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We investigate the metal-insulator transition of the one-dimensionaN$WB{ubbard model for repulsive
interaction. Using the bosonization approach a Mott transition in the charge sector at half fiding (
=m/Nay) is conjectured foN>2. Expressions for the charge and spin velocities as well as for the Luttinger-
liquid parameters and some correlation functions are given. The theoretical predictions are compared with
numerical results obtained with an improved zero-temperature quantum Monte Carlo approach. The method
used is a generalized Green'’s function Monte Carlo scheme in which the stochastic time evolution is partially
integrated out. Very accurate results for the gaps, velocities, and Luttinger-liquid parameters as a function of
the Coulomb interactiot are given for the casdd=3 andN=4. Our results strongly support the existence
of a Mott-Hubbard transition at aonzerovalue of the Coulomb interaction. We findl.~2.2 forN=3 and
U.~2.8 forN=4.[S0163-182609)00728-4

[. INTRODUCTION and one can write down an effective theory that describes the
Mott transition as well as a full description of the transport
Although the metal-insulator transition has certainly beerproperties for any commensurate fillifg® The only param-
one of the most studied phenomenon in condensed-mattéter that controls the transition is tiie general unknown
physics, it is only in recent years that important progress hakuttinger charge exponeiit. and the transition is predicted
been achieved. This is mainly due to careful experimental0 be universal of the Kosterlitz-ThouleésT) type.
and numerical studies but also to the improvement of the Most of the theoretical work id=1 focused on the prop-
theoretical tool$=3 It has been proved extremely difficult to erties of the standard $) Hubbard model which is known
investigate the effect of strong correlations in dimensiond® be @ Mott insulator at half filling from its exact solutich.
greater than 1, and it is only quite recently that, thanks to &\n extension of this model was considered by introducing
new dynamical mean field, our understanding has substaf#ong-range hopping or finite-range interactidmearest-
tially progressed. For one-dimensional systems, the situa-neighbor interaction, for mstan_):é In the present work, we
tion is rather different: There exist powerful analytical andStudy a most natural generalization of the usual Hubbard
numerical approaches at our disposal. Moreover, from th&odel: Instead of considering fermions with a two-valued
experimental point of view, the Mott-transition can be real-SPin index{with SU(2) symmetry we generalize to the case
ized in organic conductotsaand quantum wire$ Therefore, ~ Of an arbitrary SU) spin index. Apart from the theoretical
one may expect to gain a |ot Of information on the physics Oﬂnterest it iIs |mp0rtant to emphaSIze tha.t these addltlonal
the metal-insulator transition. degrees of freedom are realized physically through orbital
In one dimension, it has been recognized very rapidly thaflégeneracy as, for example, in Mn oxidds. this paper, we
umklapp processes are at the heart of the problem. In thehall study the phase diagram of the one-dimensionaN3U(
Abelian bosonization formalism, one can draw a general an&iubbard model for repulsive interaction and at half filling
consistent picture of the Mott transition. Indeed, the charg&orresponding to one “electron” per site. The Hamiltonian
properties are expected to be described, in the absence on a finite chain withL sites that we shall consider reads
umklapp contributions, by a Luttinger liquid with only two LN L N )
independent parameters: The charge velocifyand the + u
charge exponerK, that controls the decay of correlation H:_t; 321 (CiaCi+1atH.C)+ 521 24 Nia @
functions. These quantities, which are nonuniversal, com-
pletely characterize the low-energy properties of a onewhere the fermion annihilation operator of spin indax
dimensional systerh® Within this framework, the effect of =1,... N at sitei is denoted by;, and satisfies the canoni-
umklapp processes are investigated in perturbation theorgal anticommutation relation
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{Cia ,Cij}: Sandij - 2) sizes. In order to treat bigger systems two types of approach
are at our disposal: The density matrix renormalization group
The density of speciea at theith site is defined byn;, (DMRG) method and the stochastic approaches.
=ciTacia. In the following, we shall consider that the nearest-  Since its discovery a few years ago the DMRG method
neighbor hopping t) and the on-site interactionlU) are has been extensively used for studying various one-
positive. dimensional systems and coupled chain probléfosa re-

The Hamiltonian(1) is not exactly solvable by the Bethe view, see Ref. 15, for a detailed presentation of the method,
ansatz folN>2 and arbitraryU. It is, however, possible to see Refs. 16,17 DMRG is a very efficient real-space nu-
solve the generalization of the Lieb-Wu Bethe ansatz equamerical renormalization-groupRG) approach. The funda-
tions for fermions carrying a SW() spin index:>*3The re-  mental point which makes the method successful is the way
sult is that for anyN>2, there exists a Mott-Hubbard tran- that “important” degrees of freedom are chosen at each RG
sition from a metallic phase to an antiferromagneticiteration. Instead of keeping the lowest eigenstates of the RG
insulating phase at &nite value of the couplingl. The  block considered as isolated from the outside wddd it
transition is found to be ofirst order in contrast with the was usually done in previous approachebke states which
accepted view that the metal-insulator transition in one-are selected are the most probable eigenstates of the density
dimensional systems should be of the KT type. The point isnatrix associated with the block considered as a part of the
that a projection onto the subspace of states having at mogihole system. The main error of DMRG is related to the
two electrons at each site is crucial for the use of the Bethéinite number of states kept at each iteration of the algorithm.
ansatz approach. The other configurations are automaticallyy order to get the exact property the extrapolation to an
excluded by the Pauli principle in the &) Hubbard model infinite number of states has to be performed. At least for 1D
whereas folN>2 it is no longer the case. As a consequenceand quasi-1D problems, and for systems having a small num-
it is believed that the lattice model associated with theber of states per site, the errors obtained are small. Note also
SU(N) generalization of Lieb-Wu Bethe ansatz equationsthat DMRG works especially well when open boundary con-
should coincide with an integrabigonlocal version of the  ditions are used. For periodic boundary conditions, errors are
SU(N) Hubbard model1).**** Although one naturally ex- significantly larger.
pects that the true SB() Hubbard model will share some In this paper we use an alternative approach based on a
properties with its nonlocal partner, in particular the exis-stochastic sampling of the configuration space. Such ap-
tence of a metallic phase at small enougdhthe first-order proaches are referred to as quantum Monte C&QMC)
character of the transition could take its origin in the nonlo-methods. There exists a large variety of QMC approaches. A
cality of the interaction. In any case, in order to study @9.  first set of methods is defined within a finite-temperature
one must abandon the exact Bethe ansatz approaches dnamework (path-integral Monte Carlo, world-line Monte
resort to two powerful techniques available in one dimen-Carlo, etc., see, e.g., Ref. )18n these approaches, the main
sion: the bosonization and numerical approaches. As weystematic error is the high-temperature approximation asso-
shall show, none of these techniques is by itself sufficient taiated with the Trotter break-tp(Trotter or short-time er-
demonstrate the existence of the Mott transition. Regardingor). When interested in obtaining the zero-temperature prop-
bosonization, the mere existence of the metal-insulatoerties the number of “time slices” to consider must be taken
transition—even in the simplest scenario of a KT phasdarge and the computational effort becomes important. Prac-
transition—relies on the knowledge bf dependence of the tical calculations have shown that the method is much less
Luttinger parameteK., a nonuniversal quantity which can accurate than DMRG, at least for one-dimensional systems.
only be computed in a perturbative expansiotinin other  In the second type of approaches used here, the stochastic
words, bosonization cannot tell wghethera given lattice  sampling is directly defined within a zero-temperature frame-
model will undergo a Mott-U transition. However, it defines work. These methods are usually referred to as a Green’'s
a rich theoretical framework in which many qualitative andfunction Monte CarldGFMC) or projector Monte Carlo. For
guantitative predictions are obtained. This provides an esseisystems having a nodeless ground-state wave function as it is
tial guide for the numerical investigation of a particular lat- the case here, the GFMC method can be extremely powerful.
tice model. Regarding numerical investigations the situationThe basic idea is to extract from a known trial wave function
is also not fully satisfactory. Beyond the evident problem ofi its exact ground-state componef. To do that an op-
memory and CPU time limitations, it is well known that it is eratorG(H) acting as a filter is introduced. Statistical rules
very difficult to characterize a KT phase transition. As weare defined in order to calculate stochastically the action of
shall emphasize later, it is almost impossible to discriminatéhe operatorG on a given function. Apart from statistical
between the opening of a charge gafJat0 and at a finite  fluctuations, the GFMC method is an exact method. It does
positive U, even when very accurate numerical data are atot require an extrapolation to zero temperature as in finite-
our disposal. The strategy employed in this work will consisttemperature schemes. In addition, there exists a so-called
in combining both approaches. Very strong evidence will bezero-variance property for the energy: The better the trial
given in favor of a metal-insulator transition occurring at awave functionyy is, the smaller the statistical fluctuations
finite positive value of the interactiod for N>2. are. In the limit of an exact wave function, the statistical

Various numerical methods can be used to study thdluctuations entirely disappedrero-variance property As
ground-state properties of Hamiltonidh). In exact diago- an important consequence, by choosing a good enough trial
nalization method$ the exact ground-state eigenvector iswave function very accurate calculations can be performed
calculated. Unfortunately, the rapid increase of the size ofsee, for example, Ref. 19Note that, in contrast with
the Hilbert space restricts severely the attainable syste@MRG, the efficiency of GFMC does not depend on the
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specific type of boundary conditions chosen and that thelynamics. The practical implementations of the GFMC ap-
number of states per site is not a critical parameter of thgroach for the Hamiltonial) will be discussed in Sec. IV
simulation. Here, it is an important point since the SY(  and the numerical results fdé=2,3,4 will be presented in
model displays Y states per sitgfor the SU4) case treated Sec. V. Finally, Sec. VI gives a summary of the work to-
here it gives 16 states per dite gether with a comparison between the physical results ob-
In order to improve further the accuracy of the approacHained for the SUY) Hubbard model and those correspond-
we present a generalized version of the GFMC method iAg to its nonlocal integrable version. In the Appendix we
which the dynamics of the Monte Carlo process is partially9ive some details of computation occurring in Sec. II.
integrated out. More precisely, we generalize an idea intro-
duced by Trivedi and Ceperley in their GFMC study of the IIl. THE SU (N) HUBBARD MODEL
S=1/2 Heisenberg quantum antiferromagtfein the G_FMC In this section, we shall use a bosonization apprdéah
method the probability that the random walk remains a Celtacent reviews see Refs. 8)2d study the SUY) Hubbard

tain number of Fim'es in the same configuration is descrilOe‘finodel. Before doing that, let us first discuss the symmetries
by a Poisson distribution. It is then possible to sample theyt iho model

corresponding “trapping time” from this distribution and to The Hamiltonian(1) h 1®SU(N trv:
weight the expectations values according to it. As remarked e Hamiltonian(1) has a UL)®SU(N) symmetry.

by Trivedi and Ceperley, doing this can lead to a consider- ci.—eci,,
able improvement in the simulation. This is particularly true
when the wave function is localizethrge U regime for our Cia— U aCib » 3)

model, systems with deep potential wells, getddlere, we ) )
show that the method can be improved further by integrating?€reé the matrixJ belongs to SUN). These symmetries
express the conservation of the charge and spin invariance

out exactly the time evolution associated with this trapping ) ; )
phenomenon. Once this is done we are left with a randonynder a SU(\I) rotation. The associated generators are given
walk defined by an “escape transition probability” connect- PY the following operators:

ing nonidentical configurationghe system never remains in

the same configuratiorand a modified branching term re- N= ni,

sulting from the time integration. Note that introducing trap- ia

ping times in averages helps a lot when optimizing the pa-

rameters of the trial wave function. Finally, we present an SAZZ SA (4)
original method for computing the Luttinger-liquid param- o

eters within a QMC scheme. We show that these parameters,
can be obtained from a series of ground-state calculations it
total energies ofreal—but not necessarily Hermitian— SA—cl T e )
Hamiltonians. In this way we escape from the difficulty of I viafabibe

calculating with QMC ground-state energies of t@mplex where the summation over repeated indetesept for lat-
Hamiltonians resulting from the definition of the charge andtice indexe¥is assumed in the following. In the latter equa-
spin stiffnesses. Although it is difficult to compare the effi- tion, the N°>—1 matrices7” are the generators of the Lie
ciency of our generalized GFMC approach with DMRG algebra of SUK) in the fundamental representation. They
(since the quality of GFMC simulations is too much depen-satisfy the commutation relation

dent on the quality of the trial wave function usede be-

lieve that the accuracy of our results is comparable or even [TA,T%]=if"BCTC, (6)
better to what can be done with DMRG. In any case, our dat
are sufficiently accurate to conclude to the existence of
metal-insulator phase transition in the model studied.

gaBC being the structure constants of the Lie algebra and the
Yenerators are normalized according to 7H7E) = 5*B/2.
. The conservation law associated with thelJusymmetry al-
20
Very recently, Beccarigt al”™ have proposed a QMC lows to study the Hamiltoniafl) for a fixed densityn. The

algorithm based on the use of Poisson processes. Their aBoulomb interaction can thus be rewritten, up to a constant,

proach contains similar ideas. However, in contrast with the . i
. S in terms of the SU) spin operator:
present approach no importance sampling is used and no

integration of the Poisson dynamics is performed. It should ul N 2 UN
also be noted that the use of Poisson processes for describing _( 2 n.a) — —SiASiA, (7)
the time evolution of systems trapped in some configuration 2\a=1 N+1
is not restricted to quantum systems. Krauth and collaboraWhere we have used the identity
tors have proposed related ideas within the context of clas-
sical Monte Carlo simulatiorfs:?2 1
The organization of the paper is as follows. In Sec. Il, a ThTe= 5 | Gaedba™ j Pabdde- ()

bosonization approach of the SN Hubbard model will be
given. Some of the results have already been obtained byhe relation(7) makes explicit the SW\) invariance of the
Affleck®® whereas additional new ones will also be useful tomodel.

compare with the numerical simulations. The purpose of Sec. The Hamiltonian(1) is not exactly solvable by the Bethe
[l is to give a presentation of the GFMC method togetheransatz foN>2 and arbitraryU, even if, as already empha-
with our generalization based on the partial integration of thesized, some integrable nonlocal extension of &g.with a
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SU(N) symmetry can be considered. The situation is simplewvhich shows that they satisfy the SN, Kac-Moody(KM)

in the limit U—c and at half filling (one “electron” per
site), i.e., whenkg= 7/Nag (ag being the lattice spacingin
that case, it can be shown that E#) reduces to the SUN)

Heisenberg antiferromagnetic chain for which an exact solu-

tion is available. As shown by Sutherlafftthis latter model

is critical with N— 1 massless bosonic modes with the same

velocity. In the conformal field theoryCFT) language, the
central charge of the model in the infrar€idR) limit is ¢
=N-1 and using a non-Abelian bosonization of Hd),
Affleck?® identifies the nature of the critical theory in the
spin sector as the SM); Wess-Zumino-Novikov-Witten
(WZNW) model. In the following, we shall present both

algebra2*?®In the same way, the total charge dengityn;,
reads in the continuum limit

g Nia—ag 4 T0(x) +[ &~ 2KEX Yl o(X) har (¥) + H.C]},
(16)
where 7%= 73+ 7° and

17

are the W1) right and left charge currents. These currents
satisfy the OPE

0 _.,t .
Tr)y= War)ParL)

non-Abelian and Abelian bosonization approaches of the

SU(N) Hubbard model(1) at half filling and give a number

of results that will be essential for discussing the numerical

data presented in Sec. V.

A. Continuum limit

In the continuum limit, the spectrum around the two
Fermi points* kg is linearized and gives rise to left-moving
fermions i, and right-moving fermionsg/,r. In this low-
energy procedure, the lattice fermion operatogs are ex-
pressed in terms of these left-right moving fermions as

%i—%(x)ww(x)e%u¢aL(x>e—ikFX, ©

2k
where x=iag. In this continuum limit, the noninteracting
part of the Hamiltonian(1) corresponds to the Hamiltonian
density ofN free relativistic fermions

Ho=—iIVEC Ylrdxthar: — WL dxthaL 2), (10

where the normal ordering with respect of the Fermi sea is
assumed and the Fermi velocity is given by

a
VE=2tag sinN. (11

In the continuum limit, the SUY) spin operato5) decom-
poses into a uniform and &g contribution

‘z—ieSA(x):jA(x) +[ePPNAX)+H.c], (12
where the & contribution is given by
NA= 4L Thotor. (13
whereas the uniform part read& = 75+ 77 with
Th)= Ve Tao¥ore) - (14

These left-right SUY) spin currents obey the following op-
erator product expansidi©PE) (see the Appendix

_ §MB f§ABC

C A B - - c
l'_T/jR(L)(X)jR(L)(y) 8mi(x—y)2 + 2m(X—Y) Truy(Y)
(15

N

- 42(x—y)? (18

lim TRy () TRy (Y) ~

X—Yy

and 7, belongs to the U(1) KM algebra.

With these identifications, it is not difficult to sho(gee
the Appendix that the free part of the Hamiltonigd0) can
be expressed only in terms of spin and charge currghés
so-called Sugawara fopm

Ho="Hos* Hoc (19
with
2TVE A A oA,
HOs:N+1(-~7Ru7R-+-~7Ls7L-) (20
and
Vv
Hoo="ry (:TRTR:+:T000). e

At the level of the free theory, spin and charge degrees of
freedom decouple. The symmetry of the free Hamiltonian
Ho in the continuum limit is therefore enlarged to give
U(1) @ SUNN), ®@U(1)g® SU(N)g. The Hamiltonian?
is nothing but the Sugawara form of the U WZNW
model?*?® It is a conformaly invariant theory with central
chargec=N—-1 (N—1 massless bosonsThe contribution
Ho. describes the 1) charge degrees of freedom and has
central charge=1 (1 massless bospn

The nontrivial part of the problem stems from the Cou-
lomb interaction(7). At sufficiently smallU<t, from Eq.
(7), we see that its contribution will be given by the OPE

N
V(x) = —Uag—

H A A
N+1€I|_r:r(1)8 (x+€)S(X). (22
From Eq.(12), there are three contributions 10
V= Vo+ Vsz+ V4kF. (23)

The first term is the unifornk=0 component while the oth-
ers contain oscillating factors™2*F* and e*4kF*, Neglect-

ing all oscillatory contributions, we are thus left with the
uniform part),. Performing the necessary OPEsee the
Appendi®, one finds that the total effective low energy
Hamiltonian density separates into two commuting charge
and spin parts
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H="H+Hs (24) B. The metallic phase
_ At this point, we introducé chiral bosonic fieldsh,g() ,
with a=(1,...N), using the Abelian bosonization of Dirac
fermiong*
mv
He= N°(:jgjg:+:jﬁj8:)+ecjgjﬁ (25) o
Yar)y = =—="eXPEiVA4Tdar)), (29
and 2m

where the bosonic fields satisfy the commutation relation
27Vs . A A A A [Par:PpL]= (114) 6,5. The anticommutation between fer-
=NF1CIRIRIFITLILD+HGsTRIL,  (26)  mions with different spin indexes is realized through the
presence of Klein factorghere Majorana fermionsc, with
where the renormalized velocities are the following anticommutation rulefk,,xp}=28,,. As in
the N=2 case, it is suitable to switch to a basis where the
charge and spin degrees of freedom single out. To this end,

Hs

Ve=VE— ——, let us introduce a charge bosonic fid g ) andN—1 spin
2m bosonic fieldsPpmsgry, m=(1,... N—1) as follows:
Ua, ® 1
VC—VF+(N_1)E (27) cR(L)_\/N(¢l+ + ONR(L) 5
and the current-current couplings in the charge and the spin 1
sectors are given by D sry=—=(d1+ I~ Mdmi1)r) -
m(m+1)
N—-1 (30
Ge= Uay, The transformation(30) is canonical and preserves the
bosonic commutation relations. The inverse transformation is
G.= —2Ua,. 29) easily found to be
1 "o
Apart from a velocity renormalization, the effect of the Cou- b - ® + 2 IsR(L)
lomb interaction is exhausted in the two marginal interac- RO N A | J(+1)
tions in both charge and spin sectors. Wher 0, the spin
current-current interaction is marginal irrelevant. At the IR 1 a—1
fixed pointG% =0 the Hamiltonian in the spin sector is that bary==Pery~ \V = P(a-1)sR1)
of the SUN); WZNW model. On the other hand, the VN a
current-current interaction in the charge sector is exactly N-1
marginal since one can diagonali#g with a Bogolioubov +> RO a0 N-1
transformation to recover the Tomonaga-Luttinger Hamil- =a Il+1)’ B
tonian. Therefore}. describes the line of fixed points of the
Luttinger liquid. 1 N—1
From the above analysis we conclude that the MU( DInr)==Per)— Tq’(m—l)sm)- (31
Hubbard model at half filling is massless for smél>0. N

Th? spin sector is descriped by the EN“M WZNW mode_l In this new basis, the Hamiltonian density in the spin sector
while the charge sector is a Luttinger liquid with continu- at the SUN), fixed point reads

ously varying exponents. The main point in the above analy-

sis is the absence of umklapp terms which, whés 2, G Nt
opens a gap in the charge sector for an infinitesimal value of HE = 2D [ @ %+ (3,0 m9 %], (32
the interaction. At this point it is worth recalling that the 2 m=1

main approximation made in the above analysis is the 0mis\7vhereu i the spin velocity at the fixed point and
sion of the oscillating contribution]s;gkF andV4kF. Thisis a s P y P

reasonable assumption as farlass not too large. However D =P oLt Prosks
one expects, on general grounds, that umklapp processes
should contribute at sufficiently larg¢ and that a Mott tran- Ome=P o~ Prrcre (33)

sition to an insulating phase should occur at a firitg.

Indeed, in theU—c limit, we have an insulating phase This representation makes clear the fact that the central
where the spin degrees of freedom are described by theharge in the spin sector is indeeet N— 1.

SU(N) Heisenberg antiferromagnet. We shall return to this Let us now concentrate on the charge sector. It is not
point later. For now let us concentrate on the properties oflifficult to show, using Eqs(17), (29), and (30) that the

the metallic phase. charge current expresses as
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o N 1 2
Tr)= - PRy - (34) a= S K. K. (1-Ko)*“. (41)
Therefore, the Hamiltonian densit25) in the charge sector This allows us to give an estimate of the single particle den-
reads sity of states which is related to the electronic Green’s func-
tion atx=0:

Ho= 2 [ (30)% +1(3,00)%]
=7 L (005 +:(5,80)% ()~ @2

Uag Similarly, K, determines the singularity of the momentum
+(N=1)—=0,@c 9 Pcr, (39 distributionn,(k) around the Fermi poirk :
where we have introduced the total charge bosonic fleld Na(k) =n,(kg) + Cte sgiik— kg ) [k— kg | (43
=0 gt P, andits dual® =P, —P.z. The Hamiltonian o .
(35) can be written in the Luttinger-liquid form and the momentum distribution function has a power law
singularity at the Fermi level unlike a standard Fermi liquid.
usf 1 5 ) This anomalous power law behavior for any finite valuéof
HC:? K—c:(aXCDC) Ko (00)% |, (36) s inherent of a Luttinger liquid.

The computation of the SW) spin-spin correlation func-
where the charge exponelt, and the renormalized charge tion

velocity u, are given by

A*B(x,7)=(SA(x,7)SB(0,0) (44)
1
= , is more involved. It can be shown that the leading asymptot-
V1+(N-1)Uag/mve ics of this correlation function is given by thekR part
UC:VF\/1+(N_1)Ua0/7TV|:. (37) AB AB Coiszx)
A ,T)~ 0 . (45
The U dependence of the Luttinger paramet&rs and u, (*.7) (X2 U272)Ke/N(x2 4 y272) 1~ IN 43

given in the above expressions should not be taken too seri- _ .
ously. Indeed, the continuum limit approach is strictly speak_We deduce from the above correlation function the low tem-

ing valid only providedU/t<1. In this regime one has perature dependence of the NMR relaxation fege
Uag 1 2IN+ 2K IN—2
KC~1—(N—1)27TVF, T T c . (46)
Uag As seen, once the dependence of the Luttinger param-
Uc~Ve+(N-1) 20" (39 etersu., K., andug is known, the low energy properties of

the metallic phase are entirely determined. These parameters
The physically relevant question is now what happens folare nonuniversal and cannot be obtained for arbittarigy
higher values of the interactiod. In the absence of um- the continuum limit approach. AlthougK.<1 when U
klapp terms, the accepted view is that the effect of interac=0, one does not know its minimum value. It is only in the
tion corresponds to a renormalization of the Luttinger paramij=2 case, that the Luttinger parameters can be extracted
etersK, andu, as well as the spin velocitys which have  from the exact solutioA’"2 WhenN>2 no exact solution is
therefore to be thought as phenomenological parameters @agailable and one has to use numerical computations to esti-
the Landau coefficients in the Fermi-liquid thedyThese  mate these parameters. This will be done for the two cases
parameters completely characterize the low energy propertig§=3 andN=4 in Sec. V. Before doing that, let us discuss
of the metallic phase as we shall see now. Let us first discusgie Mott transition that should occur in the problem for a
the electronic Green’s function defined by finite critical value of the repulsiot) for N>2.

Gab(X, 7) =(¥L(x,7) ¥,(0,0)), (39)

7 being the imaginary time. This correlation function can be
computed using Eqg9), (29), and(31). After some calcula-
tions, one finds

C. The Mott transition

The very difference between thé=2 andN>2 cases
lies in the fact that there is no umklapp term at half filling in
the bare Hamiltonian in the continuum limit. The reason for
this is that these terms came with oscillating factors and were

Guy(X,7)~ Sab 1] eXplikex) omitted for small value of the repulsion. However, in the RG
ab 27 | X2HUeT?] | (ix+ ugr) N(ix +ugr) L~ N strategy one has to look at the stability of the Luttinger fixed
line and any operator that is compatible with the symmetry

exp(—ikgx) of the problem should be taken into account: they will be

' (40 generated during the renormalization process. In our prob-

lem, the important symmetries are the Sl)(spin rotation
where the exponent is given by invariance, chiral invariance and translation invariance.

+— : -
(—ix+ucn)™N(—ix+ugr)t~ M
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From Egs.(9), (29), and(30), one easily finds that under transition is expected to be of the KT type. Of course when
a translation by one lattice site, the charge fi@ldis shifted U>U_, K. vanishes so that the jump is=12/N and is uni-

according to versal. The present approach cannot give an accurate value
of U.. However, one can get a rough estimateJgf using
™ Egs.(11), (37), and(51):
@C_,(D#\[N' up EOs-(1D, 37, and(5)
. U, mN?>-4 7
Therefore one can add any operator in the charge sector that T2 WSIHN- (52

is invariant under the transformatigd?7) and will be neces-
sary generated by higher order in perturbation theory. The

operator with the smallest scaling dimension that is invariantSp
under Eq.(47) is

Humklappz -G cog \/47TNCI)C): . (48)

Other operators, with higher scaling dimensions, that couple
spin and charge degrees of freedom may also be included.
This is the reason why one cannot exclude the possibility of
a charge density wave€DW) instability. For instance, such where A\, is a nonuniversal constant stemming from the
processes are present in the extende@pHubbard model  charge degrees of freedom. One recovers the result previ-
at half filling.3° Although it requires some formal proof, we ously derived by Affleck® The NMR relaxation rate be-
expect that, due to the fact that in the present model th@aves now as 1, T) ~T?N"2. Finally, let us note that there
interaction is local in the density, the leading umklapp con-are other harmonicsk} ,6ke, . .., in the SUN) spin den-
tribution should only affect the charge sector. We havesity (12) that will be generated by higher orders in perturba-
checked that this is indeed true for the particular cabes, tion theory. Together with the uniform contribution with
=3 and N=43' We have shown indeed by perturbation scaling dimension 1, these terms will give subleading power
theory that the oscillating contributiong,_ and Vs_ gen-  law contributions in the SW) spin-spin correlation func-
erate &g and &g processes foN=3 andN=4, respec- tion (53). These operators correspond to the primary fields of
tively. Up to irrelevant operators, the only contribution we SU(N); WZNW transforming to another representation of
found is precisely Eq48) with N=3 andN=4. In any case SU(N) than the fundamental one. One should recall that for
in what follows, we shall thus make the hypothesis, firstthe SUN); WZNW, there areN— 1 primary fields?® A pri-
made by Afflecii® that all the effects of high energy pro- mary field %, (a=1, ... N—1) of SUN), transforms ac-
cesses are exhausted by E4p) for the general SW) case. cording to theath basic representation of SNY (Young
Consequently, the effective Hamiltonian density in the spintableau witha boxes and a single colummnd has scaling
sector is still given by the SUN); WZNW model and the dimensionA,=a(N—a)/N. We thus expect the following

In the insulating phase, the charge fidid is locked in a

ecial well of the sine-Gordon mod@0) and the leading
asymptotics of the SUY) spin-spin correlation functions is
now

cog 2kgx)

AB — B "~~~ "7
ARB(x,7)~ Ny 8 (Xt U22) - IN
S

(53

effective Hamiltonian in the charge sector is now asymptotics fo\*B with some nonuniversal constants,:
Us( 1 AB
HC:?C K—:(ax®c)2:+Kc:(&x®c)2: ARB(x T)N_a_ 1 n 1
¢ ’ 872\ (ugr—ix)2  (ugr+ix)?
—G,:cog V4mND,):. (49 N-1
AB cog2akegx)
Rescaling the fields ad.—® . K. and®,— 0./ K, the +d 321 )‘aW (54)
Hamiltonian (49) in the charge sector becomes the Hamil- sT
tonian of the sine-Gordon model up to logarithmic contributions originating from the marginal
’ irrelevant current-current interaction in the spin secfor.
__—cr. 2. @ V2T - TNk b - We end this subsection by giving the low-temperature ex-
He=75 [:(xPe)% +:(0,0) %]~ Gyicod VATNK D). pression of the uniform susceptibilifyand the specific heat

(50)  of the SUN) Hubbard model in the insulating antiferromag-
netic phase. The continuum density that describes the behav-
c;pr of the SUN) spins degrees of freedom in a uniform
magnetic fieldH is given by

Since the scaling dimension of the cosine term in G€4) is
A,=NK_., we deduce that a gap opens in the charge sect
when

N—1 N—1

- B)  Tamg 2 [(0Pnd%+i(3009%]1-HS J" (59

On the other hand, wheiki.<2/N, the umklapp term is ir- where we have neglected the marginally irrelevant current-
relevant and the system remains in the metallic phase desurrent interaction. In Eq(55), we have considered a uni-
scribed in the preceding subsection. Therefore,Uasn-  form magnetic field along the diagond™ (m=1,... N
creasesK, will decrease from 1 aU=0 to K.=2/N at a  —1) generators of SU{) that span the Cartan subalgebra of
critical value of the interactiok) . where a Mott transition to SU(N). According to our normalization convention, they
an insulating phase occurs. Within this scheme, the phasean be written ilNX N diagonal matrices as follows:
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1 contained presentation of the basic GFMC method is given.
T"=——diag1,1,...,—m,0,...,0 (56) In addition to introducing our notations for the next part, this
v2m(m+1) section will enable the interested reader to understand all the
with m=1, ... N—1 and—m is located on then+1 ele- practical aspects of the method. The second part is devoted

ment of the diagonal. Using the bosonization correspondendg the presentation of the generalized GFMC method itself.

(29) and the canonical transformati@81), the total density _
Hamiltonian(55) in a magnetic field can be written as A. Green’s function Monte Carlo

As already noticed in the Introduction the basic idea of
the GFMC method is to extract from a known trial wave
function|¢+) the exact ground-state componéat). To do
that an operatoG(7#) acting as a filter is introduced. For

N—1
M= 3, [P+ (0,097 ]

" continuum problems standard choices ar&(H)

- Emz::l P (57) =exp(—7H) (diffusion Monte Carlp or G(H)=1[1
+7(E—"H)] (Green’s function Monte Carlo For a lattice

Doing the substitution problem or any model with a finite number of statéisite

matrix) a natural choice to consider is
H
P s IxP mst ﬁa (58 G(H)=1-1(H—-Ey), (61)
S

) ) ) o wherer plays the role of a timestefa positive constan&and
we obtain the eXpI‘eSSIon of the uniform Susceptlblllty of theET is some reference energy_ﬂﬁs chosen Sufﬁcient'y small

SU(N) Heisenberg antiferromagnet and|y+) has a nonzero overlap with the ground state, the
N—1 exact ground state is filtered out as follows:
= 59 .
X= 2, ®9 lim G(7)P| )~ o). (62

P—wx
which is nothing butN—1 times the uniform susceptibility . ) . . . o
of the SU2) Heisenberg antiferromagnet. This result is easyTiS result is easily obtained by expandipgr) within the
to understand since the critical theory in the spin sector corcOMplete set of eigenstates At , o
responds toN—1 decoupled massless bosonic modes. Fi- " Monte Carlo schemes, successive applications of the
nally, using the general formula of the specific heat at lowPPeratorG(H) on_|<//T> are don_e using probablllstlc rules.
temperatures for a conformaly invariant thedfgne has for | N€se rules are implemented in configuration space where

the SUN) Heisenberg antiferromagnet the trial wave function and matrix eIement_stare gasily
evaluated. In what follows we shall denote [by an arbitrary
m(N—1) configuration of the system. To give an example, in actual
V="ag (600 calculations presented below we consitigr=|i (D). --|i(N)
s with [i®)y=|n,,, ... ,n_,) whereL is the number of sites

Before closing this section, it is important to emphasizethe SUN) color index, andn;, the occupation number of
that the Mott transition expected in the bosonization apSitei (njia=0 or 1) for the species.
proach relies on the full expression kf(U) as function of In this work Hamiltonians considered are of the form
the interaction. However, one should stress that this param- H=T+V 63)
eter cannot be obtained for arbitrddy within this approach '
and only in the weak coupling liml) <t where the model is  whereT is the kinetic tern{a nondiagonal operatpandV is
in its metallic phase. To conclude in favor of the existence ofa (diagona) potential term. For fermions in one dimension it
a Mott transition for a finite value of the Coulomb interac- is known that by choosing a suitable labeling of the sites,
tion, one has thus to compulte,(U) of the lattice model by nonzero matrix elements of the kinetic term can all be made
an independent approach. Since the BYHubbard model negative
with N>2 is not exactly soluble, one cannot determine the
expressionK (U) by the Bethe ansatz as for the standard (i|T[j)=<0 (i#])). (64)

7-29
Hubbard - modef. We shall thus compute the value A most important consequence of this property is that the

Ke(U) Qf the lattice model using very accurate numericalexact ground state has a constant sign. In other words, simu-
calculations based on QMC methods described in the neXtiions presented here are free of the sign problem

section. In Sec. V'. we shall then compare the numenca} '€~ et us now introduce the following transition probability:
sults with the predictions of the bosonization approach given

in this section to conclude on the existence of a Mott transi- 1
tion in the model. Pii(n)=y¢r())(I[1- T(H—EL)]|i>m, (65)
lil. THE NUMERICAL APPROACH where y(i) are the components of the vectapr), ¢(i)

_ _ _ =(i|y7), andE_ is a diagonal operator called the local en-
In this section we present our improved zero-temperaturgrgy and defined as follows:

Green'’s function Monte Carlo method used for computing
ground-state properties. In the first part a sketchy but self- (ilELli)=6&EL(i)
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with Here, it is rewritten as
- AilHyr 1 X
(. (60 E(yn)= lim o 3% ED=(ED)ey, (73
Note the important relation associated with the definition Ofwhere<< >>(P) is the stochastic average over configurations
the local energy i} generated using the transition probabilRyK being the
number of configurations calculated. Equat{@3) holds be-
(H—ED)|¢r)=0. (67) causey(i)? is the stationary density of the stochastic pro-
cess, that is,

To define a transition probabilit;_,; must fulfill the two

following conditions. First, the sum over final staesP;_,;

must be equal to 1. Here, this is true as a direct consequence Z 4//T(i)2Pi_,j(T)= ()2 Vj. (79

of Eqg. (67). SecondP;_,; must be positive. To see this and !

for later use, let us distinguish between the caseg and . o - ] ]

i#]. This property is directly verified by using expressidigs)
Fori=j we have and (67). _ _ _
As already pointed out, the estimate of the exact energy is

based on the stochastic calculation ofl—7(H

—E7) 1" 1), Eq.(62). Introducing between each operator in

the product the decomposition of the identity over the basis

set 1=3,]i)(i| and making use of the definition of the tran-
sition probability, Eq.(65), we get the following path inte-
gral representation:

Pi_i(m)=1+7T.(i), (68)

whereT (i)=E (i) —H;; . Using Eq.(63), T, (i) can be re-
written as

(i|T| )
o ©9
[1—T<H—ET>]F’|¢T>=iZi ¢T<io)2k[[0 Pl iy,

T ()=

T_(i) is called the local kinetic energy. Because of Egf)

it is a negative quantity and the transition probability can be P—1
made positive by taking sufficiently small. More precisely, « 75
the time step must verify I];[ Wit 1 (i p) (| |IP> (79)
O<7<Min[ = 1/T (i)]. (700  where the weightsy;; are defined as follows:
Note that the upper bound is a nonzero quantity for a finite ([1-7(H—ED]lj)
system. On the other hand, whe# | we have W= A= H—EDTID) (76)
- —EL
() licitl
Pi_j(1)=—1H; (i#]), (71 or, more explicitly,
Yr(i)
a positive expression sinag;(i) is chosen to be positive and ]
off-diagonal termsH;; are negativg¢Eq. (64)].
Using expression$68) and (71) for the transition prob- 1—7(H;—E7)
ability random walks in configuration space can be gener- Wiizl_T[H“_ H1’ =]. (77)
I

ated. By averaging over configurations, statistical estimates
for various quantities can be defined. A first important ex- .
ample is the calculation of the variational energy associateg rom Eq.(62) the exact energy can be obtained as
with |¢7) (variational Monte Carlp The variational energy

is defined as i (Yr|H[1— 7(H—ED)1°|yr)

P (Y7l 1= T(H—ED] |y

(78

(el M pr) (72
(grlyr) which is rewritten here in terms of stochastic averages as

Ev(¢r)=

P-1 P-1
Eo= lim <<EL(iP)H Wikik+1>> / << [T Wikik+1>> : (79)
P—oe k=0 P) k=0 (P)
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In order to compute the averages appearing in that exprestep 7. In a configuration|i) associated with a small local
sion two strategies can be employed. First, form@@ can  kinetic energyT (i), the system remains in this configura-
be directly used as it stands: Paths are generated using ttien a relatively large time and a large valuerdf necessary
transition probability and the local energy at each step igo help the system to escape from it. Unfortunately, because
weighted by the quantiyW=II,w;; . This approach of the constraint68) (P;_; must be positiveconfigurations
where the number of configurations is kept fixed and thevith a high local kinetic energy impose a small valueron
weights are carried out along trajectories is usually referre@rder to circumvent this difficulty, we propose to integrate
to as the pure diffusion or Green’s function Monte Carloout exactly the time evolution of the system when trapped in
method. For extended systems such as those considered hetegiven configuration. This idea is developed in the next
this approach is not optimal. Indeed, it is important to sampleection.

less frequently regions of configuration space where the total

weight is small and to accumulate statistics where it is large. B. GFMC and Poisson processes

To regllze th'.s’ a blrth-death_ pro_ce(_ss branching proce_$s .. Consider the probability that the system remains in a
assoqate_d W'th the local weight is mtroduc_ed. In practice, | iven configurationi a number of times equal to. It is
consists in adding to the standard stochastic move defined fven by

the transition probability, a new step in which the current

configuration is destroyed or copied a number of times pro- P(N=P(i,=1,7;...in=1,Tins171,7)

portional to the local weight. Denotingy; the number of

copies(multiplicity) of the statej, we take =[PiLi(n]"1-Pii(n)]. (83
=int(w;;+ 7) (80) Pi(n) defines a normalized discrete Poisson distribution. In

terms of the local kinetic energy it can be rewritten as
where intf) denotes the integer part & and » a uniform

random number on (0,1). Adding a branching process can be Pi(n)y=—7T (I)expnIn[1+ 7T (i)]}, (84)
viewed as sampling with a generalized transition probability

P¥.;(7) defined as where the integen runs from zero to infinity. To describe

transitions towards statgdifferent fromi we introduce the

(N=PiL(Pw;; following escape transition probability:
= yr(i)(iIIL En]li)— 81 R R Y (85)
= ¢r()(I[1—7(H— T)]|I>m (82) =IT1—P (1) :

Of course, the normalization is not constatiite population Using Eqgs.(68) and (69) PHJ- is rewritten in the most ex-
fluctuateg and P* is not a genuine transition probability. plicit form

However, we can still define a stationary density for it. From

Eqg. (81) we see that the stationary condition is obtained ~ Hij () o

whenE+ is chosen to be the exact energy, and that the iqj=m7 J#1. (86)
density is y-(i) o(i). Accordingly, by using a stabilized eiHicbr(k)

population of configurations the exact energy may be nowNote that this transition probability is positive, normalized,
obtained as and independent of the time-step Now, by using both

probabilities?;(n) and PI_,,, the path integral representa-

Eo=((EL) - 2 tion of G(H)P|7), formula(75), can be rewritten as

Note the use of an additional subscnptin the average to
recall the presence of the branching process. [1-7(H—Ep)]Plyr)

At this point, we shall not expand further the method. For -1
more details regarding the implementation of GFMC to lat- _
tice systems the interested reader is referred to Refs. 19, (i,récp ¥r(io) {H PP 'k_"k“}P"(n')
34-36. Let us just emphasize on two important aspects. |
First, there exists a so-called zero-variance property for the H i, 87

energy: The better the trial wave functigh is, the smaller .k U ||)

the statistical fluctuations are. In the limit of an exact wave

function for which the local energy is a constant, fluctuationswhere the sum is performed over the set of all families of

entirely disappeatzero variance From this important re- states (o--11) with multiplicities (no---n;) verifying

mark follows that in any QMC method, it is crucial to opti- Si_o(N+1)+n=P. In a given family successive states

mize as much as possible the trial wave function used. O#ire different and the variable, represents the number of

course, in practice, a compromise between the complexity dimes the system remains in configuratign The set of all

the wave function and the gain in reduction of variance hagamilies is denoted’, and an arbitrary element is written

to be found. (i,n)=(ig---i;,ng---n;). Since off-diagonal weights are
Once a good trial wave function has been chosen, the onlgqual to 1, Eq(77), a shortened notation for the diagonal

room left for improvement is the implementation of the dy- weightsw;=w;; has been introduced.

namical process itself. In the algorithm presented here the Now, let us remark that the time steyplays a role in the

only dynamical parameter which can be adjusted is the timgath integral formulg87) only when the system is trapped
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into a given configuration. Indeed, both the escape probabil- (| He 1O ED| yr >
ity P and the off-diagonal weight;; are independent of. = lim D) (93
As an important consequence the limi>0 andP— oo with toe (drle [¢m)

Pr=t can be done exactly. In this limit the discrete Poissonin terms of stochastic averages it gives
processP;(n) defined in Eq(84) converges to a continuous

Poissonian distribution for the variabte=nr ) — ! 5 ! 5
Eo=lim EL('l)Gi,H Wi, 9i,H Wi, ,
K=o ) ()

| —o =

Pi(6)=—e %, (88) (94)
0; where configurations are generated using the escape transi-
tion probability P.

As in the standard approach it is preferable to simulate the
weights via a branching process. Here also, the reference
energy E; stabilizing the population is given by the exact
energyEy. The new stationary density is written as

In this formuIaH represents the average time spent in con-
figurationi. In what follows we shall refer to it as the aver-
age trapping time, its expression is

0=—1T.(i). (89

— _ - (i)~ ¢rr() o)/ 6 (95)
The fact thatt; is inversely proportional to the local kinetic ) _ o _
energy is explained as follows. When the kinetic energy i&/P 0 an immaterial normalization constant. Finally, our es-

small the system is almost blocked in its configuration and timator for &, is
is large. In contrast, when a large kinetic energy is available, — L
the system can escape easily from its current configuration E :<<0iEL(')>>(P’V\f) (96)
- 0 —
and 0 is small. As already remarked the escape transition (o)) W)
probability is independent of and is therefore not affected
by the zero-time-step limit. Finally, after exponentiating theWhere configurations are generated usMgand branched
product of weights, the path integral can be rewritten in thewith W. Note that the variational energy can be recovered by

form removing the branching proces& € 1)
e VED]y ((BEL(D) @
K Ev(¢r)= &?T() (97
+ o0 . =
=3 dgo"‘fo doyyr(io)? e
O
1 IV. COMPUTATIONAL DETAILS
x| T1 Pl Gk)IBik_,ikH}Pil(G,)eEL—oﬁk(EL(ik)ET) In this section some important aspects of the practical
k=0 implementation of the GFMC approach to the SLy(Hub-
1 bard model are presented.
XWW (90)
T A. Hardcore boson Hamiltonian
with the constraint that the trapping times vermzoak The Hamiltonian considered here is the one-dimensional
=t. SU(N) Hubbard model described by Ed). Simulations are

In order to compute ground-state properties the limit performed for a finite ring of length. In one dimension the
—oo must be performed, E¢62). In this limit the constraint  sites can be labeled in such way that the hopping term con-
S _o0c=t can be relaxed and, quite remarkably, integra-nects only sites represented by consecutive integers. As a
tions over the Poisson distributions for the different trappingconsequence no fermion sign appears, except eventually
times can be performed. For large enough tinvee obtain ~ when a fermion crosses the boundary«IL or L—1). By

choosing either periodic or antiperiodic boundary conditions
- this sign can always be absorbed and our m¢tlebecomes

e =By~ > vl Pisi TI W equivalent to a model made up with hardcore bosons and

iy k=0 KTk=o K described by

-1 1 L
TL(iI) l//T(iI)lll>, (91) H:_tiz Z |+1aC|a+HC+ 2 (2 nla) ' (98)

where the new integrated weigliisare found to be wherec;, creates a hardcore boson of codoon sitei, n;, is
+

the occupation numbert,,=c;.c;,, andc,, ,=c;;.

s To(i)
' Er—Hy’

(92
B. Trial wave function

In the same way as before the exact energy can be obtained As already emphasized a most important aspect of any
as Monte Carlo scheme is the choice of a good trial wave func-
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tion. To guide our choice, let us consider the exact solutiorUsing this representation, the wave function is giverefy
atU=0. In this case the ground state is obtained by filllhg Configurations connected by the Hamiltonian differ from
independent Fermi seas consisting of planes waves with m@ach other by removing a particle of a given caaon a site
mentak,=27n/L (n=0,=1,...). For agiven type of fer- i and putting it on a neighboring sife In the occupation-
mion, the ground state can be written as a Vandermondeumber language it corresponds to add one to the component
determinant’ and the following expression for the ground ja and remove one to the componeat of vector fi. For

state is obtained: convenience let us introduce the vec&?) whose compo-

nents are zero except the componentvhich is equal to 1.
o . L . . i :
%J_o(ll, ip)= H SIF{E(H—IV)}, (99) Using the new variables just defined we have
<1’

whereiq, ... ip are the positions of th® fermions on the (A,Ay,Ng)— | A+ 802 — 502) 7+ A, 508 — A5,

chain,iy=1,... L. In terms of occupation numbers the so-

lution can be rewritten as t(S(ia)_ g(ja))AU(g(ia)_ sa))

Lo No+
é(ny, ...n) =602 (100 2
where the matrix4, of size L XL) is given by (80— Fia)y | (104)
=y . 7T - =y
Ao, i")=Insin =i =i"){. (101 In the simulation the set of new variables is stored for

each configuration. At each Monte Carlo step they are reac-
Note that Eqs(100 and(101) describe a system of particles tualized using Eq(104). Finally, the numerical effort is lim-
interacting via a logarithmic potentiéne-dimensional Log ited to O(L).

gag. The exact ground-state wave function of the complete

SU(N) model atU=0 is simply obtained by writing the V. RESULTS
product of theN wave functiong100) associated with each
color. Let us now present the results for the @Y SU(3), and
When the Coulomb interaction is switched on, we haveSU(4) Hubbard models. S@2) results have been obtained by
Chosen to take the same functiona| form as beforeﬂfpr SOIVing numerica”y the Lieb'Wu equatioﬁ%.othel’ resu|tS
have been obtained with the GFMC method presented in the
¢T(ﬁ)5etﬁAUﬁ/z_ (102 previous section. In all calculations we have setl.
Here, Ay is an arbitrary matrix of sizeNLXNL). Taking A. Charge gaps

into account the translational and SWU( symmetries, at
most L+ 2 independent variational parameters can be de-
fined. In all GFMC calculations presented in this paper the _ _ _

entire set of parameters has been systematically optimizeg.C(Ne’L)_EO(NeJr LL)*+Eo(Ne—1L) 2E0(Ne,L),(105)

To do that, we have generalized the correlated sampling

method of Umrigaret al® along the lines presented in the WhereEq(Ng,L) is the total ground-state energy of a ring of
preceding section. To be more precise, the set of configurdengthL with N, electrons. In this expressidi,+ 1 means
tions used to calculate the quantities to be minimigetia-  that a fermion of an arbitrary color is added to or removed
tional energy or variance of{, see Ref. 38are generated from the system. Denotinly the number of colors, calcula-
using the escape transition probability and weighted with thdions are done for a number of fermions of each color equal
corresponding average trapping times. Doing this, the effecto L/N, and therefore for a total density=N,/L equal to 1.
tive number of configurations is increased and the optimizatn order to get the exact charge gap the liinitsc must be
tion process is facilitated. We have found that large numberperformed. As usual this is done by calculating charge gaps

The finite-size charge gafp.(N¢,L) is defined as

of parameters can be easily optimized. for different sizes and extrapolating to infinity. Here, SU
and SU4) calculations have been done fbr=9,12,18,27
C. O(L) algorithm and L=8,16,24,32, respectively. The finite-size gaps have

] ) i been found to converge almost linearly as a function of the

In the occupation-number representation the numerical ef,erse of the size. Accordingly, the limit—o of the gap
fort fzor calculating the trial wave functiotk-(n) is of order 155 peen obtained from a fit of the data with a linear or
O(L). To evaluate the local energy the Hamiltonian has tog,adratic function of 1. Figure 1 presents the charge gaps

be applied to the vectdyr). Since a given configuratidi)  ptained forlN=2,3,4 as a function of the Coulomb interac-
is connected by to aboutO(L) states, the total computa- g .

tional cost per Monte Carlo step is abdD|¢L3).'In fact, this A first important remark concerns the quality of the
cost can be reduced ©(L). To do that, we introduce the \onte Carlo simulations. As it can be seen in Fig. 1, the
following set of NL+1 variables: error bars on the different gaps are quite small. A typical
A value is about 0.001. Errors are small because total energies
- -4 = NAgN are calculated with a very high level of accuracy. For ex-
=\ n,A . 1 .
(M ,no) =| 1, Ay, ) (103 ample, for the S) model withL =32 andU=0.5, we get
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example, using Eq(106) possible representations ar€ (
=25.313,G=11.318), C=274.634G=26.745), and C
=515.649G=32.755), forN=2, 3, and 4, respectively.
Although no clear physical content can be given to the mag-
nitude of coefficients, it is nevertheless satisfactory to verify
that in the case of S@2), the gapful(106) leads to not too
large values for the coefficients. This should be contrasted
with the SU3) and SU4) cases for which the parameters are
important. Within a KT scenario all data can also be very
well fitted. In the case of S(2) where we know for sure that
no KT transition exists, the “critical value” issued from our
fits ranges from 0O to about 0.5. For example, a possible rep-
resentation is given byQyxr=541.310Gxy=11.053, and
N BRI U.=0.384). For the S(B) model accurate representations
0 1 < 3 4 5 can be obtained with a value &f; ranging from 0 to about
2.3 ForU.=2.2 (the value we shall propose later for the
FIG. 1. Charge gaps as a function of the interactibrior the  Cfitical valug we get Cyr=45.050,Gyr=6.567, andU.
SU(2), SU@3), and SW4) Hubbard models. The values of the gaps =2.2). For SU4) the interval is larger. Allowed values
have been extrapolated lo—« (see text range from O to about 2.9. F&i.=2.8 (our proposed value,
see below we get Cy1=17.889,Gxr=5.144, andU,.
Ey(32,32)= —52.13056(15) for a total number of elemen- =2.8). In contrast with the gapful representation, it should
tary Monte Carlo steps equal to<d0’. Clearly, the relative be noted that coefficients are now much larger for thé¢23U
error of about X10 © is very small. In the larg&) regime  model than for the S(B) and SU4) models.
where the trial wave function is not expected to be as good as In conclusion, using accurate values of the gaps no con-
for small U, we still get excellent results. For example, for clusions can be reasonably drawn about the existence or not
U=4.5 we getE,(32,32)=—23.7118(13) (1.&10° MC  of a KT-type transition at a finite value df. Numerical
steps with a relative error of about10~°. Using the stan- evidence based on other quantities are therefore called for
dard GFMC methodpresented in Sec. Il Awe get, forU (see next sections From the fitting of our data the only
=0.5, E((32,32)=-52.13050(40) and, forU=4.5, conclusion we are allowed to draw is that a KT transition is
Eo(32,32)= —23.7210(110)[in both cases the maximum only possible within the range0,2.3 for SU(3) and within
time-step allowed has been chosen, see (F)]. The im-  the range(0,2.9 for SU(4). In addition to this, if such a
provement resulting from the new approach, particularly atransition actually occurs in both models, we should expect a
largeU, is noticeable. Finally, using the approach of Trivedi difference for the critical values given by [SU(4)]
and Ceperle¥’ (introduction of the Poisson process but —UJSU(3)]~0.5-0.6(see Fig. L
no integration in timg we get for U=0.5 Ey(32,32)

0.6 -

=-52.13041(22) and for U=45, E,(32,32) B. Spin gap
=—23.7121(30). These results illustrate the improvement The spin gap is defined as the change in ground-state
resulting from the time integration. energy produced when destroying a fermion of a given color

Having at our disposal such accurate results we can try tand creating a fermion of a different coldn the SU?2) case
find out whether or not a gap opens for a nonzero value.of it consists in flipping one spinNote that in this process the
Considering only continuous transitions, two scenarios argharge number is kept fixed. For a finite system we have
possible. A first possibility is to open a gap for any non-zero
value ofU. In that case we write the gap versusas fol- Ag(Ne,L)=Eq(Ne+1.L)—Eq(Ne,L), (108
lows: whereN*1 involves an arbitrary pair of electrons of dif-
ferent colors(one created, one destroyed
Ac=Cexp—G/U). (106 For the SUW2) case the system is known from the exact
A second scenario consists in looking for the existence of &olution to be gapless for an arbitrary value of the interaction
KT-type transition at a finite valug, of the Coulomb inter- ~ strengthU. For a number of colors greater than 2, it is an
action. In that case the gap is written as open question. This is an important point since the existence
of a gapful regime would very likely indicate the existence
Gkt of a coupling between spin and charge degrees of freedom.
oG T o0,
Cc

(107) In all calculations performed faX=3 and 4, and for a cou-
pling constantU ranging from very small to very large val-

for U>U, and zero otherwise. The three sets of results havees (up to U=10) no evidence for the existence of such a
been fitted either using Eq&L06) or (107). The fitting pro- gap has been found. Thus, it can be quite safely concluded
cedure used is a standard one, based on the minimization tfat the spin sector of SB() N=2,3,4 is gapless for an
a chi-square type function including statistical errors. Ourarbitrary interaction in full agreement with the bosonization
most important conclusion is that all sets of data can berediction. To illustrate this point we present in Fig. 2 a
correctly represented within our small statistical errors eithetypical behavior for the spin gap of $8) as a function of
using the gapful representation, Eq.06), or using a KT  1/L at the relatively large valu&l=4.5 (at least two times
scenario, Eq(107), with a not too large value o). For  greater than the maximal value expecteddqrin the charge
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FIG. 2. Spin gap as a function ofl1ffor the SU3) Hubbard FIG. 3. u. as a function ol for the SU2) Hubbard model.
model atU=4.5. The solid line is a linear fit of the data.
. . . . CI++La eI‘PC|a' (114)
sectoj. The behavior of the gap is essentially linear and

extrapolation to the origin leads to a vanishing gap. for an arbitrary sitdé and colora.

By calculating with GFMC total ground-state energies for
different numbers of electrons, formuld12) allows a direct
calculation of the compressibility. In contrast, the GFMC

In this section we present calculations of the Luttingercalculation of the charge stiffness is more tricky due to the
liquid parametersi; andK. For that we shall make use of presence of a complex hopping term at the boundary. To
their relations with the compressibilityand charge stiffness  circumvent this difficulty we resort to the second-order
D, of the system. For a model witN colors[SU(N)] we  perturbation-theory expression of the charge stiffness. We

C. Luttinger-liquid parameters

have the following relations: have
e =1 (109 -2 ———— <k|‘]|o>|2 (119
Ke¢ 2 < k#0 Eo

and

whereT=—t=(c;", 1,Cia+ H.C.) is the kinetic-energy opera-
D.=NuK,, (110 tor, J=—it2(ci++1ac_ia—H.c.) is the_ paramagl_wetic current

operator(---) denoting the expectation value in the ground
wheren=N./L (N, total number of electronss the elec- state, all quantities being evaluatedgat 0. To evaluate the
tron density. The compressibility is defined as the second kinetic term we make use of the Hellman-Feynman theorem
derivative of the ground-state enerfy with respect to the (T)=E,—U(JEq/dU). In practice, the following finite-
density of particles difference expression is used:

2 Eo(U+6U)—Eq(U—5U
1 1%, (119 (T)=Eg—U ol ;éuo( )’ (116

K E 0’0n2

A convenient finite-size approximation of the compressibil-
ity is

L [ Eg(Ng+N,L)+Eg(No—N,L)— 2E(N,,L) | ~*
K= —5

N2 N2

(112

whereN.+=N in E; means thatN fermions—one of each
color—are added to or removed from the system.
The charge stiffness is given by

<V 2 ;
L d¢ ¢=0 ! N 1 l
whereg is a charge twist in the system. This charge twist is 0 L 2U 3 4

imposed by introducing the following twisted boundary con-
ditions: FIG. 4. u, as a function oU for the SU3) Hubbard model.



PRB 60 METAL-INSULATOR TRANSITION IN THE ONE-. .. 2313

2H T [FrrTrTTTTTT T T T T T

0.25F

U FIG. 7. K. as a function oU for the SU3) Hubbard model.

FIG. 5. ug as a function ol for the SU4) Hubbard model. have the same velocity. Of course, such a property is easily

implemented within a QMC framework.
Figures 3-8 present the Luttinger parameigrand K.
for the SU2), SU(3), and SW4) Hubbard models as a func-
jon of the interactionJ and for different sized.. For the
U(2) model, parameters have been obtained by computing
ground-state energies issued from the standard Lieb-Wu
equations [computation of the compressibility, formula
(112] and from their generalization to the case of twisted
~ boundary conditions as presented by Shastry and
[(k|9j0)® _ E P*Eo(M) (117 Sutherland® [computation of the charge stiffness, formula
& Eo—Ex 2 a\* (113)]. For the SW3) and SW4) models we have followed
_ the general route just presented above.
whereEj is the ground-state energy of the new Hamiltonian A first striking result emerging from the figures is the
defined by strong qualitative differences between the general behavior
of Luttinger parameters of the $2) model on the one hand,
~ N N and of the SB) and SU4) models, on the other hand. Let
H= _(H)‘)% (Ci+1acia)_(t_)‘)% (Ci-1aCia) TV(U) us first have a look at the charge veloaity.
(118 In the SU2) case the charge velocity has been calculated
for various values ofJ and for the sizet =6, 10, 14, 18,
andV(U) is the potential part of the problem. Using formu- and 22. Results are presented in Fig. 3. The upper curve
las (117) and(118) the charge stiffness can now be obtainedcorresponds td. =6, the lower one to the maximum size,
from a series of GFMC ground-state calculations of totall =22. In between, the curves are ordered according to the
energies ofeal Hamiltoniangmore preciselyE,, Eq(SU), magnitude ofL. For a given sizel, the charge velocity is
andE,(— 8U) for H, andEy(\) for H, EqQ.(118)]. It should  found to decrease as a function@f For a givenU, u. also

be emphasized that the new Hamiltoniéinis real but not ~decreases as a function of the size Such a behavior is
symmetric: Left-moving and right-moving electrons do not

with U small enough to make higher-order contributions
negligible.

The second-order part of formuld15 can be reinter-
preted back as the second-derivative of the total ground-sta
energy of a new Hamiltonian consisting of the original
Hamiltonian plus a perturbation associated with the flux op
eratorJ. This leads to the relation

T T :
1
. A
0.75
0.75
a’ S
0.5 0.5
0.25 L 0.25 i
0 ‘ ! 1] oL ! ! ! I
0 1 2 3 0 1 2 3 4

FIG. 6. K as a function oU for the SU2) Hubbard model. FIG. 8. K as a function oU for the SU4) Hubbard model.



2314 ASSARAF, AZARIA, CAFFAREL, AND LECHEMINANT PRB 60

quite typical of a gapped system in which collective chargeexistence of a finite correlation lengthA very similar situ-
excitations are damped away. In the limit of large sizes, thation is obtained in the S4) case. Using the same type of
charge velocity is expected to vanish for a nonzero value oirguments U, is found to be around 2.8. When studying
the interaction. The charge velocities of the (8)Umodel, charge gaps we had observed a differenceJgf Fig. 1,
Fig. 4, and of the SUY!) model, Fig. 5, display a very similar between S(B) and SU4) of between 0.5 and 0.6. This is in
behavior which is dramatically different from the one ob- very good agreement with what is found here from indepen-
served for SW2). Starting from their free value dt/=0 dent data orK.. A second prediction which can be tested is
[u.=v3 and u,=v2 for SU@3) and SU4), respectively, the estimate of the value &f. itself. Formula(52) gives

they increase as a function &f with a finite slope at the 5

origin. After some critical value olJ both velocities go mN°—=4 7

down quite rapidly. In the first part of the curvésmall and Ue=3 N=1 5"y

i i | he ch locity is f
intermediate values of)) the charge velocity is found to For N=3 andN=4 one getsU,=3.40 andU,—4.44, re-

converge quite rapidly as a function of the size. All curves tivelv. As alread inted out. th imat th
presented cannot be distinguished within statistical errorss.pec_(';/e y('j S'tf? reat.y p0|_||n ed ou "t ise |§S |_mat(re]s mus te
Although the calculations presented here are limited to sys(-:ons'I ered with caution. However, it should give the correc

; - ; trend as a function olN. Here, if we look at the ratio
tems with a maximum size ofE =27 [SU(3)] or L=32 '
[SU4)] some preliminary calculations at larger sizes_"JC[SU(.4)]/U°[SU(3)] we get about 1.31 from the theoret- :
strongly suggest that the values plotted are indeed co cal estimate and about 1.27 from our data. The agreement is

verged. Such results strongly support the existence of a gaﬁxcellent. Another point which can be checked is the value

less phase for the S8) and SU4) models. At larger values of the slope at the origin. For the $8) case, it is found to be

of U the situation is rather different. The charge velocities 0'1511.)' —0.191), and—0.19(2) forL =9, 18, and 27, .
decrease quite rapidly both as a functiorLbnd as a func- respectively. These results are in very good agreement with

tion of L. This behavior indicates the existence of a gappe he theoretical prediction of 137 = —0.183 given by Eq.

phase. In order to be more quantitative let us have a look 138)' For SU4) we find a slope of-0.31(1), —0.331), and

the value of the slope at the origin. The theoretical prediction 0-32(2) forL=16, 24, and 32, respectively. These results

can be obtained from Eq$38). For SU3) the slope at the are also in total agreement with the theoretical prediction of
origin is found to be 0.3@), 0.321), and 0.382) for L=9, 3/2/2m =—0.337. . .

18, and 27, respectively. These results are in perfect agree- Finally, it can be very useful for mteres.ted readers to give
ment with the theoretical prediction of #/~0.318. For the some compact and accurate representations of the Luttinger
SU(4) model the slope at the origin is found to be Q46 parameter_ﬂ(_C andu; as a functlon ofU. For_both param-
0.471), and 0.482) for L=16, 24, and 32, respectively. eters a minimal representation we may think (sée Sec.
Here also, the results are in perfect agreement with the théI—B) IS
oretical prediction of 3/2=0.477. Let us now consider our

results forkK .. Here also, there exists a common behavior for K = 1

the cases S(3) and SU4), and a different one for S). In ¢ J1+kU+k,U?'

the latter case, Fig. & decreases either as a functionlbf

or as a function of the size. The slope at the origir 0, is Ue=Vey1+u,U+u,U2 (119
essentially zero an#l; is expected to vanish at large sizes,

except, of course, in the free case. Once again, this behaviéior SU3) we obtain

is typical of a gapped system. In the two other cases, the

situation is rather different. In the same way as for the charge k,=0.33452%,=0.08789,

velocity, two regimes can be distinguished, see Figs. 7 and 8.

At small and intermediaté), the values oK, are found to u; =0.3792%,= —0.025509.

be very well converged within statistical errors as a functionygie that these values are not too far from the bare values
of the sizeL. The curve is smooth with a finite slope at the corresponding to Eqs(37), k%=u%=2/mvg ~0.36755K3

origin. In the second regime corresponding to larger values_ 0_g

of U the curvesK, versusU go down as a function of the —U2=t :
) .C 4 For SU4) we obtain

size. Clearly, this latter regime corresponds to a gapped

phase. Having nearly exact valueskf up to some critical k,=0.62065K,=0.12298,
valueU, for SU(3) and SU4), the next logical step consists
in comparing these values to the predictions of bosonization. u;=0.71486y,= —0.052705

A first important prediction was the opening of a gap in the

charge sector for a value &f. equal to 2N, Eq.(51). In Fig.  to compare to the bare values given kY=ul=3/mv¢

7 corresponding to the SB) case, a dashed line has been=0.675237 k3=uJ=0.

drawn at the valu& .= 2/3. The intersection of this line with As already discussed we have found no evidences for the
the curves oK. appears at aboul.~2.2. A most remark- opening of a spin gap in the case of the (3Uand SU4)

able result is that this value &f is both consistent with the models. In other words, the system remains critical with re-
critical value extracted from the calculation of the chargespect to the spin degrees of freedom for any value of the
gaps, Fig. 1, but also with the fact that it lies in the domain ofinteraction. For these models the slope at the origin is pre-
U where the values df . begin not to converge as a function dicted to be equal to- 1/27m=-0.159 [Eq. (27)]. Once

of the size(a fact usually interpreted as resulting from the again, this value has been recovered using our numerical
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[T T T T at half filling. Using a combination of bosonization and
35 QMC results, we have clearly shown that the SWY(Hub-
I bard model forN>2 behaves very differently from the
SU(2) case. Strong numerical and theoretical evidences have
been given in favor of a Mott transition, between a metallic
and an insulating phase, occurring for a finite value of the
Coulomb repulsiord >0 for N>2.
i The picture emerging from the bosonization approach
. consists in a spin-charge separation at low energy. The spin
| degrees of freedom are critical for arbitrddyand described
by the SUN); WZNW model with a central charge=N
—1 (N—1 gapless bosonic moded he effective theory as-
sociated with the charge degrees of freedom corresponds to a
L sine-Gordon model g8%2=4wNK_(U). For a small value of
0 1 2 3 4 5 the Coulomb interactiotV, the interaction is irrelevant. The
U charge sector is then critical and described by a massless
] N ] bosonic field. In this weak coupling phase, the system is
FIG. 9. Effective number of critical modes as a functionlbf  atqlic with anomalous power law behaviors in the physical
for the SUS) Hubbard model. quantities typical of a Luttinger liquid. For a finite value of
the interactiond, such thatk.(U.)=2/N, a KT phase tran-
ition to an insulating phase is expected in the bosonization
pproach. In this strong-coupling phase, the charge bosonic
field becomes locked and the infinite discréte symmetry
AyN,,L) related to the periodicity of the potential of the sine-Gordon
Szi_ (120 model is spontaneously broken. The only degrees of freedom
27l that remain critical in this strong coupling phase are khe

For SU3) and SU4) we get for the slope-0.18(2) and —1 spin modes and after integrating out the massive charge
—0.193), respectively, in very good agreement with the degrees of freedom, the low-energy theory of the model cor-
theoretical prediction. responds to the SW) Heisenberg antiferromagnet.

A final piece of information which can be extracted from ~ Very accurate numerical simulations based on a generali-
our data is related to the way the total ground-state energgation of the GFMC method and fully optimized trial wave
converges to its asymptotic value. To be more precise, it i$Unctions have been performed to obtain the spin and charge
known that the ground-state energy per sigeL) of a Lut-  9aps, and the Luttinger-liquid parameters as a function of the

tinger liquid is expected to behave’s Coulomb interaction for the S@), SU(3), and SUW4) Hub-
bard models. A metal-insulator phase transition at a finite

- value U, is clearly seen for S(3) (U.,~2.2) and SW4)
eo(L)=¢ey(+xo)— —22 uj, (121 (U.~2.8) in contrast with the standard &) case. In addi-
6L" tion all the results obtained fdl=3 andN=4 are fully
| consistent with the theoretical framework drawn in Sec. Il.
This provides an accurate test of the bosonization approach
to the SUN) Hubbard model for small and large values of
U. It is therefore natural to expect that the physical picture
emerging from the two cases studied here can be extended to
arbitrary values ofN. Thus one may conclude that the oc-
(furrence at a finite value of the interaction of a Mott transi-
tion of the KT type isgenericin the SUN) Hubbard model
for N>2 at half filling. In addition, it should be emphasized
that the calculations of the Luttinger paramet&rsand u,
6b presented in Sec. || B are of very good qualiiy particular
Nej=—. they are converged as a function of the saed thus provide
VE an accurate characterization of the low-energy properties of

The result is presented in Fig. 9. Although the transition isthe metallic phase of the §8) and SU4) Hubbard models.
not as sharp as for the Luttinger parameters, the loss of one Let us now compare our results with the exact solution of

critical mode(passing from 3 to Ris clearly seen whet ~ the integrable model based on the Sl)(generalization of
varies from zero to infinity. A similar curve may be obtained the Lieb-Wu Bethe ansatz equatiorisAs discussed in the

for the SU4) case. Introduction, an exact solution of an SN generalization of

the Hubbard model is available. Although the underlying lat-

tice Hamiltonian of the model is not known, it involves very

likely long-range interactions that dynamically exclude
In this work, we have studied the SN generalization of three-electron configurations. The question that naturally

the one-dimensional Hubbard model for repulsive interactiorarises is whether the physics described by the latter model is

SU(3) L=9,18,27

Effective number of critical modes

data. To compute the spin velocity we have used the formul
expressing the spin gap as a function of the size for a critic
system®

where X;u; denotes the total velocity associated with al
critical excitations. In the free casBl degrees of freedom
are critical, and the total velocity is equal&vr . When the
interaction is turned on, it is possible to follow the evolution
of the total velocity as a function df. This has been done
for the SU3) model. Taking our data for the sizeés=9, 18,
and 27 the ground-state energy has been fitted with a for
adapted to Eq(121), e,=a—b/L2. From this fit an effective
number of critical modes can be defined as

VI. CONCLUDING REMARKS
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similar, whenN>2, to that of the lattice SUY) Hubbard tion. This work wa.s.supported by the “Center National de la
model that we have studied in this paper. At half filling, the Récherche Scientifique{CNRS.

SU(N) integrable model undergoedfiest-order phase tran-

sition, as one variedJ, from a metallic to an insulating APPENDIX

phase'® This is in disagreement with the KT transition pre- _ _ _ _ _
dicted by our analysis. In the metallic phase the integrable !N this appendix, we give some details of computations to
model is a Luttinger liquid for everi (Refs. 13,41with the  €Stablish the separation of spin and cha@® at the Hamil-
same physical properties as those obtained by the bosonizi2nian level in the continuum limit of the SB( Hubbard
tion approach for the SUW) Hubbard model. However, the Model and fix the expressions of s andG s given by Egs.
charge stiffnes&; obtained from the Bethe ansatz equations(27)' (28).

varies between N and 1 asJ decreases frort, to 034!

The value at the transitionK(=1/N) is thus two times 1. Sugawara form of the free Hamiltonian

larger than the value obtained for the 3U( Hubbard To begin with, we shall recall some basic things on the
model. This clearly confirms that the integrable model d|ffersSU(N) non-Abelian bosonizatioffor a review see Refs. 23

from the lattice SUN) Hubbard model in the charge sector. 5, 26. As seen in Sec. Il A, the chiral SM) spin current
As already pointed out, this difference should result from theJA’ .

) ) ) . rL Ccan be expressed in terms Nfright-left moving fer-
presence of nonlocal interactions in the lattice model assocmdnsw i
ated with the integrable SBY) model. aRL-
Regarding perspectives, it is clearly of interest to further JA gt A . (A1)
explore the phase diagram of the $U)(Hubbard model: R = Yarw) TabYori)
case of an attractive interaction, dependence on the fillingrpe |eft- (right-) moving fermions are holomorphi@ntiho-
etc. For an attractive interaction at half filling, bosonizationbmorphio fields of the complex coordinatez€ 7+ix, =

predicts that a phase transition should also occytasar- being the imaginary time i, (2), ¥.r(Z). These fields are
ies. For incommensurate fillings, it is easy to see, within theyefined by the following OPE's:

bosonization framework, that the system is a Luttinger liquid
for arbitraryN and positived where the leading asymptotics

S,
of the electronic Green's function and spin-spin correlation P (2) o (@)~ TE‘E)+:¢;L¢DL:(w)
coincide with those computed in the metallic phase. The situ- m @
ation is less clear for commensurate fillings= 7n/(Nay) +(z— w)-(;,/,TwaL (w)+- -
. a . 1

(N/n being an integer In the bosonization approach, a gap

opens in the charge sector fig=2n?/N. The existence of s

a Mott transition for commensurate fillings clearly requires 1 (2) hpr( @)~ __Zab L.t ()
the full knowledge ofK.(U,n) of the lattice model. Some Var(2) o 27m(z— w) Vartbr
preliminary calculations show that there is a very special

e PR . ...
commensurate fillingn=N/2, where no Mott transition ex- + (2= w): 9paripri(@) + (A2)
ists and for which the charge and spin degrees of freedom are, — . L
massive folN>2 and arbitraryU.* with d=4,,, 9= d5 and there are no singularities in the OPE

Let us end by noting a very interesting connection pe-when one does the fusion of two operators belonging to dif-
tween the metal-insulator transition predicted in the B)( [€rent sectors. _
Hubbard model and the existence of plateaux in magnetiza- L€t Us now consider the OPE between two left S))(
tion curves of spin ladders under a strong magnetic figléf ~ SPin currents, for instance,
Using the Jordan-Wigner transformation, one can indeed in- N 5 N .
terpret the SU{) Hubbard model as K-leg S=1/2XY spin TN TP (@)= 4k Tathor :(2): g ThetbeL (@)
ladder in a uniform magnetic field along the axis and _ + +
coupled in a symmetric \gllvay by Ising inte%action. The rela- = TavTdetha (2) Ve (@) o (2) g ().
tion between the Fermi momenta and the magnetizgfibh (A3)
(normalized such that the saturation valuedid) is kg i ) ,
— m(1—(M))/(2a,). The Mott transition found in this work USing the OPE'$A2), the commutation relatio(6), and the
for the SUN) Hubbard model at half filling corresponds to Normalization of the generators of the 3Y(Lie algebra,
the appearance of plateaux (@)= (N—2)/N in the mag- ©ne obtains
netization curves of the previoud-leg XY spin ladder.

Moreover, the existence of a Mott transition for the SI( A "8 ifABC
Hubbard model at commensurate filling will give additional T T (w)~ — ot _ Ti(w).

. o 87m(z—w)° 27w(z— w)
plateaux located afM)=(N—2n)/N in the magnetization (A4)

curves of the corresponding spin ladder.
In the same way, we find for the right spin current
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Evaluating these OPE at equal time, one recovers the OPEollecting all terms, we finally obtain the Sugawara form of
(15) showing thatJQL are SUN); spin current. With the the free Hamiltoniar¥{, (10):

same procedure, one can compute the OPE between the

charge curren/x | using its definition(17) in terms of the —iCYlpdutlar: = kL Oxtbal )

underlying fermions

T 21
= NCTRIRF TLIL )+ g CTRTRF TLTL).
0 0 _
T2 T (@) 42— ) (A13)
j%@f%(®~ — Y — (AB) 2. Sugawara form of the SUN) Hubbard Hamiltonian

47 (z2— w)?

We shall now investigate the effect of the Hubbard inter-
so that the charge curregty,, belongs to the U(1) KM action in the continuum limit to fix the expressiof&) and
algebra. (28) of the velocities @.s) and the coupling constants

The next step is to obtain the Sugawara fa@@), (21) of (G, ). Using the continuum description of the SUY spin
the free part of the Hamiltoniar). Let us consider, for  density(12), the interacting part?) is given by dropping all
instance, the left sector of the theory since we shall obtaiscillatory contributions:
the same result for the right part with the substitution

—R, (zW)—(Z,®) andd—d. We need now the following UagN

OPE for the spin sector: N ]

CTA Th A NACNAT VAT VA,
(A14)
T TN @)= 9 Taothor (D)0, Taetber () S
The OPE between thek2 parts of the spin density can be

1 1 computed using Eqg13) and (A2) as in the previous sub-
5 5ae5bd_ N 5ab5de

2 N section. We find up to constant terms
XYL (D) el (@) Yo (D P (), (A7) N2 DN (w,0)+ N (22N (0, 0)
where we have used the relati¢8). Using Eq.(A2) and N2—1 72— @
keeping also the first regular terms in the fusion, we get VT = lﬂLﬂlﬂaL ()
7N z2—w
N2-1 N+1 2 15—
A Al N ot to. N°—1z—w —
T ()T (@) 872z—w)? 2N “a YaL oLy (@) ST EW;R(?%R:(E)
NZ2— . _ gt T .
- e daL (). (A8) L ¥aL YortbR: (0, 0)
27N 72
1
Therefore, one obtains + N: zﬁ;,_wb,_z,bngaR:(w,E). (A15)
N+1 N2—1 i - ons | ;
CTAZA ot T ot ) Using Egs.(A9), (A10) and similar equations in the right
LI N Waadoldbol T o YadYal (A9) sector together with the definition of the charge curf@m,
) we end with
In the same way, we obtain for the left charge current
N2-1
1 jAjA+NANAT+NATNA~— (:j0j0+j0j0:)
LTI == el eLdol Y ddal (AL0) aN? IRIRTILL
1
One can eliminate the four fermions terms by considering the + —CTRTRt T0T)
following combination: N
N+1
w 2m +2——JRJL
NI+ N TOT L == e (ALD) N VR
N%-1
Since one ha9y, = —idy i, within our convention, the - Vj%jf. (A16)

identity (A11), the so-called Sugawara form, states that the
free Hamiltonian ofN relativistic left-moving fermions can As a consequence, the continuum limit of the S(Hub-

be written only as a function of left current-current terms. Iy 5.4 model at half filling exhibits the spin-charge separation
the right part, we have also a similar identity

™ 2 H=H.+Hs (Al17)
N TRTR+ 7 TRIR = ardxart (A12)

N+1 with
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mVv Ua
Ho=" CTRIR:+:T0T0 )+ GoTRTY (A1 ve=vet(N=1)52, (A20
and . .
whereas the current-current couplings in the charge and the
27V spin sectors are written as
He=15 1(:j§j§:+ L TNTE )+ GeTRIE. (A19)
N—1
The renormalized velocities are given by GCZTUaO,
_ Uag
VsTVRT G.=—2Uay. (A21)
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