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A new method of deriving explicit formulas for the calculation of second-order exchange
contributions (induction as well as dispersion) within the framework of symmetry-adapted
perturbation theories is presented. It is shown how exchange contributions can be expressed as
a combination of electrostatic interaction energies between suitably generalized charge
distributions (overlap intermolecular charge distributions). Each of these contributions are
derived within the Hartree—Fock approximation (neglect of all electron correlation effects
within the noninteracting molecules) and by considering only single-electron exchange
between interacting molecules. Numerical calculations for the interaction of two water
molecules are presented. In the region of the equilibrium geometry, it is found that the
complete second-order exchange contribution accounts for about 20% of the total
intermolecular interaction energy. This contribution is essentially dominated by the exchange
induction component which is found to represent approximately 1 kcal/mol (using a basis set
containing 94 orbitals). To our knowledge, this is the first example of calculation of exchange
induction interaction energy for a molecular system. Concerning the less important, but non-

negligible, exchange dispersion component, our result is found to agree with a very recent

calculation for the water dimer.

1. INTRODUCTION

Calculating intermolecular interaction energies in the
important region around the equilibrium configuration with
a high level of accuracy (say with an error less than 10% of
the experimental interaction energy) is known to be a diffi-
cult task. As an illustrative example, Szalewicz ef al. pointed
out in a recent paper' that for a relatively simple system as
the water dimer, the calculated values of the interaction en-
ergy range from — 4.1to — 6.1 kcal/mol, even after having
rejected results obtained with too small basis sets or based on
low-quality theoretical methods. In particular, the spread on
the calculated values is larger than the commonly accepted
experimental range of — 5.4 4 0.7 kcal/mol.? Obviously,
the situation generally becomes worse when more complex
systems are considered.

In the field of theoretical evaluations of interaction ener-
gies, two types of approach are generally distinguished. The
first approach (certainly the most commonly employed) is
the so-called supermolecule method?® in which the interac-
tion energy is obtained by subtracting from the total energy
of the interacting molecules (the supermolecule) the sum of
the total energies of each monomer, all energies being calcu-
lated by using the same method. A major difficulty inherent
to this type of approach is that a particularly high level of
accuracy on calculated energies is required. The basic reason
is that interaction energies represent only an extremely small
fraction of the total energy of the supermolecule (about
5 1073 for the favorable case of the water dimer). In addi-
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tion, it is, in general, difficult to know whether errors made
in calculating total energies for interacting and noninteract-
ing molecules are of comparable magnitude or not, which
may lead to an important relative error for the interaction
energy (basically one is dealing with the very general prob-
lem associated with the evaluation of a small quantity ex-
pressed as a difference of two large and approximately evalu-
ated quantities). As an important example, let us mention
calculations done at the self-consistent-field (SCF) level for
which it is not at all clear a priori whether a favorable cancel-
lation of the errors due to the lack of electron correlation
contributions for monomers and dimer may occur or not. In
fact, it is known that the intermolecular electron correlation
effects (dispersion contributions) cannot be, in general, ne-
glected. Accurate values for electron correlation contribu-
tions can be, in principle, obtained by application of some
form of configuration interaction (CI), but in practice this
may lead to prohibitively large computer time and memory
requirements. Another well-known difficulty one has to
cope with is the occurrence of the so-called basis-set super-
position error (BSSE). A great amount of work dealing with
this difficulty has been done (see, e.g., Refs. 4-6). However,
it should be emphasized that the most commonly used solu-
tion to this problem, namely the so-called counterpoise
method proposed by Boys and Bernardi,’ is still in discus-
sion. In the second approach, which will be followed in the
present study, the intermolecular interaction energy is cal-
culated from perturbation theory using the intermolecular
potential as the perturbing operator. When the intermolecu-
lar distance R is large, one is dealing with the Rayleigh—
Schrédinger perturbation theory in which only simple prod-
ucts of monomer wave functions are used. Due to the large
separation between monomers no antisymmetrization of the
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factorized wave functions is necessary. Also, in this particu-
lar case, the multipole expansion® for the interaction opera-
tor can be applied to obtain the interaction energy as a series
of inverse powers of R (such terms being, in general, orienta-
tionally dependent). For shorter distances, e.g., distances
corresponding to the region around the equilibrium configu-
ration, the usual Rayleigh—Schrddinger perturbation theory
must be abandoned,® and in order to take into account, at
least to some extent, the exchange of electrons between the
interacting molecules, some form of exchange perturbation
theory [the so-called symmetry-adapted perturbation theo-
ries (SAPT), see, e.g., Refs. 10 and 11] must be used. Before
entering into the details of SAPT, it is important to empha-
size two general features of perturbation theory which make
this approach particularly attractive with regard to the usual
supermolecular approach. First, the difficult problem just
discussed above of evaluating the interaction energy as a dif-
ference of two large and approximate quantities is avoided
since a direct evaluation of the interaction energy is done.
Second, the interaction energy is decomposed into a sum of
terms for each of which it is possible to give some physical
interpretation (at least for terms up to and including second-
order terms). This is a very appealing feature for a qualita-
tive understanding of the interaction and can be very helpful
for the development of simplified formulas for intermolecu-
lar interactions.

To our knowledge, the first example of an exchange-
perturbation-theory calculation is due to Jeziorski and van
Hemert (JvH) in their pioneering work on the water
dimer.'? Neglecting all intramonomer correlation effects,
they evaluated the complete first-order interaction energy
EV=E{) + E{) (explicitly, the sum of the Rayleigh~
Schrédinger and first-order exchange energies) and the
Rayleigh-Schrédinger second-order interaction energy

which is known to decompose into the induction E () and

dispersion E fﬁzs’p components. In particular, no calculations
of second-order exchange contributions were done. One of
their major results was that the dispersion contribution was
found to greatly stabilize the water dimer. More precisely,
the dispersion energy turned out to amount to 50% of the
SCF binding energy at the equilibrium geometry. This result
isimportant since, as a part of the intermolecular correlation
energy, the dispersion contribution cannot be obtained in a
SCF calculation of the interaction energy. In other words, an
extensive CI calculation would be necessary to recover this
important contribution in a supermolecular approach. A
second major result of JvH was that, for interoxygen dis-
tances greater than 5.0 a.u. (5.67 a.u. being the equilibrium
distance) the SCF binding energy was found to be very well
represented by the sum of the complete first-order energy
and the second-order induction energy, thus leading to the
approximate equality:

EfF~EVY + EQ2). (1
On the other hand, it is known that besides the first-order
and the second-order induction energies, the SCF binding
energy contains some part of the second-order exchange in-

duction contribution, and of the third- and higher-order “in-
duction” energies as well as some intramonomer electron

correlation contributions due to the self-consistency at the
dimer level.’® Accordingly, the preceding equality (1) was
interpreted by supposing that, at least for interoxygen dis-
tances greater than 5.0 a.u., the three effects just quoted did
not contribute significantly to the interaction energy. In fact,
further calculations done by Chalasinski and Jeziorski for
atomic van der Waals dimers such as He,, Be,, and Ne,
failed to confirm this assertion.'*!” More precisely, in con-
trast to JvH, they observed that the SCF binding energy was
poorly represented by Eq. (1). A number of reasons have
been given to explain this result (see, e.g., the discussion in
Ref. 18). Actually, one of these reasons (not the only one) is
the non-negligible role of second-order exchange terms. In
order to study quantitatively the importance of these contri-
butions, Chalasinski and Jeziorski developed a method of
evaluating second-order exchange energies (induction as
well as dispersion) for the interaction of closed-shell atoms
or molecules.” In practice, they performed calculations on
atomic van der Waals systems such as He,, Be,, and
Ne,.'*"'7 One of their main conclusions is that, as a general
rule, the second-order exchange energy is repulsive and
quenches a significant fraction of the interaction energy, at
least for the van der Waals dimers studied. Concerning mo-
lecular interactions, no systematic calculations have been
performed that would show the importance of second-order
induction and dispersion exchange effects. To our knowl-
edge, the first calculation for a molecular system is due to
Chalasinski.'® He showed that for the HF dimer at the equi-
librium geometry, E ), ., represents about 10% of E {3,
Very recently, Rybak?*?! found a similar contribution for
the water dimer. Finally, it seems that no calculations exist
concerning the exchange induction energy for molecular
systems.

The main purpose of this paper is to present a new meth-
od of deriving explicit formulas for the calculation of second-
order exchange contributions. Following Claverie’s point of
view,?? the strategy adopted in this work is essentially to
express exchange contributions as a combination of formal
electrostatic interaction energies between suitably general-
ized charge distributions (so-called overlap intermolecular
charge distributions). To do that, two basic ingredients are
used: (1) the so-called Longuet—Higgins representation of
the intermolecular interaction operator in terms of molecu-
lar charge distributions,* and (2) the possibility of reducing
the action of the intersystem antisymmetrizer (appearing in
SAPT, see Sec. II) on factorized SCF wave functions to a
sum of simple products of SCF determinants pertaining to
each subsystem. These determinants are formally “charge-
transfer” determinants corresponding to a certain number of
opposite transfers (depending on the number of exchange of
electrons between interacting molecules which are consid-
ered) between all possible pairs of spin orbitals of each mon-
omer.

In order to demonstrate the applicability of the present
approach, some numerical results on the interaction
between two water molecules are presented.

The organization of the present paper is as follows. In
Sec. II, we present the formal development of second-order
exchange contributions. In order to make as far as possible
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the present paper self-contained, the theory is presented in a
systematic and comprehensive way. Section III is devoted to
the presentation of numerical calculations for the two water
molecules. Results for the different components of the inter-
action energy as a function of the interoxygen distance are
presented and the importance of second-order exchange
contributions are discussed. The role of the basis set used is
also investigated. Finally, some concluding remarks are giv-
en in Sec. I'V.

1. THEORY

Let us consider two interacting systems 4 and B. The
total Hamiltonian H of the complex is written as

H=H,+ V", (2)
with
Hy=H"+ H? (3)

where H* (M = A,B) denotes the Hamiltonian of the non-
interacting systems and ¥ 4% is the intermolecular interac-
tion potential

po=y 3L

..zz__

acd BeB raﬁ acAd jeB T,
-~y 5 Zyys L (4)
BeB ica Tg; icA B r,j

where r,, = |r, — r, |. Italic indices label electronic coordi-
nates and Greek indices label nuclear coordinates. Z,, is the
charge number of nucleus p belonging to molecule M
(M = A,B). The eigenfunctions of the Hamiltonian H ¥ of
molecule M (M = A,B) are denoted ¥* with the corre-
sponding energies E¥. Then, the eigenfunctions of
H, = H" + H * are merely the products ¥;¥} with the cor-
responding energies E{ + E /.

Following standard symmetry-adapted perturbation
theories,'™!" the complete first- and second-order interac-
tion energies are written in the form>*%

(WoWs | V2 Al W5 ¥g)
(VW5 |A[¥5¥0)
(YW |V "RA(V** — E) W ¥5)
(VW5 |A|Wo¥g)
where R, denotes the reduced resolvent of H, given by
B A
Ro=S'— I‘I’f‘;’j ASE ‘l:ﬂ _
ij (Ei +Ej) - (Eo +Eo)

a_

, &)

E® = — , (6)

(D

(the prime in 2’ means as usual that the term corresponding
tof = 0andj = Ois excluded from the summation) and A is
the intersystem antisymmetrizer which we shall write in the
form??

A=1-A=1-P,
+Poy — A+ (=D Py,, (8)

where P, = Z/3]P,, denotes the sum of all permutations
exchanging (space and spin) coordinates of electron / of
molecule 4 with coordinates of electron j of molecule B, and
similar definitions hold for P,,, P,,... (N;,r denotes the

smallest value of N, and Ng, the numbers of electrons of
molecule 4 and B, respectively).

Remark that a number of definitions of A differing from
one another by the normalization factor have been given
elsewhere (see Appendix A in Ref. 22). However, this is of
no importance since A appears in both numerator and de-
nominator of Eqs. (5) and (6) and therefore the normaliza-
tion of A is immaterial.

Now, by using the decomposition A =1 — A’, where
A’'=P,, — Py, + -, the second-order perturbation en-
ergy E® [Eq. (6)] may be decomposed into the usual sec-
ond-order Rayleigh-Schrddinger (RS) perturbation energy

E R [obtained by setting A = 1in Eq. (6)] and into the so-
called second-order exchange energy E (2, in which we are
interested here.

After elementary algebra, the complete second-order
exchange term is found to be

EQ,=E®—EQ
_ (BB -EM W —aneh)
(&) ’

where (A’) and (A) are the expectation values of A’ and A
calculated with the ground-state wave function W{W¥g and
&'V stands for the first-order correction to the wave function
in the perturbation theory"’

OV = — R VAPWIVE, (10)
Now, since multiple exchanges are supposed to contribute
weakly in the region around the equilibrium geometry,'>
here we shall limit ourselves to the calculation of the leading
contribution to E ), corresponding to a single exchange of
electrons between molecules 4 and B. Thus, setting
A' = P, in Eq. (9) and neglecting terms which will corre-
spond to contributions of order higher than S? (where S
stands for overlap integrals between orbitals of monomers 4
and B) within the Hartree-Fock formalism used below, the
following expression of E 2}, is obtained:

E®

exch —

— (VW | (V2 — (V42))

><(P(l) —<P(1)))|¢m>, (11)

where (¥*2) is the first-order Rayleigh-Schrodinger inter-
action energy obtained by setting A = 1in Eq. (5).

Note that our formula (11) seems to differ from those
given in other works (see, e.g., Refs. 14-17) by a minus sign.
In fact, this is not true because the convention of sign we
have adopted for the decomposition of the antisymmetrizer
A is different [compare, e.g., Eq. (5) in Ref. 15 with our
definition (8)].

For our purposes it is convenient to rewrite ®* [Eq.
(10)] as follows:

N =YiPE, + BLVE + DL, (12a)
with
2 Zal gl 74 3
PB, =Y pP i (12b)
=2 EZ-E?
Ay B AB \I/A\I,B
(‘I’ WO|V | i 0)’ (120)

A _ \I,A 0
ind_z i
70 E{-E?

J. Chem. Phys., Vol. 92, No. 10, 15 May 1990
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



6052 Hess et al.: The water dimer

(12d)

opp = 5wy (VEVIVIN)
& (E§—EH+(E§—E})
J#0
When inserting the previous decomposition of " into Eq.
(11), the second-order exchange energy decomposes into
three terms

E3) = Egc)h-ind (4~ B)

exch
+ E $hina (B>A) + Ee(:fc)h-disp- (13)

The sum of the first two terms in Eq. (13) will be referred to
in the following as the exchange induction energy, while
E éfc’h_disp will be referred to as the exchange dispersion ener-
gy

Evaluating such quantities requires expressions of W/
and W7, the exact eigenfunctions of monomers 4 and B. Un-
fortunately, it is well known that exact or even accurate cor-
related eigenfunctions for atomic or molecular systems are,
in general, not available, except for very simple systems. Asa
consequence, approximate wave functions are generally
used. However, it should be remarked that such an approxi-
mation is not inherent to the perturbation theory but is rath-
er related to the way adopted in ab initio frameworks for
evaluating perturbation quantities which consists in per-
forming explicitly the infinite summation involved in the re-
duced resolvent of H,. As an example, it is possible by using a
Monte Carlo path integral formalism to calculate exactly
perturbation quantities without doing such a summation.
The problem of finding good approximations of all exact
eigenfunctions of H, [needed for evaluating R; see Eq. (7)]
is then avoided.?®?’

Here, we shall limit ourselves to the use of approximate
eigenfunctions obtained from a SCF calculation, thus neg-
lecting the internal electron correlation of monomers. By
denoting a;, = a,;(r)of and b, = b, (r)a? as the SCF ortho-
normalized spin orbitals of monomers 4 and B (occupied as
well as virtual), the approximate (normalized) eigenfunc-
tions of H* and H® constructed from these spin orbitals will
be the following determinants:

1

yA = A1 [al(l)"'aN (NA)], (143)
NI ’
WE — ;'AB[bl(l)"'bNB(NB)]’ (14b)
!

where AY (M = A,B) is the intrasystem antisymmetrizer
for the electrons belonging to the monomer M [intrasystem
antisymmetrizer in contrast with the intersystem antisym-
metrizer defined above in Eq. (8)].

In order to avoid any risk of confusion, we shall system-
atically use different types of indices for labeling occupied
and virtual spin orbitals. More precisely, occupied and vir-
tual spin orbitals will be indiced by using subscripts £, , k, [
and p, g, 7, s, respectively.

A. Second-order exchange induction energy

By using Eqs. (11), (12a), and (13), E 2} .4 (4> B)
may be written as

E Qlina (A= B) = — (YW | (V4% — (V12))

X (Poy — (P, D |¥iPiny), (15)

with a similar formula for E {2, ;.4 (B—A4). Because of sym-
metry, only the expression for E (2, ., (4 — B) will be con-
sidered in the following.

For our purposes let us introduce the quantity W§ (Z;)
defined as the Slater determinant obtained by replacing in
W& the occupied spin orbital b, by the virtual spin orbital b, .
A similar definition holds for monomer 4.

Let us define ¢}, as

(WIWE| V2 | WaWE(;))
c, =
, EE _EB(kr)

where E 8(k—r) are eigenvalues of the Fock operator asso-

(16)

ciated with monoexcited wave functions g (Z; ).
Using this notation and Eq. (12b), 2, may be rewrit-
ten in the form

b,
¢ﬁd=22c;\1'5(b ) (17)
k

keB reB
where summations run over all occupied and virtual spin
orbitals b, and b,, respectively. Note that Eq. (17) involves
only single excitations since the interaction operator V4 isa
mono-electronic operator with respect to each of the inter-
acting subsystems.
Now, defining the so-called “induction functions” /2
(see Ref. 15) associated with the occupied spin orbital b, ,

ff = Z C;b,,
reB

and using standard properties of determinants, Eq. (17)
takes the following form:

ff)
B, =3 WP
ind Z WO (bk ’

(18)

(19)

keB

where W& (,,f) is an obvious generalization of the previous
notation indicating the replacement of the occupied spin or-
bital b, by the associated induction function /2. By inserting
Eq. (19) into Eq. (15), the exchange induction energy is
written

Eéfgh—ind (4-B) = — z <\I/3\I’g (VA2 — (V%))

keB

s (F5

X (P(l) _<P(1)>)‘IIO\PO b *
k

(20)

In order to make our notation more compact, the following
convention is introduced

e (7).
by

where O stands for an arbitrary operator. Thus,
E () ina (A— B) may be written in the expanded form

[0],<E<\I'o"\l/{,9 (0] 2n
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Eggh-ina (4-B)= — %([VABP(U ]k - (VAB)[P(U ]k

— Py, >[V“]k)- (22)

Note that the contribution associated with (V*2)(P,,)
vanishes because of orthogonality between spin orbitals.

Before expliciting further the three basic contributions
[V*2P,, 1s [Py Jo» and [V #2],, involved in Eq. (22),
let us present the very important formula expressing the ac-
tion of the permutation operator P,,, on a product of two
determinants W* and W in terms of a linear combination of
simple products of determinants pertaining to subsystems 4
and B (see Sec. III B in Ref. 22):

P, [¥19%] = z; yA (a) (b) :

where the summation is over the spin orbitals of determi-
nants ¥ (here labeled by i) and ¥# (labeled by 7). Let us
emphasize that no subscript 0 has been used for denoting ¥~
and W# since they must be viewed as rather arbitrary deter-
minants and, in particular, are not necessarily constructed
from a set of occupied spin orbitals. Using Eq. (23), all inte-
grals involving functions of the type P, [¥*¥?] are re-
duced to sums of integrals involving simple products

\I/‘(f:’lﬁ )WP(3) of “opposite transfer” determinants.

(23)

1. Expression of [ VA¥P,, ],
By applying the property just presented [ V%P, ], is

written as
fB
[VABP(l)]k'_-ZZ <\P3Wg y4e \I’o( )‘I’B( ))
A B b, b,
JAk
f f a;
+3 (vt valws () we (7))
(24)
where V2 (f k& ) denotes the Slater determinant of molecule

Bin which the occupxed spin orbital b, has been replaced by
f2 (sum of virtual spin orbitals of B) and the occupied spin
orbital b; (b ; #b, ) has been replaced by the occupied spin
orbital a; of molecule 4. Indices i and j in summations of Eq.
(24) run over occupied spin orbitals of 4 and B, respectively.

Our next step consists of the use of the so-called Lon-
guet—Higgins representation of the interaction operator V2
in terms of the molecular charge distributions p™
(M = A,B), namely,?

VAE = f % dridr®, (25)
with
PM(X) = prtcieas (F) + Plictronic (T)
= 2 Z,6(r—r,) — %6(r—r,)
M=A,BTLEM ) (26)

By using this representation, [ ¥ 42P,,, | is written as

6053

CfE oy
[VABP(l)]k=22fffm fOO(bkb dr dr®
€A /B
j#k

2
fffoo( )foo(bk de de?.

w ()

8
N .
(1) o oo

(27)

with the deﬁmtlons

o ;)= {w
i )=(w
6 ()= wslren]wa (7)),
5 (5) = loen s (51)-

Note that the quantities of Eqs. (28a)—(28d) can be viewed
as generalizations of the usual intramolecular charge density
associated with the ground-state wave function of molecule
M (M=A,B)

) (28a)

pE(r®)

Pt (28¢)

po(r®) (28d)

Fo5 (™) = (WipM(r™) |wsh

= z Z,6(eM—r,) — Z le; (x*) |3,

HEM eM

(28e)

wherec=afor M = 4 and ¢=b for M = B, and thus may be
referred to as “overlap intermolecular charge densities.” Us-
ing this terminology, [V *®P, ], as given by Eq. (27),
may be interpreted as a combination of electrostatic interac-
tions between these various overlap intermolecular charge
densities.

In order to write down simple formulas for these formal
charge densities it is convenient to rewrite the determinental
wave functions in terms of orthogonal spin orbitals. Let ¥ be
a determinant constructed from a set of NV orthonormal spin
orbitals {u, },_,~ and let v; be an arbitrary spin orbital
(that is with no particular orthogonality relations with re-
spect to {u, }), then the following property holds:

v v
0 =V + (u,;|v,)¥,
u; u,

where v; is comstructed to be orthogonal on the set
{u; }_ \ n» namely,
N
v =v; — k}:’ (uplvdu,.
=1

Applying this property and denoting S ” and SA as the

(29)

(30)

spin-orbital overlaps
5" =alb) = [ drambmtiah, G
and
Soa=(alfd) —J.dra (MfRr)ofol),  (31b)

we obtain the following relations:
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b; b;
() () v
a; a;

withb; =b, — 2., 4%,

B
4|/ K k AB\yA
w () =v () v s

Withfg'l =f£ — 2y Slffau

and )

\I/B (a ) \I/B (a’> SAB B

b, b,

- 2IEB‘S' ﬂBbl

For convenience, the expression of W& (f . ”) will be
written down by using a slightly generalized version of prop-
erty (29). Direct application of (29) would require con-
structing a spin orbital a; orthogonal with the set {;}, .,
and f£. In particular, a; would have no particular orthogon-
ality relation with respect to the spin orbital b, . However, as
will become evident below, it is very convenient to impose
also the orthogonality between these two spin orbitals. We
thus define the new primed orbital o/ as

with a! = a;

AB
a;=ai_zsi1 b,

leB

which leads to the following expression:

Xa % a i
R
O(bkbj "\, b,) 770 g,

B
-8 (b) U#k),

J

AB B
_Sifk k

which contains an extra term resulting from our new addi-
tional constraint.

Now, to evaluate matrix elements of Egs. (28a)—(28d)
we take advantage of the previous expressions and of the
monoelectronic character of operators p?(r?) and p?(r?)
(nonzero matrix elements only when evaluated between two
determinants differing by at most one spin orbital). Note
that this property holds here merely because we have intro-
duced new spin orbitals (labeled with a prime) constructed
to be orthogonal with original spin orbitals.

Thus, after some algebra we obtain

b.
fh (a’_) = —a ) |5, ot

“Zsz‘f”a,(r‘xaﬂof)] S8,
led

(32a)
fra; B AB
72 ([F9) = —menstanations;
by b,
+ b () fF (") (o} |o) ST (k)
(32b)
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foo( )= —a,(r) [ff(r‘)(ofl«r}})

“staz(r‘)(oﬂoﬁ] £ SpA (o,
(32¢)

a;
75 (;) = — b [ otiod
k

— 3 51 ) otloh) | + 5121 e,
leB
(32d)
where /5 (r) (M = A4,B) stands for the usual molecular
charge density atr, Eq. (28¢). Finally, [ ¥ **P,,, ], given by
expression (27) can be written as a sum of mono- and bielec-
tronic integrals involving spin orbitals a;, b;, and /7.

2. Expression of (VA®)[ P, 1«

The quantity (¥*?) is nothing but the electrostatic en-
ergy of interaction between the systems A and B which may
be expressed as usual in terms of mono- and bielectronic
integrals involving occupied spin orbitals {a,} and {5,} of
the two monomers.??

Now, to evaluate [P, ], we simply set ¥*# = 1in Eq.

(24),
Pol=3% % <‘1"“’B v ( ) ¥e (bj b,))
¥e (ak) ¥o (b» oY

Jsé k
+y <‘P3‘I’€
€A
Due to the orthogonality of the spin orbitals f§ with the
occupied spin orbitals of B, only the second contribution in
Eq. (33) does not vanish, and we obtain

B T

which may be expressed in terms of overlaps between spin
orbitals as follows:

[P ]« —-ZS,fB

(35)

3. Expression of (P,,) [ V*®],
Using Eq. (23), (P, ) is written as

b, a;
Ppy)=3Y3 <‘P3\P€ v3 ( ’) \I/é‘( )) , (36)
e jeb a; b;

which leads to
(P(,))—ZZIS’”’ 2, (37)

€A B

On the other hand, [ V48], is written

vt ()
o*0 bk .

We shall not make explicit this latter expression further
since, when the summation over & is performed, it corre-

VAB

(V4] = (wgwg
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sponds to the usual second-order Rayleigh-Schrédinger in-
duction energy of 4 on B."?

B. Second-order exchange dispersion energy

The derivation of the second-order exchange dispersion
energy is actually very similar to the derivation just present-
ed for the induction term. Introducing the following coeffi-
cients
e (W3Ws |V |93 (GOWE (i) 38)

Y (B{HED — [Efk-n) + ESU-5)]

and defining the so-called “dispersion pair functions”
(which play a role here similar to the “induction functions”
/2 introduced for the induction term) as follows:'>

3 S cha, ()b, (2),

red ssB

uff(1,2) = (39)

the expression of ®42 may be rewritten as [using Egs.
(12d) and (14)]

olf, =5 > AA?[u

keA leB

WD I a:(d Hb,-(j)] :
i#k j#El
(40)

Now, by inserting ®42, into formula (11) [®4Z, is the dis-
persion part of ' according to Eq. (12a)] it is possible to
express E ) 4, in terms of the previous dispersion pair
functions.'® However, we shall not follow this method. In
the present work we shall prefer to show how the exchange
dispersion energy may also be formally written as a sum of
contributions which may interpreted as the electrostatic in-
teraction between suitable “overlap intermolecular charge
distributions” localized on monomers 4 and B, respectively,
thus pursuing what has been done for the exchange induc-
tion term. It should be remarked that such a point of view is
no longer possible when introducing the dispersion pair
functions since such functions connect explicitly variables of
monomers 4 and B [Eq. (39)]. The two ways of writing
down expressions for the exchange dispersion energy are of
course equivalent but the latter approach will be particularly
simple to handle.

By using Eqgs. (11) (12a), (12d), (13), and (38) the
following form for E 33), , is obtained:

L AT

keA leB red scB
\I}A (ar> \PB (bs)> (41)
0 ak (4] bI ’

where the two first summations are performed over the set of
occupied spin orbitals of 4 and B, while the two last ones run
over the virtual spin orbitals of 4 and B. Here also, E () uip
is expressed as a sum of three nonzero contributions result-
ing from the expansion of the bracketed product. For future
use, the following compact notation is defined:

i (o) i)
0 a, 0 b,/

where O stands for an arbitrary operator.

VAB__ (VAB>)

X(P(l) - <P(1)>)

o (42)

wm%ww

1. Expression of [ VAP, 14

In order to write down the expression of [ V%P, ] %,
the permutation operator P,;, must be applied to the prod-
uct of determinants W§ (57 )Wg ( Z';' ). To do this, our basic for-
mula (23) is used. When performing the double summation
involved in (23), four different cases must be distinguished,
depending on whether the spin orbitals a, and/or b, are
considered in the summations or not. Next, the Longuet—
Higgins representation of the interaction operator is used
and then the quantity [ VP ,, 17, takes the form

f (a,\a)fOO(b
vralz=3 3 [ = 1 G i
leA/eB
itk jEI
f5 (Z‘;)f (b
ff “X s TR0 gt de®
JEA
ik

J‘jfoo(ak)foo(b,b)d/,drﬂ
J#I

fffw,;AY$jbl dr* dr®.

Now, to calculate the “overlap intermolecular charge distri-
butions” the same method as that used in the derivation of
the exchange induction is employed. In fact, it is not difficult
to convince oneself that calculations are identical with those
accomplished for obtaining Eqgs. (32). Let us just give the
results in the following compact form:

¢, d
f& (c,, Ck) = —¢;(r"c, ™) (oMM S ;P
i &

+¢;(t™) e, (¢") (o) S 12,

with c=a, d=b for M = A and c=b, d=a for M = B.
Note that ¢;, c;, and d, are occupied spin orbitals and
¢; #c¢;. With the same notations, we have

d
foAg (Cﬁ) = — C,»(I‘M)[dﬁ (rM)<0i|UB>

(43)

(44)

— 2 Sﬁ;Bcj(rM)(a,-|aj)] + S5 o5 (x*).
(45)
Note that ¢; denotes an occupied spin orbital of one of the

two monomers, while dg may represent either an occupied
or a virtual spin orbital of the other monomer.

2. Expression of (V%) [P, 1%

As already noticed, the quantity (¥ ;) is nothing but
the usual electrostatic interaction energy between mon-
omers 4 and B. Expression of [ P}, ]%; in terms of spin orbi-
tal overlaps is as usual obtained by making use of our basic
property (23). One obtains

() (i)

(P 1= (wsws

. QABQAB
=SS,

Py

(46)
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3. Expression of (P,,,) [ V*#]3

We shall not make explicit the expression of [ V4217
further since, when summations over the indices are per-
formed, it corresponds to the usual second-order Rayleigh—
Schrodinger dispersion energy.'? On the other hand, (P, )
has already been given in Eqs. (36) and (37).

C. Hylleraas variational procedure

Now, when performing the practical evaluation of the
quantities written above, we are faced with the well-known
problem of summing expressions defined over the infinite set
of unoccupied orbitals of the Fock operator belonging to the
continuous spectrum. As pointed out by Jeziorski and van
Hemert,'? such summations are practically inexecutable in-
tegration. To overcome this difficulty, here we will use the
variational-perturbation method proposed by JvH. This
method, which is essentially based on the minimization of a
Hylleraas-type functional, has been already described in de-
tail (see, e.g., Refs. 12 and 16) and therefore only its main
features are summarized here. When applying the variation-
al procedure, it is possible to show'?'¢ that expressions of
induction and dispersion may be rewritten in a form identi-
cal with that obtained by the direct procedure, except that
expressions are expressed in a new basis set donated by JvH
as a molecular (or dimer) basis set. This new basis set con-
sists of the occupied spin orbitals of monomers 4 and B
({a;} and {b,} with the corresponding orbital energies €/
and e}’) and of a new set of virtual spin orbitals obtained by
diagonalizing the one-electron Fock operator of 4 (respec-
tively, B) within the space spanned by the basis set of the
whole dimer 4B (denoted as {@, } and {b,} with the corre-
sponding orbital energies &€ and €7). Note that the symbols a
and b do not indicate at which center the orbital is located
(basis set delocalized on the whole dimer). It should be em-
phasized that {a@,} and {5,} are sets of square-integrable
functions whereas {a,} and {4, } form continuous sets of
unnormalizable functions. When using the molecular basis
set, the induction and dispersion pair functions /2 and uj’
[defined by Eqgs. (18) and (39), respectively] must be re-
placed by the following new functions:

j‘f = 2 é;Br’ (473)
reB
wP(2) =Y Y &a, ()b (2), (47b)
red seB
where
& = (b | |b,)/ (ef — &), (48a)
with
A ’
wl(r) = ———foo (r) dr’
Ir—r'|
and
&= (akb, 1 6,135) (el +ef —& — &),
712

(48b)

The practical evaluation of expressions of second-order ex-
change contributions derived in the preceding sections

Hess et al.: The water dimer

(II A) and (II B) are performed by using the dimer basis set
{a,b} instead of the monomer basisset {a,b} and by employ-
ing formulas (47a) and (48a) for the induction functions /2
and formula (48b) for the coeflicient ¢;;. Note that, in con-
trast with other works,'>'*"'7 the new dispersion pair func-
tions #77 are not directly used (see discussion above, Sec.
II B).

ill. NUMERICAL RESULTS AND DISCUSSION

The implementation of the preceding expressions has
been performed by modifying and extending an original pro-
gram written by JvH. Since the main purpose of this work is
tostudy the importance of the second-order exchange effects
rather than to make a detailed investigation of the complete
potential-energy surface, all numerical calculations have
been done for a fixed relative orientation of the two interact-
ing water molecules and by varying only the distance, R g,
between the two oxygen atoms. In order to facilitate com-
parisons, the fixed orientation has been chosen to be identi-
cal with that used by JVvH in their original work on the water
dimer.'? The nuclear coordinates of the water dimer are list-
ed in Table I.

Second-order exchange induction and dispersion ener-
gies have been calculated by using the same basis set as JvH,
namely a Gaussian basis (11,7,2/6,1) contracted into
(4,3,2/2,1). This means 35 contracted basis functions for
the monomer and 70 functions for the dimer. By employing
this basis set, the total energy of the monomer and the bind-
ing energy of the water dimer are found tobe — 76.0576 a.u.
and — 3.87 kcal/mol, respectively.

Calculations with R oo ranging from 4.40 to 9.00 a.u.
have been performed. Numerical results for each individual
component of the interaction energy are listed in Table II.
No particular comments on results obtained for the com-
monly calculated contributions E {0, E ), E{Z), and E &),
will be made here: for a discussion concerning these terms
the interested reader is referred to the work of JvH.'2

Before discussing our results, let us briefly present the
few calculations performed so far for second-order exchange
contributions. Most of calculations have been done for atom-
ic van der Waals dimers (He,, Be,, Ne,).'*!” For distances
around the equilibrium separation, two general features
seem to emerge when treating inert gas dimers.

(1) There exists a large and systematic cancellation of
E {3} by the exchange induction contribution, E 2, ..

(2) The exchange dispersion energy cannot be consid-
ered as negligible and typically may represent a few percent

TABLEI. Nuclear coordinates for the water dimer (atomic units are used).

Atom X Y z
o 0.0 0.0 0.0
H 1.8088 0.0 0.0
H — 0.4641 1.7483 0.0
(o) Roo 0.0 0.0
H 0.9551 + Roo —0.5514 1.4338
H 0.9551 + Roo —0.5514 — 1.4338
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TABLE II. Particular contributions to the interaction energy of water
dimer (in kcal/mol).

Roo® EW  EQw  EN EQ, Elhie EShaw
440 ~27.10 5159 2122 —842 1431 311
480 —1706 2511  —930 -—489 605 144
520 —1L10 1203  —412 —28 245  0.67
567  —T11 489  —163 —154 080 027
700 —279 030 —018 —031 003 002
900 —112 000 —002 —005 000 000

* Atomic units.

of the dispersion energy E &), [up to 10% for Be, (Ref.
151.

With regard to molecular interactions, no systematic
calculations have been performed that would show the im-
portance of second-order induction and dispersion exchange
effects. Indeed, it has been recommended'*'7 to calculate
the interaction energy by using the following decomposition:

E ~ESFLE® LE® (49)

i int disp exch-disp *
and therefore attention has been focused on the evaluation of
the intermolecular correlation effects represented by
E ) + E 3 aisp and not on the evaluation of the exchange
induction contribution which is supposed to be correctly
taken into account in the SCF binding energy. To our knowl-
edge the first calculation for a molecular system is due to
Chalasinski.'® He showed that for the HF dimer at the equi-
librium geometry, E {2} 4., represents about 10% of E {3,
which corresponds to a slightly more important contribu-
tion than for inert-gas dimers. His observation has been very
recently confirmed by Rybak and co-workers,>**! who
found a similar contribution for the water dimer. To our
knowledge no calculations exist concerning the exchange in-
duction energy for molecular systems.

Our results for second-order exchange contributions are
presented in the two last columns of Table II. It should be
noted that, in order to study basis-set size effects, we have
performed an additional calculation with a substantially
larger basis set than that employed by JvH.'? The results
presented in Tables IV and V will be discussed in detail be-
low. However, anticipating our conclusions it is important

6057

to note that results are, in fact, not qualitatively changed.
Therefore, the following discussion and conclusions based
on results obtained by employing the JvH basis set will re-
main valid. A first remark would concern the magnitude of
the second-order exchange dispersion energy which is found
to represent about 20% of the dispersion energy, thus con-
firming the non-negligible role of this contribution,!#-!7-2%:21
Note that our result for E ), 4, is 0.27 kcal/mol while Ry-
bak’s result is 0.19 kcal/mol.?>*' This difference may be in-
terpreted as resulting from a basis-set size effect. Indeed, we
observed a systematic lowering of our result when we repeat-
ed our calculation with basis sets of various smaller sizes
(results not presented here). A particularly interesting re-
sult concerns the second-order exchange induction energy
which is found to be quite important. At the equilibrium
geometry, it compensates for approximately 50% of the in-
duction energy. The importance of this contribution, which
has been already noticed for inert-gas dimers,'*"” is there-
fore confirmed for the water dimer. When combining both
second-order exchange components a contribution of about
1 kcal/mol is obtained at the equilibrium geometry. Com-
paring this contribution to the estimated interaction energy
of about 5.4 kcal/mol,'? the importance of second-order ex-
change effects is clearly illustrated. It is therefore quite ob-
vious that such an exchange contribution cannot be neglect-
ed when doing high-quality evaluations of intermolecular
interactions (exactly or by means of high-quality simplified
representations).

Having calculated the exchange induction energy, it is
interesting to compare the SCF binding energy to the sum of
the complete first-order and second-order induction ener-
gies (displayed in columns 2 and 1 of Table III, respective-
ly). Except at large distances, results displayed in Table III
clearly demonstrate the noncoincidence of these two quanti-
ties. As a consequence, it is concluded that the additional
terms present in the SCF binding energy (induction part of
third- and higher-order Rayleigh~Schrodinger terms, some
intramolecular correlation contribution introduced when
doing a SCF supermolecule calculation'®) contribute in a
non-negligible way, even in the neighborhood of the equilib-
rium geometry. It is seen that these additional contributions
become more important as the intermolecular distance is
decreased. It may be expected that the difference between

TABLE III. Comparison of the SCF and perturbation-theory interaction energies for the water dimer (in kcal/

mol).
E(”-{-E-(z‘; ES(,:F+E52)
in in isp
Roo * + E Zhina ENT Eqne ENT+EG, + E S
4.40 17.57 10.72 12.27 2.30 541
4.80 4.79 0.92 1.35 - 3.97 —2.53
5.20 —0.75 —-2.77 —2.93 —5.62 — 495
5.67 —3.05 —3.87 —4.32 —5.41 —5.14
7.00 —2.65 —2.69 - 2.93 - 3.00 —2.98
9.00 —1.14 —1.14 - 1.19 —1.19 —1.19
* Atomic units.
®Pure perturbational interaction energy calculated as EN=ER +E{L +ED+EQ)

@ @
+ E oning + E eidnaisp-
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ESF and EY 4+ E %) would be partly cancelled if in the
perturbational approach the induction part of third- and
higher-order contributions would be considered. At this
point, let us recall that JvH (Ref. 12) obtained at
R o0 = 5.67 a.u. a good agreement between the SCF binding
energy ESCF ( — 3.87 kcal/mol) and EV + E {2 (—3.85
kcal/mol). Accordingly, their approximate equality

SCF (D (2)
Emt —E + Eln

(50)

results essentially from a cancellation between E 2}, ;.4 and
high-order contributions. Such a cancellation must be con-
sidered as fortuitous and cannot be generalized without
further theoretical investigations. In conclusion, it does not
seem justifiable to approximate the SCF binding energy by a
sum of perturbation terms limited to second-order contribu-
tions, even at intermediate distances (including the equilib-
rium geometry).

Now, in order to compare calculations with experimen-
tallly predicted values of the total interaction energy, it is
necessary to take into account intermolecular correlation
effects, that is, dispersion contributions. We present in Table
I1I values of the total interaction energy as calculated by our
pure perturbational approach (third column) and by the
most commonly used approach consisting of supplementing
the SCF binding energy with the dispersion contributions
(fifth column). Both potential-energy curves reveal a mini-
mum which is approximately located at the same intermole-
cular separation, namely, R oo = 5.67 a.u. As is known, the
experimental evaluation of the total interaction energy at the
equilibrium geometry is not easy to perform,’ in what fol-
lows we shall use the most commonly accepted value of

— 5.4kcal/mol with an estimated error of + 0.7 kcal/mol.”
It is very interesting to note that supplementing the sum
ESF + E L, with the exchange dispersion contribution no-
ticeably deteriorates the very good value of — 5.41 kcal/mol
obtained at the equilibrium geometry (without inclusion of
the exchange dispersion term). Once again, such a result
must be interpreted as a consequence of a fortuitous cancel-
lation of terms which are not evaluated. To be more precise,
it is expected that the sum EF + E ) + E (), 4, cannot
fit the exact interaction energy. Indeed, it is well known that
the difference between the SCF and correlated dipole mo-
ments of the water molecule are non-negligible (relative er-
ror of 10%; see Ref. 28), thus indicating a large electron

correlation contribution to the electrostatic interaction ener-
gy. Concerning the pure perturbational approach, it is clear
that, besides intracorrelation contributions, high-order con-
tributions must also be incorporated if a high accuracy is
needed.

Now, we will pay some attention to the important prob-
lem of the quality of the basis set used. There exists a large
amount of calculations performed with various basis sets at
the supermolecular SCF level. All these studies indicate that
basis sets involving a very large number of basis functions are
needed to accurately reproduce the total interaction energy.
However, except in a very recent extensive study of
Szalewicz et al.! in which the problem of the basis-set depen-
dency of the dispersion energy for the water dimer is ad-
dressed, to date no systematic study has been performed that
shows the dependence of each particular perturbational con-
tribution on the quality of the basis set employed. Here, we
shall not do such an extensive work. In order to test the
sensitivity of our results to the basis set we shall limit our-
selves to the use of one substantially larger basis set. The so-
called isotropic part of our basis (functions describing orbi-
tals occupied in the ground states of the atoms; see Ref. 28)
has been taken from Ref. 29 and consists of a set of (13s8p)
and (6s) functions on the oxygens and hydrogens, respec-
tively. This basis set has been extended with a set of (2d) and
(2p) polarization functions on oxygen and hydrogen, re-
spectively. The exponents were chosen to minimize the dis-
persion as well as the complementary exchange energies (see
Ref. 22). Exponents @, = 12and 0.3, ¢, = 0.6 and 0.15 have
been obtained. The complete contracted basis represents 94
basis functions for the water dimer.

The energy of the water monomer calculated by using
this basis set equals — 76.060 04 a.u. The SCF binding ener-
gies obtained for the water dimer are — 3.96 and — 3.73
kcal/mol without and with the counterpoise correction
{CP), respectively. The latter value agrees very well with the
SCF limit of — 3.73 4 0.05 kcal/mol (including CP correc-
tion) recently estimated by Szalewicz et al.' using a very
large basis set containing 212 contracted orbitals. The values
of the particular contributions to the interaction energy are
listed in Tables IV and V. The essential result to point out is
that the total interaction energy calculated as E

+ERQ+EZ, oras EXSF+ E(X + EX) with both

int disp exch-disp

basis sets (see Tables III and V) is not very different at the

TABLE IV. Particular contributions to the interaction energy of the water dimer (in kcal/mol) calculated

with a 94 AO basis set.”
ROOh E:l‘s) E(l)h E»(Zd) E((jZ) E(z)h'd E(Z)hd
exc] in isp exch-ing exch-disp
4.40 — 23.66 50.31 -21.25 — 8.90 14.28 3.32
4.80 — 16.68 24.19 —9.42 —5.27 6.19 1.51
5.20 —10.81 11.61 —4.37 —3.18 2.70 0.75
5.67 —6.89 4.85 —1.82 - 179 0.99 0.32
7.00 —2.67 0.39 —0.22 — 0.46 0.06 0.03
9.00 —1.05 0.01 —0.03 —0.09 0.00 0.00

Basis set described in the text.
® Atomic units.
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TABLE V. Comparison of the SCF and perturbation-theory interaction energies for the water dimer (in kcal/

mol) calculated with the 94 AO basis set.

EV 4+ ER EXFLEQ
in in isp
Roo * + E Zhving ENF Eqne EXT+EG, + E Shnaivo

4.40 16.68 10.97 11.10 2.07 5.39
4.80 428 1.08 0.52 —4.19 — 2.68
5.20 —0.87 —2.62 —3.30 — 5.80 — 5.05
5.67 —2.87 —3.73 —4.34 — 552 —5.20
7.00 —2.44 —2.55 - 2.87 —3.01 —2.98
9.00 — 1.07 —1.08 —1.15 —1.16 —1.16

* Atomic units.

"Pure perturbational interaction energy calculated as EN'=EQ+ELL +EQN+ER,

@ (2)
+ Eexch-ind + Eexch»disp'

equilibrium geometry and for large intermolecular separa-
tions. In addition, it should be noted that for these intermedi-
ate and large distances individual components appear to be
more sensitive to the basis-set extension than the total sum.
The two contributions to the total first-order interaction en-
ergy, namely, the electrostatic and first-order exchange
terms, are not seriously affected when the size of the basis set
is increased. However, the dipole moment of the water mon-
omer calculated with the 94 atomic-orbital (AO) basis set
(1.98 D) is in a better agreement with the experimental val-
ue®® (1.85 D) than the value obtained with the JvH basis set
(2.06 D).

With regard to the total second-order energy, it is inter-
esting to note that the appreciable change of the RS contri-
bution ( — 3.61 kcal/mol vs — 3.17 kcal/mol with the JvH
basis set) is partly compensated by a quite important in-
crease of the exchange contribution (1.31 kcal/mol vs 1.07
kcal/mol with the JvH basis set). The total interaction ener-
gies calculated with the 70 and 94 AQ basis set as the sum
E.=EXF+EQ, +E3) s equal —5.14 and — 5.20
kcal/mol, respectively, and are consistent with the experi-
mental value — 5.4 + 0.7 kcal/mol.2 However, as already
noticed above, non-negligible contributions to the interac-
tion energy must be expected from intramolecular correla-
tion effects which are known to decrease the dipole moment
of the monomers and therefore are expected to modify no-
ticeably the electrostatic contribution.

Szalewicz ef al. pointed out that the use of f functions
improved considerably their dispersion energy.' This obser-
vation is consistent with the results of Chalasinski for the
neon dimer. 'S However, although no f functions are present
in our calculations, our 94 AQ basis set leads to a value for
the dispersion energy of — 1.79 kcal/mol, close enough to
the exact value of — 2 kcal/mol estimated by Szalewicz et
al.! In addition, as just noticed, our SCF binding energy of
the water dimer coincides with the SCF limit estimated by
these authors. Accordingly, we do not think that inclusion of
forbitals should change the qualitative nature of our conclu-
sions.

IV. CONCLUSIONS

In the present paper new expressions for the exchange
induction and dispersion energies have been derived within

the framework of symmetry-adapted perturbation theories.
These expressions are valid for atomic and molecular sys-
tems having an arbitrary number of electrons. They have
been derived by neglecting all electron correlation effects
within the noninteracting molecules and by considering only
single-electron exchange between interacting molecules.
Within these approximations, numerical evaluation of sec-
ond-order exchange contributions for the water dimer have
been performed. Our major conclusion is that for such a
polar system, second-order exchange effects are essentially
dominated by the exchange induction energy and account
for 20% of the total intermolecular interaction energy. As a
conclusion, such contributions must be considered in any
accurate calculation of the interaction energy. On the other
hand, if a high accuracy on calculated interaction energies is
needed, it is clear that going beyond the SCF approximation
for the noninteracting systems is essential. In the case of the
water molecule, it is known that the Hartree-Fock ground-
state wave function overestimates the molecular dipole mo-
ment by about 10%, thus leading to an error of about 20% in
the electrostatic contribution due to the lack of intramon-
omer electron correlation effects (let us recall that the elec-
trostatic contribution is the leading component of the inter-
action energy at the equilibrium geometry). In addition, as
already pointed out in our discussion of results, third-order
(and higher-order) Rayleigh-Schrddinger contributions
should be evaluated since they are expected not to be negligi-
ble in the region of the equilibrium geometry (see calcula-
tions of Jeziorski et al. in Ref. 21).

At this point, it is important to emphasize that the goal
of the present work was not to obtain a very accurate value of
the interaction energy between two water molecules. Indeed,
itis clear that for a relatively simple system such as the water
dimer, standard supermolecule approaches based on a very
large CI calculation (or some form of it) are preferable (see,
e.g., calculations of Diercksen, Kraemer, and Roos' and of
Matsuoka, Clementi, and Yoshimine).3? Actually, one of
the basic motivations of our work was to put into evidence
the non-negligible role of the complete second-order: ex-
change contribution (exchange induction as well as ex-
change dispersion components). To be able to determine
quantitatively the importance of each of these components
opens the way towards representing second-order exchange
contributions through simple analytical functions fitted on
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calculated values. Knowledge of these functions will be re-
quired to derive high-quality parametrized formulas which
describe quantitatively the interaction between molecules of
arbicrary size.
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