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We investigate the metal-insulator transition of the one-dimensional SU(N) Hubbard model for repulsive
interaction. Using the bosonization approach a Mott transition in the charge sector at half filling (kF

5p/Na0) is conjectured forN.2. Expressions for the charge and spin velocities as well as for the Luttinger-
liquid parameters and some correlation functions are given. The theoretical predictions are compared with
numerical results obtained with an improved zero-temperature quantum Monte Carlo approach. The method
used is a generalized Green’s function Monte Carlo scheme in which the stochastic time evolution is partially
integrated out. Very accurate results for the gaps, velocities, and Luttinger-liquid parameters as a function of
the Coulomb interactionU are given for the casesN53 andN54. Our results strongly support the existence
of a Mott-Hubbard transition at anonzerovalue of the Coulomb interaction. We findUc;2.2 for N53 and
Uc;2.8 for N54. @S0163-1829~99!00728-6#
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I. INTRODUCTION

Although the metal-insulator transition has certainly be
one of the most studied phenomenon in condensed-m
physics, it is only in recent years that important progress
been achieved. This is mainly due to careful experimen
and numerical studies but also to the improvement of
theoretical tools.1–3 It has been proved extremely difficult t
investigate the effect of strong correlations in dimensio
greater than 1, and it is only quite recently that, thanks t
new dynamical mean field, our understanding has subs
tially progressed.4 For one-dimensional systems, the situ
tion is rather different: There exist powerful analytical a
numerical approaches at our disposal. Moreover, from
experimental point of view, the Mott-transition can be re
ized in organic conductors5 and quantum wires.6 Therefore,
one may expect to gain a lot of information on the physics
the metal-insulator transition.

In one dimension, it has been recognized very rapidly t
umklapp processes are at the heart of the problem. In
Abelian bosonization formalism, one can draw a general
consistent picture of the Mott transition. Indeed, the cha
properties are expected to be described, in the absenc
umklapp contributions, by a Luttinger liquid with only tw
independent parameters: The charge velocityuc and the
charge exponentKc that controls the decay of correlatio
functions. These quantities, which are nonuniversal, co
pletely characterize the low-energy properties of a o
dimensional system.7,8 Within this framework, the effect of
umklapp processes are investigated in perturbation the
PRB 600163-1829/99/60~4!/2299~20!/$15.00
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and one can write down an effective theory that describes
Mott transition as well as a full description of the transpo
properties for any commensurate filling.9,10 The only param-
eter that controls the transition is the~in general unknown!
Luttinger charge exponentKc and the transition is predicte
to be universal of the Kosterlitz-Thouless~KT! type.

Most of the theoretical work ind51 focused on the prop
erties of the standard SU~2! Hubbard model which is known
to be a Mott insulator at half filling from its exact solution.11

An extension of this model was considered by introduc
long-range hopping or finite-range interaction~nearest-
neighbor interaction, for instance!.2 In the present work, we
study a most natural generalization of the usual Hubb
model: Instead of considering fermions with a two-valu
spin index@with SU~2! symmetry# we generalize to the cas
of an arbitrary SU(N) spin index. Apart from the theoretica
interest it is important to emphasize that these additio
degrees of freedom are realized physically through orb
degeneracy as, for example, in Mn oxides.3 In this paper, we
shall study the phase diagram of the one-dimensional SUN)
Hubbard model for repulsive interaction and at half fillin
corresponding to one ‘‘electron’’ per site. The Hamiltonia
on a finite chain withL sites that we shall consider reads

H52t(
i 51

L

(
a51

N

~cia
† ci 11a1H.c.!1

U

2 (
i 51

L S (
a51

N

niaD 2

, ~1!

where the fermion annihilation operator of spin indexa
51, . . . ,N at sitei is denoted bycia and satisfies the canon
cal anticommutation relation
2299 ©1999 The American Physical Society
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$cia ,cjb
† %5dabd i j . ~2!

The density of speciesa at the i th site is defined bynia

5cia
† cia . In the following, we shall consider that the neare

neighbor hopping (t) and the on-site interaction (U) are
positive.

The Hamiltonian~1! is not exactly solvable by the Beth
ansatz forN.2 and arbitraryU. It is, however, possible to
solve the generalization of the Lieb-Wu Bethe ansatz eq
tions for fermions carrying a SU(N) spin index.12,13 The re-
sult is that for anyN.2, there exists a Mott-Hubbard tran
sition from a metallic phase to an antiferromagne
insulating phase at afinite value of the couplingU. The
transition is found to be offirst order in contrast with the
accepted view that the metal-insulator transition in o
dimensional systems should be of the KT type. The poin
that a projection onto the subspace of states having at m
two electrons at each site is crucial for the use of the Be
ansatz approach. The other configurations are automatic
excluded by the Pauli principle in the SU~2! Hubbard model
whereas forN.2 it is no longer the case. As a consequen
it is believed that the lattice model associated with
SU(N) generalization of Lieb-Wu Bethe ansatz equatio
should coincide with an integrablenonlocal version of the
SU(N) Hubbard model~1!.12,13 Although one naturally ex-
pects that the true SU(N) Hubbard model will share som
properties with its nonlocal partner, in particular the ex
tence of a metallic phase at small enoughU, the first-order
character of the transition could take its origin in the non
cality of the interaction. In any case, in order to study Eq.~1!
one must abandon the exact Bethe ansatz approaches
resort to two powerful techniques available in one dime
sion: the bosonization and numerical approaches. As
shall show, none of these techniques is by itself sufficien
demonstrate the existence of the Mott transition. Regard
bosonization, the mere existence of the metal-insula
transition—even in the simplest scenario of a KT pha
transition—relies on the knowledge ofU dependence of the
Luttinger parameterKc , a nonuniversal quantity which ca
only be computed in a perturbative expansion inU. In other
words, bosonization cannot tell uswhethera given lattice
model will undergo a Mott-U transition. However, it define
a rich theoretical framework in which many qualitative a
quantitative predictions are obtained. This provides an es
tial guide for the numerical investigation of a particular la
tice model. Regarding numerical investigations the situat
is also not fully satisfactory. Beyond the evident problem
memory and CPU time limitations, it is well known that it
very difficult to characterize a KT phase transition. As w
shall emphasize later, it is almost impossible to discrimin
between the opening of a charge gap atU50 and at a finite
positive U, even when very accurate numerical data are
our disposal. The strategy employed in this work will cons
in combining both approaches. Very strong evidence will
given in favor of a metal-insulator transition occurring at
finite positive value of the interactionU for N.2.

Various numerical methods can be used to study
ground-state properties of Hamiltonian~1!. In exact diago-
nalization methods14 the exact ground-state eigenvector
calculated. Unfortunately, the rapid increase of the size
the Hilbert space restricts severely the attainable sys
-
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sizes. In order to treat bigger systems two types of appro
are at our disposal: The density matrix renormalization gro
~DMRG! method and the stochastic approaches.

Since its discovery a few years ago the DMRG meth
has been extensively used for studying various o
dimensional systems and coupled chain problems~for a re-
view, see Ref. 15, for a detailed presentation of the meth
see Refs. 16,17!. DMRG is a very efficient real-space nu
merical renormalization-group~RG! approach. The funda
mental point which makes the method successful is the w
that ‘‘important’’ degrees of freedom are chosen at each
iteration. Instead of keeping the lowest eigenstates of the
block considered as isolated from the outside world~as it
was usually done in previous approaches!, the states which
are selected are the most probable eigenstates of the de
matrix associated with the block considered as a part of
whole system. The main error of DMRG is related to t
finite number of states kept at each iteration of the algorith
In order to get the exact property the extrapolation to
infinite number of states has to be performed. At least for
and quasi-1D problems, and for systems having a small n
ber of states per site, the errors obtained are small. Note
that DMRG works especially well when open boundary co
ditions are used. For periodic boundary conditions, errors
significantly larger.

In this paper we use an alternative approach based o
stochastic sampling of the configuration space. Such
proaches are referred to as quantum Monte Carlo~QMC!
methods. There exists a large variety of QMC approache
first set of methods is defined within a finite-temperatu
framework ~path-integral Monte Carlo, world-line Monte
Carlo, etc., see, e.g., Ref. 18!. In these approaches, the ma
systematic error is the high-temperature approximation a
ciated with the Trotter break-up19 ~Trotter or short-time er-
ror!. When interested in obtaining the zero-temperature pr
erties the number of ‘‘time slices’’ to consider must be tak
large and the computational effort becomes important. P
tical calculations have shown that the method is much l
accurate than DMRG, at least for one-dimensional syste
In the second type of approaches used here, the stoch
sampling is directly defined within a zero-temperature fram
work. These methods are usually referred to as a Gre
function Monte Carlo~GFMC! or projector Monte Carlo. For
systems having a nodeless ground-state wave function as
the case here, the GFMC method can be extremely powe
The basic idea is to extract from a known trial wave functi
cT its exact ground-state componentc0 . To do that an op-
eratorG(H) acting as a filter is introduced. Statistical rule
are defined in order to calculate stochastically the action
the operatorG on a given function. Apart from statistica
fluctuations, the GFMC method is an exact method. It d
not require an extrapolation to zero temperature as in fin
temperature schemes. In addition, there exists a so-ca
zero-variance property for the energy: The better the t
wave functioncT is, the smaller the statistical fluctuation
are. In the limit of an exact wave function, the statistic
fluctuations entirely disappear~zero-variance property!. As
an important consequence, by choosing a good enough
wave function very accurate calculations can be perform
~see, for example, Ref. 19!. Note that, in contrast with
DMRG, the efficiency of GFMC does not depend on t
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specific type of boundary conditions chosen and that
number of states per site is not a critical parameter of
simulation. Here, it is an important point since the SU(N)
model displays 2N states per site@for the SU~4! case treated
here it gives 16 states per site#.

In order to improve further the accuracy of the approa
we present a generalized version of the GFMC method
which the dynamics of the Monte Carlo process is partia
integrated out. More precisely, we generalize an idea in
duced by Trivedi and Ceperley in their GFMC study of t
S51/2 Heisenberg quantum antiferromagnet.19 In the GFMC
method the probability that the random walk remains a c
tain number of times in the same configuration is descri
by a Poisson distribution. It is then possible to sample
corresponding ‘‘trapping time’’ from this distribution and t
weight the expectations values according to it. As remar
by Trivedi and Ceperley, doing this can lead to a consid
able improvement in the simulation. This is particularly tr
when the wave function is localized~largeU regime for our
model, systems with deep potential wells, etc.!. Here, we
show that the method can be improved further by integra
out exactly the time evolution associated with this trapp
phenomenon. Once this is done we are left with a rand
walk defined by an ‘‘escape transition probability’’ connec
ing nonidentical configurations~the system never remains i
the same configuration! and a modified branching term re
sulting from the time integration. Note that introducing tra
ping times in averages helps a lot when optimizing the
rameters of the trial wave function. Finally, we present
original method for computing the Luttinger-liquid param
eters within a QMC scheme. We show that these parame
can be obtained from a series of ground-state calculation
total energies ofreal—but not necessarily Hermitian—
Hamiltonians. In this way we escape from the difficulty
calculating with QMC ground-state energies of thecomplex
Hamiltonians resulting from the definition of the charge a
spin stiffnesses. Although it is difficult to compare the ef
ciency of our generalized GFMC approach with DMR
~since the quality of GFMC simulations is too much depe
dent on the quality of the trial wave function used! we be-
lieve that the accuracy of our results is comparable or e
better to what can be done with DMRG. In any case, our d
are sufficiently accurate to conclude to the existence o
metal-insulator phase transition in the model studied.

Very recently, Beccariaet al.20 have proposed a QMC
algorithm based on the use of Poisson processes. Thei
proach contains similar ideas. However, in contrast with
present approach no importance sampling is used and
integration of the Poisson dynamics is performed. It sho
also be noted that the use of Poisson processes for descr
the time evolution of systems trapped in some configura
is not restricted to quantum systems. Krauth and collabo
tors have proposed related ideas within the context of c
sical Monte Carlo simulations.21,22

The organization of the paper is as follows. In Sec. II
bosonization approach of the SU(N) Hubbard model will be
given. Some of the results have already been obtained
Affleck23 whereas additional new ones will also be useful
compare with the numerical simulations. The purpose of S
III is to give a presentation of the GFMC method togeth
with our generalization based on the partial integration of
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dynamics. The practical implementations of the GFMC a
proach for the Hamiltonian~1! will be discussed in Sec. IV
and the numerical results forN52,3,4 will be presented in
Sec. V. Finally, Sec. VI gives a summary of the work t
gether with a comparison between the physical results
tained for the SU(N) Hubbard model and those correspon
ing to its nonlocal integrable version. In the Appendix w
give some details of computation occurring in Sec. II.

II. THE SU „N… HUBBARD MODEL

In this section, we shall use a bosonization approach~for
recent reviews see Refs. 8,24! to study the SU(N) Hubbard
model. Before doing that, let us first discuss the symmet
of the model.

The Hamiltonian~1! has a U~1!^SU(N) symmetry:

cia˜eiucia ,

cia˜Uabcib , ~3!

where the matrixU belongs to SU(N). These symmetries
express the conservation of the charge and spin invaria
under a SU(N) rotation. The associated generators are giv
by the following operators:

N5(
i ,a

nia ,

S A5(
i
S i

A , ~4!

with

S i
A5cia

† T ab
A cib , ~5!

where the summation over repeated indexes~except for lat-
tice indexes! is assumed in the following. In the latter equ
tion, the N221 matricesT A are the generators of the Li
algebra of SU(N) in the fundamental representation. The
satisfy the commutation relation

@T A,T B#5 i f ABCTC, ~6!

f ABC being the structure constants of the Lie algebra and
generators are normalized according to Tr(T AT B)5dAB/2.
The conservation law associated with the U~1! symmetry al-
lows to study the Hamiltonian~1! for a fixed densityn. The
Coulomb interaction can thus be rewritten, up to a const
in terms of the SU(N) spin operator:

U

2 S (
a51

N

niaD 2

52
UN

N11
S i

AS i
A , ~7!

where we have used the identity

T ab
A T de

A 5
1

2 S daedbd2
1

N
dabddeD . ~8!

The relation~7! makes explicit the SU(N) invariance of the
model.

The Hamiltonian~1! is not exactly solvable by the Beth
ansatz forN.2 and arbitraryU, even if, as already empha
sized, some integrable nonlocal extension of Eq.~1! with a
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SU(N) symmetry can be considered. The situation is simp
in the limit U˜` and at half filling ~one ‘‘electron’’ per
site!, i.e., whenkF5p/Na0 (a0 being the lattice spacing!. In
that case, it can be shown that Eq.~1! reduces to the SU(N)
Heisenberg antiferromagnetic chain for which an exact so
tion is available. As shown by Sutherland,25 this latter model
is critical with N21 massless bosonic modes with the sa
velocity. In the conformal field theory~CFT! language, the
central charge of the model in the infrared~IR! limit is c
5N21 and using a non-Abelian bosonization of Eq.~1!,
Affleck23 identifies the nature of the critical theory in th
spin sector as the SU(N)1 Wess-Zumino-Novikov-Witten
~WZNW! model. In the following, we shall present bo
non-Abelian and Abelian bosonization approaches of
SU(N) Hubbard model~1! at half filling and give a numbe
of results that will be essential for discussing the numer
data presented in Sec. V.

A. Continuum limit

In the continuum limit, the spectrum around the tw
Fermi points6kF is linearized and gives rise to left-movin
fermionscaL and right-moving fermionscaR . In this low-
energy procedure, the lattice fermion operatorscia are ex-
pressed in terms of these left-right moving fermions as

cia

Aa0

˜ca~x!;caR~x!eikFx1caL~x!e2 ikFx, ~9!

where x5 ia0 . In this continuum limit, the noninteractin
part of the Hamiltonian~1! corresponds to the Hamiltonia
density ofN free relativistic fermions

H052 ivF~ :caR
† ]xcaR :2:caL

† ]xcaL : !, ~10!

where the normal ordering< with respect of the Fermi sea i
assumed and the Fermi velocityvF is given by

vF52ta0 sin
p

N
. ~11!

In the continuum limit, the SU(N) spin operator~5! decom-
poses into a uniform and a 2kF contribution

S i
A

a0
˜S A~x!.J A~x!1@e2ikFxN A~x!1H.c.#, ~12!

where the 2kF contribution is given by

N A5caL
† T ab

A cbR , ~13!

whereas the uniform part readsJ A5JR
A1J L

A with

JR(L)
A 5:caR(L)

† T ab
A cbR(L) : . ~14!

These left-right SU(N) spin currents obey the following op
erator product expansion~OPE! ~see the Appendix!:

lim
x˜y
JR(L)

A ~x!JR(L)
B ~y!;

2dAB

8p2~x2y!2 7
f ABC

2p~x2y!
JR(L)

C ~y!

~15!
r

-

e

e

l

which shows that they satisfy the SU(N)1 Kac-Moody~KM !
algebra.24,26 In the same way, the total charge density(ania
reads in the continuum limit

(
a

nia˜a0
1/2$J 0~x!1@e22ikFxcaR

† ~x!caL~x!1H.c.#%,

~16!

whereJ 05JR
01J L

0 and

JR(L)
0 5:caR(L)

† caR(L) : ~17!

are the U~1! right and left charge currents. These curren
satisfy the OPE

lim
x˜y
JR(L)

0 ~x!JR(L)
0 ~y!;2

N

4p2~x2y!2
~18!

andJR(L)
0 belongs to the U(1)N KM algebra.

With these identifications, it is not difficult to show~see
the Appendix! that the free part of the Hamiltonian~10! can
be expressed only in terms of spin and charge currents~the
so-called Sugawara form!:

H05H0s1H0c ~19!

with

H0s5
2pvF

N11
~ :JR

AJR
A :1:J L

AJ L
A : ! ~20!

and

H0c5
pvF

N
~ :JR

0JR
0 :1:J L

0J L
0 : !. ~21!

At the level of the free theory, spin and charge degrees
freedom decouple. The symmetry of the free Hamilton
H0 in the continuum limit is therefore enlarged to giv
U(1)L ^ SU(N)L ^ U(1)R^ SU(N)R . The HamiltonianH0s
is nothing but the Sugawara form of the SU(N)1 WZNW
model.24,26 It is a conformaly invariant theory with centra
chargec5N21 (N21 massless bosons!. The contribution
H0c describes the U~1! charge degrees of freedom and h
central chargec51 ~1 massless boson!.

The nontrivial part of the problem stems from the Co
lomb interaction~7!. At sufficiently smallU!t, from Eq.
~7!, we see that its contribution will be given by the OPE

V~x!52Ua0

N

N11
lim
e˜0
S A~x1e!S A~x!. ~22!

From Eq.~12!, there are three contributions toV:

V5V01V2kF
1V4kF

. ~23!

The first term is the uniformk50 component while the oth
ers contain oscillating factorse62ikFx ande64ikFx. Neglect-
ing all oscillatory contributions, we are thus left with th
uniform partV0 . Performing the necessary OPE’s~see the
Appendix!, one finds that the total effective low energ
Hamiltonian density separates into two commuting cha
and spin parts



sp

u-
ac

IR
at
e
ct

il
e

u-
ly

e
e
i

ss

e
t

hi
o

c

ion
r-
he

the
nd,

e
n is

tor

tral

not
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H5Hc1Hs ~24!

with

Hc5
pvc

N
~ :JR

0JR
0 :1:J L

0J L
0 : !1GcJR

0J L
0 ~25!

and

Hs5
2pvs

N11
~ :JR

AJR
A :1:J L

AJ L
A : !1GsJR

AJ L
A , ~26!

where the renormalized velocities are

vs5vF2
Ua0

2p
,

vc5vF1~N21!
Ua0

2p
~27!

and the current-current couplings in the charge and the
sectors are given by

Gc5
N21

N
Ua0 ,

Gs522Ua0 . ~28!

Apart from a velocity renormalization, the effect of the Co
lomb interaction is exhausted in the two marginal inter
tions in both charge and spin sectors. WhenU.0, the spin
current-current interaction is marginal irrelevant. At the
fixed pointGs* 50 the Hamiltonian in the spin sector is th
of the SU(N)1 WZNW model. On the other hand, th
current-current interaction in the charge sector is exa
marginal since one can diagonalizeHc with a Bogolioubov
transformation to recover the Tomonaga-Luttinger Ham
tonian. Therefore,Hc describes the line of fixed points of th
Luttinger liquid.

From the above analysis we conclude that the SU(N)
Hubbard model at half filling is massless for smallU.0.
The spin sector is described by the SU(N)1 WZNW model
while the charge sector is a Luttinger liquid with contin
ously varying exponents. The main point in the above ana
sis is the absence of umklapp terms which, whenN52,
opens a gap in the charge sector for an infinitesimal valu
the interaction. At this point it is worth recalling that th
main approximation made in the above analysis is the om
sion of the oscillating contributionsV2kF

andV4kF
. This is a

reasonable assumption as far asU is not too large. However
one expects, on general grounds, that umklapp proce
should contribute at sufficiently largeU and that a Mott tran-
sition to an insulating phase should occur at a finiteUc .
Indeed, in theU˜` limit, we have an insulating phas
where the spin degrees of freedom are described by
SU(N) Heisenberg antiferromagnet. We shall return to t
point later. For now let us concentrate on the properties
the metallic phase.
in
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B. The metallic phase

At this point, we introduceN chiral bosonic fieldsfaR(L) ,
a5(1, . . . ,N), using the Abelian bosonization of Dira
fermions24

caR(L)5
ka

A2p
:exp~6 iA4pfaR(L)!:, ~29!

where the bosonic fields satisfy the commutation relat
@faR ,fbL#5 ( i /4) dab . The anticommutation between fe
mions with different spin indexes is realized through t
presence of Klein factors~here Majorana fermions! ka with
the following anticommutation rule:$ka ,kb%52dab . As in
the N52 case, it is suitable to switch to a basis where
charge and spin degrees of freedom single out. To this e
let us introduce a charge bosonic fieldFcR(L) andN21 spin
bosonic fieldsFmsR(L) , m5(1, . . . ,N21) as follows:

FcR(L)5
1

AN
~f11¯1fN!R(L) ,

FmsR(L)5
1

Am~m11!
~f11¯1fm2mfm11!R(L) .

~30!

The transformation~30! is canonical and preserves th
bosonic commutation relations. The inverse transformatio
easily found to be

f1R(L)5
1

AN
FcR(L)1 (

l 51

N21
F lsR(L)

Al ~ l 11!
,

faR(L)5
1

AN
FcR(L)2Aa21

a
F (a21)sR(L)

1 (
l 5a

N21
F lsR(L)

Al ~ l 11!
, a52, . . . ,N21,

fNR(L)5
1

AN
FcR(L)2AN21

N
F (N21)sR(L) . ~31!

In this new basis, the Hamiltonian density in the spin sec
at the SU(N)1 fixed point reads

Hs* 5
us

2 (
m51

N21

@ :~]xFms!
2:1:~]xQms!

2:#, ~32!

whereus is the spin velocity at the fixed point and

Fms5FmsL1FmsR,

Qms5FmsL2FmsR. ~33!

This representation makes clear the fact that the cen
charge in the spin sector is indeedc5N21.

Let us now concentrate on the charge sector. It is
difficult to show, using Eqs.~17!, ~29!, and ~30! that the
charge current expresses as
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JR(L)
0 5AN

p
]xFcR(L) . ~34!

Therefore, the Hamiltonian density~25! in the charge secto
reads

Hc5
vc

2
@ :~]xFc!

2:1:~]xQc!
2:#

1~N21!
Ua0

p
]xFcL]xFcR , ~35!

where we have introduced the total charge bosonic fieldFc
5FcR1FcL and its dualQc5FcL2FcR . The Hamiltonian
~35! can be written in the Luttinger-liquid form

Hc5
uc

2 S 1

Kc
:~]xFc!

2:1Kc :~]xQc!
2: D , ~36!

where the charge exponentKc and the renormalized charg
velocity uc are given by

Kc5
1

A11~N21!Ua0 /pvF

,

uc5vFA11~N21!Ua0 /pvF. ~37!

The U dependence of the Luttinger parametersKc and uc
given in the above expressions should not be taken too
ously. Indeed, the continuum limit approach is strictly spe
ing valid only providedU/t!1. In this regime one has

Kc;12~N21!
Ua0

2pvF
,

uc;vF1~N21!
Ua0

2p
. ~38!

The physically relevant question is now what happens
higher values of the interactionU. In the absence of um
klapp terms, the accepted view is that the effect of inter
tion corresponds to a renormalization of the Luttinger para
etersKc and uc as well as the spin velocityus which have
therefore to be thought as phenomenological parameter
the Landau coefficients in the Fermi-liquid theory.7,8 These
parameters completely characterize the low energy prope
of the metallic phase as we shall see now. Let us first disc
the electronic Green’s function defined by

Gab~x,t!5^ca
†~x,t!cb~0,0!&, ~39!

t being the imaginary time. This correlation function can
computed using Eqs.~9!, ~29!, and~31!. After some calcula-
tions, one finds

Gab~x,t!;
dab

2p F 1

x21uc
2t2Ga/2F exp~ ikFx!

~ ix1uct!1/N~ ix1ust!121/N

1
exp~2 ikFx!

~2 ix1uct!1/N~2 ix1ust!121/NG , ~40!

where the exponenta is given by
ri-
-

r

-
-

as

es
ss

a5
1

2NKc
~12Kc!

2. ~41!

This allows us to give an estimate of the single particle d
sity of states which is related to the electronic Green’s fu
tion at x50:

r~v!;uvua. ~42!

Similarly, Kc determines the singularity of the momentu
distributionna(k) around the Fermi pointkF :

na~k!5na~kF!1Cte sgn~k2kF!uk2kFua ~43!

and the momentum distribution function has a power l
singularity at the Fermi level unlike a standard Fermi liqu
This anomalous power law behavior for any finite value ofN
is inherent of a Luttinger liquid.

The computation of the SU(N) spin-spin correlation func-
tion

DAB~x,t!5^S A~x,t!S B~0,0!& ~44!

is more involved. It can be shown that the leading asymp
ics of this correlation function is given by the 2kF part

DAB~x,t!;dAB
cos~2kFx!

~x21uc
2t2!Kc /N~x21us

2t2!121/N
. ~45!

We deduce from the above correlation function the low te
perature dependence of the NMR relaxation rateT1

1

T1T
;T2/N12Kc /N22. ~46!

As seen, once theU dependence of the Luttinger param
etersuc , Kc , andus is known, the low energy properties o
the metallic phase are entirely determined. These parame
are nonuniversal and cannot be obtained for arbitraryU by
the continuum limit approach. AlthoughKc,1 when U
.0, one does not know its minimum value. It is only in th
N52 case, that the Luttinger parameters can be extra
from the exact solution.27–29WhenN.2 no exact solution is
available and one has to use numerical computations to
mate these parameters. This will be done for the two ca
N53 andN54 in Sec. V. Before doing that, let us discu
the Mott transition that should occur in the problem for
finite critical value of the repulsionU for N.2.

C. The Mott transition

The very difference between theN52 and N.2 cases
lies in the fact that there is no umklapp term at half filling
the bare Hamiltonian in the continuum limit. The reason
this is that these terms came with oscillating factors and w
omitted for small value of the repulsion. However, in the R
strategy one has to look at the stability of the Luttinger fix
line and any operator that is compatible with the symme
of the problem should be taken into account: they will
generated during the renormalization process. In our pr
lem, the important symmetries are the SU(N) spin rotation
invariance, chiral invariance and translation invariance.
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From Eqs.~9!, ~29!, and~30!, one easily finds that unde
a translation by one lattice site, the charge fieldFc is shifted
according to

Fc˜Fc1Ap

N
. ~47!

Therefore one can add any operator in the charge sector
is invariant under the transformation~47! and will be neces-
sary generated by higher order in perturbation theory. T
operator with the smallest scaling dimension that is invari
under Eq.~47! is

Humklapp52Gu:cos~A4pNFc!:. ~48!

Other operators, with higher scaling dimensions, that cou
spin and charge degrees of freedom may also be inclu
This is the reason why one cannot exclude the possibility
a charge density wave~CDW! instability. For instance, such
processes are present in the extended SU~2! Hubbard model
at half filling.30 Although it requires some formal proof, w
expect that, due to the fact that in the present model
interaction is local in the density, the leading umklapp co
tribution should only affect the charge sector. We ha
checked that this is indeed true for the particular casesN
53 and N54.31 We have shown indeed by perturbatio
theory that the oscillating contributionsV2kF

andV4kF
gen-

erate 6kF and 4kF processes forN53 and N54, respec-
tively. Up to irrelevant operators, the only contribution w
found is precisely Eq.~48! with N53 andN54. In any case
in what follows, we shall thus make the hypothesis, fi
made by Affleck,23 that all the effects of high energy pro
cesses are exhausted by Eq.~48! for the general SU(N) case.
Consequently, the effective Hamiltonian density in the s
sector is still given by the SU(N)1 WZNW model and the
effective Hamiltonian in the charge sector is now

Hc5
uc

2 S 1

Kc
:~]xFc!

2:1Kc :~]xQc!
2: D

2Gu:cos~A4pNFc!:. ~49!

Rescaling the fields asFc˜FcAKc andQc˜Qc /AKc, the
Hamiltonian ~49! in the charge sector becomes the Ham
tonian of the sine-Gordon model

Hc5
uc

2
@ :~]xFc!

2:1:~]xQc!
2:#2Gu:cos~A4pNKcFc!:.

~50!

Since the scaling dimension of the cosine term in Eq.~50! is
Du5NKc , we deduce that a gap opens in the charge se
when

Kc5
2

N
. ~51!

On the other hand, whenKc,2/N, the umklapp term is ir-
relevant and the system remains in the metallic phase
scribed in the preceding subsection. Therefore, asU in-
creases,Kc will decrease from 1 atU50 to Kc52/N at a
critical value of the interactionUc where a Mott transition to
an insulating phase occurs. Within this scheme, the ph
hat

e
t

le
d.
f

e
-
e

t

n

-

or

e-

se

transition is expected to be of the KT type. Of course wh
U.Uc , Kc vanishes so that the jump is 122/N and is uni-
versal. The present approach cannot give an accurate v
of Uc . However, one can get a rough estimate ofUc using
Eqs.~11!, ~37!, and~51!:

Uc

t
5

p

2

N224

N21
sin

p

N
. ~52!

In the insulating phase, the charge fieldFc is locked in a
special well of the sine-Gordon model~50! and the leading
asymptotics of the SU(N) spin-spin correlation functions is
now

DAB~x,t!;l1dAB
cos~2kFx!

~x21us
2t2!121/N

, ~53!

where l1 is a nonuniversal constant stemming from t
charge degrees of freedom. One recovers the result pr
ously derived by Affleck.23 The NMR relaxation rate be
haves now as 1/(T1T);T2/N22. Finally, let us note that there
are other harmonics 4kF ,6kF , . . . , in the SU(N) spin den-
sity ~12! that will be generated by higher orders in perturb
tion theory. Together with the uniform contribution wit
scaling dimension 1, these terms will give subleading pow
law contributions in the SU(N) spin-spin correlation func-
tion ~53!. These operators correspond to the primary fields
SU(N)1 WZNW transforming to another representation
SU(N) than the fundamental one. One should recall that
the SU(N)1 WZNW, there areN21 primary fields.26 A pri-
mary field f̃a (a51, . . . ,N21) of SU(N)1 transforms ac-
cording to theath basic representation of SU(N) ~Young
tableau witha boxes and a single column! and has scaling
dimensionDa5a(N2a)/N. We thus expect the following
asymptotics forDAB with some nonuniversal constants (la):

DAB~x,t!;2
dAB

8p2 S 1

~ust2 ix !2
1

1

~ust1 ix !2D
1dAB(

a51

N21

la

cos~2akFx!

~x21us
2t2!a2a2/N

~54!

up to logarithmic contributions originating from the margin
irrelevant current-current interaction in the spin sector.32

We end this subsection by giving the low-temperature
pression of the uniform susceptibilityx and the specific hea
of the SU(N) Hubbard model in the insulating antiferroma
netic phase. The continuum density that describes the be
ior of the SU(N) spins degrees of freedom in a unifor
magnetic fieldH is given by

HH5
us

2 (
m51

N21

@ :~]xFms!
2:1:~]xQms!

2:#2H (
m51

N21

Jm, ~55!

where we have neglected the marginally irrelevant curre
current interaction. In Eq.~55!, we have considered a un
form magnetic field along the diagonalTm (m51, . . . ,N
21) generators of SU(N) that span the Cartan subalgebra
SU(N). According to our normalization convention, the
can be written inN3N diagonal matrices as follows:
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Tm5
1

A2m~m11!
diag~1,1,. . . ,2m,0, . . . ,0! ~56!

with m51, . . . ,N21 and2m is located on them11 ele-
ment of the diagonal. Using the bosonization corresponde
~29! and the canonical transformation~31!, the total density
Hamiltonian~55! in a magnetic field can be written as

HH5
us

2 (
m51

N21

@ :~]xFms!
2:1:~]xQms!

2:#

2
H

A2p
(

m51

N21

]xFms. ~57!

Doing the substitution

]xFms˜]xFms1
H

A2pus

, ~58!

we obtain the expression of the uniform susceptibility of t
SU(N) Heisenberg antiferromagnet

x5
N21

2pus
~59!

which is nothing butN21 times the uniform susceptibility
of the SU~2! Heisenberg antiferromagnet. This result is ea
to understand since the critical theory in the spin sector c
responds toN21 decoupled massless bosonic modes.
nally, using the general formula of the specific heat at l
temperatures for a conformaly invariant theory,33 one has for
the SU(N) Heisenberg antiferromagnet

CV5
p~N21!

3us
T. ~60!

Before closing this section, it is important to emphas
that the Mott transition expected in the bosonization
proach relies on the full expression ofKc(U) as function of
the interaction. However, one should stress that this par
eter cannot be obtained for arbitraryU within this approach
and only in the weak coupling limitU!t where the model is
in its metallic phase. To conclude in favor of the existence
a Mott transition for a finite value of the Coulomb intera
tion, one has thus to computeKc(U) of the lattice model by
an independent approach. Since the SU(N) Hubbard model
with N.2 is not exactly soluble, one cannot determine
expressionKc(U) by the Bethe ansatz as for the standa
Hubbard model.27–29 We shall thus compute the valu
Kc(U) of the lattice model using very accurate numeric
calculations based on QMC methods described in the n
section. In Sec. V, we shall then compare the numerical
sults with the predictions of the bosonization approach gi
in this section to conclude on the existence of a Mott tran
tion in the model.

III. THE NUMERICAL APPROACH

In this section we present our improved zero-tempera
Green’s function Monte Carlo method used for comput
ground-state properties. In the first part a sketchy but s
ce
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contained presentation of the basic GFMC method is giv
In addition to introducing our notations for the next part, th
section will enable the interested reader to understand al
practical aspects of the method. The second part is dev
to the presentation of the generalized GFMC method itse

A. Green’s function Monte Carlo

As already noticed in the Introduction the basic idea
the GFMC method is to extract from a known trial wav
function ucT& the exact ground-state componentuc0&. To do
that an operatorG(H) acting as a filter is introduced. Fo
continuum problems standard choices areG(H)
5exp(2tH) ~diffusion Monte Carlo! or G(H)51/@1
1t(E2H)# ~Green’s function Monte Carlo!. For a lattice
problem or any model with a finite number of states~finite
matrix! a natural choice to consider is

G~H![12t~H2ET!, ~61!

wheret plays the role of a timestep~a positive constant! and
ET is some reference energy. Ift is chosen sufficiently smal
and ucT& has a nonzero overlap with the ground state,
exact ground state is filtered out as follows:

lim
P˜`

G~H!PucT&;uc0&. ~62!

This result is easily obtained by expandingucT& within the
complete set of eigenstates ofH.

In Monte Carlo schemes, successive applications of
operatorG(H) on ucT& are done using probabilistic rules
These rules are implemented in configuration space wh
the trial wave function and matrix elements ofH are easily
evaluated. In what follows we shall denote byu i & an arbitrary
configuration of the system. To give an example, in act
calculations presented below we consideru i &5u i (1)&¯u i (N)&
with u i (a)&[un1a , . . . ,nLa& whereL is the number of sites,a
the SU(N) color index, andnia the occupation number o
site i (nia50 or 1! for the speciesa.

In this work Hamiltonians considered are of the form

H5T1V, ~63!

whereT is the kinetic term~a nondiagonal operator! andV is
a ~diagonal! potential term. For fermions in one dimension
is known that by choosing a suitable labeling of the sit
nonzero matrix elements of the kinetic term can all be ma
negative

^ i uTu j &<0 ~ iÞ j !. ~64!

A most important consequence of this property is that
exact ground state has a constant sign. In other words, s
lations presented here are free of the sign problem.

Let us now introduce the following transition probability

Pi˜ j~t!5cT~ j !^ j u@12t~H2EL!#u i &
1

cT~ i !
, ~65!

wherecT( i ) are the components of the vectorucT&, cT( i )
[^ i ucT&, andEL is a diagonal operator called the local e
ergy and defined as follows:

^ i uELu j &5d i j EL~ i !
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with

EL~ i !5
^ i uHucT&

^ i ucT&
. ~66!

Note the important relation associated with the definition
the local energy

~H2EL!ucT&50. ~67!

To define a transition probabilityPi˜ j must fulfill the two
following conditions. First, the sum over final states( j Pi˜ j
must be equal to 1. Here, this is true as a direct consequ
of Eq. ~67!. Second,Pi˜ j must be positive. To see this an
for later use, let us distinguish between the casesi 5 j and
iÞ j .

For i 5 j we have

Pi˜ i~t!511tTL~ i !, ~68!

whereTL( i )[EL( i )2Hii . Using Eq.~63!, TL( i ) can be re-
written as

TL~ i !5
^ i uTucT&

^ i ucT&
, ~69!

TL( i ) is called the local kinetic energy. Because of Eq.~64!
it is a negative quantity and the transition probability can
made positive by takingt sufficiently small. More precisely
the time step must verify

0,t,Min i@21/TL~ i !#. ~70!

Note that the upper bound is a nonzero quantity for a fin
system. On the other hand, wheniÞ j we have

Pi˜ j~t!52tHi j

cT~ j !

cT~ i !
~ iÞ j !, ~71!

a positive expression sincecT( i ) is chosen to be positive an
off-diagonal termsHi j are negative@Eq. ~64!#.

Using expressions~68! and ~71! for the transition prob-
ability random walks in configuration space can be gen
ated. By averaging over configurations, statistical estima
for various quantities can be defined. A first important e
ample is the calculation of the variational energy associa
with ucT& ~variational Monte Carlo!. The variational energy
is defined as

Ev~cT!5
^cTuHucT&

^cTucT&
. ~72!
f

ce

e

e

r-
s

-
d

Here, it is rewritten as

Ev~cT!5 lim
K˜`

1

K (
i 51

K

EL~ i !5^^EL&& (P) , ~73!

where^^¯&& (P) is the stochastic average over configuratio
u i & generated using the transition probabilityP, K being the
number of configurations calculated. Equation~73! holds be-
causecT( i )2 is the stationary density of the stochastic pr
cess, that is,

(
i

cT~ i !2Pi˜ j~t!5cT~ j !2 ; j . ~74!

This property is directly verified by using expressions~65!
and ~67!.

As already pointed out, the estimate of the exact energ
based on the stochastic calculation of@12t(H
2ET)#nucT&, Eq. ~62!. Introducing between each operator
the product the decomposition of the identity over the ba
set 15( i u i &^ i u and making use of the definition of the tran
sition probability, Eq.~65!, we get the following path inte-
gral representation:

@12t~H2ET!#PucT&5 (
i 0¯ i P

cT~ i 0!2 )
k50

P21

Pi k˜ i k11

3 )
k50

P21

wi ki k11

1

cT~ i P!
u i P&, ~75!

where the weightswi j are defined as follows:

wi j [
^ i u@12t~H2ET!#u j &
^ i u@12t~H2EL!#u j &

~76!

or, more explicitly,

wi j 51, iÞ j ,

wii 5
12t~Hii 2ET!

12t@Hii 2EL~ i !#
, i 5 j . ~77!

From Eq.~62! the exact energy can be obtained as

E05 lim
P˜`

^cTuH@12t~H2ET!#PucT&

^cTu@12t~H2ET!#PucT&
, ~78!

which is rewritten here in terms of stochastic averages a
E05 lim
P˜`

K K EL~ i P! )
k50

P21

wi ki k11L L
(P)

Y K K )
k50

P21

wi ki k11L L
(P)

. ~79!
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In order to compute the averages appearing in that exp
sion two strategies can be employed. First, formula~79! can
be directly used as it stands: Paths are generated usin
transition probability and the local energy at each step
weighted by the quantityW5Pkwi ki k11

. This approach
where the number of configurations is kept fixed and
weights are carried out along trajectories is usually refer
to as the pure diffusion or Green’s function Monte Ca
method. For extended systems such as those considered
this approach is not optimal. Indeed, it is important to sam
less frequently regions of configuration space where the t
weight is small and to accumulate statistics where it is lar
To realize this, a birth-death process~or branching process!
associated with the local weight is introduced. In practice
consists in adding to the standard stochastic move define
the transition probability, a new step in which the curre
configuration is destroyed or copied a number of times p
portional to the local weight. Denotingmi j the number of
copies~multiplicity! of the statej , we take

mi j [ int~wi j 1h!, ~80!

where int(x) denotes the integer part ofx, andh a uniform
random number on (0,1). Adding a branching process ca
viewed as sampling with a generalized transition probabi
Pi˜ j* (t) defined as

Pi˜ j* ~t![Pi˜ j~t!wi j

5cT~ j !^ j u@12t~H2ET!#u i &
1

cT~ i !
. ~81!

Of course, the normalization is not constant~the population
fluctuates! and P* is not a genuine transition probability
However, we can still define a stationary density for it. Fro
Eq. ~81! we see that the stationary condition is obtain
when ET is chosen to be the exact energyE0 , and that the
density is cT( i )c0( i ). Accordingly, by using a stabilized
population of configurations the exact energy may be n
obtained as

E05^^EL&& (P,w) . ~82!

Note the use of an additional subscriptw in the average to
recall the presence of the branching process.

At this point, we shall not expand further the method. F
more details regarding the implementation of GFMC to l
tice systems the interested reader is referred to Refs.
34–36. Let us just emphasize on two important aspe
First, there exists a so-called zero-variance property for
energy: The better the trial wave functioncT is, the smaller
the statistical fluctuations are. In the limit of an exact wa
function for which the local energy is a constant, fluctuatio
entirely disappear~zero variance!. From this important re-
mark follows that in any QMC method, it is crucial to opt
mize as much as possible the trial wave function used.
course, in practice, a compromise between the complexit
the wave function and the gain in reduction of variance
to be found.

Once a good trial wave function has been chosen, the o
room left for improvement is the implementation of the d
namical process itself. In the algorithm presented here
only dynamical parameter which can be adjusted is the t
s-
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step t. In a configurationu i & associated with a small loca
kinetic energyTL( i ), the system remains in this configura
tion a relatively large time and a large value oft is necessary
to help the system to escape from it. Unfortunately, beca
of the constraint~68! (Pi˜ i must be positive! configurations
with a high local kinetic energy impose a small value oft. In
order to circumvent this difficulty, we propose to integra
out exactly the time evolution of the system when trapped
a given configuration. This idea is developed in the n
section.

B. GFMC and Poisson processes

Consider the probability that the system remains in
given configurationi a number of times equal ton. It is
given by

Pi~n![P~ i 15 i ,t; . . . ;i n5 i ,t; i n11Þ i ,t!

5@Pi˜ i~t!#n@12Pi˜ i~t!#. ~83!

Pi(n) defines a normalized discrete Poisson distribution.
terms of the local kinetic energy it can be rewritten as

Pi~n!52tTL~ i !exp$n ln@11tTL~ i !#%, ~84!

where the integern runs from zero to infinity. To describe
transitions towards statesj different from i we introduce the
following escape transition probability:

P̃i˜ j5
Pi˜ j~t!

12Pi˜ i~t!
, j Þ i . ~85!

Using Eqs.~68! and ~69! P̃i˜ j is rewritten in the most ex-
plicit form

P̃i˜ j5
Hi j cT~ j !

(kÞ iHikcT~k!
, j Þ i . ~86!

Note that this transition probability is positive, normalize
and independent of the time-stept. Now, by using both
probabilitiesPi(n) and P̃i˜ j , the path integral representa
tion of G(H)PucT&, formula ~75!, can be rewritten as

@12t~H2ET!#PucT&

5 (
( i ,n)PCP

cT~ i 0!2F )
k50

l 21

Pi k
~nk!P̃i k˜ i k11GPi l

~nl !

3)
k50

l

wi k

nk
1

cT~ i l !
u i l&, ~87!

where the sum is performed over the set of all families
states (i 0¯ i l) with multiplicities (n0¯nl) verifying
(k50

l 21 (nk11)1nl5P. In a given family successive state
are different and the variablenk represents the number o
times the system remains in configurationi k . The set of all
families is denotedCP and an arbitrary element is writte
( i ,n)[( i 0¯ i l ,n0¯nl). Since off-diagonal weights are
equal to 1, Eq.~77!, a shortened notation for the diagon
weightswi[wii has been introduced.

Now, let us remark that the time stept plays a role in the
path integral formula~87! only when the system is trappe
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into a given configuration. Indeed, both the escape proba
ity P̃ and the off-diagonal weightwi j are independent oft.
As an important consequence the limitt˜0 andP˜` with
Pt5t can be done exactly. In this limit the discrete Poiss
processPi(n) defined in Eq.~84! converges to a continuou
Poissonian distribution for the variableu5nt

Pi~u!5
1

ū i

e2u/ ū i. ~88!

In this formulaū i represents the average time spent in c
figuration i . In what follows we shall refer to it as the ave
age trapping time, its expression is

ū i521/TL~ i !. ~89!

The fact thatū i is inversely proportional to the local kineti
energy is explained as follows. When the kinetic energy
small the system is almost blocked in its configuration anū
is large. In contrast, when a large kinetic energy is availa
the system can escape easily from its current configura
and ū is small. As already remarked the escape transit
probability is independent oft and is therefore not affecte
by the zero-time-step limit. Finally, after exponentiating t
product of weights, the path integral can be rewritten in
form

e2t(H2ET)ucT&

5 (
i 0¯ i l

E
0

1`

du0¯E
0

1`

du lcT~ i 0!2

3F )
k50

l 21

Pi k
~uk!P̃i k˜ i k11GPi l

~u l !e
2(k50

l uk„EL( i k)2ET…

3
1

cT~ i l !
u i l& ~90!

with the constraint that the trapping times verify(k50
l uk

5t.
In order to compute ground-state properties the limit

˜` must be performed, Eq.~62!. In this limit the constraint
(k50

l uk5t can be relaxed and, quite remarkably, integ
tions over the Poisson distributions for the different trapp
times can be performed. For large enough timet we obtain

e2t(H2ET)ucT&; l˜` (
i 0¯ i l

cT~ i 0!2)
k50

l 21

P̃i k˜ i k11)k50

l

w̃i k

3
21

TL~ i l !

1

cT~ i l !
u i l&, ~91!

where the new integrated weightsw̃ are found to be

w̃i5
TL~ i !

ET2Hii
. ~92!

In the same way as before the exact energy can be obta
as
il-
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E05 lim
t˜`

^cTuHe2t(H2ET)ucT&

^cTue2t(H2ET)ucT&
. ~93!

In terms of stochastic averages it gives

E05 lim
l˜`

K K EL~ i l !ū i l )k50

l

w̃i kL L
( P̃)

Y K K ū i l )k50

l

w̃i kL L
( P̃)

,

~94!
where configurations are generated using the escape tr
tion probability P̃.

As in the standard approach it is preferable to simulate
weights via a branching process. Here also, the refere
energyET stabilizing the population is given by the exa
energyE0 . The new stationary density is written as

p~ i !;cT~ i !c0~ i !/ ū i ~95!

up to an immaterial normalization constant. Finally, our e
timator for E0 is

E05
^^ū iEL~ i !&& ( P̃,w̃)

^^ū i&& ( P̃,w̃)

, ~96!

where configurations are generated usingP̃ and branched
with w̃. Note that the variational energy can be recovered
removing the branching process (w̃51)

Ev~cT!5
^^ū iEL~ i !&& ( P̃)

^^ū i&& ( P̃)

. ~97!

IV. COMPUTATIONAL DETAILS

In this section some important aspects of the pract
implementation of the GFMC approach to the SU(N) Hub-
bard model are presented.

A. Hardcore boson Hamiltonian

The Hamiltonian considered here is the one-dimensio
SU(N) Hubbard model described by Eq.~1!. Simulations are
performed for a finite ring of lengthL. In one dimension the
sites can be labeled in such way that the hopping term c
nects only sites represented by consecutive integers. A
consequence no fermion sign appears, except eventu
when a fermion crosses the boundary (1˜L or L˜1). By
choosing either periodic or antiperiodic boundary conditio
this sign can always be absorbed and our model~1! becomes
equivalent to a model made up with hardcore bosons
described by

H52t(
i 51

L

(
a51

N

ci 11a
1 cia1H.c.1

U

2 (
i

S (
a

niaD 2

, ~98!

wherecia
1 creates a hardcore boson of colora on sitei , nia is

the occupation numbernia5cia
1cia , andcL1 ia

1 [cia
1 .

B. Trial wave function

As already emphasized a most important aspect of
Monte Carlo scheme is the choice of a good trial wave fu
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2310 PRB 60ASSARAF, AZARIA, CAFFAREL, AND LECHEMINANT
tion. To guide our choice, let us consider the exact solut
at U50. In this case the ground state is obtained by fillingN
independent Fermi seas consisting of planes waves with
mentakn52pn/L (n50,61, . . . ). For agiven type of fer-
mion, the ground state can be written as a Vandermo
determinant37 and the following expression for the groun
state is obtained:

c0
U50~ i 1 , . . . ,i P!5 )

l , l 8
sinFpL ~ i l2 i l 8!G , ~99!

where i 1 , . . . ,i P are the positions of theP fermions on the
chain, i k51, . . . ,L. In terms of occupation numbers the s
lution can be rewritten as

f~n1 , . . . ,nL!5e
tnWA0nW /2, ~100!

where the matrixA0 of size (L3L) is given by

A0~ i ,i 8!5 lnUsinFpL ~ i 2 i 8!GU. ~101!

Note that Eqs.~100! and~101! describe a system of particle
interacting via a logarithmic potential~one-dimensional Log
gas!. The exact ground-state wave function of the compl
SU(N) model at U50 is simply obtained by writing the
product of theN wave functions~100! associated with each
color.

When the Coulomb interaction is switched on, we ha
chosen to take the same functional form as before forcT

cT~nW ![e
tnW AUnW /2. ~102!

Here,AU is an arbitrary matrix of size (NL3NL). Taking
into account the translational and SU(N) symmetries, at
most L12 independent variational parameters can be
fined. In all GFMC calculations presented in this paper
entire set of parameters has been systematically optimi
To do that, we have generalized the correlated samp
method of Umrigaret al.38 along the lines presented in th
preceding section. To be more precise, the set of config
tions used to calculate the quantities to be minimized~varia-
tional energy or variance ofH, see Ref. 38! are generated
using the escape transition probability and weighted with
corresponding average trapping times. Doing this, the ef
tive number of configurations is increased and the optim
tion process is facilitated. We have found that large numb
of parameters can be easily optimized.

C. O„L … algorithm

In the occupation-number representation the numerica
fort for calculating the trial wave functioncT(nW ) is of order
O(L2). To evaluate the local energy the Hamiltonian has
be applied to the vectorucT&. Since a given configurationunW &
is connected byH to aboutO(L) states, the total computa
tional cost per Monte Carlo step is aboutO(L3). In fact, this
cost can be reduced toO(L). To do that, we introduce the
following set of 2NL11 variables:

~nW ,nW U ,n0![S nW ,AUnW ,
tnW AUnW

2 D . ~103!
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Using this representation, the wave function is given byen0.
Configurations connected by the Hamiltonian differ fro
each other by removing a particle of a given colora on a site
i and putting it on a neighboring sitej . In the occupation-
number language it corresponds to add one to the compo
ja and remove one to the componentia of vector nW . For
convenience let us introduce the vectordW ( ia) whose compo-
nents are zero except the componentia which is equal to 1.
Using the new variables just defined we have

~nW ,nW U,n0!˜S nW 1dW ( ja)2dW ( ia),nW U1AUdW ( ja)2AUdW ( ia),

n01
t~dW ( ia)2dW ( ja)!AU~dW ( ia)2dW ( ja)!

2

2 tnW U~dW ( ia)2dW ( ja)! D . ~104!

In the simulation the set of new variables is stored
each configuration. At each Monte Carlo step they are re
tualized using Eq.~104!. Finally, the numerical effort is lim-
ited to O(L).

V. RESULTS

Let us now present the results for the SU~2!, SU~3!, and
SU~4! Hubbard models. SU~2! results have been obtained b
solving numerically the Lieb-Wu equations.11 Other results
have been obtained with the GFMC method presented in
previous section. In all calculations we have sett51.

A. Charge gaps

The finite-size charge gapDc(Ne ,L) is defined as

Dc~Ne ,L ![E0~Ne11,L !1E0~Ne21,L !22E0~Ne ,L !,
~105!

whereE0(Ne ,L) is the total ground-state energy of a ring
lengthL with Ne electrons. In this expressionNe61 means
that a fermion of an arbitrary color is added to or remov
from the system. DenotingN the number of colors, calcula
tions are done for a number of fermions of each color eq
to L/N, and therefore for a total densityn[Ne /L equal to 1.
In order to get the exact charge gap the limitL˜` must be
performed. As usual this is done by calculating charge g
for different sizes and extrapolating to infinity. Here, SU~3!
and SU~4! calculations have been done forL59,12,18,27
and L58,16,24,32, respectively. The finite-size gaps ha
been found to converge almost linearly as a function of
inverse of the size. Accordingly, the limitL˜` of the gap
has been obtained from a fit of the data with a linear
quadratic function of 1/L. Figure 1 presents the charge ga
obtained forN52,3,4 as a function of the Coulomb intera
tion U.

A first important remark concerns the quality of th
Monte Carlo simulations. As it can be seen in Fig. 1, t
error bars on the different gaps are quite small. A typi
value is about 0.001. Errors are small because total ener
are calculated with a very high level of accuracy. For e
ample, for the SU~4! model withL532 andU50.5, we get



n-

d
or

a
d
ut

en

y

a
r

f

av

n
u
b

he

.
ag-
ify

ted
re
ry

t
r
ep-

s

e

,

ld

on-
r not

for

is

ct a

tate
lor

e

f-

ct
ion
an
nce
ce
om.

-
a

ded

on
a

ps

PRB 60 2311METAL-INSULATOR TRANSITION IN THE ONE- . . .
E0(32,32)5252.13056(15) for a total number of eleme
tary Monte Carlo steps equal to 83107. Clearly, the relative
error of about 331026 is very small. In the largeU regime
where the trial wave function is not expected to be as goo
for small U, we still get excellent results. For example, f
U54.5 we get E0(32,32)5223.7118(13) (1.63108 MC
steps! with a relative error of about 631025. Using the stan-
dard GFMC method~presented in Sec. III A! we get, forU
50.5, E0(32,32)5252.13050(40) and, for U54.5,
E0(32,32)5223.7210(110)@in both cases the maximum
time-step allowed has been chosen, see Eq.~70!#. The im-
provement resulting from the new approach, particularly
largeU, is noticeable. Finally, using the approach of Trive
and Ceperley19 ~introduction of the Poisson process b
no integration in time! we get for U50.5 E0(32,32)
5252.13041(22) and for U54.5, E0(32,32)
5223.7121(30). These results illustrate the improvem
resulting from the time integration.

Having at our disposal such accurate results we can tr
find out whether or not a gap opens for a nonzero value ofU.
Considering only continuous transitions, two scenarios
possible. A first possibility is to open a gap for any non-ze
value of U. In that case we write the gap versusU as fol-
lows:

Dc5C exp~2G/U !. ~106!

A second scenario consists in looking for the existence o
KT-type transition at a finite valueUc of the Coulomb inter-
action. In that case the gap is written as

Dc5CKT expS 2
GKT

AU2Uc
D ~107!

for U.Uc and zero otherwise. The three sets of results h
been fitted either using Eqs.~106! or ~107!. The fitting pro-
cedure used is a standard one, based on the minimizatio
a chi-square type function including statistical errors. O
most important conclusion is that all sets of data can
correctly represented within our small statistical errors eit
using the gapful representation, Eq.~106!, or using a KT
scenario, Eq.~107!, with a not too large value ofUc . For

FIG. 1. Charge gaps as a function of the interactionU for the
SU~2!, SU~3!, and SU~4! Hubbard models. The values of the ga
have been extrapolated toL˜` ~see text!.
as
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example, using Eq.~106! possible representations are (C
525.313,G511.318), (C5274.634,G526.745), and (C
5515.649,G532.755), for N52, 3, and 4, respectively
Although no clear physical content can be given to the m
nitude of coefficients, it is nevertheless satisfactory to ver
that in the case of SU~2!, the gapful~106! leads to not too
large values for the coefficients. This should be contras
with the SU~3! and SU~4! cases for which the parameters a
important. Within a KT scenario all data can also be ve
well fitted. In the case of SU~2! where we know for sure tha
no KT transition exists, the ‘‘critical value’’ issued from ou
fits ranges from 0 to about 0.5. For example, a possible r
resentation is given by (CKT5541.310,GKT511.053, and
Uc50.384). For the SU~3! model accurate representation
can be obtained with a value ofUc ranging from 0 to about
2.3 For Uc52.2 ~the value we shall propose later for th
critical value! we get (CKT545.050,GKT56.567, andUc
52.2). For SU~4! the interval is larger. Allowed values
range from 0 to about 2.9. ForUc52.8 ~our proposed value
see below! we get (CKT517.889,GKT55.144, and Uc
52.8). In contrast with the gapful representation, it shou
be noted that coefficients are now much larger for the SU~2!
model than for the SU~3! and SU~4! models.

In conclusion, using accurate values of the gaps no c
clusions can be reasonably drawn about the existence o
of a KT-type transition at a finite value ofU. Numerical
evidence based on other quantities are therefore called
~see next sections!. From the fitting of our data the only
conclusion we are allowed to draw is that a KT transition
only possible within the range~0,2.3! for SU~3! and within
the range~0,2.9! for SU~4!. In addition to this, if such a
transition actually occurs in both models, we should expe
difference for the critical values given byUc@SU(4)#
2Uc@SU(3)#;0.5– 0.6~see Fig. 1!.

B. Spin gap

The spin gap is defined as the change in ground-s
energy produced when destroying a fermion of a given co
and creating a fermion of a different color@in the SU~2! case
it consists in flipping one spin#. Note that in this process th
charge number is kept fixed. For a finite system we have

Ds~Ne ,L ![E0~Ne61,L !2E0~Ne,L !, ~108!

whereNe61 involves an arbitrary pair of electrons of di
ferent colors~one created, one destroyed!.

For the SU~2! case the system is known from the exa
solution to be gapless for an arbitrary value of the interact
strengthU. For a number of colors greater than 2, it is
open question. This is an important point since the existe
of a gapful regime would very likely indicate the existen
of a coupling between spin and charge degrees of freed
In all calculations performed forN53 and 4, and for a cou-
pling constantU ranging from very small to very large val
ues ~up to U510) no evidence for the existence of such
gap has been found. Thus, it can be quite safely conclu
that the spin sector of SU(N) N52,3,4 is gapless for an
arbitrary interaction in full agreement with the bosonizati
prediction. To illustrate this point we present in Fig. 2
typical behavior for the spin gap of SU~3! as a function of
1/L at the relatively large valueU54.5 ~at least two times
greater than the maximal value expected forUc in the charge
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sector!. The behavior of the gap is essentially linear a
extrapolation to the origin leads to a vanishing gap.

C. Luttinger-liquid parameters

In this section we present calculations of the Lutting
liquid parametersuc andKc . For that we shall make use o
their relations with the compressibilityk and charge stiffness
Dc of the system. For a model withN colors @SU(N)# we
have the following relations:

puc

Kc
kn25

N

2
~109!

and

Dc5NucKc , ~110!

wheren5Ne /L (Ne total number of electrons! is the elec-
tron density. The compressibilityk is defined as the secon
derivative of the ground-state energyE0 with respect to the
density of particles

1

k
5

1

L

]2E0

]n2
. ~111!

A convenient finite-size approximation of the compressib
ity is

k5
L

Ne
2 S E0~Ne1N,L !1E0~Ne2N,L !22E0~Ne ,L !

N2 D 21

,

~112!

where Ne6N in E0 means thatN fermions—one of each
color—are added to or removed from the system.

The charge stiffness is given by

Dc5
p

L

]2E0

]w2 U
w50

, ~113!

wherew is a charge twist in the system. This charge twis
imposed by introducing the following twisted boundary co
ditions:

FIG. 2. Spin gap as a function of 1/L for the SU~3! Hubbard
model atU54.5. The solid line is a linear fit of the data.
r

-

s
-

ci 1La
1 5eiwcia

1 , ~114!

for an arbitrary sitei and colora.
By calculating with GFMC total ground-state energies f

different numbers of electrons, formula~112! allows a direct
calculation of the compressibility. In contrast, the GFM
calculation of the charge stiffness is more tricky due to
presence of a complex hopping term at the boundary.
circumvent this difficulty we resort to the second-ord
perturbation-theory expression of the charge stiffness.
have

Dc5
p

L S ^2T&22(
kÞ0

z^kuJu0& z2

Ek2E0
D , ~115!

whereT52t((ci 11a
1 cia1H.c.) is the kinetic-energy opera

tor, J52 i t ((ci 11a
1 cia2H.c.) is the paramagnetic curren

operator,̂ ¯& denoting the expectation value in the grou
state, all quantities being evaluated atw50. To evaluate the
kinetic term we make use of the Hellman-Feynman theor
^T&5E02U(]E0 /]U). In practice, the following finite-
difference expression is used:

^T&5E02US E0~U1dU !2E0~U2dU !

2dU D , ~116!

FIG. 3. uc as a function ofU for the SU~2! Hubbard model.

FIG. 4. uc as a function ofU for the SU~3! Hubbard model.
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with dU small enough to make higher-order contributio
negligible.

The second-order part of formula~115! can be reinter-
preted back as the second-derivative of the total ground-s
energy of a new Hamiltonian consisting of the origin
Hamiltonian plus a perturbation associated with the flux
eratorJ. This leads to the relation

(
kÞ0

u^kuJu0&u2

E02Ek
5

1

2

]2Ẽ0~l!

]l2 , ~117!

whereẼ0 is the ground-state energy of the new Hamiltoni
defined by

H̃52~ t1l!(
ia

~ci 11a
1 cia!2~ t2l!(

ia
~ci 21a

1 cia!1V~U !

~118!

andV(U) is the potential part of the problem. Using form
las ~117! and~118! the charge stiffness can now be obtain
from a series of GFMC ground-state calculations of to
energies ofreal Hamiltonians@more precisely,E0 , E0(dU),
andE0(2dU) for H, andẼ0(l) for H̃, Eq. ~118!#. It should
be emphasized that the new HamiltonianH̃ is real but not
symmetric: Left-moving and right-moving electrons do n

FIG. 5. uc as a function ofU for the SU~4! Hubbard model.

FIG. 6. Kc as a function ofU for the SU~2! Hubbard model.
te
l
-

l

t

have the same velocity. Of course, such a property is ea
implemented within a QMC framework.

Figures 3–8 present the Luttinger parametersuc and Kc
for the SU~2!, SU~3!, and SU~4! Hubbard models as a func
tion of the interactionU and for different sizesL. For the
SU~2! model, parameters have been obtained by compu
ground-state energies issued from the standard Lieb-
equations @computation of the compressibility, formul
~112!# and from their generalization to the case of twist
boundary conditions as presented by Shastry
Sutherland39 @computation of the charge stiffness, formu
~113!#. For the SU~3! and SU~4! models we have followed
the general route just presented above.

A first striking result emerging from the figures is th
strong qualitative differences between the general beha
of Luttinger parameters of the SU~2! model on the one hand
and of the SU~3! and SU~4! models, on the other hand. Le
us first have a look at the charge velocityuc .

In the SU~2! case the charge velocity has been calcula
for various values ofU and for the sizesL56, 10, 14, 18,
and 22. Results are presented in Fig. 3. The upper cu
corresponds toL56, the lower one to the maximum size
L522. In between, the curves are ordered according to
magnitude ofL. For a given sizeL, the charge velocity is
found to decrease as a function ofU. For a givenU, uc also
decreases as a function of the sizeL. Such a behavior is

FIG. 7. Kc as a function ofU for the SU~3! Hubbard model.

FIG. 8. Kc as a function ofU for the SU~4! Hubbard model.
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quite typical of a gapped system in which collective cha
excitations are damped away. In the limit of large sizes,
charge velocity is expected to vanish for a nonzero value
the interaction. The charge velocities of the SU~3! model,
Fig. 4, and of the SU~4! model, Fig. 5, display a very simila
behavior which is dramatically different from the one o
served for SU~2!. Starting from their free value atU50
@uc5) and uc5& for SU~3! and SU~4!, respectively#,
they increase as a function ofU with a finite slope at the
origin. After some critical value ofU both velocities go
down quite rapidly. In the first part of the curves~small and
intermediate values ofU) the charge velocity is found to
converge quite rapidly as a function of the size. All curv
presented cannot be distinguished within statistical err
Although the calculations presented here are limited to s
tems with a maximum size ofL527 @SU~3!# or L532
@SU~4!# some preliminary calculations at larger siz
strongly suggest that the values plotted are indeed c
verged. Such results strongly support the existence of a
less phase for the SU~3! and SU~4! models. At larger values
of U the situation is rather different. The charge velocit
decrease quite rapidly both as a function ofU and as a func-
tion of L. This behavior indicates the existence of a gapp
phase. In order to be more quantitative let us have a loo
the value of the slope at the origin. The theoretical predict
can be obtained from Eqs.~38!. For SU~3! the slope at the
origin is found to be 0.32~1!, 0.32~1!, and 0.33~2! for L59,
18, and 27, respectively. These results are in perfect ag
ment with the theoretical prediction of 1/p .0.318. For the
SU~4! model the slope at the origin is found to be 0.46~1!,
0.47~1!, and 0.45~2! for L516, 24, and 32, respectively
Here also, the results are in perfect agreement with the
oretical prediction of 3/2p .0.477. Let us now consider ou
results forKc . Here also, there exists a common behavior
the cases SU~3! and SU~4!, and a different one for SU~2!. In
the latter case, Fig. 6,Kc decreases either as a function ofU
or as a function of the size. The slope at the origin,U50, is
essentially zero andKc is expected to vanish at large size
except, of course, in the free case. Once again, this beha
is typical of a gapped system. In the two other cases,
situation is rather different. In the same way as for the cha
velocity, two regimes can be distinguished, see Figs. 7 an
At small and intermediateU, the values ofKc are found to
be very well converged within statistical errors as a funct
of the sizeL. The curve is smooth with a finite slope at th
origin. In the second regime corresponding to larger val
of U the curvesKc versusU go down as a function of the
size. Clearly, this latter regime corresponds to a gap
phase. Having nearly exact values ofKc up to some critical
valueUc for SU~3! and SU~4!, the next logical step consist
in comparing these values to the predictions of bosonizat
A first important prediction was the opening of a gap in t
charge sector for a value ofKc equal to 2/N, Eq.~51!. In Fig.
7 corresponding to the SU~3! case, a dashed line has be
drawn at the valueKc52/3. The intersection of this line with
the curves ofKc appears at aboutUc;2.2. A most remark-
able result is that this value ofU is both consistent with the
critical value extracted from the calculation of the char
gaps, Fig. 1, but also with the fact that it lies in the domain
U where the values ofKc begin not to converge as a functio
of the size~a fact usually interpreted as resulting from t
e
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existence of a finite correlation length!. A very similar situ-
ation is obtained in the SU~4! case. Using the same type o
arguments,Uc is found to be around 2.8. When studyin
charge gaps we had observed a difference ofUc , Fig. 1,
between SU~3! and SU~4! of between 0.5 and 0.6. This is i
very good agreement with what is found here from indep
dent data onKc . A second prediction which can be tested
the estimate of the value ofUc itself. Formula~52! gives

Uc5
p

2

N224

N21
sin

p

N
.

For N53 andN54 one getsUc53.40 andUc54.44, re-
spectively. As already pointed out, these estimates mus
considered with caution. However, it should give the corr
trend as a function ofN. Here, if we look at the ratio
Uc@SU(4)#/Uc@SU(3)# we get about 1.31 from the theore
ical estimate and about 1.27 from our data. The agreeme
excellent. Another point which can be checked is the va
of the slope at the origin. For the SU~3! case, it is found to be
20.18(1), 20.19(1), and20.19(2) forL59, 18, and 27,
respectively. These results are in very good agreement
the theoretical prediction of2 1/)p .20.183 given by Eq.
~38!. For SU~4! we find a slope of20.31(1), 20.33(1), and
20.32(2) forL516, 24, and 32, respectively. These resu
are also in total agreement with the theoretical prediction
2 3/2&p .20.337.

Finally, it can be very useful for interested readers to g
some compact and accurate representations of the Lutti
parametersKc and uc as a function ofU. For both param-
eters a minimal representation we may think of~see Sec.
II B ! is

Kc5
1

A11k1U1k2U2
,

uc5vFA11u1U1u2U2. ~119!

For SU~3! we obtain

k150.33452,k250.08789,

u150.37929,u2520.025509.

Note that these values are not too far from the bare va
corresponding to Eqs.~37!, k1

05u1
052/pvF .0.36755,k2

0

5u2
050.

For SU~4! we obtain

k150.62065,k250.12298,

u150.71486,u2520.052705

to compare to the bare values given byk1
05u1

053/pvF

.0.675237,k2
05u2

050.
As already discussed we have found no evidences for

opening of a spin gap in the case of the SU~3! and SU~4!
models. In other words, the system remains critical with
spect to the spin degrees of freedom for any value of
interaction. For these models the slope at the origin is p
dicted to be equal to2 1/2p .20.159 @Eq. ~27!#. Once
again, this value has been recovered using our nume
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data. To compute the spin velocity we have used the form
expressing the spin gap as a function of the size for a crit
system28

us5
Ds~Ne ,L !

2pL
. ~120!

For SU~3! and SU~4! we get for the slope20.18(2) and
20.18(3), respectively, in very good agreement with th
theoretical prediction.

A final piece of information which can be extracted fro
our data is related to the way the total ground-state ene
converges to its asymptotic value. To be more precise,
known that the ground-state energy per sitee0(L) of a Lut-
tinger liquid is expected to behave as28

e0~L !.e0~1`!2
p

6L2 (i
ui , ~121!

where ( iui denotes the total velocity associated with
critical excitations. In the free case,N degrees of freedom
are critical, and the total velocity is equal toNvF . When the
interaction is turned on, it is possible to follow the evolutio
of the total velocity as a function ofU. This has been done
for the SU~3! model. Taking our data for the sizesL59, 18,
and 27 the ground-state energy has been fitted with a f
adapted to Eq.~121!, e05a2b/L2. From this fit an effective
number of critical modes can be defined as

Neff5
6b

pvF
.

The result is presented in Fig. 9. Although the transition
not as sharp as for the Luttinger parameters, the loss of
critical mode~passing from 3 to 2! is clearly seen whenU
varies from zero to infinity. A similar curve may be obtaine
for the SU~4! case.

VI. CONCLUDING REMARKS

In this work, we have studied the SU(N) generalization of
the one-dimensional Hubbard model for repulsive interact

FIG. 9. Effective number of critical modes as a function ofU
for the SU~3! Hubbard model.
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at half filling. Using a combination of bosonization an
QMC results, we have clearly shown that the SU(N) Hub-
bard model forN.2 behaves very differently from the
SU~2! case. Strong numerical and theoretical evidences h
been given in favor of a Mott transition, between a meta
and an insulating phase, occurring for a finite value of
Coulomb repulsionUc.0 for N.2.

The picture emerging from the bosonization approa
consists in a spin-charge separation at low energy. The
degrees of freedom are critical for arbitraryU and described
by the SU(N)1 WZNW model with a central chargec5N
21 (N21 gapless bosonic modes!. The effective theory as-
sociated with the charge degrees of freedom corresponds
sine-Gordon model atb254pNKc(U). For a small value of
the Coulomb interactionU, the interaction is irrelevant. The
charge sector is then critical and described by a mass
bosonic field. In this weak coupling phase, the system
metallic with anomalous power law behaviors in the physi
quantities typical of a Luttinger liquid. For a finite value o
the interactionUc such thatKc(Uc)52/N, a KT phase tran-
sition to an insulating phase is expected in the bosoniza
approach. In this strong-coupling phase, the charge bos
field becomes locked and the infinite discreteZ` symmetry
related to the periodicity of the potential of the sine-Gord
model is spontaneously broken. The only degrees of freed
that remain critical in this strong coupling phase are theN
21 spin modes and after integrating out the massive cha
degrees of freedom, the low-energy theory of the model c
responds to the SU(N) Heisenberg antiferromagnet.

Very accurate numerical simulations based on a gene
zation of the GFMC method and fully optimized trial wav
functions have been performed to obtain the spin and cha
gaps, and the Luttinger-liquid parameters as a function of
Coulomb interaction for the SU~2!, SU~3!, and SU~4! Hub-
bard models. A metal-insulator phase transition at a fin
value Uc is clearly seen for SU~3! (Uc;2.2) and SU~4!
(Uc;2.8) in contrast with the standard SU~2! case. In addi-
tion all the results obtained forN53 and N54 are fully
consistent with the theoretical framework drawn in Sec.
This provides an accurate test of the bosonization appro
to the SU(N) Hubbard model for small and large values
U. It is therefore natural to expect that the physical pictu
emerging from the two cases studied here can be extende
arbitrary values ofN. Thus one may conclude that the o
currence at a finite value of the interaction of a Mott tran
tion of the KT type isgenericin the SU(N) Hubbard model
for N.2 at half filling. In addition, it should be emphasize
that the calculations of the Luttinger parametersKc and uc
presented in Sec. II B are of very good quality~in particular
they are converged as a function of the size! and thus provide
an accurate characterization of the low-energy propertie
the metallic phase of the SU~3! and SU~4! Hubbard models.

Let us now compare our results with the exact solution
the integrable model based on the SU(N) generalization of
the Lieb-Wu Bethe ansatz equations.12 As discussed in the
Introduction, an exact solution of an SU(N) generalization of
the Hubbard model is available. Although the underlying l
tice Hamiltonian of the model is not known, it involves ve
likely long-range interactions that dynamically exclud
three-electron configurations. The question that natur
arises is whether the physics described by the latter mod
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similar, whenN.2, to that of the lattice SU(N) Hubbard
model that we have studied in this paper. At half filling, t
SU(N) integrable model undergoes afirst-order phase tran-
sition, as one variesU, from a metallic to an insulating
phase.13 This is in disagreement with the KT transition pr
dicted by our analysis. In the metallic phase the integra
model is a Luttinger liquid for everyN ~Refs. 13,41! with the
same physical properties as those obtained by the boso
tion approach for the SU(N) Hubbard model. However, th
charge stiffnessKc obtained from the Bethe ansatz equatio
varies between 1/N and 1 asU decreases fromUc to 0.13,41

The value at the transition (Kc51/N) is thus two times
larger than the value obtained for the SU(N) Hubbard
model. This clearly confirms that the integrable model diffe
from the lattice SU(N) Hubbard model in the charge secto
As already pointed out, this difference should result from
presence of nonlocal interactions in the lattice model ass
ated with the integrable SU(N) model.

Regarding perspectives, it is clearly of interest to furth
explore the phase diagram of the SU(N) Hubbard model:
case of an attractive interaction, dependence on the fill
etc. For an attractive interaction at half filling, bosonizati
predicts that a phase transition should also occur asuUu var-
ies. For incommensurate fillings, it is easy to see, within
bosonization framework, that the system is a Luttinger liq
for arbitraryN and positiveU where the leading asymptotic
of the electronic Green’s function and spin-spin correlat
coincide with those computed in the metallic phase. The s
ation is less clear for commensurate fillingskF5pn/(Na0)
(N/n being an integer!. In the bosonization approach, a ga
opens in the charge sector forKc52n2/N. The existence of
a Mott transition for commensurate fillings clearly requir
the full knowledge ofKc(U,n) of the lattice model. Some
preliminary calculations show that there is a very spec
commensurate filling,n5N/2, where no Mott transition ex
ists and for which the charge and spin degrees of freedom
massive forN.2 and arbitraryU.40

Let us end by noting a very interesting connection b
tween the metal-insulator transition predicted in the SU(N)
Hubbard model and the existence of plateaux in magnet
tion curves of spin ladders under a strong magnetic field.42–44

Using the Jordan-Wigner transformation, one can indeed
terpret the SU(N) Hubbard model as aN-leg S51/2XY spin
ladder in a uniform magnetic field along thez axis and
coupled in a symmetric way by Ising interaction. The re
tion between the Fermi momenta and the magnetization^M &
~normalized such that the saturation value is61) is kF
5p(12^M &)/(2a0). The Mott transition found in this work
for the SU(N) Hubbard model at half filling corresponds
the appearance of plateaux at^M &5(N22)/N in the mag-
netization curves of the previousN-leg XY spin ladder.
Moreover, the existence of a Mott transition for the SU(N)
Hubbard model at commensurate filling will give addition
plateaux located at̂M &5(N22n)/N in the magnetization
curves of the corresponding spin ladder.
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APPENDIX

In this appendix, we give some details of computations
establish the separation of spin and charge~24! at the Hamil-
tonian level in the continuum limit of the SU(N) Hubbard
model and fix the expressions ofuc,s andGc,s given by Eqs.
~27!, ~28!.

1. Sugawara form of the free Hamiltonian

To begin with, we shall recall some basic things on t
SU(N) non-Abelian bosonization~for a review see Refs. 23
24,26!. As seen in Sec. II A, the chiral SU(N) spin current
JR,L

A can be expressed in terms ofN right-left moving fer-
mionscaR,L :

JR(L)
A 5:caR(L)

† T ab
A cbR(L) : . ~A1!

The left- ~right-! moving fermions are holomorphic~antiho-
lomorphic! fields of the complex coordinate (z5t1 ix, t
being the imaginary time!: caL(z),caR( z̄). These fields are
defined by the following OPE’s:

caL
† ~z!cbL~v!;

dab

2p~z2v!
1:caL

† cbL :~v!

1~z2v!:]caL
† cbL :~v!1¯,

caR
† ~ z̄!cbR~v̄ !;

dab

2p~ z̄2v̄ !
1:caR

† cbR :~v̄ !

1~ z̄2v̄ !: ]̄caR
† cbR :~v̄ !1¯ ~A2!

with ]5]v , ]̄5]v̄ and there are no singularities in the OP
when one does the fusion of two operators belonging to
ferent sectors.

Let us now consider the OPE between two left SU(N)
spin currents, for instance,

J L
A~z!J L

B~v!5:caL
† T ab

A cbL :~z!:cdL
† T de

B ceL :~v!

5T ab
A T de

B caL
† ~z!ceL~v!cbL~z!cdL

† ~v!.

~A3!

Using the OPE’s~A2!, the commutation relation~6!, and the
normalization of the generators of the SU(N) Lie algebra,
one obtains

J L
A~z!J L

B~v!;
dAB

8p2~z2v!2
1

i f ABC

2p~z2v!
J L

C~v!.

~A4!

In the same way, we find for the right spin current

JR
A~ z̄!JR

B~v̄ !;
dAB

8p2~ z̄2v̄ !2
1

i f ABC

2p~ z̄2v̄ !
JR

C~v̄ !.

~A5!
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Evaluating these OPE at equal time, one recovers the O
~15! showing thatJR,L

A are SU(N)1 spin current. With the
same procedure, one can compute the OPE between
charge currentJR,L

0 using its definition~17! in terms of the
underlying fermions

J L
0~z!J L

0~v!;
N

4p2~z2v!2
,

JR
0~ z̄!JR

0~v̄ !;
N

4p2~ z̄2v̄ !2
~A6!

so that the charge currentJR,L
0 belongs to the U(1)N KM

algebra.
The next step is to obtain the Sugawara form~20!, ~21! of

the free part of the Hamiltonian (H0). Let us consider, for
instance, the left sector of the theory since we shall ob
the same result for the right part with the substitutionL

˜R, (z,w)˜( z̄,v̄) and]˜ ]̄. We need now the following
OPE for the spin sector:

J L
A~z!J L

A~v!5:caL
† T ab

A cbL :~z!:cdL
† T de

A ceL :~v!

5
1

2 S daedbd2
1

N
dabddeD

3caL
† ~z!ceL~v!cbL~z!cdL

† ~v!, ~A7!

where we have used the relation~8!. Using Eq. ~A2! and
keeping also the first regular terms in the fusion, we get

J L
A~z!J L

A~v!;
N221

8p2~z2v!2 1
N11

2N
:caL

† caLcbLcbL
† :~v!

2
N221

2pN
:caL

† ]caL :~v!. ~A8!

Therefore, one obtains

:J L
AJ L

A
ª

N11

2N
:caL

† caLcbLcbL
† :2

N221

2pN
:caL

† ]caL :. ~A9!

In the same way, we obtain for the left charge current

:J L
0J L

0
ª2:caL

† caLcbLcbL
† :2

1

p
:caL

† ]caL :. ~A10!

One can eliminate the four fermions terms by considering
following combination:

p

N
:J L

0J L
0 :1

2p

N11
:J L

AJ L
A
ª2:caL

† ]caL :. ~A11!

Since one has]caL52 i ]xcaL within our convention, the
identity ~A11!, the so-called Sugawara form, states that
free Hamiltonian ofN relativistic left-moving fermions can
be written only as a function of left current-current terms.
the right part, we have also a similar identity

p

N
:JR

0JR
0 :1

2p

N11
:JR

AJR
A
ª2 i :caR

† ]xcaR :. ~A12!
E

the

in

e

e

Collecting all terms, we finally obtain the Sugawara form
the free HamiltonianH0 ~10!:

2 i ~ :caR
† ]xcaR :2:caL

† ]xcaL : !

5
p

N
~ :JR

0JR
01J L

0J L
0 : !1

2p

N11
~ :JR

AJR
A1J L

AJ L
A : !.

~A13!

2. Sugawara form of the SU„N… Hubbard Hamiltonian

We shall now investigate the effect of the Hubbard int
action in the continuum limit to fix the expressions~27! and
~28! of the velocities (uc,s) and the coupling constant
(Gc,s). Using the continuum description of the SU(N) spin
density~12!, the interacting part~7! is given by dropping all
oscillatory contributions:

V052
Ua0N

N11
~ :J A<J A:1:N A<N A†:1:N A†<N A: !.

~A14!

The OPE between the 2kF parts of the spin density can b
computed using Eqs.~13! and ~A2! as in the previous sub
section. We find up to constant terms

:N A:~z,z̄!:N A†:~v,v̄ !1:N A†:~z,z̄!:N A:~v,v̄ !

;2
N221

2pN

z2v

z̄2v̄
:caL

† ]caL :~v!

2
N221

2pN

z̄2v̄

z2v
:caR

† ]̄caR :~v̄ !

2:caL
† caLcbR

† cbR :~v,v̄ !

1
1

N
:caL

† cbLcbR
† caR :~v,v̄ !. ~A15!

Using Eqs.~A9!, ~A10! and similar equations in the righ
sector together with the definition of the charge current~17!,
we end with

J AJ A1N AN A†1N A†N A;2
N221

2N2 ~ :JR
0JR

01J L
0J L

0 : !

1
1

N
~ :JR

AJR
A1J L

AJ L
A : !

12
N11

N
JR

AJ L
A

2
N221

N2 JR
0J L

0 . ~A16!

As a consequence, the continuum limit of the SU(N) Hub-
bard model at half filling exhibits the spin-charge separat

H5Hc1Hs ~A17!

with
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Hc5
pvc

N
~ :JR

0JR
0 :1:J L

0J L
0 : !1GcJR

0J L
0 ~A18!

and

Hs5
2pvs

N11
~ :JR

AJR
A :1:J L

AJ L
A : !1GsJR

AJ L
A . ~A19!

The renormalized velocities are given by

vs5vF2
Ua0

2p
,

ev

.

,’’
an

t
.-J

a

vc5vF1~N21!
Ua0

2p
, ~A20!

whereas the current-current couplings in the charge and
spin sectors are written as

Gc5
N21

N
Ua0 ,

Gs522Ua0 . ~A21!
s
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