explicitly or implicitly! to evaluate the
sums. Accordingly, accurate evaluations of these terms are
much more difficult to perform. In Sec. IV we will discuss
this point in detail.

In this paper we present exact calculations of the first-,
second-, and third-order RS interaction energies of the
He–He interaction for internuclear distances ranging from
1.5- to 7.0 bohr. In order to do that, we resort to a recently
proposed QMC method to compute perturbational
quantities,15,16 In this approach the perturbational quantities
are expressed as multitime integrals of some well-defined
autocorrelation functions of the perturbing potential. The
correlation functions are defined along the stochastic trajec-

tories of some generalized diffusion process associated with
the unperturbed system.17,18 In practice, to construct these
trajectories only a good approximate trial wave function for
the unperturbed Hamiltonian is required. It is important to
emphasize that the results obtained are essentially exact
within their statistical errors. In particular, the complete in-
tramonomer correlation contribution is included. The QMC
perturbational approach has been applied to the helium dimer
in the original work of Caffarel and Hess.15 However, the
numerical results presented in their work were obtained only
for very short distances~1.5- to 2.0 bohr!, and only for the
first- and second-order interaction energies. Here, we make a
much more systematic study including the short, intermedi-
ate, and large distances. In particular, we focus our attention
on the region of the potential well which is the region of
physical interest. The third-order RS term is also computed
here and is found to play a significant role. As has been
already stated above when discussingab initio SAPT tech-
niques, exchange contributions responsible for the repulsive
part of the potential energy curve, are in general difficult to
evaluate. This is particularly true for QMC. In fact, the re-
sults of the calculations presented here show that it is not
realistic to expect quantitative results for the longer dis-
tances. In order to illustrate this we will report some calcu-
lations of the first-order exchange interaction energy using a
high-quality approximate formula. The results are compared
with accurateab initio values and are found to agree within
large statistical errors. In principle, it is possible to write
exact expressions for the exchange components19 but, due to
these large statistical fluctuations, they will be of no practical
use and, therefore, will not be considered further.

By using the exact QMC data presented here for the
second- and third-order RS interaction energies, and the best
ab initio values for the complete first-order and second-order
exchange contributions we discuss the relative importance of
the different perturbational contributions making up the total
interaction energy of the helium dimer: The RS contributions
of different orders, the intraatomic electron–electron corre-
lation, the exchange effects. To our knowledge, this is the
first example of an intermolecular interaction whose pertur-
bational description is fully understood. Besides its own in-
terest, it is clearly of general interest for the theory of inter-
molecular forces and their evaluation by perturbation theory.

The organization of the paper is as follows. Section II
presents the basic equations of the QMC-perturbational ap-
proach used here. Section III contains the computational de-
tails. Finally, Sec. IV presents and discusses the numerical
results for the perturbational components of the He–He in-
teraction.

II. BASIC EQUATIONS

A. Rayleigh–Schro¨dinger interaction energies

Let us first consider the calculation of the first-, second-,
and third-order RS interaction energies. The formulas pre-
sented here are some particular cases of a generalnth order
formula derived by Caffarel and Hess.15,16Since the formal-
ism presented in Refs. 15 and 16 is very general and not

4622 C. Huiszoon and M. Caffarel: The He–He interaction

J. Chem. Phys., Vol. 104, No. 12, 22 March 1996

Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



commonly used, we have chosen to rederive the perturba-
tional expressions using a more pedestrian approach. It is
emphasized that the equations are valid for any perturba-
tional problem and are, therefore, not limited to intermolecu-
lar forces.

In any perturbational treatment the full Hamiltonian,H,
is written as the sum of a reference Hamiltonian,H ~0!, and a
perturbing potentialV

H5H ~0!1V. ~1!

In the present application,H is the Hamiltonian of the inter-
acting helium dimer,H ~0! is the Hamiltonian of the noninter-
acting dimer: H (0)5HA1HB, where HM represents the
Hamiltonian of the isolated helium atom (M5A,B). V is the
interatomic interaction operator
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~2!

where the indices 1 and 2 refer to the electrons of atomA
and indices 3 and 4 to those of atomB, r i j is the distance
between electronsi and j , and RiM the distance between
electroni and nucleusM (M5A,B).

We are interested in computing the change in the ground
state energy of the dimer due to the presence of the perturb-
ing operatorV. Within the framework of perturbational treat-
ments this change in energy is expressed as an infinite per-
turbation series

DERS[E02E0
~0!5 (

n51

1`

ERS
~n! , ~3!

whereE0 denotes the exact ground state energy ofH but
calculated with the complete neglect of the interatomic ex-
change of electrons,E0

~0! is the ground state energy of the
reference Hamiltonian:E0

(0)5E0
A1E0

B with E0
M (M5A,B) is

the energy of the isolated atoms.DERS is the so-called
Rayleigh–Schro¨dinger~RS! interaction energy, andERS

(n) rep-
resents thenth order RS component. In the literature this
quantity is also often called thenth order polarization com-
ponent. At this point, it is important to emphasize that the
ground state energy of the interacting dimer obtained by Eq.
~3! is not the true physical ground state energy of the actual
interacting dimer. Indeed, the change of symmetry of the
wave function with respect to the exchange of electrons be-
tween the noninteracting and interacting dimers must also be
taken into account. Physically, this leads to the repulsive in-
teraction at short distances. In practice, this important physi-
cal effect is described by introducing in the perturbational
series the so-called exchange terms. We shall discuss the
exchange contribution later.

Now, Caffarel and Hess15 have shown that thenth order
RS contribution can be written in terms of a multitime inte-
gral of then-point autocorrelation function of the perturbing
potential along the stochastic trajectories of some diffusion
process built from the reference HamiltonianH ~0!. Let us
denote byfi

(0) the eigenfunctions of the reference Hamil-
tonian with energiesEi

(0)

H ~0!f i
~0!5Ei

~0!f i
~0! . ~4!

The diffusion process associated withH ~0! is entirely defined
by its transition probability density

p~x→y,t !5
f0

~0!~y!

f0
~0!~x!

(
i

f i
~0!~x!f i

~0!~y!

3exp@2t~Ei
~0!2E0

~0!!#, ~5!

where x and y represent two points in the configuration
space~x5~r1,r2,r3,r4! in the present application!, and t is
the time parameter. In other words, the transition probability
density is, up to some factor involving the ground state wave
function, connected to the imaginary time-dependent Green’s
function ofH ~0!

p~x→y,t !5
f0

~0!~y!

f0
~0!~x!

^yuexp@2t~H ~0!2E0
~0!!#ux&. ~6!

Note that expressions Eqs.~5! and~6! are identical only if all
the eigenfunctions are real. This condition is satisfied since
only real Hamiltonians will be considered~for such Hamil-
tonians a complete set of real eigenfunctions can always be
constructed!. As a consequence, no conjugation sign will ap-
pear in the formulas that follow. Eq.~5! defines a diffusion
process consisting of a standard free diffusion part in con-
figuration space plus a deterministic part corresponding to a
drifted move with a drift vector given by

b5
“f0

~0!

f0
~0! . ~7!

It can be verified by substitution that the previous transition
probability density, Eq.~5!, is the solution of the following
~forward Fokker–Planck! diffusion equation

]p

]t
5
1

2
¹y
2p2“y@b~y!p# ~8!

with the initial condition,p(x→y,0)5d(x2y) ~for a gen-
eral presentation of diffusion processes, see, e.g., Refs. 19
and 20!. In practice, stochastic trajectories of the diffusion
process are generated using a discretized version of the
Langevin equation

Dx~ t1Dt !5b~x~ t !!Dt1hADt, ~9!

whereh is a random vector whose independent components
are drawn from a Gaussian distribution with zero mean and
unit variance~free diffusion process in a multidimensional
space!.

Next the different perturbational components can be
written in terms of averages of the diffusion process just
presented. The first order is given by the usual formula~f0

~0!

is supposed to be normalized!

E~1!5^f0
~0!uVuf0

~0!&, ~10!

which can be written as

E~1!5E dx p~x!V~x!, ~11!
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wherep(x) is given by

p~x!5@f0
~0!~x!#2. ~12!

In this formula,p(x) is the quantum-mechanical probability
density associated with the ground state wave function of the
reference Hamiltonian. In fact,p(x) is also the stationary
density of the diffusion process. This property is easily
checked by looking at the long-time behavior of the transi-
tion probability density, Eq.~5!, or by verifying thatp is the
stationary solution of Eq.~8!. Denoting bŷ •••& the stochastic
average along any trajectory or group of trajectories gener-
ated using the Langevin equation~these two methods of av-
eraging are equivalent due to the ergodicity of the diffusion
process, see Ref. 15!, the first order is simply given by

E~1!5^V&. ~13!

The derivation of the second order is more involved and
explicitly makes use of the dynamics of the diffusion pro-
cess. In what follows, we will use the reduced resolvent of
H ~0! defined by

R0[(
iÞ0

1

E0
~0!2Ei

~0! uf i
~0!&^f i

~0!u. ~14!

The usual expression for the second order is

E~2!5(
iÞ0

^f0
~0!uVuf i

~0!&^f i
~0!uVuf0

~0!&

E0
~0!2Ei

~0! , ~15!

which can be written in the compact form

E~2!5^f0
~0!uVR0Vuf0

~0!&. ~16!

Now, from the basic relation, Eq.~6!, we can express the
reduced resolvent, Eq.~14!, in terms of the transition prob-
ability density in the following way:

E
0

1`

dt@p~x→y,t !2p~y!#52
f0

~0!~y!

f0
~0!~x!

^yuR0ux&. ~17!

Using Eqs.~16! and ~17! we get

E~2!52E
0

1`

dtH E dx dy p~x!V~x!p~x→y,t !V~y!

2F E dx p~x!V~x!G2J , ~18!

which can be viewed as the integral of the two time-centered
autocorrelation function of the perturbing potential

E~2!52E
0

1`

dt CV̄V̄~ t !, ~19!

where the autocorrelation functionCV̄V̄(t) is given by

CV̄V̄~ t ![^~V~0!2^V&!~V~ t !2^V&!&

5^V~0!V~ t !&2^V&2. ~20!

This is the final formula for the second-order interaction en-
ergy. Note thatCV̄V̄ appears as a second-order cumulant of
the perturbing potential. A similar formula can be obtained

for the third-order RS component by starting from the usual
expression of the third-order component in terms of the re-
duced resolvent

E~3!5^f0
~0!uVR0~V2E~1!!R0Vuf0

~0!&, ~21!

which can be written in the form

E~3!5E
0

1`E
0

1`

dt1 dt2E E E dx dy dz p~x!V~x!

3@p~x→y,t1!2p~y!#~V~y!2^V&!

3@p~y→z,t2!2p~z!#V~z!. ~22!

After some algebra, this formula can be rewritten as

E~3!5E
0

1`E
0

1`

dt1 dt2$^V~0!V~ t1!V~ t2!&

2^V&^V~0!V~ t1!&2^V&^V~ t1!V~ t2!&

2^V&^V~0!V~ t2!&12^V&3%, ~23!

which can be used for practical Monte Carlo calculations.
Note that, now, it is a third-order cumulant of the perturbing
potential which appears in the formula. Quite naturally, the
general formula for the generalnth order in perturbation in-
volves thenth order cumulant of the potential~see Ref. 15!.

At this point, we have shown that, for a general Hamil-
tonian, it is possible to express any perturbational component
as an integral of a stochastic autocorrelation function of the
external potential. To compute this correlation function, only
the ground state wave function has to be known. From this
wave function the drift vector can be computed and, then, the
stochastic trajectories can be generated using the Langevin
equation, Eq.~9!. In general, except for very simple cases,
the ground state wave function is not known and stochastic
trajectories corresponding to the true reference problem can-
not be constructed. This problem is easily solved by making
use of a slightly different diffusion process constructed from
a very good approximation of the unknown ground state
wave function. Of course, in that case, it is also necessary to
change in some suitable way the integrands in the stochastic
averages so that the perturbational expressions remain exact.
Let us denote bycT ~T for trial wave function! this new
approximate wave function. It is important to emphasize
that, once a trial wave function is given, the diffusion process
is entirely determined via the Fokker–Planck equation Eq.
~8! and the drift vector Eq.~7! that is built from it. Doing this
corresponds to choosing a new transition probability density
whose expression is given by

pT~x→y,t !5
cT~y!

cT~x!
^yuexp@2t~HT

~0!2ET
~0!!#ux&, ~24!

whereHT
(0) is the Hamiltonian which hascT as its ground

state wave function, or

HT
~0!cT5ET

~0!cT . ~25!

The important point is that this new approximate Hamil-
tonian is explicitly known
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HT
~0!5H ~0!2~EL~x!2ET

~0!!, ~26!

whereEL is the so-called local energy corresponding to the
trial wave function

EL~x!5H ~0!cT /cT . ~27!

When the approximate wave function reduces to the exact
one, the local energy reduces to the exact energy and the
difference betweenHT

(0) andH ~0! vanishes. Accordingly, the
smoothness of the local energy is a measure for the quality of
the trial wave function.

In the short time limit a relation between the exact and
trial transition probability density can be found. Using Eqs.
~6!, ~24!, ~26!, and keeping the leading contribution in time,
we get

p~x→y,t!;t→0pT~x→y,t!exp@2t~EL~x!2ET
~0!!#.

~28!

Essentially there are two different ways to take into account
the additional exponential weight factor. A first method con-
siders this factor as a simple weight and carries it along the
stochastic trajectories. This method, which is usually referred
to as the pure diffusion Monte Carlo~PDMC! method, is the
method we shall employ here. The different aspects of this
method have been presented elsewhere15–18 and will not be
repeated here. The general expression used for the multi-time
correlation functions is

^V@x~u1!#••••V@x~uk!#&5 lim
t→`

^V@x~u1!#••••V@x~uk!#exp@2*2t/2
t/2 ds~EL~x~s!!2ET

~0!!#&

^exp@2*2t/2
t/2 ds~EL~x~s!!2ET

~0!!#&
, ~29!

where theui ’s are some fixed time values in the interval
(2t/2,t/2). Note that the total exponential weight appearing
in this formula is usually referred to as the Feynman–Kac
weight.17,18

A second possible approach is to simulate the exponen-
tial term using a birth–death process or branching process. In
contrast with the pure diffusion method, the number of walk-
ers varies during the simulation with some rate related to the
magnitude of the exponential factor. This method is referred
to as the diffusion Monte Carlo~DMC! method~see, e.g.,
Ref. 21 for a detailed presentation!. Note that this method
could be used here for computing correlation functions.
However, its implementation is not straightforward because
of the varying number of walkers. In order to compute the
different multitime correlation functions we have to keep
trace of all the death and birth events during a given period
of time. This is a nontrivial accounting problem that is
avoided here by using a PDMC approach.

B. Exchange terms

As mentioned in Sec. I, this paper does not focus on the
evaluation of the different exchange energy components with
QMC. Indeed, large statistical fluctuations associated with
very small exchange overlaps prevent accurate results being
obtained. Let us just present the approximate formula of the
first-order exchange contribution employed here.

The exact first-order energy of interaction is defined as

E~1!5
^f0

~0!uVAuf0
~0!&

^f0
~0!uAuf0

~0!&
, ~30!

wheref0
~0! is the exact ground state wave function of the

HamiltonianHA1HB. The operatorA denotes the antisym-

metrizer for all electrons. The first-order energy can be split
into two contributions: the first-order RS energy of interac-
tion and the first-order exchange interaction

E~1!5ERS
~1!1Eexch

~1! . ~31!

The first-order Rayleigh–Schro¨dinger has already been con-
sidered in the previous section. It is given by

ERS
~1!5

^f0
~0!uVuf0

~0!&

^f0
~0!uf0

~0!&
. ~32!

After integration over the spin coordinates, it is not difficult
to obtain the following expression for the first-order ex-
change component:

Eexch
~1! 5

^P &^V&2^VP &
12^P &

~33!

with P5 1
2(P131P141P231P24)2P13P24, Pi j denoting the

transposition of electronsi and j . The brackets indicate the
stochastic average along stochastic trajectories of the diffu-
sion process constructed fromf0

~0! . In practice, our approxi-
mate expression for this quantity is obtained by using the
stochastic trajectories of the approximate diffusion process
built from the high-quality trial wave functioncI . The
present definition for the first-order energy exchange is in
accordance with Rybaket al.13 and Caffarel and Hess15 but
differs from that given by Conway and Murrell,22 as these
authors split the total first-order energy in a different way
into two components. The differences are, however, com-
pletely negligible for regions of small overlap.

III. SOME COMPUTATIONAL DETAILS

The trial wave functioncT used to describe the nonin-
teracting dimer is constructed from a high-quality wave
function for the helium atom
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cT~r1 ,r2 ,r3 ,r4!5cK
A~r1 ,r2!cK

B~r3 ,r4!. ~34!

The helium atom wave functioncK
M (M5A,B) is a six-term

Hylleraas-type wave function optimized and parameterized
by Koga23 and written as

cK
M5exp~2zs!~11c1u1c2t

21c3u
21c4s

2u1c5s
3u!,
~35!

wheres, t, andu are the Hylleraas coordinates defined by

s5r i1r j ,t5r i2r j ,u5r i j , ~36!

and where the exponentz and the coefficientsci are varia-
tional parameters.r i is the distance of electroni to nucleus
M (M5A,B), r i j is the distance between the two electrons.
The values of the parameters are listed in Table I. This
atomic trial wave function gives an accurate total energy
corresponding to 99.35% of the correlation energy. In addi-
tion, its very compact form is quite attractive since the cal-
culation of its first~drift vector! and second derivatives~La-
placian appearing in the local energy! is not too time
consuming, an important point since this calculation must be
performed at each Monte Carlo step.

Besides the statistical error inherent to any statistical
method, the only source of error is the use of a finite time
step when integrating the Langevin equation, Eq.~9! ~short-
time approximation!. In order to reduce this short-time error
we have imposed the detailed balance property during the
simulation. Detailed balancing is introduced via an
acceptance/rejection step at each Langevin move in a way
similar to what is done in the usual Metropolis algorithm.
Such a procedure is presented in detail in Ref. 15. It is im-
portant to note that the time step used in this work has been
chosen small enough so that short-time errors are smaller
than the statistical fluctuations.

The total local energy associated with the trial wave
function appears in the different formulas used to compute
the exact correlation functions of the interatomic potential.
Using Eqs.~27! and ~34! we get

EL5HAcK
A/cK

A1HBcK
B/cK

B . ~37!

The total local energy is the sum of two monomer local
energies. In fact, the two terms of the sum are statistically
independent. Each monomer local energy depends only on
its own actual configuration but not on the internuclear dis-
tance or on the relative orientation with respect to the other
monomer. This property was used to accelerate the calcula-
tions. The local energy of an atom, in a particular configura-
tion, does not change if one of the operations of the full
octahedral point group,Oh , the symmetry group of the cube,
is applied to the configuration. The point group contains 48
symmetry operations. Application of these operations to each
monomer leads to 48348 different configurations all having
the same total local energy. Of these configurations there are
6348 configurations leading to different values for the inter-
atomic potential. These have been used in the calculations.
No bias in the results is caused due to the application of the
symmetry operations. In practice, the reduction in computa-
tion time achieved by considering these new configurations
was approximately a factor of 10.

Let us now consider the practical computation of the
correlation functions. Rewriting the one-point correlation
function of the interatomic potential, Eq.~29!, as an average
along an arbitrary stochastic trajectory~this is possible be-
cause of ergodicity, see Refs. 15, 17, 18 for all details!, the
first-order is written as

ERS
~1!5 lim

t→`

lim
T→`

*0
T dt V@x~t!#exp~2*t2t/2

t1t/2 ds EL@x~s!# !

*0
T dt exp~2*t2t/2

t1t/2 ds EL@x~s!# !
.

~38!

Here,T is related to the total time considered along the tra-
jectory ~actually, the total time isT1t! andx~t! is an arbi-
trary stochastic trajectory generated with the Langevin equa-
tion. The typical time step used in this work isDt50.03 a.u.
and T53000Dt. The projection timet appearing in the
Feynman–Kac weight is taken to bet5449Dt. This rela-
tively large value oft is in fact not required for the calcula-
tion of the first-order RS energy~a much smaller value
would be sufficient!. However, this value is needed for the
evaluation of the time correlation functions. The two- and
three-point correlation functions from which the second- and
third-order RS interaction energies are calculated, are

CVV~u!5 lim
t→`

lim
T→`

*0
T dt V@x~t!#V@x~t1u!#exp~2*t2t/2

t1t/2 ds EL@x~s!# !

*0
T dt exp~2*t2t/2

t1t/2 ds EL@x~s!# !
~39!

and

TABLE I. Optimized 6-term Hylleraas wave function for the helium atom
~atomic units!.a

z 1.858 924 275 683 8
c1 3.887 171 410 750 731021

c2 1.457 928 455 588 931021

c3 26.957 678 799 139 131022

c4 2.581 677 920 603 831022

c5 22.123 795 845 962 831023

Energy 22.903 452 763 436 1
Correlation energyb 99.35%
Best literature value for the energyc 22.903 724 377 034
Hartree–Fock energyd 22.861 679 995 6

aNot all figures displayed are significant. Some are displayed only to avoid
round-off errors.
bDefined as the difference between the exact nonrelativistic energy and the
Hartree–Fock energy.
cReference 24.
dReference 25.
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CVVV~u,v !5 lim
t→`

lim
T→`

*0
TV@x~t!#V@x~t1u!#V@x~t1u1v !#exp~2*t2t/2

t1t/2 ds EL@x~s!# !

*0
T dt exp~2*t2t/2

t1t/2 ds EL@x~s!# !
, ~40!

respectively. Note that, because of the stationarity property
of the diffusion process,CVV depends only on one time in-
terval u andCVVV on two time intervals,u andv. Figure 1
gives a typical example of the time-correlation function,
CV̄V̄ , as a function of the time intervalu @CV̄V̄ is the centered
time correlation function defined according to Eq.~20!#. In
order not to bias the final result it is important to take large
enough values ofu and thus of the projecting timet. To get
the second-order term the correlation function, Eq.~39!, has
to be integrated~in fact, the centered version of it!. The
integration has been done using Bode’s rule.26 Figure 2
shows the negative of the integral of the time correlation
function as a function of the total integration time, also for
R55.6 bohr. By taking sufficiently large values of the corre-
lation time, we can reach a regime where the integral has
converged within statistical error bars.

Finally, in order to estimate the statistical error in each of
the energy components, each calculation was split into a
number of independent blocks. The final result was obtained
as the mean value of the results obtained for the independent
blocks, the error being obtained as the standard deviation of
the mean. ForR ranging from 3- to 7 bohr, we have used 38
blocks, each of them containing 50 trajectories. Taking into
account the configurations generated with the symmetry as
discussed above our statistics is based on approximately
1.63109 Monte Carlo events for each perturbational compo-
nent and distance. For the shorter distances we have used 14
blocks.

IV. RESULTS AND DISCUSSION

A. First-order energy

In contrast with higher-order terms, the first-order per-
turbational energy depends only on the ground state wave
functions of the constituent monomers. A high accuracy can
then be achieved by expanding these wave functions over a

sufficiently large set of basis functions. Table II reports the
very accurate results obtained by Rybaket al.13 for both the
RS part, denoted asERS-ab initio

(1) , and the exchange part,
Eexch-ab initio
(1) . These results have been obtained using a 75-

term GTG ~Gaussian-type geminal! basis which reproduces
99.9976% of the helium correlation energy and properly rep-
resents the behavior of the electron density in the outer re-
gion of the helium atom. The error, in the interaction energy,
is approximately 0.1mhartree.13 Note that, even for the first-
order terms, the convergence of the calculations with the size
of the basis set, is not easy to achieve. As an illustrative
example consider the very recent results of Tachikawa
et al.14 Using quite a large basis set these authors obtained
RS contributions being very similar to those given by Rybak
et al.13 However, the first-order exchange contributions differ
noticeably from those reported by Rybaket al.13 For ex-
ample, atR55.6 bohr, the values of the polarization~RS!
components almost equal~25.35- and25.37mhartree!, but
the exchange contributions differ by approximately 1mhar-
tree ~38.95- and 37.92mhartree!. To illustrate the effect of
the intra-atomic correlation on the first-order energies, the
SCF values,ERS

~10! andEexch
~10! as given by Tachikawaet al.14

also have been listed in Table II~as usual, the second super-
script 0 indicates that the quantities are evaluated at the SCF
level!. When we regard the exponentially small first-order
RS part~there are no permanent multipoles and this contri-
bution results only from the penetration of the atomic wave
functions! the contribution of the correlation energy is be-
tween 5% to 8%, except at the largest distance~R57 bohr!
where it seems to be larger~however, care must be taken
with the quality of the SCF value at such a large distance!.
The first-order exchange contribution is much more impor-
tant and the effect of the intra-atomic correlation energy is a
little stronger: between 6% to 12%. As for the RS compo-
nent, the effect increases with the distance, showing that the
tail of the atomic wave function seems to be sensitive to a

FIG. 1. The time correlation function,CV̄V̄(u) ~a.u.!, R55.6 bohr.
FIG. 2. The negative of the integral ofCV̄V̄(u) ~a.u.! as a function of the
total integration time,R55.6 bohr.
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proper description of the intra-atomic correlation. We also
present our QMC evaluation of the first-order components,
ERS-QMC

~1! andEexch-QMC
~1! . The first-order RS energy has been

computed using the exact expression Eq.~38!, whereas the
first-order exchange energy has been calculated using the
approximate expression Eq.~33!. The first-order QMC re-
sults are given to show that they are in rough agreement with
the much more accurateab initio results. For the RS compo-
nent the statistical fluctuations are 5% forR54 bohr, 17% at
the equilibrium distance,R55.6 bohr, and essentially 100%
at the largest distance,R57 bohr, where the first-order RS
component is very small. As has been mentioned already, the
situation for the first-order exchange energy is even worse.
Statistical fluctuations range from 23% to 100%. For the
shorter distances the situation is more favorable. Table III
lists the results. It is seen that, in this region, accuracies of,
say, 1% to 2% are obtained. Hence, in what follows we shall
use the accurateab initio values, for the longer distances, as
reference values for the first-order energy. As we discuss
below, QMC results for the higher orders are much more
interesting.

B. Second- and third-order interaction energies

Perturbational components beyond the first-order have
been obtained, so far, by usingab initio frameworks where
the monomer wave functions~ground and excited states! are
expanded over a more or less extended set of basis functions.
As is well known, a number of difficulties are present in such

calculations. First, in order to perform the infinite summa-
tions, present in the perturbational expressions, the entire set
of the exact eigenfunctions of the monomers is needed.
These functions are in general not known and approximate
wave functions have to be used. In general, these functions
are issued from a self-consistent-field~SCF! calculation in
which the intra-atomic electron correlation is neglected. Very
recently, a great deal of attention has been focused on the
calculation of intramonomer correlation contributions to the
interaction energy components.14,27–35 The usual approach
consists in decomposing the monomer Hamiltonians as a
sum of the Fock operator and some residual intramonomer
correlation operators~Mo” ller–Plesset partioning! and, then,
to resort to a double perturbation theory~in the correlation
operators of each monomer! using a many-body expansion
framework. However, such calculations are not so easy to do
and are limited, in practice, to the calculation of some lead-
ing corrections~e.g., up to second order in the internal cor-
relation! and/or to some partial infinite-order summation cor-
responding to specific classes of diagrams~see, e.g., Ref.
36!. Second, there is the problem of efficiently evaluating the
infinite sums present in the perturbational expressions. In
particular, the summations corresponding to the continuous
part of the spectrum are in practice almost inexecutable in-
tegrations~see, Ref. 37!. To solve this problem, variation-
perturbation schemes have been proposed in which the per-
turbed wave function is interpreted as the solution of a
variational problem~Hylleraas variational procedure!. Then,

TABLE II. Quantum Monte Carlo andab initio perturbational components at various interatomic distanceR. Statistical errors on the last digit in QMC results
are indicated in parentheses. Energies inmhartree, distances in bohr.

R 3.0 4.0 5.0 5.6 6.0 7.0

ERS
~10!a 2283.09 222.79 24.94 21.78 20.138

ERS-ab initio
(1) b 2298.24 224.56 25.35 21.90 20.09

ERS-QMC
~1! 23355~56! 2283~13! 225~6! 26~1! 23~2! 20.3~3!

Eexch
~10! a 1752.71 155.85 35.52 13.11 1.040

Eexch-ab initio
(1) b 1854.16 168.14 38.95 14.55 1.18

Eexch-QMC
~1! c 16932~604! 1381~313! 449~339! 300~269! 62~43! 1~1!

ERS
~20! 2520.11a 2114.38a 255.27d 233.25a 211.97a

ERS-ab initio
(2) 2639.21a 2143.62a 268.89d 242.14a 215.20a

ERS-QMC
~2! 24421~68! 2703~17! 2161~10! 274~1! 245~2! 215.9~4!

Eexch
~20! a 96.05 8.13 1.894 0.723 0.067

Eexch-ab initio
(2) a 135.96 11.38 2.65 1.01 0.09

ERS-QMC
~3! 21186~96! 246~22! 26~11! 2.2~2! 0.3~7! 0.13~3!

aReference 14.
bReference 13.
cApproximate QMC first-order exchange energy, Eq.~33! with trial wave function Eq.~34!.
dReference 27.

TABLE III. Quantum Monte Carlo perturbational components at short internuclear distancesR. Statistical errors on the last digit are indicated in parentheses.
Energies in hartree, distances in bohr.

R 1.5 1.6 1.7 1.8 1.9 2.0

ERS-QMC
~1! 20.0813~6! 20.0694~6! 20.0583~6! 20.0484~5! 20.0398~5! 20.0323~5!

Eexch-QMC
~1! 0.576~7! 0.462~6! 0.370~6! 0.297~6! 0.239~5! 0.191~5!

ERS-QMC
~2! 20.125~1! 20.099~1! 20.0781~9! 20.0620~8! 20.0495~8! 20.0390~7!

ERS-QMC
~3! 20.077~2! 20.059~2! 20.045~1! 20.035~1! 20.028~1! 20.021~1!

4628 C. Huiszoon and M. Caffarel: The He–He interaction

J. Chem. Phys., Vol. 104, No. 12, 22 March 1996

Downloaded¬10¬Mar¬2010¬to¬130.120.228.223.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



standard sets of basis functions can be used to describe the
variational space. Finally, as in anyab initio framework, one
still has the important problem of achieving a sufficiently
complete basis set. This is particularly important here, since
perturbational quantities are very sensitive to the basis set
used.

In Table II we show theab initio second-order RS inter-
action energies obtained very recently by Tachikawaet al.14

and by Jeziorskiet al.27 To our knowledge, these values are
the bestab initio values calculated so far. It is worth remark-
ing that, forR55.6 bohr, both SCF and correlated values of
ERS

~2! differ by approximately 2mhartree between the two sets
of results~the values given by Tachikawaet al.14 are252.93
mhartree, at the SCF level, and266.91mhartree at the cor-
related level, to compare with the better results of Jeziorski
et al.27 presented here!. These large differences illustrate the
difficulties in obtaining converged values withab initio tech-
niques.

In order to discuss the role of the intra-atomic electron
correlation Table IV shows some of its perturbational contri-
butions to the second-order components forR55.6 bohr. The
differences between RS andab initio values on one hand,
and QMC values on the other, are due to the intra-atomic
electron correlation effects. In Table IV the first superscript
gives the order in the interatomic perturbation, while the sec-
ond superscript indicates the perturbational order in the
Mo” ller–Plesset expansion with respect to the intraatomic
electron correlation operator. Note also that the second-order
energy is decomposed as usual into an induction and disper-
sion part~see, e.g., Ref. 9!. It may be clear that this distinc-
tion is specific to SCF andab initio calculations but is mean-
ingless within our QMC framework. ForR55.6 bohr, the
exactQMC value is274 mhartree with a statistical error of
only 1mhartree or approximately 1%. The SCF second-order
RS energy,ERS

~20! , is quite different from our exact value,
ERS-QMC

~2! . This shows that the intra-atomic effect is strong. It
is interesting to compare this result with the Mo” ller–Plesset
perturbational estimates of the same contribution presented
by Jeziorskiet al.27 Note that the induction contribution to
the total second order is very small@penetration contribution
behaving as;exp~2aR!# and only the contribution of the

correlation effect to the dispersion part has been considered.
At the first-order level 53% of the correlation contribution is
recovered. The second-order gives some additional 21% so
that the total contribution recovered is 74%. The remaining
correlation contribution represents 14% of the total interac-
tion energy. This illustrates the fact that any accurate evalu-
ation of the intramonomer correlation effects must incorpo-
rate contributions beyond second-order. Note that the error in
the QMC result is small enough~only 5% of this correlation
effect! to validate this conclusion.

As noticed in previous works~e.g., Refs. 27 and 39! the
second-order exchange effects in intermolecular interactions
are in general not negligible. Here, this contribution is 8% of
the total interaction energy. The correlation contribution to
the second-order exchange part is small but significant~2%
of the total interaction energy!.

We have computed the exact second-order RS energy for
various internuclear distances. The relative statistical error
grows slowly with the distance~see Tables II and III!. Even
for the largest distance the error is only 3%, which is a sat-
isfactory result. For the large distances the QMC results for
ERS

~2! are compatible with a behavior asc6/R
6 as it should be

for a van der Waals dimer. Note that a QMC evaluation of
the van der Waals coefficient,c6, has been presented
elsewhere.38

The results for the third-order interaction energy are pre-
sented in Tables II and III. To the best of our knowledge
there are no quantitative estimates of these values published
so far. At the small distances this contribution is found to be
negative, while at larger distances it corresponds to a repul-
sive contribution. It changes sign betweenR55- and 5.6
bohr. At the equilibrium distance, we find a repulsive contri-
bution of 2.2mhartree with a statistical error of 10%. This
contribution is clearly significant since it represents 6% of
the total interaction energy. In particular, it gives a contribu-
tion almost equal to the second-order exchange energy.

C. Total interaction energy

We are now in position to summarize the previous re-
sults and to discuss the relative importance of each perturba-
tional component making up the complete interaction energy
of the helium dimer. Within the framework of perturbational
treatments~symmetry adapted perturbation theories~SAPT!,
the total interaction energy can be written as

DEint5ERS
~1!1Eexch

~1! 1ERS
~2!1Eexch

~2! 1ERS
~3! . ~41!

In this expansionall contributions occurring at first- and
second-order in perturbation are taken into account. The ne-
glected contributions are the third-order exchange effects and
all contributions beyond the third-order. Putting together all
these contributions according to Eq.~41! we get the values
for the perturbational sum as listed in Table V. At the mini-
mum of the potential the value of235.061.2 mhartree for
the total interaction energy of the helium dimer is found.
This result is in good agreement with the very recent full CI
interaction energy of van Mourik and van Lenthe6 which was
calculated to be234.6860.03mhartree. It is also in accor-

TABLE IV. Intraatomic correlation contributions to the second-order inter-
action energy. The first superscript gives the order in the interatomic pertur-
bation, the second superscript indicates the perturbational order in the
Mo” ller–Plesset expansion with respect to the intraatomic electron correla-
tion operator. Energies inmhartree,R55.6 bohr.

Eind
~20!a 20.73

Edisp
~20!a 254.53

ERS
~20!5Eind

~20!1Edisp
~20! 255.27

ERS
~20!1Edisp

~21!a 265.10
ERS

~20!1Edisp
~21!1Edisp

~22!a 268.89
ERS-QMC

~2! 274~1!
Eexch

~20! b 1.894
Eexch

~20! 1Eexch
~21! b 2.37

Eexch
~20! 1Eexch

~21! 1Eexch
~22! b 2.65

aReference 27.
bReference 14.
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dance with the so-called VVVVR4,5 and LM2M24,40 poten-
tials, and with the supermolecular QMC calculation of
Andersonet al.1 Note that we have found a similar agree-
ment for the other distances considered. At this point, it is
important to remark that the statistical error in the total in-
teraction energy is rather large. At the equilibrium distance it
is about three times larger than the supermolecular QMC
error of Andersonet al.,1 which is itself an order of magni-
tude greater than the error in the very recent highly accurate
result of van Mourik and van Lenthe.6 To obtain more accu-
rate QMC results for the second- and third-order Rayleigh–
Schrödinger terms is certainly possible but would require
quite significant amounts of computer time. However, to
achieve the 0.03mhartree accuracy of the full CI calculation
is certainly out of reach at the present time. In any case, at
this level of accuracy, the contributions neglected in Eq.~41!
would have to be considered. In fact, a major result of this
work is that the perturbational expansion Eq.~41! gives a
complete description of the total interaction energy for dis-
tances equal and larger than the equilibrium distance. Statis-
tical errors on the QMC results presented here, although
large with respect to the best accuracy obtained so far for the
total interaction energy, are sufficiently small to lead to the
most accurate values that have been calculated for the
second- and third-order RS interaction energies. From our
results, we can conclude the following:

~i! The intraatomic correlation contribution to the
second-order RS component is large and higher-order
contributions beyond the second-order in a Mo” ller–
Plesset-like expansion must absolutely be taken into
account. A nonperturbative value of the total intra-
atomic correlation contribution has been exactly
evaluated in this work~with a relative error of only
5%!.

~ii ! The third-order RS part is significant and is as large as
the second-order exchange contributions at intermedi-
ate and large distances.

~iii ! The perturbational expansion limited to the complete
first- and second-order, plus the Rayleigh–
Schrödinger third-order energy is sufficient to repro-

duce the total interaction energy of the helium dimer
at intermediate and large distances.

Beyond this particular application it is clear that these
conclusions are also important for the general theory of in-
termolecular forces and their evaluation by perturbation
theory.
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