
Monte Carlo Calculation of the Spin Stiffness of the Two-Dimensional Heisenberg Model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 Europhys. Lett. 26 493

(http://iopscience.iop.org/0295-5075/26/7/003)

Download details:

IP Address: 86.221.86.45

The article was downloaded on 24/09/2010 at 18:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/26/7
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


EUROPHYSICS LETTERS 

Europhys. Lett., 26 (7), pp. 493-498 (1994) 

1 June 1994 

Monte Carlo Calculation of the Spin Stiffness 
of the Two-Dimensional Heisenberg Model. 

M. CAFFAREL (*) (§), P. AZARIA (**) (§§) 

B. DELAMOTTE (***) (@§) and D. MouHA"A(***) 
(*) CNRS-Laboratoire de Dynamique des Interactions Mole'culaires 
Universite' Paris V I  - 4 Place Jussieu, 75252 Paris Cedex 05, France 
(**) Laboratoire de Physique The'orique des Liquides, Universite' Paris V I  
4 Place Jussieu, 75230 Paris Cedex 05, France 
(***) Laboratoire de Physique The'orique et Hautes Energies, Universite' Paris VI I  
2 Place Jussieu, 75251 Paris Cedex 05, France 

(received 19 October 1993; accepted in final form 26 April 1994) 

PACS. 11.10G - Field theory: Renormalization. 
PACS. 75.10H - Ising and other classical spin models. 
PACS. 75.30F - Spin-density waves. 

Abstract. - Using a collective-mode Monte Carlo method (the Wolff-Swendsen-Wang algorithm), 
we compute the spin stiffness of the two-dimensional classical Heisenberg model. We show that it 
is the relevant physical quantity to investigate the behaviour of the model in the very 
low-temperature range inaccessible to  previous studies based on correlation length and 
susceptibility calculations. 

As well known, the long-distance, low-energy physics of two-dimensional spin systems is 
expected to be obtained from a low-temperature perturbative expansion of a suitable 
non-linear sigma (NLu) model. In order to have a non-perturbative control of this 
low-temperature expansion, one can take advantage of Monte Carlo simulations. Up to now, 
calculations have been mainly concerned with correlation lengths and susceptibilities [ 11. 
Unfortunately, because of their exponential behaviour as a function of p = l / k T  and the 
computationally accessible lattice sizes, studying the very low-temperature regime is very 
demanding, or even impossible. The aim of this paper is: 1) to show that the relevant physical 
quantity allowing to reach this regime for accessible sizes in the spin stiffness p s  , a measure 
of the free-energy increment under twisting of the boundary conditions [2,3]; 2) to argue that 
it is essential to use a non-local Monte Carlo algorithm to get truly converged values of the 
spin stiffness in the very low-temperature regime; 3) to exhibit in the case of the 
two-dimensional classical Heisenberg model the quasi-perfect agreement between the Monte 
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Carlo simulation of the spin model and the predictions of the corresponding non-linear sigma 
(NLo) model; applications to more involved systems will be presented in a forthcoming 
work. 

To our knowledge, two previous works have attempted to compute the spin stiffness of the 
Heisenberg model. However, they are either based on a wrong formula [4], or on the use of a 
local Monte Carlo scheme [4,5] not suited at all to the problem as discussed in the following. 
In our opinion, we present here the first unambiguous numerical calculation validating the 
precise finite-size behaviour of the spin stiffness of the two-dimensional classical Heisenberg 
model. 

The Hamiltonian of the Heisenberg model is 

where (ij) denotes the summation over nearest neighbours of a finite square lattice of size L. 
In (l), Si are three-component unit length classical vectors and J is positive. Each site i of the 
lattice is indexed by two coordinates xi and y i .  

We impose a twist in the x-direction, by coupling the system with two walls of spins: 
S(x = 0) = SI, S(x = L )  = S2, S2 being deduced from SI by a rotation of angle 8 around a 
direction e. The spin stiffness p s  is defined as 

where F is the free energy. 
In terms of the spins it writes 

where Tis the temperature and Boltzmann averages are performed with two walls of parallel 
spins fured at boundaries in the x-direction. 

The finite-size behaviour of ps(L), when L is much larger than the lattice spacing a but 
much smaller than the correlation length E, has been calculated at one- and two-loop order 
with use of the 0 ( 3 ) / 0 ( 2 )  NLo model [2,6]:  

P S 1 5 1  € In - + - lnln - ,  _ - _  
T 2 x  L 2 x  L (4) 

where the common coefficient 1/2x in front of the leading and subleading logarithmic terms is 
a universal number which is not modified by higher orders in the low-temperature 
expansion. 

The crucial point in measuring p s  is that its predicted size dependence given by (4) is all the 
more valid since L << 5. Therefore, in the very low-temperature regime we can hope to test 
formula (4) by using a large range of relatively small lattice sizes. In contrast, measuring the 
temperature dependence of t; requires t; < L and, therefore, relatively high temperatures for 
accessible sizes[l], a regime where the validity of the perturbation theory becomes less 
controlled. A most important point to notice is that at the very low temperatures considered 
here the physics of the model is entirely controlled by collective excitations-spin 
waves-and therefore we must  take great care of these large-scale moves in any simulation 
of the model (<<beating>> the critical slowing-down). 

The purpose of this paper is to present a Monte Carlo study of the spin stiffness for the 
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finite two-dimensional classical Heisenberg model free of critical slowing-down and then to 
investigate prediction (4) numerically. To summarize what has been obtained, our Monte 
Carlo calculations confirm the existence of a leading logarithmic contribution with the 
universal amplitude 1 /2x. In addition, an extra-contribution to the spin stiffness consistent 
with the subleading term of (4) has also been clearly identified. The Monte Carlo results 
presented have been obtained using the Wolff-Swendsen-Wang method [71 of updating large 
clusters of spins simultaneously. At the low temperatures considered here, using a collective 
Monte Carlo algorithm appeared to be essential to get a well-converged estimate of the slope 
of the spin stiffness as a function of the lattice size. In particular, our preliminary attempts 
making use of a Monte Carlo algorithm based on local spin updates failed due to the severe 
critical slowing-down. 

At this point, it seems important to discuss in more detail the previous attempts of 
calculating the spin stiffness of the Heisenberg model. Apart from the paper of Mon[4] in 
which a wrong formula for p s  has been used (he has mistakenly used the spin stiffness formula 
of the XY case), another calculation by Ritchey [5] done with the correct formula and using a 
local Metropolis algorithm has been performed. We have redone entirely his calculations with 
the very same conditions (same lattice sizes, same temperatures, same number of Monte 
Carlo steps). As already emphasized, we realized soon that such calculations are hampered 
by a severe critical slowing-down. Instead of getting a slope of approximately - 0.16 (i.e. 
1/2x) Ritchey obtained a value of approximately - 0.12. At the lowest temperature he 
treated, the difference between both figures results in fact from the non-convergence of his 
estimate of the slope (very slow convergence, independent configurations are too scarce). It 
is interesting to note that this difference has been boldly interpreted elsewhere as taking its 
origin from cubic corrections to the scaling [8], corrections which in fact are negligible at  the 
lowest temperature presented by Ritchey. In this paper, highly converged estimates of the 
slope of the spin-stiffness are presented. Cubic corrections to the p-function (i.e. lnln 
corrections in formula (4)) showing up at sufficiently high temperatures are also put into 
evidence (see fig.2). 

Results. - The Wolff-Swendsen-Wang (WSW) algorithm has been implemented to 
simulate the Heisenberg model on an L x L square lattice. In the y-direction periodic 
boundary conditions have been chosen. In the x-direction, fixed boundary conditions are to 
be used. However, for simplicity we have also chosen periodic boundary conditions in the 
x-direction. This introduces an error in the spin stiffness exponentially small in In L. By using 
a very recently proposed interpretation of Wolff-type algorithms as algorithms based on an 
embedding of Ising spins into continuous spins[9] it can be seen that fixed boundary 
conditions can be implemented by introducing a suitable external magnetic field in the 
underlying Ising model. We have implemented this idea and found that the errors in the 
calculated spin stiffness are indeed exponentially small (less than 0.5% relative error for 
lattice sizes with L > 8). No difference on the resulting slopes have been observed within 
statistical fluctuations. 

One of the major results of this paper is that relatively moderate sizes L are in fact 
sufficient to validate formula (4). Lattices of sizes L = 4, 8, 12, . . . , 32 have been simulated. 
We have performed our simulations at  four different temperatures: T/J = 0.1, 0.15, 0.3, and 
0.395. In each case we are at a sufficiently low temperature to be in the regime of validity of 
formula (4) (L<<f ) .  

Figure 1 presents the complete set of results obtained for the spin stiffness at  different 
sizes and temperatures. At the scale of fig. 1, all curves appear to be very rapidly linear as a 
function of In L. In order to determine accurately the corresponding slope, a closer look is 
necessary. Figure 2 presents a blow-up of data of fig. 1 for the lowest (upper figure) and 
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Fig. 1. - Spin stiffness for different sizes and temperatures. Statistical fluctuations smaller than the size 
of crosses. 

highest (lower figure) temperatures treated, T/J = 0.1 and T/J = 0.395, respectively. A 
first point to notice is that a very high accuracy on our data has been achieved. Such a level of 
accuracy is absolutely necessary to put into evidence the linear regime of the spin stiffness as 
well as to get a truly converged estimate of the slope. We emphasize that only when resorting 
to a collective Monte Carlo scheme we have been able to fulfd both requirements. A first 
important remark concerning fig.2 is how fast we enter the linear regime: a t  all 
temperatures considered it is reached at  L - 16. By using data for L = 16,20,24,28, and 32 
an estimate of the slope can be extracted, we get: - 0.162(4), - 0.166(5), - 0.171(5), and 
- 0.184(7) at  T/J = 0.1, 0.15, 0.3, and 0.395, respectively. At the very low temperature 
T/J = 0.1 we recover within statistical fluctuations the theoretical result 1/2x = 0.1592.. . 
predicted by formula (4) (l). At higher temperatures non-negligible higher-order 

l " 1 " " I " " I " " l  " ' I  I " "  

9 " " " " " ' " "  " '  " "  
1 5  2 2 5  3 3 5  1 5  2 2 5  3 3.5 

In L In L 
Fig. 2. - Blow-up of fig. 1 for T/J = 0.1 (a ) )  and T/J = 0.395 (b)).  The solid line is the best fit using 
eq. (4), the dashed line the first-order prediction (no renormalization of the slope). 

(I) In fact, a t  this temperature the slope is very slightly renormalized. Using eqs. (4), ( 5 )  we get 
- 0.162 instead of the bare value of - 0.1592 ... . However, both values are not distinguishable within 
statistical fluctuations. 
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contributions in the spin stiffness show up. To put this on a more quantitative basis, we have 
performed a fit of the data using the full expression (4). The resulting curve is represented by 
a solid line in fig. 2. The only free parameter entering the fit is the correlation length t;, the 
arbitrary reference value for the spin stiffness being chosen so as to reproduce exactly the 
last data (L  = 32). The dashed line is the linear curve obtained when resorting to the leading 
logarithmic behaviour (no lnln corrections, no renormalization of the 1/2x slope) using the 
very same correlation length as determined in the fit. At T / J  = 0.1, both curves almost 
coincide in the linear regime, illustrating the correctness of the leading log prediction and the 
smallness of the higher-order corrections at this temperature. At the higher temperatures 
considered, we clearly see the necessity of going beyond leading order. In addition, it is 
striking to see how good representation (4) is in reproducing our Monte Carlo data. Of 
course, due to the accuracy determined by statistical fluctuations and to the narrow range of 
lattice sizes used,it is not realistic to hope to resolve the precise analytical lnln behaviour of 
the second-order theoretical expression. However, our data are perfectly consistent with the 
<<renormalized slope,) predicted by (4), s *  = a( , c , /T ) /a  In L = - 1/2x(1 + l/ln(t;/L)). 

In fig. 3 we have plotted the correlation length t; issued from the fit using formula (4). We 
also present the curve obtained from the formula proposed by Shenker and Tobochnik [lo] 
(obtained by matching high- and low-temperature calculations): 

exp [ 2 x J / T ]  E = 0.01 
1 + 2 x J / T  * 

It is very satisfactory to see that our rough estimates of E are in good agreement with this 
completely independent calculation of the correlation length. 

In this paper, we have shown that for the case of the two-dimensional classical Heisenberg 
model it is possible to get a quasi-perfect agreement between the Monte Carlo simulation of 
the spin model and the predictions of the corresponding low-temperature non-linear sigma 
(NLcr) model. We have overemphasized that the essential point to obtain such a nice 
agreement is the use of an appropriate non-local Monte Carlo algorithm. The study of the 
spin siffness of more involved 2D systems such as frustrated Heisenberg spin models could be 
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20 

0.1 0.2 0.3  0.4 
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Fig. 3. - Correlation length E.  The solid line is obtained from eq. (5), the values indicated by crosses 
from the fit of OUT data using eq. (4). 
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a very efficient test of the validity of the low-temperature perturbative expansion of the 
corresponding more general non-linear sigma models [ 111, an expansion which can be 
questioned due to the presence of non-trivial topological excitations [12] (2>. However, the 
implementation of a non-local Monte Carlo scheme for such models is a highly non-trivial 
task; work in that direction is in progress. 

(2) Note that after completion of this work an interesting study of the spin stiffness for the case of a 
classical antiferromagnet on a triangular lattice using a local Monte Carlo scheme has been 
published [131. 
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