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A new quantum Monte Carlo (QMC) method of evaluating low lying vibrational levels for
coupled modes is presented. We use a modified fixed-node (FN) approach in which an
extremum principle for energy levels is invoked. In this way, the nodal hypersurfaces of the
nuclear wave function are parametrized and then optimized for each excited state. The method
is tested on the fundamental excitations of some two-dimensional model potentials and is
applied to the case of realistic coupled modes of the CO molecule adsorbed on a palladium
cluster. The effect of an external electric field is also examined. The quantum Monte Carlo
results are compared with those obtained in the conventional variational treatment of the
nuclear Schrédinger equation for coupled vibrations. The QMC results give the exact values
with an error which is in general less than 1 cm~ . In all cases (even in the case of strong
coupling) the use of our procedure leads to “optimal” nodal lines (in the sense of the
extremum principle used in this work) which are practically undistorted. A salient feature of
the Monte Carlo method presented here is that it readily permits the evaluation of the
fundamental excitations of an arbitrary number of coupled vibrations. Furthermore, the
potential energy surface may be represented by any analytical form without practical

difficulties.

INTRODUCTION

In this paper a new method of evaluating vibrational
energy levels is presented. Our goal is to overcome the limita-
tions of the usual variational approaches. Two important
limitations must be pointed out. The first is related to the
difficulty of taking into account strong anharmonicity of the
potential energy surface. Strong anharmonicity generally
yields too slow convergence of the variational calculation.’
A second limitation occurs when a large number of interact-
ing vibrations has to be treated. Indeed, the rapid increase of
memory and CPU time requirements limits realistic calcula-
tions to a small number of vibrations (typically not more
than three). Problems related to the quality of the fitting
procedure of the potential may also be troublesome in vari-
ational approaches.

The new approach is developed within the very general
framework of a pure diffusion quantum Monte Carlo
(QMC) method using a full generalized Feynman-Kac
(FGFK) formula.? This method is referred to in the fol-
lowing as the FGFK-QMC method. That method, original-
ly designe for treating the electronic structure of atoms and
molecules, is here adapted to the multimode vibrational
problem. A widely used approach for treating molecular vi-
brations is the well-known “normal mode approximation”
using an approximate Hamiltonian.® However, if accurate
results are desired this description must be abandoned and
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the entire potential energy hypersurface must be considered.
In this situation a new difficulty arises, namely the loss of
any kind of symmetry for the Hamiltonian. We are then led
to the problem of evaluating some “genuine” excited levels,
i.e., excited states which cannot be considered as the ground
state in a given symmetry subspace. This problem is not a
trivial one for Monte Carlo schemes. In order to take it into
account, we present here a generalization of the well-known
fixed-node approximation.*>’ This approach is currently
used to determine properties of the ground state in a symme-
try subspace (the so-called “fermionic” ground states corre-
sponding to a given total spin for atoms and molecules*). In
this paper the method is first tested on some model potentials
including intermediate or strong anharmonic coupling
terms. Then the first applications are presented which are
drawn from a realistic potential surface involving the vibra-
tions of a chemisorbed molecule. Both cases illustrate the
efficiency and the simplicity of the method. In particular, in
light of the results, it now seems reasonable to hope for solu-
tions of the vibrational problem for an *“‘arbitrary” surface
and an arbitrary number of coupled (even strongly coupled)
vibrations accurate to about | cm™' for the ground state
energy (or zero point energy) and for some of the lower-
lying excited levels.

The organization of the paper is as follows. We first
summarize the main features of the basic quantum Monte
Carlo method used here. The detailed theory including
mathematical derivations may be found elsewhere.> Sec-
ond, we present the fixed-node approximation in the frame-
work of the FGFK-QMC method and our generalization to
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the case of the determination of genuine excited levels.
Third, the method is tested on some numerically solvable
problems. Finally, we present some realistic numerical ap-
plications. The preliminary results presented here should be
understood primarily as a comparison between the two
methods, the classical variational and our new QMC ap-
proach. Their physical implications and comparisons with
various experiments will, in due course, be treated separate-

ly.

Il. OUTLINE OF THE QUANTUM MONTE CARLO
METHOD

The method is based on the use of a pure diffusion pro-
cess and a generalized Feynman—Kac formula. The underly-
ing diffusion process is built from a so-called “reference
function” @ {¥ which is chosen as close as possible to the
exact wave function to reduce the statistical error (see, e.g.,
Refs. 5and 7).

The reference diffusion process is completely deter-
mined by its drift vector b and diffusion constant &. These
quantities are written in terms of the reference function as
follows (atomic units #i=1, e=1, m, =1 are used
throughout the paper):

b=V /9", (1a)
D =1. (1b)

From the Langevin equation associated with the reference
diffusion process, stochastic trajectories may be generated
using a step-wise procedure (see, e.g., Ref. 9 Sec. 3.6)

dX(t) =b[X(2)]1dt + D'*dW (2a)

with the discretized version corresponding to the time step
Az

AX(2) =b[X(1)]At + D2AW (A1), (2b)
where W represents the multidimensional Wiener process
and band & the drift vector and diffusion constant defined
in Eqgs. (1) [AW(Az) is a multidimensional Gaussian ran-
dom vector whose components verify (AW;) =0 and
(AW,AW;) = 5,41 ].

In this work we use a simplified form of the full general-
ized Feynman-Kac formula presented elsewhere,* namely

15 = (pPle™ = E o o)

1/2 (0)
= exp[ —f V,[X(s)lds|D®*° X. (3)
Q) —t/2

This formula expresses a quantum matrix element of the
evolution operator (in imaginary time) exp( — tH) as a
functional integral involving the diffusion measure of the
reference diffusion process. 2(¢) denotes the set of contin-
uous trajectories defined in the time interval ( —¢/2,

+ t/2), while the diffusion measure is noted D ""(’O)X . The
function ¥, is the so-called perturbing potential given by

V,=V—E — (1/2)V’p /9, “4)
where ¥V is the potential energy of the system to be studied

and E {® an arbitrary constant [in actual fact, ¥, is nothing
but ¥ — V'@, where V' denotes the “reference potential en-
ergy” of the reference Hamiltonian — V2/2 + V9, associat-
ed with the reference function ¢ $* as described in Refs. 4
and 5].

If the reference function is chosen square integrable
(and this will always be the case in the following), then the
associated diffusion process is ergodic* and the functional
integral appearing in Eq. (3) may be evaluated as a time
average along any stochastic trajectory X “(s) of the pro-
cess. We thus write

1/2 o
I(2) =f exp[ —f v, [X(s)]ds]D”‘(’ X
() —t/2

= lim (1/7)
T— +
T t/2 47
Xf exp[—f VP[X(O)(S)]dS]dT. 5
0 —t/24 T

Note that, according to the ergodic property of the dif-
fusion process, it is possible, instead of a single, very long
stochastic trajectory, to use a set of shorter trajectories. In
practice, this possibility enables us to obtain an evaluation of
the variance using standard statistical methods.

In fact, as concerns the ergodic property, two different
cases must be properly distinguished. If the reference func-
tion does not vanish at any finite distance, the property read-
ily holds and any arbitrary stochastic trajectory may be used.
If not, it is necessary to take account of consequences result-
ing from divergence of the drift vector [ Eq. (1a)] at nodes of
@ . Indeed, nodal hypersurfaces of ¢ § play the role of
infinitely repulsive barriers for stochastic trajectories. There
then results a decomposition of the diffusion process into a
juxtaposition of subprocesses in subdomains delimited by
the nodes of the reference function. In other words, an arbi-
trary stochastic trajectory cannot leave a subdomain in
which it is trapped and accordingly, cannot visit everywhere.
Property (5) must then be applied, not by using a single
trajectory, but a set of trajectories consisting of at least one
trajectory trapped in each subdomain. The whole space is
accordingly sampled.

Now, the quantum matrix element 7(¢) may be written
in terms of the spectral expansion of H thus leading to

Ity = {@™]e ™~ F87 | )

=3 Ko lp e 557, (6)

E; and @; denote, respectively, the eigenvalues and eigen-
functions of H.

The summation sign Z is here a shorthand notation
which may represent either a discrete summation or a con-
tinuous integration. The spectrum of H can be obtained by
analyzing I(¢) into a sum of real exponentials. Let us denote
as E; the lowest energy associated with a nonvanishing over-
lap integral (¢ {”|@;). Extracting E, may be done as fol-
lows:

E, =E® — lim (1/1) log I(¢). @)
I— +

1y
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A much more efficient way consists in considering the slope
at infinity of log I(¢):

E, =E{ — [log I(t;) —log I(t,)1/(t, — t,)

+ O(e™2%") (8)

with ¢, > t,. AE denotes the energy difference between E,
and the first excited energy associated with a nonvanishing
overlap (@ §{”|@;). The residual error may be made arbitrar-
ily small by using a large enough value of ¢,.

Finally, the complete algorithm is as follows:

—choose some good representation of the exact wave

function as reference function @ §;

—generate stochastic trajectories using the Langevin

equation (2);

—evaluate I(¢) expressed as a time average along the

previous trajectories using the basic formula (5);

—extract the desired energy according to formula (8).

At this stage, it is of interest to note that the present
quantum Monte Carlo method differs from other similar
methods (e.g., Refs. 7 and 8) essentially because no branch-
ing is introduced. Indeed, the reference diffusion process
used here coincides with their branching-diffusion process
when the branching term is removed [see, e.g., Eq. (6) in
Ref. 7] and if our reference function ¢ § is identified to
their “trial wave function” W ;. In addition, our perturbing
potential ¥, [Eq. (4)] may be rewritten in the equivalent
form

V,=HY. /¥,

which corresponds exactly to the “local energy” used in
these methods.

IH. EVALUATION OF VIBRATIONAL ENERGY LEVELS
A. Zero-point energy (ZPE)

Ground state energies are very simply and accurately
evaluated by all Monte Carlo schemes. This salient feature is
directly related to the lack of nodes in the ground state wave
function (see, e.g., Ref. 10). As a consequence, the algo-
rithm presented in the previous section may be readily used.
A few excellent results for zero-point energies are presented
below.

B. Fixed-node approximation and excited levels

In this section we are interested in evaluating energies of
excited levels. We will denote as g, the corresponding excit-
ed-state wave functions. By contrast with the previous case,
we are now dealing with wave functions with nodes. It can be
shown that the algorithm defined above may be used in the
same way as for the ground state energy.* The basic differ-
ence concerns the drift vector of the reference diffusion pro-
cess which may now diverge. Accordingly, eigensolutions
determined by the Monte Carlo scheme correspond to eigen-
solutions of the Schrédinger equation constrained to vanish
everywhere the reference function vanishes. This must be
understood as a change in boundary conditions for the
Schrodinger equation. Consequently, the energies obtained
in this way may differ from the exact ones. This is the well-
known fixed-node approximation.*>’

Let v, denote the hypervolumes delimited by the nodes
of the reference function ¢ {* and S, the corresponding
boundary hypersurfaces. From the continuity of ¢ ° it fol-
lows that

!
RY= Uw,, 9

a=1
where N is the dimension of the relevant space. In what fol-
lows, N will represent the number of coupled modes. / is the
number of hypervolumes.

As explained above, the Schrodinger equation is solved
(through the Monte Carlo procedure) independently in each
volume v,,. Let us denote as ¢, the different nodeless solu-
tions in subdomains v, and as €, the corresponding energy:

Hb, =¢,P, rev,, (10a)

b, =0 rav,. (10b)
Note that @, may have a discontinuous gradient at the nod-
al hypersurface S, .

The functional integral involved in the Feynman-Kac
formula may be decomposed into a sum of functional inte-
grals defined over the set of continuous trajectories 2, ()
trapped in a given subdomain v,. We thus write

0 =3 w,I, (), (11)

where the w,’s denote the relative statistical weights of the
different subdomains v, which are immediately obtained
from the stationary density (@ $*)? associated with the ref-

erence function @ §*:

wa’:J‘ (¢é0))2de/f (¢(()0))2de
Vo RV

and 7, (¢) denotes the “partial” functional integral

t/2 ©
I(t) =f exp[ —f v, [X(s)]a’s]D"’0 X. (13)
Qu(1) —t/2

(12)

Using the Feynman-Kac formula 7, (f) may also be ex-
pressed as a quantum matrix element. The spectral expan-
sion (6) for 7, (¢) combined with the expression (11) for
I(1) leads to the following expression for the fixed-node en-

ergy Exy:
Eoy =E — lim (1/1) log I{¢) = min¢,,.

t— 4+ a
If exact nodes were known, the fixed-node approximation
would be exact and we should thus obtain

(14)

(15)

In the general case of approximate nodes, Ery is different
from the exact result £, .

In previous work, the fixed-node approach has been in-
troduced in order to evaluate energies corresponding to
ground states in subspaces of given symmetry. It is then pos-
sible to show that a variational property holds,”!' namely

Eern=€=""=€=""€=E

[

Epy = min(€,) >E, . (16)
As already mentioned, the excited levels of multivibrational
systems are generally true excited energies. No symmetry
holds and the upper-bound property is no longer valid.

J. Chem. Phys., Vol. 90, No. 2, 15 January 1989

Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Caffarel et a/.: Quantum Monte Carlo for oscillators 093

We have therefore developed a generalization of the
fixed-node approach for such true excited levels. This gener-
alization rests on the extremum property associated with al/
eigenvalues of the Schrodinger Hamiltonian. This property

states that'>"3

E(@i + 69) = E(¢,) + O(6p?), (17)
where E(@) is the usual energy mean value

E(p) =@ |H|p)/ plp) ' (18)

and @, is an arbitrary eigenstate of H. Note that the widely
used property of minimum energy is valid only for the
ground state energy E,. Now, in order to use this extremum
property we must establish an a priori nontrivial connection
between the quantum mean value E(g@) and the fixed-node
energy Er, evaluated in the Monte Carlo scheme. As em-
phasized above, the resolution of the Schrodinger equation is
done independently in each volume. As a consequence the
relative magnitude of the different solutions ¢, in different
subdomains is not determined by the fixed-node procedure.
More precisely, the set of coefficients {c,} such that the
function ¢ defined as

p=2 c.P, (19)

is close to the desired exact wave function @, is unknown.
From Eqgs. (18) and (19) we obtain the following energy
mean value for ¢:

E(p) =T e, (D,|, >/2 (D, |®,).  (20)

Note that delta functions due to the possibly discontinuous
gradient of ®, do not contribute to the numerator (because
these discontinuities of the gradient can occur only on the
boundaries, where the ®,,’s just vanish themselves ). The im-
portant point now is that the coefficients ¢, do not have to be
known if the Monte Carlo energies €, have a common value.
More precisely, we obtain from Eq. (20) in this particular
case:

E(@)=Ey=€,=€,="""=¢,. (21)

Consequently, if Eq. (21) is verified it is possible to apply the
extremum principle to the fixed-node energy. The method
presented in this paper is essentially based on this latter re-
mark and thus consists in extremizing the fixed-node energy
with respect to some deformations of nodes with the con-
straint that the energies have a common value. In what fol-
lows, the reference function will be written in the general
form

(0) —f(xl’ ’xN:Ph ,Pq)e ialan XN)y (22)

where ¢ is a bounded function at any finite distance and
JS=0 defines the (N — 1)-dimensional nodal hypersurface
which is parametrized by p,,..., p,. In order to apply the
constrained extremum principle, the set of parameters
{p:}._ ., is decomposed into two subsets {p;},_,, and
725 B, 1.- The variation of the fixed-node energy is per-
formed with respect to the subset {p,},_ , , ; , while for each
given {p,},_,, ,, the parameters {p,},_,, are only used to

fulfill the constraint (21). The theoretical algorithm of the
method is then as follows: (1) For a given subset of fixed
parameters {p,},_, ., , vary parameters {p,},_, , to obtain
equality of energies {€, }, ;. Each of energies €, may be eval-
uated by Monte Carlo according to Eq. (14) from a set of
trajectories trapped in the corresponding subdomain v, so
that I(t) = I, (t) and Egy = €,. The common value for the
energies will be denoted as €(p, , | ,...,p, ). According to Eq.
(21), thisstep assures thate(p, | ,,...,p,) = E(@) where pis
a function close to the exact wave function ¢, . (2) Repeat
step 1 for different subsets {p,},_, . ,,. (3) According to
the extremum principle [Eq. (17)], deduce E, as a local
extremum of €(p, , 1,...,P, ).

Although such a theoretical algorithm is simple and
general, its practical implementation may lead to serious dif-
ficulties. In fact, the most important problem consists in con-
structing a reference function whose nodes are close enough
to the exact ones to justify the use of the extremum property
[Eq. (17)]. Such a construction is by no means a trivial task
since the nodal hypersurface of the exact wave function can-
not be known a priori and may be obtained only by solving
the Schrodinger equation. In general, the topological struc-
ture of the nodal hypersurfaces is complicated and may be
difficult to reproduce, particularly when arbitrarily high en-
ergy levels are considered. Even the number of subdomains
delimited by nodes is generally unknown. If exact nodes
were known, the constraint (21) would be automatically
fulfilled. It is natural to think that for very good nodes this is
still possible. In contrast, if parametrized nodes are not close
to the exact nodes, as is the case in general, it may be very
difficult to fulfill this constraint even by using a large num-
ber of parameters. In addition, if Eq. (21) is satisfied, there
can be several extrema for the energy and the problem of
choosing between them arises. Such unwanted additional ex-
trema may correspond to other physical levels or, perhaps,
to artificial extrema in functional space. All the problems
listed above illustrate the difficulty in applying the previous
theoretical algorithm to an arbitrary multimode problem.
However, in this paper we will restrict ourselves to the prob-
lem of evaluating the so-called fundamental energies of the
system. A convenient way of defining fundamental energies
is to introduce the Hamiltonian consisting of the noncoupled
part of the total Hamiltonian, namely

N 132

hi(x;) = ———+ Vi (x;) (23)
,Z] 12[ 2 a 2
while the total Hamiltonian will be written in the form
H=HNC 4+ AW(x,,....xy5). (24)

Eigenfunctions and eigenvalues of H N are given by

ook (X) = H:p ’(x;) (25)

i=1
and
N -
ky — 2 el(c;)s (26)
j=1

where ¢ ’ and €’ denote the eigensolutions of the one-di-

mensional osc111ators defined by 4;. The fundamental ener-
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gies of the noncoupled Hamiltonian are defined as the ener-
gies corresponding to k; = 1, all other k’s being zero. The
energy levels of H which are connected to the previous ones
as the perturbation parameter 4 goes to zero are called fun-
damental energies of H. In what follows, these energies will

....................

..........

tal excitations of the system. Now, it is important to point
out that these excitations play a central role in spectroscopy
because they are generally the more intense. Due to the in-
herent limitations of the variational approach, it would be
valuable to be able to compute them accurately for problems
in which many modes are involved. For that, we apply the
previous theoretical algorithm by using a basic assumption
concerning the nodal structure of wave functions corre-
sponding to fundamental excitations. More precisely, it will
be assumed here that nodes of such functions may be correct-
ly approximated by a hypersurface dividing the N-dimen-
sional space into exactly fwo subdomains. It is known that
such a representation of nodes is exact for the first excited
state of H'® (which corresponds here to one of the funda-
mental energies) but is generally wrong for other levels. As
concern the true fundamental energies, we have seen that
they are connected to the fundamental energies of the non-
coupled Hamiltonian by their very definition. But it is clear
that fundamental energies of H ™° correspond to wave func-
tions which verify the basic assumption. It is then assumed
here that adding a coupling potential {such as W(x) givenin
Eq. (24)] does not destroy in an abrupt way the nodal pat-
tern of fundamental wave functions. In what follows, this
assumption is tested by treating some two-dimensional mod-
el problems in which the magnitude of W(x) (the coupling
potential) may be very important and for fundamental ener-
gies which do not necessarily correspond to a first excited
state. Let us denote the “excited” mode as x,. Invoking our
basic assumption the nodal function fis represented as fol-
lows:

JX e X ysPrseesPg ) = Xy + Py + 8(XpseesXysPoseiPy ). (27)
Clearly, the function f divides the N-dimensional space into
two subdomains. Let us denote €, and €, the two correspond-
ing energies. In what follows, p, will correspond to the single
parameter used to fulfill the constraint of Eq. (21), that is
here €, = €,. Parameters p,,..., p, are introduced to extre-
mize the common value €(p,,..., p,). As concerns the func-
tion g, it may be developed as increasing powers of the x; and
then successive improvements of g may be made. For in-
stance

g9 =0, (28a)
g(l): zpixﬂ (28b)
(28¢c)

g2 =gM 4 prjxi'xj’
o

and so on. Increasing the order of g should yield a “better”
representation of the nodes and, finally, a converged opti-
mized energy. In contrast to the theoretical algorithm pre-

sented above for a very general energy level, it is important to
note that no basic difficuities arise from such an algorithm in
which only two subdomains are introduced. Its practical im-
plementation may thus be considered.

V. APPLICATION TO TWO-DIMENSIONAL SYSTEMS

In order to test the theoretical algorithm described
above, the fundamental excited states of some two-dimen-
sional model potentials have been investigated. They were
chosen in such a way that the exact solutions may be reached
by the variational method. Both intermediate and strong
coupling potentials are studied.

Furthermore, the method has been applied to some sur-
face science problems involving vibrations of the CO mole-
cule adsorbed on palladium. In the first instance adsorption
on the bridge site of a 14-atom cluster model of Pd (100) was
considered."*'* A second example involves the bridge-bond-
ed Pd,CO cluster in the presence of an external electric
field.'® In each case the coupling of two modes has been
considered.

Throughout the paper the |N,,N,) normal mode nota-
tion is used, where N,, N, refer to the harmonic oscillator
quantum numbers of the first and second vibrations, respec-
tively. In this paper we are interested in the fundamental
excitations for the system. We are then led to evaluate E 4 o, ,
E,,,,and E,,, for each couple. In each case both vari-
ational and QMC methods are applied.

A. Model potentials

First we have to compare the QMC calculations with
energies which may be reached exactly by numerical calcula-
tions. Polynomial forms of potentials have therefore been
chosen, where the ground and excited energies may be readi-
ly obtained by a variational calculation. In order to study
both symmetrical and unsymmetrical excited states, the first
kind of potentials we chose have the following analytical
form:

Vin(xy) =x> +y* + A(—xy* + y*). (29)

The shape of the nodal line of the |1,0) excited state is un-
known, whereas that of the symmetrical |0,1) level is given
by y = 0. The coupling between x and y is governed by the
parameter A. Two values of 4 have been considered, A = 1
(Viyand 4 = 3.5 (V). Inany case, A is chosen so that the
potential has only one minimum and no unbound states to
assure the convergency of the variational treatment. It is
straightforward to show that these two properties are ful-
filled for 0<A < 4.0. Furthermore, in order to study the effect
of long-range coupling on the shape of the nodal line of the
unsymmetrical excited state |1,0), the following form of ¥
has also been studied:

Vi (xy) = x>+ + A —x° + x5 + %), (30)

Indeed, although the two oscillators associated with ¥} and
Vy; are decoupled for large values of x and y, they remain
strongly coupled in the case of ¥;;.
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Asdiscussed below, the potentials ¥}, V},, and Vyy; have
their unsymmetrical | 1,0) state as the lowest excited level. In
order to investigate the accuracy of Eq. (27) for higher ex-
cited unsymmetrical states, the last model example we treat-
ed is the following potential:

Viv(x,9) =4x* + 0.1)2 + A( — xp* +y%) 31
with A = 3.5. In this more general case, the intrinsic proper-

ties associated with a first excited state (i.e., the partitioning
of the space into two subdomains) are eventually removed.

B. Realistic potentials

For the Pd,, CO study, the first mode involves the beat-
ing of the rigid CO molecule against the surface (denoted h
on Fig. 1). The second coordinate is a surface mode of the
metal cluster, either the out-of-plane Pd,~bulk stretch (zon
Fig. 1) or the in-plane Pd-Pd stretch (r on Fig. 1). In the
electric field study we have focused on the CO stretch (coor-
dinate d on Fig. 2) and its coupling with the surface-CO
beating vibration (h). We calculated total energy surfaces as
a function of h,r, h,z, and h,d, respectively. In each case the
potential surface was evaluated on a two-dimensional grid of
about 40 points using the LCGTO-MP-LSD method devel-
oped elsewhere.'*!” The points were chosen to bracket the
ground and first excited vibrational levels. Furthermore, for
large values of h, the asymptotic form of the potential was
taken into account by adding to the grid,four or five points at
distances beyond 10 A, derived from the known experimen-
tal chemisorption energy of CO on the Pd (100) surface. The
supplementary points are introduced to prevent an unphysi-
cal asymptotic behavior of the polynomial fit to the poten-
tial, namely a fourth-order polynomial using a least-squares
fit method’®:

Vixyx) = Y axix;. (32)

i4j<4

995
o
' d
——
c f E
i
i b FIG. 2. Representation of the couple
: h,d. The study of this coupling is per-
P A ° fo;n;iecli :}; presence of an external elec-
Pd Pd ric field E.
Pd,CO

C. Variational treatment

The variational equations are solved explicitly using a
Hermite polynomial expansion as described elsewhere.'®
The effect of the basis size is studied. The polynomial repre-
sentation of the potential allows easy calculations of the ma-
trix elements of the nuclear Hamiltonian. However, con-
cerning realistic potentials, such a mathematical expansion,
suitable for small displacements, may lead to nonphysical
behavior of the potential at large distances. This is the case
for the h,z system where the coupling is significant. As a
consequence, large basis set calculations using very deloca-
lized Hermite polynomials are prohibited. Consequently, we
are led to contract the basis set significantly in order to as-
sure that the process converges in the region of space where
the potential is physically well described. Since the QMC
method does not involve the evaluation of matrix elements
over a basis, the computational constraints on the form of
the potential are much less severe. More precisely, according
to formulas (4) and (5) only the successive values of the
potential ¥ along the trajectory are needed and then an arbi-
trary analytical form of ¥ may be chosen. It is then possible
to introduce more physical expressions for V with the right

(0]
FIG. 1. Representation of the
Pd,, CO cluster and couples h,r and
C h,z. The dashed Pd atoms belong to

h the first layer. The CO chemisorp-
tion site is indicated by the cross.

Pd14CO
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asymptotic behavior (i.e., Morse functions for stretching
modes, Fourier expansions for multiple-wells potentials,
etc.). However, as the purpose of this paper is to compare
both variational and QMC methods, the form (32) above is
used in all cases. Concerning the h,z potential, the reference
functions are chosen so that the nonphysical part of the po-
tential cannot be visited by the stochastic trajectories during
the Monte Carlo simulation. This is accomplished by using
reference functions nearly vanishing in these pathological
regions of the potential fit. In this way, a “local convergen-
cy” may be reached. By local convergency it is meant here
that we obtain the energy corresponding to a new problem
represented by the physical potential surface around the po-
tential well and infinite repulsive barriers at large distances.
If very long Monte Carlo runs would be performed, these
pathological regions would, in fact, be visited and the energy
would converge to a nonphysical value (which can be equal
to — oo if the nonphysical part of the potential is not bound-
ed from below). It is very important to emphasize that these
difficulties occur only because an inadequate polynomial fit
is used. Such difficulties do not occur for more physical po-
tentials. As remarked above, reasonable physical potentials
may be readily used, without practical difficulties, in the
Monte Carlo approach since no complicated matrix ele-
ments have to be evaluated. This is one of the main advan-
tages of QMC methods. In the following a unitary transfor-
mation (x;,x,) - (x],x5) is performed on the three realistic
potentials such that the a,, coefficient in Eq. (32) vanishes.
These new coordinates will be called “pseudonormal coordi-
nates” (PNC).

D. QMC treatment

Concerning the nodeless vibrational ground states |0,0)
the choice of the reference function ¢ §* is rather flexible,
the statistical fluctuations becoming rapidly small. ¢ {” is
written in the following form:

qyé(})(x”xz) =e“erf—k:x%’ (33)

where (x,,x,) stands for h',r’, h',z’, or h',d". The reference
function for excited states |0,1) and |1,0) is chosen as fol-
lows:

@ 8 (x1%,) = flxy,x,)e ~ RS o) — ke (34)

where x, refers to the excited vibration. When choosing the
function f the boundary conditions of @ §* at infinity must
be satisfied. f(x,,x,) = 0 is the equation defining the nodal
structure of the reference function. As explained in Sec.
111 B, in the following the nodes of the states |0,1) and |1,0)
are represented by a line dividing the two-dimensional space
into two domains. As a general rule, this representation,
which is exact for the first excited state of the Hamiltonian, is
wrong for the higher excited states.'® Nevertheless, the ap-
proximation associated with this representation is expected
to be good when excited states under consideration corre-
spond to the first excitation of a given vibration (denoted as
|0,1) and |1,0)). Note that the function f appears in the
exponential part and allows the maximum of ¢ {” to keep a

constant distance from the nodal line when it is moved. At
the beginning of our investigation, in order to describe as
well as possible the nodal surface with the generalized fixed-
node approximation, only small deformations and displace-
ments of the nodal line about the straight line x, = 0 have
been performed. The approximate form for f{x,,x,) is cho-
sen by expanding the development given in Eqgs. (28) to the
second order. We may then write f as

Sxx) =%, — axg — XNy (35)

where x, is related to the translation of the nodal line while
ax’ corresponds to a small parabolic deformation. Linear
terms (rotation of the nodal line) corresponding to g [Eq.
(28b) ] are zero for the model potentials and are negligible in
the PNC representation of the realistic h,r and h,z potentials.

In order to apply the generalized fixed-node (GFN)
algorithm described in Sec. I1I B to our examples the follow-
ing steps are performed: (i) for each value of @ the equality
€; = €, = €(a) is obtained by varying x, (ii) the extremum
principle is used for optimizing e(a) with respect to a.

In order to reduce as much as possible the variance of
the QMC procedure, at each step described above the &k, and
k, parameters in Eq. (34) are adjusted to minimize the vari-
ance by performing short-time preliminary runs using a
common underlying sequence of random numbers.

V. RESULTS OF THE VARIATIONAL AND QMC
CALCULATIONS

A. Model potentials

The analytical form of the model potentials studied are
summarized in Table I. The potential map of Vi, is repre-
sented in Fig. 3 as an example. In Table 11, different ap-
proaches of the ground and fundamental excited states of ¥
are compared with QMC, namely, the crude harmonic ap-
proximation and the variational procedure. The effect of the
basis set size for the latter is also reported. All the calculated
energies as well as the optimized nodal lines at the second-
order level are reported in Table II for all studied potentials.
Concerning the ground state energies, it is clear that they are
very well reached by variational calculations and that QMC
runs converge rapidly as a function of the simulation time T
as shown in Fig. 4. An accuracy better than 1 cm ™! is very
easy to obtain. Such results will allow the method to be ex-
tended without difficulties to physical problems where a
good evaluation of the zero-point energy (ZPE) for a high
dimensional system is necessary.

TABLE L. Polynomial model potentials for which the ground state and fun-
damental excitations have been investigated.®

Coefficients® v Vu Viu Viv
5 1.0 1.0 1.0 4.0
ag, 1.0 1.0 1.0 0.1
a,, - 1.0 —35 —3.5 -~ 3.5
ay 0.0 0.0 35 0.0
9 1.0 35 35 3.5

*Mass normalized coordinates are used.
Atomic units. All the missing coefficients are set to zero.
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FIG. 3. Potential map of the ¥}, potential asa function of x and y. The nodal
lines of the fundamental excited states |1,0) and |0,1) are represented. Dis-
tances are mass normalized coordinates, energies in a.u.

Concerning the excited states |1,0) and |0,1), the vari-
ational process converges less rapidly than for the |0,0) (see,
e.g., Table II). Although convergence is, nevertheless,
reached easily with a two-dimensional potential, serious dif-
ficulties of memory size may arise for problems of higher
dimension. In our case, the convergence has been extended
enough (1072 cm™!) to consider our results as exact nu-
merical solutions. Now we can deduce, in the framework of
the QMC solutions, the following important properties con-
cerning the nodal lines of fundamental excited states; first we
may note that all the energies of the |1,0) and |0,1) states of
the studied model potentials are very well reproduced by the
QMC calculations. This shows that the choice of the analyti-
cal form given in Eq. (27) for the nodal line of a fundamental
excited state is appropriate. We may conclude that such
states may be reached by partitioning the full space into two
subdomains. A more surprising result concerns the shape of
the node of the nonsymmetrical |1,0) states: in each case
where it is the lowest excited state of the spectrum the pa-
rameter « is found to be zero and therefore the node is a
straight line, translated from the origin by x,. We give on
Fig. 3 the potential map associated to V;; together with the
nodal lines of the excited state wave functions |0,1) and
11,0). As explained above, in order to see if this particularity
is also true for higher excited (though fundamental) states,
we calculated the |1,0) energy of the potential ¥}, whose
lowest excited state is the symmetrical |0,1) level. In that
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TABLEIL Energies (cm™ ') of the ground and fundamental excited states

for the model potential ¥, (x,).2

State |x,y} |0,0) |1,0) 10,1)
Harmonic 169.0 338.1 338.1
Variational

=2 288.5 532.5 9304

4 2211 3874 531.8

6 213.1 373.2 485.3

8 2117 367.5 478.0

10 211.0 365.5 475.1

12 210.6 365.0 473.0

14 210.4 364.9 471.9

16 210.3 364.8 471.4

18 210.3 364.7 471.3

20 210.3 364.7 471.2

22 210.3 364.7 471.2
QMC* 2100+ 1.0 3647+ 1.3 472.1 + 1.1

Parameters? a=0.0 a =00

xy =037 xy°=0.0

*QMC calculations have been performed using 40 trajectories with 500 000
elementary time steps. The time step used is 0.01 a.u.

The size of the basis set is #X 7.

“Our results.

“Optimized parameters of the nodal line defined in Eq. (35).

*The notation p, would be better. However, our convention here is to de-

note x,, the translation parameter associated with the excited vibration (y
in this case).

case, there may be a very weak distortion of the nodal line.
We give in Table 111 the QMC energy values for this state
corresponding to & = 0.0 and — 0.02, respectively. In that
case, even if the nodal line is slightly distorted, we show that
the straight line approximation is good. From Table III, we
can see that the increase of the coupling between ¥ and ¥}
leads, as expected, to an increased value of x,. Concerning
the symmetrical |0,1) states, the predicted values of the pa-

TABLE III Vibrational energies of the ground and fundamental excited
states of some model and realistic potentials.*

Potential  State Var. QMC a xy°
1 10,0 192.8 1928403 oo o
11,0) 359.8 3598 +0.2 0.0 0.125
10,1) 436.6 437.1+05 0.0 0.0
I 10,0) 210.3 2100+ 1.0 v e
|1,0) 364.7 3646+ 1.5 0.0 0.368
|0,1) 471.2 472.1 +2.2 0.0 0.0
11 |1,0) 447.4 4483 + 1.1 0.0 0.164
v [1,0) 618.1 619.0 + 0.9 —0.02 0.093
6193+ 09 0.0 0.088
hr 10,0) 356.7 356.7 + 0.1 e e
11,0) 877.8 8773+ 0.1 0.0 0.053
10,1) 548.7 5487 £ 0.2 0.0 0.044
hz 10,0) 247.5 2479 +05 o s
11,0)¢ 648.4 645.0 4+ 0.6 0.0 0.067
jo,1) 312.7 3136+ 1.1 0.0 - 0.072

*All energy values are incm ™",
*In atomic units with mass normalized coordinates.

*See Fig. 7.
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rameters & and x, (zero) are reproduced. Finally, to illus-
trate our algorithm, we present in Fig. 5 the dependency of
Epy =min (€,6,) with respect to x, for symmetrical
(]0,1) state of ¥;) and unsymmetrical (]1,0) state of ¥7;)
states. Clearly, Eg, is very dependent on the partitioning of
the space and then the desired equality e(a) =€, =€, is
obtained very easily. Note that the asymptote of the curve
Egn (xy) gives the ZPE since lim,__ , ¢ §” is a nodeless
function. Finally, the extremum principle is represented in
Fig. 6 for the unsymmetrical |1,0) state of Vy;. It shows
clearly that the minimum is obtained for a = 0.0. Further-
more, the correlation between the two parameters is clear: as
a increases (from — 0.5 to 4+ 0.5 on Fig. 6) and tends to
unbalance the two subdomains, x, decreases to compense
this effect.

B. Pd,CO

Calculated energies of vibrational states for the two
types of coupling are presented in Tables III and IV. Differ-
ent approaches are compared with QMC, namely, the crude
harmonic approximation (one-dimensional approxima-
tion) the PNC representation and the variational procedure.
The effect of the basis set size on the |1,0) excited state ener-
gy is also illustrated by Fig. 7 for the h,z coupling. The
ground state energies in these simple two-dimensional cases
are very well reached by variational calculations whereas
harmonic approximations (crude and PNC) may give sig-
nificant errors (see Table IV). For |0,0) states the QMC
runs converge very rapidly as a function of the simulation
time 7. An accuracy better than 1 cm ™' is very easy to ob-
tain.

Concerning the first excited state |0,1) of the cluster
vibration, the variational convergence is also satisfactory for
both couplings, less than 1.0 cm ™' from the value given by

QMC. In the case of the h,r coupling the optimization of
and x, shows that the nodal line is slightly translated. This
reflects the slight difference between PNC and exact QMC
results (about 1 cm~!) which results from both anharmonic
and coupling terms of the potential. In the case of the |0,1)
state of the h,z coupling, the nodal line is a little more trans-
lated. Hence, the difference between PNC and exact QMC
results (about 20 cm ™'} is larger.

The variational treatment of the |1,0) excited state of
the h,z coupling (the adsorbate-surface vibration) is more
difficult. A few comments on the rather erratic behavior of
the variational results for |1,0) may be in order. The first
concerns the lack of monotonic convergence seen for the h,z
calculations (Fig. 7) upon increasing the size of the basis set.
In fact the Hylleraas-Undheim-MacDonald theorem?*?
ensures that in a linear variational calculation the mth low-
est root is never lower than the mth exact eigenvalue of the
Hamiltonian. This theorem is of course satisfied for our cal-
culations. The fact that the energy of the |1,0) state (identi-
fied by its eigenvector) sometimes increases when basis func-
tions are added reflects the existence of lower lying states
(overtones |0,v) of the z vibration). If the added basis func-
tions can better describe these overtones than the |1,0) state
then a change in the order of the approximate excited-state
energies can occur and the accuracy of the |1,0) level can
deteriorate. This is the case for the h,z coupling when the
basis set size goes from 10X 10to 12X 12 (see Fig. 7). In that
case the overtone |0,4) reaches an energy lower than the
|1,0) fundamental excited state whose energy increases. If
the convergence of the |1,0) state associated with the h,r
potential is obtained easily (both QMC and variational
treatments lead to very close results), that is not the case for
h,z. The explanation involves the fact that the potential has
been fitted by a polynomial and hence does not have the
correct asymptotic form. The eigenvalues of this fit to the
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potential are determined by the arbitrary tail as well as by the
physically interesting region near the minimum. If only low-
order functions are included in the variational calculation
{say n = 5, 7), functions which have negligible weight in the
pathological region of the potential fit, then an upper bound
to the physical eigenvalue will be attained. Adding higher-
order, more long-range basis functions eventually allows
convergence to the exact (but unphysical) eigenvalue of the
fitted potential. In order to improve the physical eigenvalue,
we chose to contract sufficiently the basis set functions in the
physical region of the potential in order to extend the conver-
gence process as far as possible. In that case, the long-range

1-OXN (a-u.)

effects are avoided, but on the other hand, the convergence is
slow as shown in Fig. 7. By contrast, the QMC procedure
using only local behavior of the potential around the equilib-
rium position works well in this case and then illustrates its
efficiency. To summarize, we can say that in the variational
process, a large extension of the basis set is needed to de-
scribe as well as possible the wave function in the neighbor-
hood of the physical potential, but at the same time it would
increase the contribution of the “nonphysical” region of ¥;
on the other hand, it is always possible with the QMC to
choose the reference function to prevent the trajectories
(through the drift vector) from visiting the wrong region of
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sures the equality €, = €, = €(a) (see Figs.
5).
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V during the simulation time. It is then possible to satisfacto-
rily describe the metastable states of the whole potential.
However, as already emphasized, a much more satisfactory
approach would consist in using a physical representation
for ¥V having the correct asymptotic behavior, instead of a
polynomial fit. This nonphysical fit is used only because the
purpose of this paper is to compare both variational and
Monte Carlo treatments. In our example (see Table IIT), we
deduce that the QMC improves the | 1,0) energy by 3.4 cm ™"
on the best variational result. The QMC value is presented in
Fig. 7 as the asymptote of the variational process. For both
couplings the nodal line is a straight line (a = 0). Finally,

05

each of the nodal lines of the excited states of the two realistic
potentials studied here are ‘“undistorted” as was also found
for the model potentials. In Table IV, the corresponding vi-
brational frequencies are quoted.

C. Pd.CO

As a second example where the accuracy and stability of
the QMC approach have proven crucial, we briefly present a
few results from a preliminary study of the effect of an exter-
nal electric field on the CO stretch vibration of the Pd,CO
cluster. We have studied the coupling of this d mode with the

FIG. 7. Convergence of the variational pro-
cess with respect to the basis set size, 7 X n,
for the |1,0) state of the h,z coupling. At
each point, we give the sequence number of
the |1,0) root.

Evar
cm™
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660 -
650 1
T L) T L L L LA T T T L] T
10 20 30 n
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TABLE V. Vibrational frequencies® (cm™') of the two coupled modes h,r
and h,z.

Method Harmonic PNC Variational® QMC
Coupling
0,9 240.0 192.8 192.0 192.0 + 0.3
@, ° 498.0 504.9 521.1 520.6 + 0.2
,! 195.7 86.7 65.2 65.7+ 1.6
¢ 498.0 544.4 400.9 397.1 + 1.1

2Evaluated from Tables III.
*The size of the basis set is 22X 22.
“Our results.

d . _ -
oy, = E10) — E0oy- @rre = E0.1y — Eo)-

adsorbate-surface h mode. Table V shows the results of a
convergence study for variational calculations in the field-
free case. The overall variations of the frequencies as a func-
tion of 2</<6 (! is the polynomial order) and of 6<n<20
(the size of the basis set) are about 50 cm ™' for the d vibra-
tion and about 10 cm™' for h. Although this could be a
useful level of accuracy in many contexts, the frequency
shifts as a function of field in which we are interested are of
the same order of magnitude.”> We are in a case where the
convergence of the variational treatment seems satisfactory.
However, the results show the sensitivity of the excitation
energies to the polynomial order. It is another example of the
necessity to fit the potential by a more physical analytical
form. As already noticed, this may be done straightforward-
ly with the QMC procedure. In order to compare the two
methods we decided to use a polynomial fitting at the fourth
order (/=4) and the variational results obtained with
n = 20. Variational and QMC results are shown in Table VI
for values of an external electric field appropriate for an elec-
trochemical study. Although the differences in frequencies
between the variational and QMC approaches are at most
about 10cm ™! ( =0.5%) and the qualitative trend as a func-
tion of electric field is the same in both cases, there are signif-
icant quantitative differences. In particular the variational
calculations yield quite different results for fields of the same

TABLE V. Excitation energies (cm~') (v =0-v=1) for the C-O (d)
(top numbers) and Pd,-CO (h) (bottom numbers) vibrations of Pd,COin
absence of electric field.

Polynomial order® /n® 6 10 16 20

1

2 1923 1923 1907 1908
505 504 505 505

3 1899 1888 1874 1875
501 500 499 499

4 1898 1890 1873 1873
495 495 495 495

5 1894 1881 1866 1866
500 500 500 500

6 1920 1915 1911 1913
498 497 497 497

* Potential fit with ¥(x,, x,) =2, ., a;x{x}.
®The size of the basis set is n X n.

TABLE VI. C-O stretching frequency (cm™') vs electric field
(V/cm X 107) for Pd, CO calculated by variational and by quantum Monte
Carlo (QMC) methods.

@co Awco /AE®
Method PNC  Var. QMC® PNC  Var QMC’
Electric field
(V/em X< 107)
50 1871 1833 1833
—25 1899 1859 1855 28 26 22
0.0 1914 1873 1878 13 14 23
25 1949 1908 1900 3 35 22
5.0 1969 1927 1920 20 19 20

100 2000 1961 1949 135 17 14.5

*AE is taken as 2.5 V/cm X 10",
*For each QMC value, the variance is lower than 0.5 cm~".

magnitude but opposite sign whereas the QMC frequency
shifts are nearly symmetrical. In fact, the experimental elec-
trochemical curves, frequency vs voltage, have a symmetri-
cal sigmoid shape. Given the uncertainties of the cluster
model and of the electrochemical double layer, etc., this does
not in itself prove the superiority of QMC; however, taken
together with the convergence difficulties of the variational
approach we believe that QMC affords clear advantages for
this type of problem.

VI. CONCLUSIONS

The results presented here show the efficiency of the
FGFK-QMC method applied to two-mode vibrational
problems when considering zero-point energy and funda-
mental excitations. The extension to many-mode problems is
straightforward. Furthermore the results emphasize the dif-
ficulty of obtaining convergence for variational calculations
when the coupling and anharmonicity parts of the interac-
tion are nonnegligible. In that case a large number of basis
states is required; however it is clear that if the number of
coupled vibrations increases, variational solutions become
unfeasible due to the size of the basis set needed. No such
limitation arises with the QMC approach; the essential con-
dition in this case is to find a fair reference function in order
to reduce the computer time. This last point appears to be
made easier by the remarkable properties of the approximate
nodal surfaces associated with the fundamental excited
states: (i) The partition of space into two and only two sub-
domains (independently of the sequence number of the
state) seems to lead to satisfactory results. (ii) Their distor-
tion seems to reduce to nearly a translation. If such strong
assumptions always lead to very good results, then a poten-
tially important criticism of the method, namely the more or
less complicated parametrization of the nodal surface, disap-
pears. Nevertheless, this point needs to be verified for larger
systems. Another aspect of the difficulties encountered with
the variational treatment is related to the analytical repre-
sentation of the potential. In practice, the only analytical
forms used are polynomial expansions which permit
straightforward evaluation of Hamiltonian matrix elements.
Unfortunately, such expansions can efficiently represent
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only potentials where anharmonicity and coupling are weak.
Furthermore, the wrong asymptotic behavior of these fitted
analytical potentials does not allow the use of large deloca-
lized basis sets. QMC entirely avoids these problems, since
no specific constraints resulting from the potential are intro-
duced. Furthermore, it is even possible to introduce a locally
interpolated numerical form of the potential into the nu-
merical process. Consequently, this method appears well-
adapted for studying strongly coupled interactions as well as
multiple-well potentials.

ACKNOWLEDGMENTS

This work was partially supported by grants from
NSERC (Canada, operating and supercomputer access),
FCAR (Québec), and the Institut Frangais du Pétrole for
which we are grateful. D.R.S. wishes to acknowledge a stim-
ulating conversation with Mark Wrighton. M.C,, P.C,, and
C.M. thank the “Conseil Scientifique du Centre de Calcul
Vectoriel pour la Recherche” for providing them with com-
puter facilities and are indebted to the “Centre de calcul
d’Orsay” for allowing them to make use of facilities on the
NAS 9080 and the IBM 3090/200.

'R. J. Whitehead and N. C. Handy, J. Mol Spectrosc. 55, 356 (1975).

?F. Soto-Eguibar and P. Claverie, in Stochastic Processes Applied to Physics
and Other Related Fields, edited by B. Gomez, S. M. Moore, A. M. Rodri-
guez-Vargas, and A. Rueda (World Scientific, Singapore, 1983), p. 637-
649.

*M. Caffarel and P. Claverie, J. Stat. Phys. 43, 797 (1986).

“M. Caffarel and P. Claverie, J. Chem. Phys. 88, 1088 (1988).

SM. Caffarel and P. Claverie, J. Chem. Phys. 88, 1101 (1988).

°E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (Dover,
New York, 1955).

P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester Jr., J. Chem.
Phys. 77, 5593 (1982).

8D. M. Ceperley and B. J. Adler, J. Chem. Phys. 81, 5833 (1984).

°H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).

M. H. Kalos, Monte Carlo Methods in Quantum Problems, NATO ASI
Series C (Reidel, Dordrecht, 1982), pp. 19-31.

Y'D. M. Ceperley, in Recent Progress in Many-Body Theories, edited by J.
G. Zabolitzky, M. deLlano, M. Fortes, and J. W. Clark (Springer, Berlin,
1981), p. 262.

'2L. D. Landau and E. Lifshitz, Quantum Mechanics (Pergamon, Oxford,
1965), Chap. 3, Sec. 20.

3M. Caffarel, Thése de Doctorat de I'Université Paris VI, 1987.

143, Andzelm and D. R. Salahub, Int. J. Quantum. Chem. 29, 1091 (1986).

153. Andzelm and D. R. Salahub, in Physics and Chemistry of Small Clus-
ters, edited by P. Jena, B. K. Rao, and S. N. Khamma, NATO ASI Series
B158 (Plenum, New York, 1987), p. 867.

'63. Andzelm, D. R. Salahub, M. Caffarel, P. Claverie, and C. Mijoule (un-
published).

7). Andzelm, E. Radzio, and D. R. Salahub, J. Chem. Phys. 83, 4573
(1985).

'*C. Mijoule, M. Allavena, J M. Leclercq, and Y. Bouteiller, Chem. Phys.
109, 207 (1986).

"*For one-dimensional systems it is known (see Ref. 12, Chap. 3, Sec. 21)
that the & th excited state has just k nodes which divide the configuration
space (the real line) intojust (k¥ -+ 1) subdomains. This property admits a
weaker generalization for an N-dimensional configuration space proved
by Zhislin [ G. M. Zhislin, Usp. Mat. Nauk 16, 149 (1961) ]. This theorem
states that the nodal hypersurfaces of the & th excited state divide the N-
dimensional configuration space into ar most (k -+ 1) subdomains.

°E. A. Hylleraas and B. Undheim, Z. Phys. 65, 759 (1930).

213, K. L. MacDonald, Phys. Rev. 43, 830 (1933).

2J. P, Lowe, Quantum Chemistry (Academic, New York, 1978), Appen-
dix 4.

K. Kunimatsuy, J. Phys. Chem. 88, 2195 (1984).

J. Chem. Phys., Vol. 80, No. 2, 15 January 1989

Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



