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We investigate dynamical symmetry enlargement in the half-filled SU(4) Hubbard chain using
nonperturbative renormalization-group and quantum Monte Carlo techniques. A spectral gap is shown
to open for arbitrary Coulombic repulsion U. At weak coupling, U & 3t, a SO(8) symmetry between
charge and spin-orbital excitations is found to be dynamically enlarged at low energy whereas at strong
coupling, U * 6t, the charge degrees of freedom dynamically decouple. The crossover between these
regimes is discussed.
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using nonperturbative RG and quantum Monte Carlo
(QMC) simulations for the simplest one-dimensional

a � �1; . . . ; 6� [6]. We find for the low-energy effective
Hamiltonian
In strongly correlated electronic systems, the presence
of additional dynamical degrees of freedom out of the
usual spin and charge ones is expected to play an impor-
tant role in a number of complex systems. This is the case,
for example, of some d-electron systems [1], C60-based
materials [2] and also various ladder-type compounds [3],
for which low-energy excitations cannot be constructed
from a single effective orbital per site (one band). An
important question that arises is to know whether or not
there exist generic features associated with multi-orbital
effects. Such a question is nontrivial since it is known that
the lack of symmetry in multi-orbital problems [beyond
the usual SU(2) spin invariance] is responsible for the
presence of many independent couplings and, therefore, a
wide range of problem-dependent physical behaviors
could be expected. However, at sufficiently low energy,
it may happen that the effective symmetry is increased,
thus considerably simplifying the description of the prob-
lem. This is of course what happens in a critical (gapless)
model. In the more general case where a spectral gap is
present, the possibility of such a dynamical symmetry
enlargement (DSE) at low energy is clearly nontrivial.
Recently, Lin, Balents, and Fisher [4] have emphasized
that DSE is likely to be a generic tendency of the pertur-
bative (one-loop) renormalization-group (RG) flow in
their study of the half-filled two-leg Hubbard ladder.
However, since in a gapped system DSE is a strong
coupling effect, one may thus question the reliability of
perturbation theory [5]. Clearly, in view of the impor-
tance that such a DSE phenomenon might have in our
understanding of complex systems, a nonperturbative in-
vestigation is called for, and it is the purpose of this
Letter to present such a study.

In the following, we investigate the DSE phenomenon
0031-9007=04=93(1)=016407(4)$22.50 
half-filled two-band Hubbard model, where spin and
orbital degrees of freedom play a symmetrical role. The
corresponding SU(4) Hubbard model reads as follows:
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where cyi;a� creates an electron with spin � � �"; #� and
orbital index a � �1; 2� at the ith site, and ni;a� �
cyi;a�ci;a�. The total symmetry group of (1) is U�4� �
U�1�charge 	 SU�4�spin orbital; it is the maximal symmetry
allowed for a two-band Hubbard model. A simple one-
loop perturbative analysis [4] would predict that, at
half-filling, a SO(8) symmetry between charge and spin-
orbital degrees of freedom is likely to be dynamically
enlarged at low energy. Such a DSE pattern, U�4� !
SO�8�, is highly nontrivial since one naturally expects
the charge degrees of freedom to decouple at sufficiently
large U. Indeed, in the limit U� t, the Hamiltonian (1)
reduces, at half-filling, to an antiferromagetic (AFM)
Heisenberg model [where the spin operators act on the
six-dimensional antisymmetric representation of SU(4)].
It is precisely the interplay between the small-U predicted
SO(8) regime and the large-U charge-decoupled Heisen-
berg limit which is considered here.

The low-energy effective field theory is obtained, as
usual by performing the continuum limit. The U�1�charge
charge sector is described, in a standard way, by a single
bosonic field �c and its dual field �c. There are many
equivalent ways to describe the spin-orbital excitations in
the SU�4�spin orbital sector, and it is most convenient to
represent them by six real (Majorana) fermions 
a, where
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where �a � 
aR

a
L, gs � �gsc � �U=2�, and vs � vF �

gs, vF � 2t being the Fermi velocity. In Eq. (2), the
Luttinger exponent Kc � 1=

�������������������������
1� 2gc=vF

p
and the charge

velocity vc � vF
�������������������������
1� 2gc=vF

p
depend on the charge cou-

pling gc � 3U=2�. The low-energy effective field theory
(2) describes the interaction between a SO(6) Gross-
Neveu (GN) model, associated with spin-orbital degrees
of freedom, and a Luttinger liquid Hamiltonian in the
charge sector. The interaction term, with coupling con-
stant gsc, is an umklapp contribution that comes from the
4kF part of the Hamiltonian density and is present only
at half-filling kF � �=2. In sharp contrast with the half-
filled SU(2) Hubbard model and the SU(4) case at
quarter-filling [7], there is no spin-charge separation at
low energy for half-filling. Spin orbital and charge de-
grees of freedom remain strongly coupled through the
4kF umklapp process. At this point it is worth stressing
that there exists a higher-order umklapp term (8kF pro-
cess) V c � y cos�

���������
16�

p
�c�, which depends only on the

charge degrees of freedom. Although this operator, with
scaling dimension � � 4Kc, is strongly irrelevant at
small U, it may become relevant at sufficiently large U.
As we shall see, this contribution is at the heart of the
physics of the SU(4) Hubbard model in the large U limit.

A simple one-loop RG calculation reveals that the
couplings ga � �gc; gs; gsc� flow at strong coupling. In
particular, as gc blows up at low energy, Kc inevitably
decreases until V c becomes relevant. Thus, the nature of
the low-energy physics depends on the balance between
the two umklapp operators with very different properties.
Clearly, nonperturbative methods are called for. In this
respect, Gerganov et al. [8] have provided a RG frame-
work which allows one to compute the RG � function to
all order in perturbation theory for a large class of one-
dimensional models with current-current interactions.We
have applied their formalism to the Hamiltonian (2) and
obtained the resummed � function [9]. Neglecting veloc-
ity anisotropy, we get
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where _gga � @ga=@t, t being the RG ‘‘time,’’ and ga !
ga=vF. In the absence of the umklapp contribution V c,
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we find that the RG flow crucially depends on gc as
follows. In the weak-coupling regime, at small enough
U=t such that gc  2, all the couplings converge to the
same value, ga�t�� � 2, at some finite RG time t�. On the
other hand, when gc > 2, one enters a regime where
perturbation theory is meaningless.

Weak-coupling regime.—When gc < 2, much can be
said on the low-energy physical properties of the model
(1). Indeed, integrating the flow up to t�, one finds that the
Hamiltonian (2) at that scale reduces to the SO(8) GN
model:
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where we have refermionized the charge degrees of free-
dom in terms of two real fermions 
7;8: �
7 � i
8�R�L� �
exp��i

�������
4�

p
�cR�L��. The equivalence at low energy be-

tween (1) and (4) is a manifestation of the DSE
U�1�charge 	 SU�4�spin orbital ! SO�8�. This SO(8) enlarged
symmetry, which has been first predicted using a 1-loop
RG calculation in [4], is shown here to hold beyond
perturbation theory provided gc < 2. For higher values
of gc, the higher-umklapp term V c plays a prominent
role at low energy and, as we shall see, is responsible of
the dynamical decoupling of the charge degree of free-
dom. One of the main interests of the emergence of this
SO(8) symmetry stems from the fact that the model (4) is
integrable and a large amount of information can be
extracted from the exact solution [4,10]. The low-lying
spectrum of the SO(8) GN model (4) is fully gapped and
consists of three distinct octets with the same mass m�
te�t=U. The fundamental fermion octet, associated with
the Majorana fermions 
a of Eq. (4), is made of two
charged �2e spin-orbital singlets, called cooperons,
and six spin-orbital excitations which transform accord-
ing to the self-conjugate representation of SU(4) with
dimension 6. The remaining two octets are of kinks
type. In particular, the excitations of the SU(4) Hubbard
model (1), carrying the quantum numbers of the lattice
fermions ci;a�, are represented by eight of these kinks. In
addition, there are 28 bosonic states organized as a rank-
2 SO(8) antisymmetric tensor and a singlet, all of mass���
3

p
m, which can be viewed as bound states of the funda-

mental fermions or of the kinks states. The massive phase
corresponding to the SO(8) GN model (4) is a spin-Peierls
(SP) phase as it can be readily shown by considering the
order parameter OSP �

P
i;a���1�icyi;a�ci�1;a�, which has

a nonzero expectation value hOSPi � 0. The ground state
of (4) is thus doubly degenerate and spontaneously breaks
the lattice translation symmetry. The striking feature is
that, despite of this dimerization, both electronic and
spin-orbital excitations are coherent; i.e., they contribute
to sharp peaks in various spectral functions. This result
stems from the existence in the exact spectrum of (4)
of states that have the same quantum numbers as the
016407-2
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FIG. 1. One-particle gap �1, spin-orbital gap �s, and coop-
eron gap �c as a function of U=t; inset: �s gap as function of
U=t.
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electron and spin-orbital operators cyi;a�ci;b�. In particu-
lar, the dynamical structure spin factor of the system
displays a sharp peak at energy! �

���
3

p
m, corresponding

to an excitation of one of the bosonic states of the SO(8)
theory. In this respect, the half-filled SU(4) Hubbard
model is predicted to be a fully coherent gapped dimer-
ized liquid at weak coupling.

Although the RG Eq. (3) is nonperturbative in nature, it
remains to investigate the effect of neglected symmetry-
breaking operators such as the higher-umklapp term V c
and chiral interactions that account for velocities anisot-
ropy. For small symmetry-breaking terms, the SO(8)
multiplets will be adiabatically deformed and split into
U�1�charge � SU�4�spin orbital multiplets; the SO(8) symme-
try is only realized approximately at weak enough cou-
plings. At small U=t the splittings are exponentially
small, but we expect perturbation theory to break down
as U increases, even when gc < 2. The reason stems from
the neglected umklapp operator V c, which becomes
relevant before one reaches the SO(8) symmetry restora-
tion point as �< 2 when gc > 3=2. We thus expect the
SO(8) regime to hold approximately up to some critical
value Uc, from which a very naive estimate can be ob-
tained using the bare value of gc: Uc � 2�t.

In order to check our theoretical predictions, we have
performed extensive T � 0 QMC simulations of the
SU(4) Hubbard model (1) at half-filling for a wide range
ofU=t. Following the work done in Ref. [7] in the quarter-
filled case, we have computed all gaps associated with the
SO(8) tower of states.We discuss here our results for three
of them: �1, which is the gap to the one-particle excita-
tion cyi;a�, �s, which is the spin-orbital gap associated
with the excitations cyi;a�ci;b", and, finally, the cooperon
gap �c, which is the gap to a spin-orbital singlet state of
charge 2e. The latter excitation is a striking feature of
the SO(8) spectrum and is not simply related to electronic
excitations on the lattice. For example, the cooperon
comes into pairs from the charge 4e excitation
$a�c

y
i;a�. We have computed the cooperon gap �c as

half the gap of this state. The exact spectrum of (4)
imposes the highly nontrivial predictions for the ratios
��1=�c�SO�8� � 1 and ��s=�c�SO�8� �

���
3

p
(note that the

spin-orbital excitations we are considering are bound
states of two one-particle excitations). Strong deviations
from these theoretical predictions will be a signature of
the failure of the increased SO(8) symmetry. We show in
Fig. 1 our results for �1�U�, �s�U�, and �c�U�, for values
of U=t ranging from 0.5 to 20. The extrapolation to the
thermodynamical limit has been performed using lattice
sizes L � 8; 16; 32; 48; 64, and the errors on the gaps
range from 10�2 at small U=t to 10�3 at large U=t. Two
asymptotic regimes are identified: a small U=t regime
and a large U=t regime, where spin orbital and charge
degrees of freedom clearly separate. Both regimes are
most easily seen on the spin gap �s�U�, behavior (inset of
Fig. 1) which increases until it reaches a maximum
around U=t� 6 and then decreases smoothly to zero as
016407-3
U=t! 1. Clearly the SO(8) regime is expected to show
off at small U=t. In Fig. 2 we plot the ratio ��1=�c��U=t�.
One observes a clear saturation of the ratio at the SO(8)
value asU decreases belowU� 3:5t. Other gap ratios, not
presented here [9], show also a SO(8) saturation in the
regime U & 3:5t. These results strongly support the ex-
istence of a SO(8) DSE in a regime where the gaps are not
infinitesimally small (�s � 0:1t–0:2t). Above U� 3:5t,
the ratio shows a departure from its SO(8) value. Though
such a behavior may be attributed to level splitting due to
symmetry-breaking operators at small U=t, this is cer-
tainly not the case above U� 6t, where �1=�c saturates
at the value 1=2. It is difficult from our results to give a
precise value to Uc above which the SO(8) regime is lost,
but we can give an estimate 3t  Uc  6t. Notice that the
upper value is in agreement with our rough estimate of
Uc � 2�t based on a scaling argument.

Strong-coupling regime.—When U=t� 1, there is a
clear separation between spin orbital and charge degrees
since �c � �s (see Fig. 1). The umklapp term V c, which
depends only on the charge degrees of freedom, now
becomes much more relevant than the 4kF coupling, and
charge fluctuations are strongly suppressed by this pro-
cess. Integrating out the charge degrees of freedom, the
low-energy effective Hamiltonian in the spin-orbital sec-
tor reduces to a massive SO(6) GN model:
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where M > 0 and Gs�U� is a negative effective coupling
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FIG. 2. Gap ratio �1=�c as a function of U=t.
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at large U=t. The Hamiltonian (5) describes six massive
Majorana fermions with a weak repulsion. One can show,
using Eq. (5), that hOSPi � 0 so that the ground state is
still in a SP phase. Neglecting charge fluctuations, this
dimerized phase, with broken translational symmetry,
can be simply understood as a set of nearest-neighbor
SU�4� � SO�6� spin-orbital singlet bonds. There is thus a
continuity between weak and strong coupling with re-
spect to the nature of the ground state. However, there is a
striking difference between the SO(8) regime and this
strong-coupling phase, called SO(6) regime, at the level
of the coherence of excitations. The excitation spectrum
of the model (5) for Gs < 0 consists of massive fermions

a, which are the SU(4) dimerization kinks, and their
multiparticle excitations. In particular, there are no bound
states so that the spin-orbital dynamical structure factor
exhibits a two-particle continuum; the spin-orbital exci-
tations are now incoherent. Apart from these neutral
excitations, there are massive modes corresponding to
solitons in �c with charge q � �e coupled with zero
modes of the Majorana fermions 
a of Eq. (5). These
excitations have a larger gap and carry the same quantum
numbers as the kinks of the SO(8) spectrum [9]. The
cooperon is no longer a stable excitation in the large
U=t limit, but becomes instead a diffusive state made of
these two kinks. One thus expects that the gap ratio
�1=�c saturates at 1=2 in the SO(6) regime, in full agree-
ment with the numerical results of Fig. 2. The physics of
the strong-coupling regime can also be investigated by a
complementary approach: to map directly, in the large U
limit, the SU(4) Hubbard model (1) onto a SU(4) AFM
Heisenberg chain by a standard perturbation theory in
016407-4
t=U [11]: H eff � J
P
iSi � Si�1, with J � 4t2=U and SAi

are SU(4) spin which belongs to the six-dimensional
representation of SU(4). This SO(6) AFM Heisenberg
chain is not integrable and has been studied by means
of the density matrix RG approach [11]. In full agreement
with our results, this model belongs to a SU(4) dimerized
phase. Using the numerical results of Ref. [11], we find
that our QMC results for the spin gap �s�U=t� follow a
SO(6) Heisenberg regime for U > 8t. In this respect, we
deduce that the low-energy physics of the SO(6) AFM
Heisenberg chain is described by the six almost free
massive Majorana fermions (5).

Crossover regime.—Both SO(8) and SO(6) regimes
differ by the coherent nature of spin-orbital excitations
and the existence of an elementary charge 2e cooperon
excitation. In the simplest hypothesis, the crossover be-
tween these two regimes can be understood as a change of
sign of the coupling Gs as a function of U. A mean-field
analysis of the low-energy effective theory together with
our numerical results predict that such a crossover occurs
at U ’ 4:5t [9]. When Gs�U� > 0, the Majorana fermions
of Eq. (5) experience an attractive interaction, and the
neutral bound state in the adjoint representation of SU(4)
are formed. The latter excitation is adiabatically con-
nected to one of the bosonic states of the SO(8) spectrum,
which is responsible of the sharp peak in the dynamical
structure factor in the SO(8) regime. It is thus very
tempting to conclude, within this simple scenario, that
the SO(8) regime approximately extends up to Uc � 4:5t,
above which one enters the Heisenberg SO(6) regime.
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