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Using a recently proposed quantum Monte Carlo methoceiaetfirst-, second-, and third-order
Rayleigh—Schrdinger interaction energies of the He—He interaction have been calculated for
internuclear distances in the range 1.5- to 7.0 bohr. Putting together these new data with #fee best
initio results available, the relative importance of the different contributions appearing in the
perturbational expansion of the He—He interaction energy is discussed. In particular, the results
show that the third-order Rayleigh—ScHiger term and the intra-atomic correlation contribution

to the second-order component play a significant role. For intermediate and large distances
(including the equilibrium distanggit is found that the perturbational expansion limited to the
complete first- and second-order, plus the third-order Rayleigh—8iciyer energy agrees with the

best known values of the total interaction energy of the helium dimed 986 American Institute

of Physics[S0021-96086)02610-X

I. INTRODUCTION second virial coefficient, viscosity and thermal conductivity

The determination of the intermolecular potential be-was attempted. The agreement with experiment can be con-
tween chemically nonbonding atoms and molecules is &idered excellent,although, as has been stated by Aziz and
problem of fundamental importance in the field of molecularSlamari, “... small failures nevertheless remain.” In this
physics. However, even in the case of the interaction becontext it is important to keep in mind the remark made by
tween two helium atoms—the simplest inert gas pair—theAnderson et al,’ regarding a result given by Liu and
problem is known to be difficult and has been the subject oMcLean; “... that one should be a little nervous about the
numerous papers spanning a period from the late twenties ®stimated uncertainty of 0.03 K in the interaction potential
the present timésee, e.g., Ref. 1 for a historical revigw when the calculated total energy is 1200 K above the exact

Two mainstreams in the methods of calculation can bdotal energy.” Finally, van Mourik and van Lentheery re-
distinguished: the supermolecular and the perturbationatently presented the results of full configuration interaction
methods. In the supermolecular method the energy of intecalculations for the helium dimer employing large basis sets,
action is obtained by subtracting from the total energy of thewhich contain up tch-type basis functions, including bond
interacting moleculegthe supermolecu)jehe sum of the en- functions. Their results probably are the best at present for
ergies of each monomer. Since the energies involved cannthhe He interaction energy. At the equilibrium distance,
be evaluated exactly one is confronted with the difficulty of R=5.6 bohr, the interaction energy was calculated to be
obtaining a very small number as the difference of two huge—34.67 uhartree with an error of0.03 phartree.
numbers, both being known only approximately. As has been Quantum Monte CarlgQMC) methods also can be used
stated by van Lenthet al.? for an accurate evaluation of the to compute molecular energies. Lowther and ColdWeis-
interaction energy usingb initio techniques three require- ing a variational QMC approach have calculated the energy
ments should be fulfilled: saturation of the basis set, saturasf interaction for internuclear distances ranging from 4.5- to
tion of the configuration set, and effective elimination of the15 bohr using a 189-term Hylleraas-type atomic wave func-
basis set superposition error. In practice, it turns out to béion from which a fully correlated dimer wave function was
hard to meet these requirements, even for a relatively smadlonstructed. They found a very good energy of interaction at
system such as the helium dimer. Nevertheless, according tbe minimum of the potential of-35.5+1.5 phartree which
Liu and McLear? “... one seems to have come close to agrees well with the more recent values-634.64 uhartree
writing the end of the chapter on helium dimer potentials.” (Liu and McLearl), —34.42 uhartree (Vos et al®), and
Aziz and Slamahhave fitted model potentials to the super- —34.67 uhatree(van Mourik and van Lenttf% Exact QMC
molecularab initio energies of interaction calculated by Vos supermolecular calculations have been done by Ceperley and
etal® and by Liu and McLeaR.With these potentials the Partridge’® for the small internuclear distances, ranging from
prediction of a variety of accurate experimental data such a$.0—3.0 bohr, and by Andersat al?! for distances greater

the than 3 bohr. The results obtained by Andersarly agree
with those of Liu and McLeafMos et al.® and van Lenthé.

da-mail: ¢.huiszoon@thn.tn.utwente.nl It should be emphasized that the difficult problems con-

Pe-mail: mc@Ict.jussieu.fr nected with the use of a basis sefin initio calculations are
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absent in exact QMC calculations. The only input is the sotories of some generalized diffusion process associated with
called trial wave function. It is important to realize that, al- the unperturbed systeh!® In practice, to construct these
though the statistical error is directly related to the quality oftrajectories only a good approximate trial wave function for
the trial wave function, the statistical estimate of the energythe unperturbed Hamiltonian is required. It is important to
is not biased by a particular choice of the input trial waveemphasize that the results obtained are essentially exact
function. within their statistical errors. In particular, the complete in-

A very natural alternative approach to supermoleculatramonomer correlation contribution is included. The QMC
methods is to consider the interaction energy as the result gferturbational approach has been applied to the helium dimer
a very small physical perturbation of the isolated monomersén the original work of Caffarel and Hed3.However, the
and thus to employ some kind of perturbational method. Atumerical results presented in their work were obtained only
this point, it is worthwhile to recall that, at the equilibrium for very short distanceél.5- to 2.0 bohx, and only for the
distance of the helium dimer in which we are interested herefirst- and second-order interaction energies. Here, we make a
the interaction energy represents only approximated® ®  much more systematic study including the short, intermedi-
of the total dimer energy. Such a tiny fraction clearly justifiesate, and large distances. In particular, we focus our attention
the use of perturbational methods. This line of research hagn the region of the potential well which is the region of
been intensively followed during the last decades and has leghysical interest. The third-order RS term is also computed
to the so-called symmetry adapted perturbation theoriebere and is found to play a significant role. As has been
(SAPT) for intermolecular interaction&see, e.g., Refs. 9, 10 already stated above when discussaiginitio SAPT tech-
or 11). Within this framework the intermolecular Coulomb niques, exchange contributions responsible for the repulsive
potential is treated as a perturbation, and the interaction erpart of the potential energy curve, are in general difficult to
ergy is directly given as a sum of perturbational componentsg¢valuate. This is particularly true for QMC. In fact, the re-
This type of approach does not involve the typical difficultiessults of the calculations presented here show that it is not
of the supermolecular method mentioned above. Each pertufealistic to expect quantitative results for the longer dis-
bational component can be split into an exchange and tnces. In order to illustrate this we will report some calcu-
Rayleigh—Schidinger (RS or polarization contribution. A lations of the first-order exchange interaction energy using a
number of methods have been designed to calculate the§égh-quality approximate formula. The results are compared
contributions. A general feature is that exchange contribuwith accurateab initio values and are found to agree within
tions are more difficult to obtain than the RS contributionslarge statistical errors. In principle, it is possible to write
since they require a wave function of good quality also in theexact expressions for the exchange comporigbts, due to
outer region of the system, a region which is not necessariljhese large statistical fluctuations, they will be of no practical
very well described by wave functions obtained from a varia-use and, therefore, will not be considered further.
tional principle on the energy. Note that a quite complete By using the exact QMC data presented here for the
review of the perturbation approach to van der Waals comsecond- and third-order RS interaction energies, and the best
plexes has recently been published by Jeziorski, Moszynsk@b initio values for the complete first-order and second-order
and Szalewic2? Unfortunately, the use of perturbational ap- €xchange contributions we discuss the relative importance of
proaches is limited because the computation of the perturbdbe different perturbational contributions making up the total
tional components is not easy to do. Even in the case of thifiteraction energy of the helium dimer: The RS contributions
helium dimer, only the first- and second-order contributionsof different orders, the intraatomic electron—electron corre-
have been considered in practide? Of these two, the first- lation, the exchange effects. To our knowledge, this is the
order term has been evaluated accurately since the way#st example of an intermolecular interaction whose pertur-
function for the dimer is a simple product of the ground statedational description is fully understood. Besides its own in-
monomer wave functions and these functions can be chosdgrest, it is clearly of general interest for the theory of inter-
to approximate the exact result very closElyContrary to molecular forces and their evaluation by perturbation theory.
the first-order energy of interaction, the higher-order terms ~ The organization of the paper is as follows. Section II
are given in sum-over-states representations and the exciteftesents the basic equations of the QMC-perturbational ap-
states must be know(explicitly or implicitly) to evaluate the Proach used here. Section Ill contains the computational de-
sums. Accordingly, accurate evaluations of these terms ar@ils. Finally, Sec. IV presents and discusses the numerical
much more difficult to perform. In Sec. IV we will discuss results for the perturbational components of the He—He in-
this point in detail. teraction.

In this paper we present exact calculations of the first-,
second-, and third-order RS interaction energies of the. BASIC EQUATIONS
He—He interaction for internuclear distances ranging fromA Ravieiah—Schro™ di . : .
1.5- to 7.0 bohr. In order to do that, we resort to a recently - aylelg chro-dinger interaction energies
proposed OQMC method to compute perturbational Let us first consider the calculation of the first-, second-,
quantitiest®>!® In this approach the perturbational quantitiesand third-order RS interaction energies. The formulas pre-
are expressed as multitime integrals of some well-definedented here are some particular cases of a gendradrder
autocorrelation functions of the perturbing potential. Theformula derived by Caffarel and He&%*® Since the formal-
correlation functions are defined along the stochastic trajedsm presented in Refs. 15 and 16 is very general and not
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commonly used, we have chosen to rederive the perturba- H<0>¢§0>:Ei(0>¢§0>_

4623

4

tional expressions using a more pedestrian approach. It is - ) ) ) )
emphasized that the equations are valid for any perturbalhe diffusion process associated witf” is entirely defined
tional problem and are, therefore, not limited to intermolecuY its transition probability density

lar forces.

In any perturbational treatment the full Hamiltoniath,
is written as the sum of a reference Hamiltoni#?, and a
perturbing potentiaV

H=H?+V. (1)

In the present applicatiot] is the Hamiltonian of the inter-
acting helium dimerH'? is the Hamiltonian of the noninter-
acting dimer: H®=HA+H®B where HV represents the
Hamiltonian of the isolated helium aton(=A,B). V is the
interatomic interaction operator

1 1 1 1 2 2 2 2 4
V=—+—+—+
Faz Tig

Foa Tig Tog T3a Taa

Rag’

)

where the indices 1 and 2 refer to the electrons of atom
and indices 3 and 4 to those of atdd rj; is the distance
between electrons and j, and Ry, the distance between
electroni and nucleusM (M =A,B).

d(y)
p(x—y,t)= m > #208%(y)

xext] — t(EQ—E)], (5)

where x and y represent two points in the configuration
space(x=(rq,r,,r3,r,) in the present applicationandt is

the time parameter. In other words, the transition probability
density is, up to some factor involving the ground state wave
function, connected to the imaginary time-dependent Green’s
function of H©

(x— t)=M< |ex —t(H O —Eg”)]|x)
p Y, d)gm(x) y 0 :
Note that expressions Eq%) and(6) are identical only if all
the eigenfunctions are real. This condition is satisfied since
only real Hamiltonians will be considergéor such Hamil-
tonians a complete set of real eigenfunctions can always be
constructedl As a consequence, no conjugation sign will ap-

(6)

We are interested in computing the change in the groungear in the formulas that follow. E¢5) defines a diffusion
state energy of the dimer due to the presence of the perturlprocess consisting of a standard free diffusion part in con-
ing operatoV. Within the framework of perturbational treat- figuration space plus a deterministic part corresponding to a
ments this change in energy is expressed as an infinite petirifted move with a drift vector given by
turbation series 2

T

It can be verified by substitution that the previous transition

where E, denotes the exact ground state energyHobut ~ Probability density, Eq(5), is the solution of the following
calculated with the complete neglect of the interatomic ex{forward Fokker—Planckdiffusion equation

change of electron€ is the ground state energy of the o 1
reference HamiltoniarE("=E{+ EE with EY' (M=A,B) is -3 Vip—V,[b(y)p]
the energy of the isolated atomAEgs is the so-called o
Rayleigh—Schrdinger(RS) interaction energy, anBY rep-  with the initial condition,p(x—y,0)=8(x—y) (for a gen-
resents thenth order RS component. In the literature this eral presentation of diffusion processes, see, e.g., Refs. 19
quantity is also often called theth order polarization com- and 20Q. In practice, stochastic trajectories of the diffusion
ponent. At this point, it is important to emphasize that theprocess are generated using a discretized version of the
ground state energy of the interacting dimer obtained by Ed.angevin equation

(3) is not the true physical ground state energy of the actual

interacting dimer. Indeed, the change of symmetry of the Ax(t+At):b(x(t))At+77\/H, ©
wave function with respect to the exchange of electrons beyhere 5 is a random vector whose independent components
tween the noninteracting and interacting dimers must also bgre drawn from a Gaussian distribution with zero mean and
taken into account. Physically, this leads to the repulsive inynjt variance(free diffusion process in a multidimensional
teraction at short distances. In practice, this important physispacg.

cal effect is described by introducing in the perturbational ~ Next the different perturbational components can be
series the so-called exchange terms. We shall discuss thgitten in terms of averages of the diffusion process just

exchange contribution later. presented. The first order is given by the usual fornfg@
Now, Caffarel and Hes8 have shown that thaeth order s supposed to be normalized

RS contribution can be written in terms of a multitime inte-

)

“+ 00
AEgpe=E,—EY'= nZl SU &)

®

gral of then-point autocorrelation function of the perturbing ~ E=(#t" V] $(”), (10
potential algng the stochastic trajectorigs qf sg)me diffusiorg,vhich can be written as

process built from the reference Hamiltoniat®. Let us

denote by¢(®) the eigenfunctions of the reference Hamil- W

tonian with energie&(®) E= | dx p)V(x), 1D
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wherep(x) is given by for the third-order RS component by starting from the usual
(0)/ or12 expression of the third-order component in terms of the re-
P(X)=[g” (x)]°. 12 quced resolvent

In this formula,p(x) is the quantum-mechanical probability
density associated with the ground state wave function of the
reference Hamiltonian. In fach(x) is also the stationary which can be written in the form

density of the diffusion process. This property is easily e i

checked by looking at the long-time behavior of the transi- E<3>:f j dt, dtzJ J J dx dy dz gx)V(x)
tion probability density, Eq(5), or by verifying thatp is the o Jo

stationary solution of Eq8). Denoting by(:--) the stochastic

EC = ({7 [VR(V—EM)RoV| (), @y

average along any trajectory or group of trajectories gener- X[P(x—y.t) =p(Y)I(V(Y) (V)
ated.using the L_angevin equatigihese tvv_o_methods qf av- X[p(y—1zt,)—p(2)]V(2). (22
eraging are equivalent due to the ergodicity of the diffusion ) )
process, see Ref. 15he first order is simply given by After some algebra, this formula can be rewritten as
(1= Hoo [4
EX=(V). (3 EG= f f dt, dt,{(V(0)V(ty)V(t,))
The derivation of the second order is more involved and o 70
explicitly makes use of the dynamics of the diffusion pro- —(VXV(0)V(t)) —{(V){(V(t1) V(L))
cess. In what follows, we will use the reduced resolvent of 3
H© defined by —(VX{V(0)V(t2)) +2(V)°}, (23
1 which can be used for practical Monte Carlo calculations.
ROE':#EO SUm=G |6\ ( (Y. (14 Note that, now, it is a third-order cumulant of the perturbing
! 0 i potential which appears in the formula. Quite naturally, the
The usual expression for the second order is general formula for the generath order in perturbation in-

volves thenth order cumulant of the potentiGdee Ref. 1b
At this point, we have shown that, for a general Hamil-

co_s (MNP

=4 EQ—E® (19 tonian, it is possible to express any perturbational component

_ _ ) as an integral of a stochastic autocorrelation function of the
which can be written in the compact form external potential. To compute this correlation function, only
E(z):(¢é°>|VROV|¢g°)>. (16) the ground state wave function has to be known. From this

wave function the drift vector can be computed and, then, the
Now, from the basic relation, Eq6), we can express the stochastic trajectories can be generated using the Langevin
reduced resolvent, Eq14), in terms of the transition prob- equation, Eq(9). In general, except for very simple cases,
ability density in the following way: the ground state wave function is not known and stochastic
e O)(y) trajectories correspondjng to the true reference problem can-
J di{p(x—y,t)—p(y)]=— ?T (y|Ry|x). (17) Mot be constructed. This problem is easily solved by making
0 by (X) use of a slightly different diffusion process constructed from
a very good approximation of the unknown ground state
wave function. Of course, in that case, it is also necessary to
@_ +eo change in some suitable way the integrands in the stochastic
ES=- fo dt f dx dy pEX)V(X)p(x—=y,HV(y) averages so that the perturbational expressions remain exact.
Let us denote by (T for trial wave function this new
approximate wave function. It is important to emphasize
that, once a trial wave function is given, the diffusion process
is entirely determined via the Fokker—Planck equation Eg.
8) and the drift vector Eq.7) that is built from it. Doing this
corresponds to choosing a new transition probability density

Using Eqgs.(16) and(17) we get

2
fdx p(X)V(X) ] (18

which can be viewed as the integral of the two time-centere
autocorrelation function of the perturbing potential

+oo whose expression is given by
E@=— f dt Cuu(t), (19
0 Pr(y)
X—y,t)= exg —t(HO—E)]|x), (24
where the autocorrelation functid®yy(t) is given by Prix=y.1) Pr(x) (e —tH=ErDI). - (24
Cov(H)=((V(0)— (V) (V(1) —(V))) where H{?) is the Hamiltonian which hags as its ground
, state wave function, or
=(V(0)V(1))—(V)~. (20)

HO = E© . 2
This is the final formula for the second-order interaction en- T YT=ET 23
ergy. Note thatCy,, appears as a second-order cumulant ofThe important point is that this new approximate Hamil-
the perturbing potential. A similar formula can be obtainedtonian is explicitly known
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HP =HO —(EL(0—EP), (26) P(X—Y,7)~ ,oPr(X—y, T)exd — 7(EL(x) - EY")].
whereE, is the so-called local energy corresponding to the
trial wave function (28)
ELO)=H /. (27

When the approximate wave function reduces to the exadEssentially there are two different ways to take into account
one, the local energy reduces to the exact energy and tithe additional exponential weight factor. A first method con-
difference betweer{” andH© vanishes. Accordingly, the siders this factor as a simple weight and carries it along the
smoothness of the local energy is a measure for the quality aftochastic trajectories. This method, which is usually referred
the trial wave function. to as the pure diffusion Monte Car(f@DMC) method, is the

In the short time limit a relation between the exact andmethod we shall employ here. The different aspects of this
trial transition probability density can be found. Using Egs.method have been presented elsewhet&and will not be
(6), (24), (26), and keeping the leading contribution in time, repeated here. The general expression used for the multi-time
we get correlation functions is

o AVIxX(up]- - - VIx(u Jexd — [, dS(EL(x(s) —EF)])
WD ViD= im (ext—[2,, dS(EL(x(s)) — ED)]) '

(29

where theu;’s are some fixed time values in the interval metrizer for all electrons. The first-order energy can be split
(—1t/2,t/2). Note that the total exponential weight appearinginto two contributions: the first-order RS energy of interac-
in this I;)[gnula is usually referred to as the Feynman—Kadion and the first-order exchange interaction
weight=" -1 1
A second possible approach is to simulate the exponen- E®= EESH E‘(EX)Ch' (3D
tial term using a birth—death process or branching process. lfhe first-order Rayleigh—Schiinger has already been con-
contrast with the pure diffusion method, the number of walk-sidered in the previous section. It is given by
ers varies during the simulation with some rate related to the (SOV| 5O
magnitude of the exponential factor. This method is referred g@)_*"0 170 7 (32)
to as the diffusion Monte CarléDMC) method(see, e.g., RS (o] 00))
Ref. 21 for a detailed presentatiorNote that this method  sfter integration over the spin coordinates, it is not difficult

could be _usgd here for_cor_nputlng C(_)rrelatlon funCt'OnSto obtain the following expression for the first-order ex-
However, its implementation is not straightforward becausechange component:

of the varying number of walkers. In order to compute the 7 7
different multitime correlation functions we have to keep 1 V) —(V7)
trace of all the death and birth events during a given period exch™ 1)

of tﬁme. This is a.nontrivial accounting problem that is With 7= X(P15+ P st Pagt Pyd) — P1aPas Py denoting the
avoided here by using a PDMC approach. transposition of electronsandj. The brackjets indicate the
stochastic average along stochastic trajectories of the diffu-
sion process constructed fro«ﬂ,o). In practice, our approxi-
B. Exchange terms mate expression for this quantity is obtained by using the
tochastic trajectories of the approximate diffusion process
uilt from the high-quality trial wave function). The
resent definition for the first-order energy exchange is in
cordance with Rybakt al® and Caffarel and HeSbut
ffers from that given by Conway and Murréfl,as these
authors split the total first-order energy in a different way
into two components. The differences are, however, com-
pletely negligible for regions of small overlap.

(33

As mentioned in Sec. I, this paper does not focus on th
evaluation of the different exchange energy components wit
QMC. Indeed, large statistical fluctuations associated witr?
very small exchange overlaps prevent accurate results bei
obtained. Let us just present the approximate formula of th
first-order exchange contribution employed here.

The exact first-order energy of interaction is defined as

GFAS) _ . . .
The trial wave functionys used to describe the nonin-

where qSE)O) is the exact ground state wave function of theteracting dimer is constructed from a high-quality wave
HamiltonianH”+ HB. The operatorZ denotes the antisym- function for the helium atom

(30 lll. SOME COMPUTATIONAL DETAILS

J. Chem. Phys., Vol. 104, No. 12, 22 March 1996

Downloaded-10-Mar-2010-t0-130.120.228.223.-Redistribution-subject-to~AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



4626 C. Huiszoon and M. Caffarel: The He—He interaction

TABLE I. Optimized 6-term Hylleraas wave function for the helium atom The total local energy associated with the trial wave
o . - :
(atomic unit3. function appears in the different formulas used to compute

¢ 1858 924 275 683 8 the exact correlation functions of the interatomic potential.
¢, 3.887 171 410 750710 Using EQgs.(27) and (34) we get

C, 1.457 928 455 588:910*

Cs —6.957 678 799 13941072

C4q 2.581 677 920 603810 2 E =HAW P+ HByB/ B 3

cs —2.123 795 845 962:810 3 L Il ¥ il ¥ (37)
Energy —2.903452 763436 1

Correlation enerdy 99.35% The total local energy is the sum of two monomer local
Best literature value for the enefgy —2.903 724 377 034

energies. In fact, the two terms of the sum are statistically
independent. Each monomer local energy depends only on
ot all figures displayed are significant. Some are displayed only to avoidtS own actual configuration but not on the internuclear dis-

Hartree—Fock enerdy —2.861 679 995 6

round-off errors. tance or on the relative orientation with respect to the other
PDefined as the difference between the exact nonrelativistic energy and ti}en ;

Hartree Fock energy onomer. This property was used to accelerate the calcula-
°Reference 24. t@ons. The local energy qf an atom, in a parti(_:ular configura-

dReference 25. tion, does not change if one of the operations of the full

octahedral point grou;, , the symmetry group of the cube,
is applied to the configuration. The point group contains 48
_ A B symmetry operations. Application of these operations to each
Yr(M1r2.r3,0a) = Yk(r1.r2) Y(ra Fa)- 34 monomer leads to 4848 different configurations all having
The helium atom wave functiogy’ (M =A,B) is a six-term  the same total local energy. Of these configurations there are
Hylleraas-type wave function optimized and parameterizedx48 configurations leading to different values for the inter-
by Koga® and written as atomic potential. These have been used in the calculations.
M = expl — £S)(1+ CqU+ Cot2+ Cau2+ €,452U+ C5S°U), No bias in the re_sults is cause_d due to the applit_:ation of the
(35) symmetry operations. In practice, the reduction in computa-
tion time achieved by considering these new configurations
wheres, t, andu are the Hylleraas coordinates defined by )55 approximately a factor of 10.
S=ri+r,t=r;—rj,u=ry, (36) Let.us now ponsider th.e. practical computation of _the
. ) correlation functions. Rewriting the one-point correlation
and where the exponegtand the coefficients; are varia-  g,nction of the interatomic potential, ER9), as an average
tional parameters;; is the distance of electronto nucleus along an arbitrary stochastic trajectotis is possible be-

M(M=A,B), r; is the distance between the two electrons.Cause of ergodicity, see Refs. 15, 17, 18 for all detatlse
The values of the parameters are listed in Table I. Thigi st order is written as

atomic trial wave function gives an accurate total energy
corresponding to 99.35% of the correlation energy. In addi-

tion, its very compact form is quite attractive since the cal- P ST dr VIx(n)lexp— [T 2 ds E[x(s)])
culation of its first(drift vector) and second derivativdba-  Egg=Ilim lim T4 2 g

placian appearing in the local enejgis not too time t—oe T Jo drexp(—J7 iz ds B[X(s)])
consuming, an important point since this calculation must be (38)

performed at each Monte Carlo step.

Besides the statistical error inherent to any statisticaHere, T is related to the total time considered along the tra-
method, the only source of error is the use of a finite timgjectory (actually, the total time i +t) andx(7) is an arbi-
step when integrating the Langevin equation, £&).(short-  trary stochastic trajectory generated with the Langevin equa-
time approximatioh In order to reduce this short-time error tion. The typical time step used in this workAs=0.03 a.u.
we have imposed the detailed balance property during thand T=300Q\t. The projection timet appearing in the
simulation. Detailed balancing is introduced via anFeynman—Kac weight is taken to le=449At. This rela-
acceptance/rejection step at each Langevin move in a wayvely large value oft is in fact not required for the calcula-
similar to what is done in the usual Metropolis algorithm. tion of the first-order RS energya much smaller value
Such a procedure is presented in detail in Ref. 15. It is imwould be sufficient However, this value is needed for the
portant to note that the time step used in this work has beeavaluation of the time correlation functions. The two- and
chosen small enough so that short-time errors are smallehree-point correlation functions from which the second- and
than the statistical fluctuations. third-order RS interaction energies are calculated, are

Cyv(u)=lim lim [o d7 VIX(7)JVIX(7+u)Jexp( — [ 773 ds E[x(5)])
e J3drexg— '3 ds BIX(S)])

(39

and
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o JOVIX(DIVIX(TH W) IVIX( T+ utv) Jexp(— [T 12 ds B [x(s)])
Cyv(U,v)=lim lim

40
fim-lim T dr ex— 172 ds B x(s)]) ’ (40

respectively. Note that, because of the stationarity propertgufficiently large set of basis functions. Table Il reports the
of the diffusion processC,,, depends only on one time in- very accurate results obtained by Rytetkal 1* for both the
tervalu and Cy,y on two time intervalspy andv. Figure 1 RS part, denoted aBS2., i.io,» and the exchange part,
gives a typical example of the time-correlation function, E(), . ...i0- These results have been obtained using a 75-
Cyv., as a function of the time interval[Cyy, is the centered term GTG (Gaussian-type geminabasis which reproduces
time correlation function defined according to E80)]. In  99.9976% of the helium correlation energy and properly rep-
order not to bias the final result it is important to take largeresents the behavior of the electron density in the outer re-
enough values ofl and thus of the projecting time To get  gion of the helium atom. The error, in the interaction energy,
the second-order term the correlation function, B9), has  is approximately 0.Jhartree'* Note that, even for the first-
to be integratedin fact, the centered version of).itThe order terms, the convergence of the calculations with the size
integration has been done using Bode’s Rilefigure 2  of the basis set, is not easy to achieve. As an illustrative
shows the negative of the integral of the time correlationexample consider the very recent results of Tachikawa
function as a function of the total integration time, also foret all* Using quite a large basis set these authors obtained
R=5.6 bohr. By taking sufficiently large values of the corre- RS contributions being very similar to those given by Rybak
lation time, we can reach a regime where the integral haet all® However, the first-order exchange contributions differ
converged within statistical error bars. noticeably from those reported by Rybak al’® For ex-
Finally, in order to estimate the statistical error in each ofample, atR=5.6 bohr, the values of the polarizatigRS)
the energy components, each calculation was split into @omponents almost equét-5.35- and—5.37 phartree, but
number of independent blocks. The final result was obtainethe exchange contributions differ by approximatelyhar-
as the mean value of the results obtained for the independetree (38.95- and 37.9Zhartreg. To illustrate the effect of
blocks, the error being obtained as the standard deviation ake intra-atomic correlation on the first-order energies, the
the mean. FoR ranging from 3- to 7 bohr, we have used 38 SCF valuesE3Y and ELY, as given by Tachikawat al’*
blocks, each of them containing 50 trajectories. Taking intcalso have been listed in Table(As usual, the second super-
account the configurations generated with the symmetry ascript 0 indicates that the quantities are evaluated at the SCF
discussed above our statistics is based on approximatelgvel). When we regard the exponentially small first-order
1.6x10° Monte Carlo events for each perturbational compo-RS part(there are no permanent multipoles and this contri-
nent and distance. For the shorter distances we have used bdtion results only from the penetration of the atomic wave

blocks. functions the contribution of the correlation energy is be-
tween 5% to 8%, except at the largest distatiRe7 bohi

IV. RESULTS AND DISCUSSION where it seems to be largéhowever, care must be taken

A. First-order energy with the quality of the SCF value at such a large distance

The first-order exchange contribution is much more impor-
In contrast with higher-order terms, the first-order per-tant and the effect of the intra-atomic correlation energy is a
turbational energy depends only on the ground state wavkitle stronger: between 6% to 12%. As for the RS compo-
functions of the constituent monomers. A high accuracy cament, the effect increases with the distance, showing that the
then be achieved by expanding these wave functions over @il of the atomic wave function seems to be sensitive to a
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FIG. 2. The negative of the integral @y(u) (a.u) as a function of the
FIG. 1. The time correlation functioiG(u) (a.u), R=5.6 bohr. total integration timeR=5.6 bohr.
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TABLE II. Quantum Monte Carlo andb initio perturbational components at various interatomic dist&c®tatistical errors on the last digit in QMC results
are indicated in parentheses. Energiegartree, distances in bohr.

R 3.0 4.0 5.0 5.6 6.0 7.0
Eg® —283.09 —22.79 —4.94 ~1.78 -0.138
EX.0 initio” —298.24 —24.56 -5.35 —-1.90 —-0.09
ERS.quc —335556) -28313) —25(6) -6(1) -3(2) -0.33)
E(0a 1752.71 155.85 35.52 13.11 1.040
EQ. b initio” 1854.16 168.14 38.95 14.55 1.18
EQnoms 16932604) 1381313 449339 300(269 62(43) 1(1)
S ~520.1F ~114.38 —55.27 —33.08 ~11.97
EZ b initio —639.2F —143.62 -68.89' —42.14 —15.20"
Ef%-omc —4421(68) —70317) ~161(10) —74(1) —45(2) —15.94)
EZ93 96.05 8.13 1.894 0.723 0.067
E@ b initio® 135.96 11.38 2.65 1.01 0.09
ERL omc —118696) —46(22) —6(11) 2.22) 0.37) 0.133)

aReference 14.
PReference 13.
CApproximate QMC first-order exchange energy, E2B) with trial wave function Eq(34).
dReference 27.

proper description of the intra-atomic correlation. We alsocalculations. First, in order to perform the infinite summa-
present our QMC evaluation of the first-order componentstions, present in the perturbational expressions, the entire set
ER&.omc and ESn.ome: The first-order RS energy has been of the exact eigenfunctions of the monomers is needed.
computed using the exact expression E28), whereas the These functions are in general not known and approximate
first-order exchange energy has been calculated using thgave functions have to be used. In general, these functions
approximate expression E¢33). The first-order QMC re- are issued from a self-consistent-figl§iCP calculation in
sults are given to show that they are in rough agreement witlyhich the intra-atomic electron correlation is neglected. Very
the much more accurasb initio results. For the RS compo- yecently, a great deal of attention has been focused on the
nent the statistical fluctuations are 5% f#4 bohr, 17% at  cgjculation of intramonomer correlation contributions to the
the equilibrium QistanceR=5.6 bohr, and ess:_antially 100% jnteraction energy components?’~3° The usual approach

at the largest distanc&®=7 bohr, where the first-order RS ¢qngists in decomposing the monomer Hamiltonians as a
component is very small. As has been mentioned already, thg,m of the Fock operator and some residual intramonomer
situation for the first-order exchange energy is even WOIS&. . rrelation operatoréMdller—Plesset partioningand, then,
Statistical fluctuations range from 23% to 100%. For they, oot to a double perturbation thediy the correlation
shorter distances the situation is more favorable. Table Il perators of each monomeusing a many-body expansion

L'Zts tlrl/e tresztil/tsérlt 'Sb‘:’;ir;dtha:’ rlwr:: th'if] 'ﬁg;?’ ﬁgv?/l;r\?vzesshgl amework. However, such calculations are not so easy to do
Y, -0 10 %0 are 0 - nence, 0 and are limited, in practice, to the calculation of some lead-

use the accuratab initio values, for the longer distances, as . . : .
ing corrections(e.g., up to second order in the internal cor-

reference values for the first-order energy. As we discuss © .. Co :

. relation and/or to some partial infinite-order summation cor-

below, QMC results for the higher orders are much more . o .
interesting responding to specific classes of diagrafese, e.g., Ref.

' 36). Second, there is the problem of efficiently evaluating the

infinite sums present in the perturbational expressions. In

B. Second- and third-order interaction energies particular, the summations corresponding to the continuous

Perturbational components beyond the first-order hav@art of the spectrum are in practice almost inexecutable in-
been obtained, so far, by usirap initio frameworks where tegrations(see, Ref. 3¥ To solve this problem, variation-
the monomer wave functionground and excited stateare  perturbation schemes have been proposed in which the per-
expanded over a more or less extended set of basis functiortsirbed wave function is interpreted as the solution of a
As is well known, a number of difficulties are present in suchvariational problemHylleraas variational procedureThen,

TABLE lIl. Quantum Monte Carlo perturbational components at short internuclear distBn&tatistical errors on the last digit are indicated in parentheses.
Energies in hartree, distances in bohr.

R 15 1.6 1.7 1.8 1.9 2.0
ES omc -0.08136) —0.06946) —0.05836) —0.04845) —0.03985) —0.03235)
EQeh-omc 0.5767) 0.4626) 0.3706) 0.2976) 0.2395) 0.1915)
E2. —-0.1251) —0.0991) —0.07819) —0.062@8) —0.04958) —0.03947)
RS-QMC : : : : : -
E&L omc -0.0772) —0.0592) —0.0451) —0.0351) —0.0281) —0.021(1)
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TABLE IV. Intraatomic correlation contributions to the second-order inter- correlation effect to the dispersion part has been considered.

action energy. The first superscript gives the order in the interatomic perturat the first-order level 53% of the correlation contribution is
bation, the second superscript indicates the perturbational order in the

- i iti 0
Mdller—Plesset expansion with respect to the intraatomic electron correla[ecovered' The second-order gives some additional 21% so

tion operator. Energies iphartree,R=5.6 bohr. that the total contribution recovered is 74%. The remaining
correlation contribution represents 14% of the total interac-
EE%Z —0.73 tion energy. This illustrates the fact that any accurate evalu-
Eg?’?—E@%E(Zm :3‘5‘23 ation of the intramonomer correlation effects must incorpo-
E(EE)) +Eld”z_‘i)a dsp _65.10 rate contributions beyond second-order. Note that the error in
IS| N . . .
E§§)+E&?§E+E&2§EF —68.89 the QMC result is small enoudlonly 5% of this correlation
Ef omc —741) effecd to validate this conclusion.
nggh" ons 1.894 As noticed in previous workée.g., Refs. 27 and 33he
E??&“:?éﬁhﬂgzzm 22; second-order exchange effects in intermolecular interactions
Sxch”_—eeh” —exeh : are in general not negligible. Here, this contribution is 8% of
Reference 27. the total interaction energy. The correlation contribution to
*Reference 14. the second-order exchange part is small but signifi€2¥

of the total interaction energy
We have computed the exact second-order RS energy for

standard sets of basis functions can be used to describe tMarious internuclear distances. The relative statistical error
variational space. Finally, as in amp initio framework, one ~ grows slowly with the distancésee Tables Il and Il Even
still has the important problem of achieving a sufficiently for the largest distance the error is only 3%, which is a sat-
complete basis set. This is particularly important here, sincésfactory result. For the large distances the QMC results for
perturbational quantities are very sensitive to the basis sdtis are compatible with a behavior ag/R® as it should be
used. for a van der Waals dimer. Note that a QMC evaluation of

In Table Il we show thab initio second-order RS inter- the van der Waals coefficientcs, has been presented
action energies obtained very recently by Tachikawal*  elsewhere®
and by Jeziorsket al?’ To our knowledge, these values are ~ The results for the third-order interaction energy are pre-
the bestb initio values calculated so far. It is worth remark- sented in Tables Il and Ill. To the best of our knowledge
ing that, forR=5.6 bohr, both SCF and correlated values ofthere are no quantitative estimates of these values published
E<R2>S differ by approximately 2zhartree between the two sets SO far. At the small distances this contribution is found to be
of results(the values given by Tachikavwet al!*are—52.93  nhegative, while at larger distances it corresponds to a repul-
uhartree, at the SCF level, and66.91 nhartree at the cor- Sive contribution. It changes sign betweB¥5- and 5.6
related level, to compare with the better results of JeziorskPohr. At the equilibrium distance, we find a repulsive contri-
et al?’ presented hejeThese large differences illustrate the bution of 2.2 uhartree with a statistical error of 10%. This
difficulties in obtaining converged values wid initio tech- ~ contribution is clearly significant since it represents 6% of
niques. the total interaction energy. In particular, it gives a contribu-

In order to discuss the role of the intra-atomic electrontion almost equal to the second-order exchange energy.
correlation Table IV shows some of its perturbational contri-
butions to the second-order componentsRer5.6 bohr. The
differences between RS arab initio values on one hand,
and QMC values on the other, are due to the intra-atomic We are now in position to summarize the previous re-
electron correlation effects. In Table IV the first superscriptsults and to discuss the relative importance of each perturba-
gives the order in the interatomic perturbation, while the sectional component making up the complete interaction energy
ond superscript indicates the perturbational order in thef the helium dimer. Within the framework of perturbational
Mdller—Plesset expansion with respect to the intraatomidreatmentgsymmetry adapted perturbation theori{&APT),
electron correlation operator. Note also that the second-ordéhe total interaction energy can be written as
energy is decomposed as usual into an induction and disper- o1 1 2 2 3
sion part(see, e.g., Ref.)91t may be clear that this distinc- ABin=Ers+ Egent ERd + Egnt Exg. (41)
tion is specific to SCF andb initio calculations but is mean- In this expansionall contributions occurring at first- and
ingless within our QMC framework. FOR=5.6 bohr, the second-order in perturbation are taken into account. The ne-
exactQMC value is—74 phartree with a statistical error of glected contributions are the third-order exchange effects and
only 1 phartree or approximately 1%. The SCF second-ordeall contributions beyond the third-order. Putting together all
RS energy,E%’), is quite different from our exact value, these contributions according to E@4.1) we get the values
E%_QMC. This shows that the intra-atomic effect is strong. Itfor the perturbational sum as listed in Table V. At the mini-
is interesting to compare this result with the/Mo—Plesset mum of the potential the value 6f35.0+1.2 uhartree for
perturbational estimates of the same contribution presentettie total interaction energy of the helium dimer is found.
by Jeziorskiet al?’ Note that the induction contribution to This result is in good agreement with the very recent full Cl
the total second order is very smfllenetration contribution interaction energy of van Mourik and van Lenthehich was
behaving as~exp(—aR)] and only the contribution of the calculated to be-34.68+0.03 nhartree. It is also in accor-

C. Total interaction energy
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TABLE V. Sum of perturbational contributions to the total interaction energy at various internuclear disRarfstsistical errors on the last digit in QMC
results are indicated in parentheses. Energigshartree, distances in bohr.

R 4.0 5.0 5.6 6.0 7.0

EV=EQ+ED 2 1555.92 143.58 33.60 12.65 1.08
E omc —70317) —161(10) —741) —452) —15.94)
EQ.P 135.96 11.38 2.65 1.01 0.09
EiL.omc —46(22) —6(11) 2.22) 0.37) 0.133)
Perturbational sum 9429 —-12(21) —35(1) -31(2) —14.54)
Full CI° 933.88 -0.709 —34.67 -30.60
VVVVR® 934.5 —0.507 —34.58 —30.56 —14.62
LM2Mm2¢ 927.7 -1.23 —34.73 —-30.63 —14.54
Supermolecular QMC —1.3(25) -34.93)

@Reference 13ab initio calculations.
PReference 14ab initio calculations.
‘Reference 6.

YReferences 4 and 3.

fReferences 4 and 40.

Reference 1.

dance with the so-called VVVVE and LM2M24° poten- duce the total interaction energy of the helium dimer
tials, and with the supermolecular QMC calculation of at intermediate and large distances.
Andersonet al! Note that we have found a similar agree-

ment for the other distances considered. At this point, it is Beypnd this partu_:ular application it is clear that thes_e
: - . . _~conclusions are also important for the general theory of in-
important to remark that the statistical error in the total in-

teraction energy is rather large. At the equilibrium distanceitﬁggsecmar forces and their evaluation by perturbation

is about three times larger than the supermolecular QM
error of Andersoret al.! which is itself an order of magni- ACKNOWLEDGMENTS
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