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Using acollectiveMonte Carlo algorithm we study the low-temperature and long-distance properties of two
systems of two-dimensional classical tops. Both systems have the same spin-wave dyioavwtesperature
behavioj as a large class of Heisenberg frustrated spin systems. They are constructed so that to differ only by
their topological properties. The spin stiffnesses for the two systems of tops are calculated for different
temperatures and different sizes of the sample. This allows one to investigate the role of topological defects in
frustrated spin systems. Comparisons with renormalization group results based on a nonlinear sigma model
approach and with the predictions of some simple phenomenological model taking into account the topological
excitations are done.
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[. INTRODUCTION thermal fluctuations. Accordingly, the behavior of the spin
stiffness as a function of the size of the lattice provides a
The long-distance behavior of the classical Heisenberglirect test of the perturbative renormalization groRG)
antiferromagnet on a triangular latti¢®lAFT) model has Predictions of the Nir model. For the models of tops stud-
been the subject of much interest. In three dimensions a moi§d here we expect that, at sufficiently low temperature —for

important issue is the nature of the universality of its phasd Significantly smaller thaif,— where the physics is domi-
transition’~” In two dimensions, this model has also beennated by pure spin waves, the behavior of the spin stiffnesses

widely studied since it exhibits a nontrivial finite- ;%eei? '\[ﬁgt] t%? E(fogﬁgéﬁggﬁf 'n(ggtﬁn?arﬁiglgﬁn:é‘é\ge eiso
temperature behavior due to the presence of topological ex: N . S ’ ’
citations. Topology enters the problem since the order pa_he vortices also contribute to the spin stiffness. For such a

rameter of the model belongs to pwhose first homoto model the behavior of the spin stiffness must disagree with
i 9 W ! OPY  the standard RG predictions. One great advantage of the spin
group is{[ SO(3)]=Z,. As a consequence, there exist to-

) . _ - stiffnessp is that, in contrast with the correlation lengh
pologically stable point defects — called vortices — for this \yhich cannot be easily computed at very low temperature
two-dimensional system. Arguments involving entropy andgince it diverges typically as exp{y, p has a smooth be-
energy of the defects suggest the occurrence of a change Rhyior at low temperature. It is thus, in principle, easily com-
behavior at a finite temperatufg, between a pure spin wave pytable. Regarding Monte Carlo simulations, a central aspect
regime with confined vortices far<T,, and a regime of free s that, at the low temperatures we are interested in, the dy-
vortices for T>T,,. Several Monte Carlo studies of the namics of 2D spin systems is governed by strongly corre-
HAFT modef~** and of some generalizations with an easy-lated spin waves, independently of the presence of vortices.
axis exchange anisotroffy **have indeed revealed the exis- These modes are responsible for a severe critical slowing
tence of various regimes resulting from the presence of dedown which makes difficult the convergence of simulations
fects. based on local algorithms in which one spin is flipped at each
Here, our purpose is to shed some light on the interplajMonte Carlo step(“local update” Monte Carlo schemgs
between vortices and spin waves in two dimengidd) by ~ To resort to collective algorithms based on global updates
studying with Monte Carlo simulations two lattice models of (construction of clusteyss then important** However, as
ferromagnetically interacting tops. Both models have thdS Well known, such algorithms work well for ferromagnetic
samespin-wave dynamics as the original HAFT model but systems but not for frustrated ones. Npte that together Wlth
they differ by their topological properties: the first one hasthe ability of comparing topologically different models, this

the same topological content as the HAFT model, the secon@sPect is an additional motivation to consider ferromagnetic

one is topologically trivial. The role played by the topologi- top models rather than the original HAFT one. Actually, the

cal defects emerges from the comparison between these tV\l}g]plementatmn of the basic rules of collective algorithms for

models. Note that this comparative study would have beeﬁ¥8tems consisting of tops is itself not so clear. However,
more difficult to implement directly on the original HAFT is difficulty can be circumvented by rewriting the models

. . S . of tops considered here as ferromagnetic four-component
m(_)del._The phyS|_caI quantity we consider in our StUdy.'S the'spin systems while, of course, preserving both their spin-

spin stiffness which, for a spin system on a finite lattice of\yaye and topological contents. Thanks to these various tricks
sizel, measures the free—gnergyléncrement resulting from @nq to the cluster algorithm we are then able to scan a large
twist of the boundary qqndlthrfé: The spin-wave part of temperature range beloW, while fully controlling the con-

the spin stiffness identifies with the coupling constant of theyergence of our simulations. It should be noted that previous
nonlinear sigma (Nkr) model renormalized at scale by ~ Monte Carlo calculations of the spin stiffness on related
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models(HAFT model and generalizationsiave been done tions which combine the topology of th€Y model and the
by using Monte Carlo schemes with local upddt@$.Note  spin-wave content of the @) model.
that, in contrast with these works, we have considered here The organization of the paper is as follows. In Sec. Il, the
very small temperature3,<T,,. To resort to a nonlocal al- various actions of the lattice models are presented. In Sec.
gorithm to accelerate the convergence of simulations isll, the expressions of the spin stiffnesses suitable for Monte
therefore essential. Note also that at the intermediate tenarlo simulations are given. In Sec. IV, we present briefly
peratures where the necessity of using global Monte Carlthe Wolff-Swendsen-Wang algorithm used. Our results are
schemes is less important we have also found a clear ingiven in Sec. V. In this latter section we present the behavior
provement associated with the use of cluster algorithms. of the spin stiffnesses as a function of the lattice size in the
The main result of this paper is that we have found somearious temperature regimes going from low to high tem-
striking differences in the behavior of the spin stiffnesses aperatures. Finally, we present in the last section our first
a function of the linear size for the two models, with and attempt toward a theoretical interpretation of the effect of the
without topological excitations. At very low temperatures thevortices in the almost-spin-wave and vortex regimes.

temperature-rescaled spin-stiffnegs=p/T (the natural
quantity to consider, see belpwf both models displays the Il. THE LATTICE MODELS

characteristic behavior:
A. The SO(3)®0(2) top model

~_P ilné 1) Our first step is to map the HAFT model into an equiva-
P lent nonfrustrated one. As shown by Dombre and Rand

. . Azariaet al?° the long-distance effective Hamiltonian of the
predicted by the perturbative RG approach of theoNL [T model consists in a system of classical interacting

model:® This is, of course, expected since the SpiN-wWavegns  This can be understood from the fact that the 120°
contents of both models are identical. We call the regime,ctyre of the spins of the HAFT model in the ground state
corresponding to this range of temperatures the “spln-wave”fu”y breaks the SCB) symmetry so that the order parameter
regime. Note that, for one value of the temperature, thigg 3 rotation matrixRe SO(3), aclassical top. As in the
asymptotic scaling op with respect to Ik has already been nonfrustrated case, once the theory is reformulated in terms
confirmed directly on the HAFT model by Southern andof the order parameter, the effective interaction becomes fer-

Young? At higher, but still low, temperatures the two mod- romagnetic. The Hamiltonian of the top model thus ré&#f
els begin to display different behaviors. While the spin stiff-

ness of the topologically nontrivial model still displays the
previous characteristic behavior, its absolute magnitude with Hi=- 2 Tr(PRfle), (2)
respect to the trivial model is found to decrease quite rapidly (Bl

function of the temperature. We pr to refer to thi . . . . .
as a unction ot tne temperature. We propose fo reter to §vhereRi is a rotation matrix of SB) defined on siteé and

regime as an ‘“almost-spin-wave” regime, a regime wherep_d. is a di | matrix of i i
the only significant effect of vortices is just to shift down the = — |ag(p1,p;,p3) IS a diagonal matrix of positive coupling
constants which represents the interaction strengths between

value ofp/T. Next, at higher temperatures we enter a regime )
called here the “vortex” regime where the vortices play athe different axes of the tops. Note that the temperature has

major role. In this regime, the spin stiffness loses its reguIaPheen mcI_u?ed in thfbsigj;g?rEAFST r3node| corrtespop(:;, to
behavior. It exhibits large fluctuations around its mean valu KFSTp?C'a |C'asg)3h_ .th rfthq )tst}’mmle. fy of the f
with the presence of “plateaux” and abrupt jumps as a func- IS realized here throug € rotational invariance o

tion of the linear size. Nevertheless, by considering the glo!'|‘3‘miltoni‘ij (2) under left global SC8) rotations R

bal behavior of the curve it is still possible to define some_’URi ' U.e SO(3). With the matrixP qonsidered here it is
effective linear regime as a function of Insimilar to that ~ &/S© invariant under the @) group of right global transfor-

described by Eq(1). However, in contrast with the spin- Mations:Ri—R;V that commute with the matri. Thus,
wave regime, the slope of the spin stiffness is no longefi@miltonian (2) is invariant under the groui&=S0(3)
constant (1/4) and is found to increase quite rapidly as a ©0(2). This I(_aft Q2) group 1 rem|n|scgnt Qf thes, sym-
function of the temperature. It is remarkable that this regimdn€try of the triangular lattice. Note that it will be convenient
is observable only within a narrow range of temperatures. Al the following to consider the cagg+ 0 since the Hamil-
slightly higher temperatures, the curve of the spin stiffinesdonian made with this is the general one invariant under
recovers a much more conventional behavior: smooth de®=SO(3)20(2) and that, as well knowf?;*°the condition

crease as a function of the size and cancellatiop af some ~ P3=0 IS not preserved by renormalization. o
finite lattice size corresponding to some finite correlation  'N€ Symmetry breaking pattern described by Hamiltonian
length. Regarding the theoretical interpretation of our results(2) 1S G=S0(3)®0(2) broken down tH =0O(2):

we show that the very low-temperature regime is in full

agreement with the RG predictions. The so-called “almost- G SAB3)®0(2) —sa3 3
spin wave” and “vortex” regimes are much more puzzling. H 0(2) =SQ03), A
However, it is shown that the most salient features induced

by the topological defects in these regimes can be rather wellhere the notatior= means thatG/H is topologically iso-
reproduced using some simple phenomenological RG equanorphic to S@3). The symmetry breaking pattern thus cor-
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responds to a fully broken S8 group. For the original nally that the choice of coupling constants in E4). is such
HAFT model, this symmetry breaking pattern S/H that the two model$2) and (4) have the same temperature
=S0(3)®C3,/Cg, and is thus identical to that given by Eq. scale.

(2). This is the reason why the substitution of the discrete The models corresponding to Eq®) and (4) have, by
C,, by the continuous @) one in Hamiltonian2) is harm-  construction, the same spin-wave dynamics but can never-
less. It is interesting to note the identity SO(3) theless strongly differ when excitations associated with the
=S0(4)[SO(3)®Z,]=S3/Z,, S; being the three-sphere, topology are activated. The SU(2)J(1) model being topo-
since it shows that the model of toff® is equivalent to that logically trivial, i.e., w,[ SU(2)]=0, we expect that a Monte
of four-component spins living on the four-dimensional unit Carlo study of this model will be well reproduced by a pure
sphere with antipodal points identified. This will allow us, in spin-wave approach. We show in the following that this is
the following, to build a vector model equivalent to the pre-indeed what happens: as in the topologically trivial
ceding matrix one and suitable for Monte Carlo simulationsO(N)/O(N—1) ferromagnetic spin systems, the critical
Note finally that whenp,;=p3; the symmetry group is en- properties of the SU(2)U(1) model are in perfect agree-
larged to G=SO0O(3)®S0O(3) and the symmetry breaking ment with the perturbative RG predictions made on the con-

pattern isG/H=SO(3)® SO(3)/S0O(3). tinuous limit of the top model, a Nk model. On the other
hand, the SO(3»0O(2) model being topologically non-
B. The SU2)®U(1) top model trivial, some disagreement between the perturbative and

. . . Monte Carlo approaches at sufficiently high temperatures are
We now build the topologically trivial counterpart of the t5,nd. as expected.

previous top model. We want to preserve the spin-wave part
of the model while discarding the topological excitations. ) _
Since the spin-wave excitations correspond to small fluctua- ~ C- The vectorial version of the S@3)®0(2) model

tions of the order parameter, they only probe the local struc- As already mentioned in the Introduction, the cluster al-
ture of the order parameter spa@éH and not its global —  gorithms are easier to implement for spins than for matrices.
topological — structure. This local structure is itself com- We thus need vectorial versions of our Hamiltonians. This is
pletely determined by the Lie algebras ®@fandH.?*?*We  achieved by using the decomposition of a rotation maRix
thus need a model defined by an order parameter spagg sO(3) in terms of a four-component unit vectds
G'/H’ locally isomorphic toG/H and topologically trivial. —(L,8)=(s",st,82,SY):

This is obtained by considering the covering group(3ubf !

SQ(3). The relevant model is thus built on the manifold 1
SU(2)®U(1)/U(1). Themost general Hamiltonian invari- R!"=2($ksl— 7%
ant under SU(2% U(1) writes

+2€mS S+ 2( S2- 3—1) Ok - (6)

The Hamiltonian(2) then takes the form

L1
Ha== 2 [2(p1+p3)Trgi 'g;+ 5 (P1—Pa) .
+4(p3—p1)

X(Tr 039;1gj)z] : 4
X

(S5 +5'S)(SSH+ ) + (5~ §S)

whereg; e SU(2) ando; is the third Pauli matrix. The first
term in this Hamiltonian is clearly invariant under the cross 1
product of a left SW2) group and a right S(2) group: g; x(glsjz—slzsjl) + —(SP2+ 82— gl2— 572
—Mg;N, M,Ne SU(2). Thesecond one explicitly breaks 4
the right SU2) down to a right Y1) so that the Hamiltonian

is generically SU(2% U(1) invariant. This W1) symmetry X (§?+S72- 51?2~ 52
corresponds to the @) symmetry of Hamiltoniar(2).

The symmetry breaking pattern described by Hamiltonianre first term of Eq.(7) represents the hamiltonian of a
(4) is G'=SU(2)®U(1) broken down tH’=U(1): system of spherical tops, i.e., SO@$O(3)=SO(4) sym-
metric, for whichp,=ps. This term is also invariant under a
local-gaugeZ, group. ThisZ, symmetry expresses the non-
trivial topological character of the S® group. The first
term of Eq.(7) is also known as the Hamiltonian of the
so that it corresponds to a fully broken @Ygroup. Again, RP®=S0(4)[SO(3)®Z,] model which expresses the iso-
it is interesting for the following to note the identity SU(2) morphism between the manifolds &) and RP°. This
=S0(4)/SO(3F S; which means that the modeéH) is  model and, more generally, tHePN models for generaN
equivalent to that of four-component spins living on the four-have been extensively studied and the question of the nature
dimensional unit sphere. Again, when= p3, the symmetry  of their continuum limit?=2’ strongly debated, also in con-
group is enlarged t&' =SU(2)® SU(2) and the symmetry nection with topological defects. The second term of Hamil-
breaking pattern becomes SU®@$U(2)/SU(2). Note fi-  tonian(7) also displays th&, local symmetry but breaks the

. (7)

G’ SU2)eU(l) _

i T—SU(Z) 5
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global S@4) symmetry so that the Hamiltonian is generi- gH\2 | 5?H 9H \ 2
cally globally SO(3® O(2) and locallyZ, symmetric. po=—T —{—) —{—)+{|—
30, 962 ) ], _,
D. The vectorial version of the SWY2)®U(1) spin model (12

It is also possible to express Hamiltoniéd) in terms of ~ SinceH is even in thed,’s, the average value @fH/36, is
four-component vector§ . Using the decomposition of a €dual to zero and only the two last terms of ELR) need to
SU(2) matrix be computed.

1. The spin stiffnesses of the SO@P(2) model

In principle we have to compute the different average

ox, k=123 being the Pauli matrices, Hamiltonian values in Eq(12) from the partition function
(4) writtes

g=S+ioS, ®)

Z=2 ex <Z> TrPRilRJ—) (13
. o [Ri] ihj
Ho=—2, 4(ps+ -S;+2(p1—
2 ozn (P1*Pa)S: -5+ 2(P1=Ps) constrained by the boundary conditions
X (S'S’— 9SS’ — S's!+ 5752, 9 R(x=0)=Ry,
In this expression the first term is(® globally invariant and R(x=L)=Rgye! e, (14)

corresponds to the Hamiltonian of a four-component ferro-

magnet whereas the second term breaks this symmetry. Th¢hereR, is a rotation matrix of reference.g.,Ro=1), T,
Hamiltonian (9) is thus generically globally SU(Z)U(1) is the generator of rotation around thelirection, andd,, the
symmetric. Note that th&, local symmetry has now disap- angle of rotation Eq. (14) must be understoodithout the
peared. This is a consequence of the trivial topological charsum overe]. However, in practice, the presence of deriva-
acter of SW2). Note also that the scale of temperature hadives with respect t@, in Eq. (12) as well as the fact that the
been chosen so that both Hamiltoniahs, Eq.(7), andH}, cluster algorithm is implemented with spins, makes expres-

Eq. (9), have the same linearized spin-wave form in the sym:ion(12) not suitable for our simulations. We proceed in two
metric case §o;=ps), namely, Hl,= —2<i,j>8pl5§i'5§j steps to reformulate the model in a numerically convenient

way. First, to get rid of the derivatives, we compute them

where 8S represents the spin deviation from the referenceanalytically and rewrite the average values in EtR) as
vector. Finally, remark that the Jacobians resulting from the, -independent quantities. To do this we decompRsito
change of variables: matrices> spins in both SO(3) a zero temperature pamf' and a fluctuation patt,

®0(2) and SU(2pU(1) are trivial and thus do not con-

tribute to the free energy. R = Riclhi ' (15)

where bothiC' andh; belong to S@). In Eq.(15), Ric' is by
definition a solution of the classical equations of motion and
A. The spin stiffnesses of the lattice models thus reads

Ill. THE SPIN STIFFNESSES

The spin stiffnesg, to be computed numerically is de- R = @~ 0aTalx /L)
fined as the free energy increment under twisting the bound- '
ary conditions, for instance in the direction around the and theh,’s satisfy the boundary conditions
directiona. This is realized by coupling the system with two
walls of topsR(x=0)=R; andR(x=L)=R,, R, being de- h(x=0)=h(x=L)=1. 17
duced fromR; by a rotation of angl®, around the direction
« and by measuring the variation of the free energy with'Ve thus have
respect tod,, :

(16)

oH 1
ol =0 2 Preamht'h M=),
aZF(ga) 90,4 0,=0 L GifKlm
Pa= > . (10
(90a aa:O (92H 1 e - ,
o7, Ly '>2k| m Pl Simhi”hy = hih (6 =)~
For a system with partition function “l9,=0 Apl
(18)
z=> eH (11) The average values in E{L2) must now be computed with
[Ri]
Z=2 expg X TrPhi‘lhj) (19)
we have & )
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with the boundary conditiongl7). At this stage, everything g(x=0)=g,,
is written in terms of théh's. Thus we can now perform the _
second step of our derivation that consists in using in Egs. g(x=L)=gge'%al7a’?) (22

(17), (18) and(19) the same decomposition as in Ef) but
now for theh;’s

where gq is a rotation matrix of reference of SU(2%.g.,

go=1), o, is a Pauli matrix, and),, the angle of rotation
" 1 o 0 1 [again in Eq.(22) there is no sum ovett].
hi'=2{ S'S— 7 0| +2€umS STJFZ(SZ—Z i - As in the SO(3) case, we make the decomposition in
(20) classical and fluctuating parts
Since now all thermal average values are entirely expressed gi=gi Sl (23
in terms of four-component spins, the cluster algorithm can With
be implemented to compute the spin stiffnesses. wi
¢l _ Lif,(0,/2)(x IL)
2. The spin-stiffnesses of the SU@)J(1) model gr=e (24)
The same method can be employed for the SU(2)andh satisfying

®U(1) model for which we have h(x=0)=h(x=L)=1. (25)

1
z=2 exp| 2 2(p1+Ppy)Trg; 'g;+5(P1—Pa)
[gil (0.3

xmwowiwpﬂ (22)

with, again, the fixed boundary conditions

The different terms of Eq(12) are separated into SO
and SU(2pU(1) symmetric parts. Writing S= Sgg(4)
+ Ssu(2)su(1) @nd using the decomposition

h=+i0-S, (26)

we have with obvious notations

S5-I+ SIS
oH 2
g” =Emﬁma§% 'S — SIS/ +S 'S -S'S] | (x;—x)),
I,
"\ g5 s g
a| 62
03 0,=0
S’Si+S'S’-s's)-s's]
oH
w?mm> = = (pq ngcﬁ §§+§§+§§+§§ (X;—X),
. D §§+§§ §§ §§
gl
03
6 =0
2H 1 59
o4 S &
0() Ez l+p3)2 Si i (Xj_Xi)z,
1 > >
ol 05 59
],
2 (S'S}+ S!S}~ )~ S'S))* - wj}?
9*H 1
wﬁ%gz :pwlng (S'S+ 7S/ +SS)+ 5752 w2 | (x—x)%, (27)
; (1) (SOSO+§’§’ 8181 8282)2 32
d 02
05/ |, <

014412-5



CAFFAREL, AZARIA, DELAMOTTE, AND MOUHANNA PHYSICAL REVIEW B 64 014412

with independent since the left(®) symmetry constrains two of
them to be identical. Note that, asymptotically, i.e., for
3_ 0 0 olc2 2cl ~
Wij = Sj3+33sj SS+SS . (28) >a, the behavior of the,’s is given by the infrared limit of
The spin stiffnesses can now be computed with the flow equations. It is easy to show that, in this limit
1 —ps and the model becomes effectively SOEIO(3)
ZZE exp( E 2(py+ p3)Trhf1hj+ Z(p1—pa) ~S0O(4) symmetzrg)c. This is the known phenorr_\enon of en-
{hi] ') 2 larged symmetry:?* We recover therefore the universal scal-
ing of the spin stiffness of a ferromagnetit=4 vector
X(Tro'ghi_lhj)z) (290 ~ model. At leading order we hatfe
-~ ~ 1 ¢
with the set of equation&7) and the boundary conditions p1~p3~ zIn, (33

(25) or, in terms of the four-component vectsr where¢ is the correlation length. Note, of course, that since

the spin stiffnesses in E@1) are calculated perturbatively,
they can only be valid in a limited range loiw temperatures

where the perturbation theory at two-loop order is meaning-
B. The spin-stiffnesses of the Nio- models ful.

The spin stiffnesses can be analytically computed from From the preceding analysis, it should be clear that for a
the continuum versions of the top models, which is a nonlin{opologically trivial model, the spin-wave part of the spin
ear sigma (Nlr) model. They identify with the effective stiffnessp,, identifies withp, /T, so that we can expect that
coupling constants of the Nt model at scald_, renormal-  this last quantity follows the RG equations calculated by
ized by thermal fluctuations. Let us recall that the perturbaperturbation theory. Indeed, for ti@N) model, it has been
tive treatment of the Niz model takes only into account the checked® that at sufficiently low temperature, the spin stiff-
spin-wave part of the spin stiffnesses. Indeed, théunc-  nessp, /T follows the RG equations calculated by means of
tions of any Nlo model are completely determined by the the O(N) NLo model up to two loop orde”®%In the same
local properties, i.e., by the metric, of the manifdBfH  way, we expect the different spin stiffnesses/T of the
while they are insensitive to its global, i.e., topological, lattice SU(2)® U(1) model calculated by Monte Carlo simu-
structure. Since the metric itself is completely determined byation to follow the RG equation@1) in a large range of low
the Lie algebras ofs andH, the perturbative8 functions —  temperatures since it is topologically trivial. On the other
and thus the behavior of the spin-wave part of the spin stiffhand, we expect the behavior of the spin stiffnegggdl of
nesses — of the SO(&)0(2) and SU(2pU(1) NLo mod-  the lattice SO(3% O(2) model to agree with E¢31) at very
els are identical by construction. They are given at two-loogow temperature, i.e., belowW,, where the topological de-

S(x=0)=S(x=L)=(1,0,0,0. (30)

order by?%1¢ fects are not activated, but to disagree with the perturbative
B B B B RG predictions near and above the crossover temperature
apa(l) 1 1 ps() 5 pa()®> 3 psl) Ty.
A 27 Am () 32m2 0 8212
™ AT py(l) 327 py(1)° 87 py(l)

IV. WOLFF-SWENDSEN-WANG ALGORITHM

_; The simulations presented in this paper are based on a
am%p (1) generalization of the Wolff-Swendsen-Wahd°3! algo-
rithm to N-vector models as presented by Caraccétlal. in

dps(l) 1 a2 1 pa(h)® Ref. 32. The method is based on an embedding of Ising spins
a4 P12 - 3972 ;1“)4' 31 e into the N component(here N=4) continuous spinsS

according to
with [ =InL/a whereL is the system sizeg the lattice spac- sz s
ing, the initial conditions of the RG flow being given by S=$ +elSlr, (34)
wherer is a unit vector chosen randomly on the sphgte
§=5—(S-r)r andS§/=(S-r)r are the components of the
7)3“ —0)=2p;. (32) spin v.ector p.erpendicu.lar ar.ld parallel to th% ugit vector
the Ising variablee; being given bye;=sgn S-r)==*1.
Note that the RG equatiori81) are written in terms of quan- Once this embedding is done, our initial Hamiltonian written
tities that contain, in their definition, the temperature, as it |Sn terms of continuous Spins — here, Ham||t0n|aﬁ$ and
clear from Eq.(32) since the temperature is included in the (9) — can be rewritten as a generalized random-bond Ising
p;’s. The Monte Carlo counterpart of tie,'s are thus given model. In the Monte Carlo simulation the spin variables of
by thep,/T’s previously defined. this new problem are updated using an efficient nonlocal
In contrast with the QN) case, there ara priori three algorithm for Ising variablege.g., the standard Swendsen-
different spin stiffnesses in our case but, in fact, only two aré/Vang algorithm. To flip the Ising variables; corresponds to

p1(1=0)=p;+p3,
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make a reflection of the vecttﬁ in the hyperplane perpen-

dicular tor. A necessary condition to get an efficient Wolff-
type algorithm is that this transformation preserves the total
energy of the system. In that case its application to a large set
of spins costs only a surface energy and large-scale changes

gL s0(3) x i

in the spin configuration are possible. Here, such a condition 5
is verified only for the symmetric partpg=p3) of the f4 - -
Hamiltonians. As a consequence, we have chosen to perform k=
our simulations with the reference symmetric Hamiltonians. S&
0"

More precisely, for the SO(3)0(2) model we consider

[aS)
T

T suGz) U N
and for the SU(2® U(1) model we take T B B I

0 1 2 3 4 5
Temperature

. 1
HO=-2) 4p1((3-sj>2— Z) (35
{5

HO=-> 8p,§-S. 36
(iz,j> P15 ! (36 FIG. 1. Specific heat as a function of the temperature for the

. . . . SO(3)0(2) and SU(2® U(1) models. Three different sizes have
Note that both Hamiltonians reduce to the same Hamlltomar%ee(n )fonéid)ered: >44((§?os(se))s 10 10 (solid triangles, and 20

in the spin-wave approximatiorHgy= —E<i,,—>8p15§i - 05 X 20 (solid squares For the SU(2® U(1) case the curves corre-
where 8S represents the spin deviation from the referencesponding to the two largest sizes are undistinguishable.
vecton. Note also that the zero-temperature ground-state en-

ergies are different for the two Hamiltonians. This is notinterplay between the loss due to the undesirable fluctuations
important since the various quantities computed in this worlof the weight in average@ growing source as the asymmet-
do not depend on this reference energy. ric parameterAp=p;—p; is increased and the gain ob-
Calculation of exact properties associated with the fulliained from the treatment of the large-scale collective-mode
Hamiltonians are done by reweighting appropriately themoves issued from the reference Hamiltonian. In practice,
Monte Carlo averages. Let us writ@ the average of an we have found that realistic calculations can be done only for

arbitrary functionQ(S) of the spin configuratiors a small value ofAp with a maximum value of about 0.2.
Although we have not made a systematic study of the effec-
= (42 [ 42 CHS)IT tive (associated wittH and notH(®) dynamical exponent,
Q f s j dSuQ(Se 12, 87 we are quite confident that, in the regim@<0.2, the con-

vergence of the estimators at the very low temperatures we
have considered is very satisfactory. In order to compute the
spin stiffnesses we have used formu(ag), (18), and (27)
presented in the previous section.

whereM is the total number of spins considerét(,S) is the
exact Hamiltonian, and the partition function. We reex-

pressQ as follows:

O= [ dS ...J’d* S)e V(ST
Q J S SuQ(S) V. MONTE CARLO RESULTS

x e "I In this section we present the calculations of the spin stiff-
nesses for the SO(8)0O(2) and SU(2U(1) models. Be-

J dél' . j dgwe—V(S)/T fore that, let us first give a qualitative visualization of the
effect of topology in this problem. Figure 1 presents the spe-

o o HOSIT 39) cific heat as a function of the temperature for the two models

and for three different lattice sizes:x#4, 10x10, and 20
whereV is the difference between the exact and reference< 20. Already for these relatively small systems the effect of
Hamiltonian V=H—H(©. The Monte Carlo averages are topology is striking. In the SO(@_O(Z) case, the_ s_pecific
performed over the set of spin configurations distributed acheat curves show a marked maximum whereas it is not the
cording to the Boltzmann weight associated with the refer£ase for the topologically trivial SU(Z)U(1) model. This

ence Hamiltoniar(denoted here a&- - - ))o) maximum is usually interpreted as the signature of the pres-
ence of topological excitations. Note that the location of the
6:<<Q(S)e7V(S)/T>>O/<<e7V(S)/T>>O_ (39) maximum provides a rough estimate of the crossover tem-

perature at which these excitations are activiteigre, and
By using such a procedure we are sure that at the symmetrigithout making a detailed analysis based on much bigger
point (p;=p3) our simulations are free from the critical sizes, we get approximatelj,,~2.6. From our numerical
slowing down problem(see, Ref. 32 Away from the sym-  results we propose to distinguish four different temperature
metric point, the situation is less clear. There is a subtleegimes.
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L L L L
v 6 LT=05 (1,1,0.9) S0(3)x0(2) ]

e ——
| T=15 (1.,1,1)
24 .

- Solid line=Two—loop RG | Solid line=Two—loop RG |

74 - - I 1
»\ 20| SU(2) ~3U(2)
7.2k I3 g ]
L Q
'? (— —

P I NI T T S H R S N B R
18 e by b e ey by gy
3 32 34 36 38 4 3 32 34 36 38 4

In N Ln N

FIG. 2. SO(3RO(2) spin stiffnessep, /T (lower curvg and
p3/T (upper curve as a function of IrL. Temperaturél =0.5 and
(p1,pP1,p3)=(1,1,0.9). The solid line is the two-loop RG predic-
tion as given by Eq(31). Open boundary conditions. Number of
clusters used ranges from<BLC° to 8x 10°.

FIG. 4. Spin stiffness as a function ofllnat T= 1.5 for the two
models in the symmetric cas@4(= p3). Note that in this case all
three spin stiffnesses are equal.

NLo model. For this temperature and for the paramepers
A. The spin-wave regime and p; chosen, we find an almost linear behavior as a func-

The Spin_wave regime Corresponds to the Very_'ow_tion of the |Ogarithm of the size. In other WOI’dS, the tWO-|00p
temperature regime. We have plotted in Figs. 2 and 3 théffects are almost negligible. The numerical slopes are fully
spin stiffnessep, /T and p3/T as functions of I at tem- ~ compatible with the theoretical slope of &4s given by the
perature T=0.5 for the SO(3®O(2) and SU(2pU(1)  one-loop equatiori33). Note that, by measuring the two in-
models, respectively. The parameters of the action ardependent spin stiffnesses of the HAFT model, Southern and
(p1,P1.P3)=(1,1,0.9). The behaviors of the spin stiffnessesYoung® had already confirmed, for one value of the tempera-
of both models are in full agreement with the two-loop RGture, the RG predictions.
predictions(solid line), Eq. (31). As expected from our esti- This overall behavior persists up to temperatures of order
mate ofTy, these results show thatat=0.5 the topological T~1 where we enter a new regime. Finally, note that the
excitations are not yet activated and that the physics is comabsolute values of the temperature-rescaled spin stiffnesses
trolled by spin waves well described by the perturbativefor the two models aff=0.5 are different. Betweefi=0

and T~1 this difference is almost constant. At=0, this

"8 [T constant can be calculated analytically, on the lattice models,
| T=0.5 (1,1,0.9) SU(2)xU(1) from the finite parts of the one-loop counterterms that renor-
| Solid line=Two—loop RG | malize the couplings. It is found to be equal to 5/16.

7.6 - —

\ B. The almost-spin-wave regime

e For T=1, the spin stiffnesses of the two models start to
X 4r 7 differ: whereas their variations as a function otLlare cor-
I 1 rectly described by Eq31) (see Fig. 4 the absolute values
of p1/T and p3/T for the SO(3®O(2) model get smaller
v i \\"\\t\- and smaller compared to those of the SU$2)(1) model as
l - the temperature increases. We have decided to refer to this
regime as the almost-spin-wave regime.
Let us now give a quantitative account of this phenom-
A I B IV B enon. Since the difference betwee/T andp3/T turns out
3 32 34 38 38 4 to be irrelevant for this discussion, we restrict ourselves from
Ln N now on to the fully symmetric SO(S0(3) and SU(2)
FIG. 3. SU(2)»U(1) spin stiffnessep, /T (lower curve and ~ ®SU(2) models where all three spin stiffnesses are equal.
p3/T (upper curvg as a function of I, Temperaturdf=0.5 and | he important point is that in the almost-spin-wave regime,
(p1,p1,P2)=(1,1,0.9). The solid line is the two-loop RG predic- the spin stiffness still displays a linear behavior as the func-
tion as given by Eq(31). Open boundary conditions. Number of tion of InL even for the topologically nontrivial model. It is
clusters ranges from:210° to 4x 1¢°. thus natural to define a characteristic length as:
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1500 ————— T T 1.1
L 1 L T=2.2 S0(3)xS0(3)
L Pure SW: Almost SW]|
| Regime Regime ] L
1000 - - 1
g | ‘ &
2 T ] oY
500 - - 09 _
0 /-w*/ | | I
0 1 2 9 O(SIIIIII\II‘II\I
Temperature 2.5 3 3.5 4

In L
t FIG. > f.Rat('jo.Oftflo”te'at"oT”h'engtlhdsI‘?‘S E?f”.”Ctt"t’” of t.ze MR FIG. 6. SO(3)2SO(3) spin stifiness as a function ofln T
ure as detined i the text. 1he Sold fine 1S Just to guide the €yes. 5 5 The solid line is the two-loop RG prediction.
The separation af ~1 between the pure spin-way8W) and the

almost-spin-wave regimes is rather arbitrary. c. Th )
. The vortex regime

Eoft At temperatures higher than typically=2.1, we enter in
pIT= ElnT (40) a new regime that we propose to call the vortex regime in
which the topological excitations play a major role. Figures

with ¢, being a function ofT only. We recall that in the 6, 7, 8, and 9 present, for the two models, the spin-stiffness

; o function of the size at the temperatures2.2, 2.4, and
topologically trivial SU(2)® SU(2) model and at the one- 352 . ;e
loop approximation&.i is the correlation lengtlisee Eq. 26 res.,pectlvelly. Fpr the SU(Q’)SU(Z.) model(Fig. 9) the
(33)]. Thus, the simplest hypothesis is that thg of the spin stiffness is _stl_ll correctly described by the two-loop
SO(3)®S0O(3) model is still, in this regime, proportional to NLo model predictions Eq(31). For the SO(3% SO(3)

the correlation length. One can thus expect the ratio model it is still possible to define an effective slope at suffi-
' ciently small sizes but it now differs significantly from the

RG predictions. This effective slope is found to increase as a
MC( T\ — Eer SU2)©SU(2)] function of the temperature. For exampleTat 2.2 the slope
R™(T) 4y :
e SA3)®SA(3)] is about~—0.115 to be compared with 1/47~ —0.080.
o ) At T=2.4 the slope is- —0.158, a value approximately two
to be a good indicator of the influence of the topology. Wetimes |arger than in the spin-wave regime. Moreover, the

give in Fig. 5,RM(T) as a function of the temperature.  spin stiffness displays some irregularities which could be
From this figure, we see that at low temperatuliasthe

spin-wave regime RMC(T) is almost independent on the
temperature. Note that =0 it converges to a value dif-
ferent from one because of the constant shift of 5/16 between
the two temperature-rescaled spin stiffnesses as discussed L
above. Within the range of temperatuies [ 1,2.1] the ratio L
is found to increase extremely rapidly. We have found that 08L
the curve can be well fitted using the form L

0.9 — T T T

RMS(T)=C exp[ . (42) -

_
(T_Tc)ﬁ

The “best” values found areC=23.52,a=1.655,8 -
=0.600, andl.=2.532. This clearly indicates that the topo- -
logically nontrivial model becomes more disordered than the -
topologically trivial one at a temperature of order=2.5, a 0.6 ————-~1
value compatible with that obtained from the peak of the '
specific heat. Of course, the analytical form chosen in Eq.
(42) must be taken with lot of caution. Many different ana-  FIG. 7. SO(3}»SO(3) spin stiffness as a function of ln T
lytical forms could have been used and give similar results.=2.4. The solid line is the two-loop RG prediction.

Ln L
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0.9 _' I
. T=2.6 S0(3)»S0(3) | 09 S0(3)~30(3) ]
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06 L ==: ] i -
: Eﬁz 0.6 B -
L S e T =
= x ~. F
o I
3 [ 3 Q i .
0.3 T — 0.3+ _
L = = =
- % L
- ﬁ - =
L XX L
L T | L = .
O %x— 0 [ =
i ! ! 1 L] ! —l— o :
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FIG. 10. SO(3p SO(3) spin-stiffness as a function ofUn T

FIG. 8. SO(3®S0O(3) spin-stifiness as a function ofln T —2.9. High-temperature regime for the model.

=2.6.

VI. DISCUSSION
associated with the presence of long-lived topological con-

figurations that affect the dynamics. The most irregular curveS uIY;/eI tnic')swngg)erirgstslto d?%gui igetc;rcel:;gavlvsr??gegshOfsic::usr (;fe-
has been obtained at temperatiire 2.6 (Fig. 8). ' y phy

Z, topological defects since in this case there is nothing
equivalent to the Villain transformation. In the usual ferro-
magnetic caseOQ(N)/O(N—1), Cardy and Hamber have
proposed to describe the effect of compacity of the sphere
Sy-1 by means of additional terms in the RG equation for
the temperaturd® These equations, valid in the vicinity of

=2 and at ordefT®> — which correspond to two-loop in
turbation theory — redtl

D. The high-temperature regime

At temperatures higher than typically=2.6 the spin
stiffnesses as a function of the size of the S{BO(3)
model recovers a smooth behavior. Figure 10 presents suc
behavior at temperaturd=2.9. Figure 11 presents the spin- P&"
stiffness for the SU(2) case @at=7.7. The overall behavior dT() T(1)2 T(1)?

of the spin stiffnesses is quite different. In the SO(3) . _(N—2)— +(N—2)——5+4m3y(1)2+ - -,
®S0O(3) casep/T vanishes abruptly with a change of con- 2m (2m)
cavity whereas in the SU(Z)SU(2) case it goes slowly )
down to zero without any change of concavity. dy(l) 2
wn to zero without any g vity yh* [~ Y2+ 43
dl T(I)
1.6 T T T T T T T T T T
L i 0.15 prerrprrr
SU(2)~SU(R) | I SU(2)xSU(2) ]
T T=2.2 1 | T=7.7 High-T regimel
1.4+ \'\-\\‘ 0.1F .
e : -
N T=R4 .__ et
L \\ a L
Lok M 0.05 - .
T T=26 T - =
I \ | Solid line=2—loop RG |
L  Dash. line=1-loop RG ]
1 PR T T T A T TN T T B L 0 L i
2.5 3 3.5 4 A T N B R
Ln L 1.5 2 25 3 35 4

Ln L
FIG. 9. SU(2)®SU(2) spin stiffnesses as a function ofrior "

T=2.2,T=2.4, andT=2.6. The solid lines are the two-loop RG FIG. 11. SU(2R® SU(2) spin-stiffness as a function ofln T
predictions. =7.7. High-temperature regime for the model.
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These equations have been derived by assuming analyticity
in y? and inN and by requiring that the two following lim- i T(1=0)=0 2
iting cases are recovered) the perturbatived function of "

the O(N) model forN=3; and(ii) the Kosterlitz-Thouless 1.5
equations foN=2. In fact, Cardy and Hamber have shown i
that it is the only set of equations compatible with these
requirements® For N=2, one recovers the Kosterlitz-
Thouless (KT) equationd*3® where y identifies with the
fugacity of vortices. The casg=0 leads to the two-loop
perturbativeB function of theO(N)/O(N—1) NLo model

in two dimensions. FON#2, y lacks of a clear interpreta- -
tion but it has been conjectured that it encodes the effect of - With defects
compacity. Clearly, theN>3, y#0) case we consider here -
could very well lie outside the domain of validity of these 0.5 -
equations. It is therefore important to insist on the fact that e b b L
they must only be considered as some phenomenological RG 0 1 E 3 4

equations for a model displaying topological defegtplay- Ln L

ing the role of a fugacity by analogy with the KT case. Our  F|G. 12. Spin stiffness as a function of llnwith and without

aim is to show that they are able to reproduce the grosgefects.T(I=0)=0.2.

features of the behavior of the spin stiffness and correlation = . ]
length found in our case. As in the KT case, the physicafor simplicity, we have chosen to take the same normaliza-
“fugacity” y(I=0) that appears as the initial condition in t|(_)n at zero-temperature for the spin stiffnesses with and
Eq. (43) is not independent on the temperature. However, inVithout defects. _ _

contrast with this last case its dependence on the physical Let us now show that we retrieve the essential features of

temperatureT(1=0) is unknown. The simplest assumption the regimes previously identified except, obviously, for the
we can think of is high-temperature regime which is out of reach of the RG

equationg45) which, for the spin-wave part, are perturbative
y(1=0)=¢ ¥T(1=0) (44)  in the temperature. At very low temperaturgg|) is very
small and remains small along the RG flow. As a result we
find almost no difference between the systems with and with-
out vortices: this is the spin-wave regime that we recover
trivially.

As the temperature increases, therm plays a more and
Rlore important role. Adjusting the free parameterat a
value y=0.45 the temperature where the defects start to play
a significant role is typicallyf (I =0)~0.15. We plot in Fig.

12 the spin stiffnesses as a function of the system size at a

| Without defects

as in the KT case. In Ed44), y is an adjustable parameter.
Equations(43) are considered in the cad¢=4 since
SO(3)®S0(3)/SO(3) and SO(4)/SO(3have the same
spin-wave content and differ by their topological properties.
These latter properties are expected to be taken into accou
via they terms in Eq(43). Moreover, we write them in terms
of the spin stiffness of the SO(8)SO(3)/SO(3)model.
These equations are obtained by the substitution(l}/

—dp(l): slightly higher temperatur@(1=0)=0.2. The upper curve
- corresponds to the system without defects and the lower one
de(l) 1 1 to that with defects.

~an T o 16wy ()2,

d 4z 327%(1) As in our Monte Carlo simulations, we find that the ab-
solute value of the spin stiffness is decreased by the presence
dy(1)2 87 of defects. After an abrupt jump at very small sizes the spin
= 4—~—> y(1)2. (45)  stiffness is found to be linear as a functionLinUp to an
di p(l) accuracy of a few percent, the slope is not affected by the

defects. Its value-0.080~ — 1/44r, corresponds to the per-
turbative RG result. This behavior is similar to that predicted
by the spin-wave analysis, except that the absolute value of

on ”':/? tempc):eralltu@(l TO) and onLl. TO. make czqtacrt] with the spin stiffness is smaller. This corresponds to the almost-
our Monte Carlo results, we are also interested in the Co”eépin-wave regime previously identified.

lation length¢. This last quantity is defined, as usual, from To obtain a completely consistent picture, it is also nec-
the fact that when the RG scalebecomes of the order ¢ essary to see whether the ratio of the correlation lengths,

By direct integration of Eqs(45) up to the scald. of the
lattice sizel =InL/a one can obtain the dependencepgf)

the spin stiffnesp(l) vanishes, see EG40): without and with defects, considered as a functionT¢F
~ =0):
éla~e  with p(l)=0. (46)
As in the Monte Carlo simulations, we compute from Eq. R(T)= M (47)
(45) the spin stiffnesses and correlation lengths in both situ- Sy()#0

ations: without and with defects. This consists in setting rebehaves aRkRM®, Fig. 5. We give in Fig. 13, the rati®
spectivelyy(l) to zero or not in Eq(45). Note finally that,  obtained by direct integration of E45). This figure clearly

014412-11



CAFFAREL, AZARIA, DELAMOTTE, AND MOUHANNA PHYSICAL REVIEW B 64 014412

80 T T ! T
L 06 — —
L T(1=0)=0.5
60 -
L Without defects
E a0 s
a4
20 -
0 5 ;T R U R T R S T R 4
0 0.1 0.2 0.3

Temperature . . . . .
FIG. 14. Spin stiffness as a function of llnwith and without

FIG. 13. RatioR(T) of correlation lengths as a function of defects,T(I=0)=0.5. The dashed line represents the linear behav-
T(1=0). ior associated with the model without defects. A slight increase of
the slope is observed when the defects are present.

shows a behavior comparable to that observed in Fig. 5.

At higher temperature, one enters in a regime where th
spin-stiffness as a function of the size begins to display g
different behavior. Figure 14 presents the spin stiffnesses
T=0.5 (to facilitate the comparison the dashed line repre-

. . . ; ; T).
sents the linear behavior associated with the model W|th0LP(( : .
defects. It is possible to define a linear regime but now with Ateven higher temperature, Eqd5) are no longer valid

a slightly greater slope than in the defect-free case. The ditnee th'ey are.based ona Iqw-temperature expansion and the
comparison with the numerical results does not make sense.

i 0, -
ference between the two slopes is about 10%. As the.teml'he preceding analysis shows that the simple set of equa-
perature is increased the spin-stiffness still displays a Ilneat.

) i ; . lons (45) together with the relatiori44) seem to capture
behavior but now with an increasing temperature-dependen fthe i f fth f logical
slope. some of the important features of the presence of topologica

Such a behavior has been numerically observed in thgefGCtS in the almost-spin-wave and vortex regimes. Of

. . M ., course, only a microscopical approach of the problem could
vortex regime(see, Figs. 6 and 7 where some “effective . . o e
. . . . allow to go beyond this semiquantitative description.
linear behavior with a larger slope is obserzedowever,
note that the irregular behavior found in Fig. 8 is not repro-
duced here. Of course, the range of temperature over which
this linear behavior is observed, as well as the variation of B.D. and D.M. thank B. Doumt and J. Vidal for discus-
the slope withT (I =0) depends rather strongly in our calcu- sions. LCT, LPTL, and LPTHE are Laboratoires assecia
lation on the relation betweep(l=0) and T(I=0), Eq. CNRS: UMR 7676, 7600, and 7589.

44). With our choice ofy, the maximum variation found for

e slope as a function of the temperature is about 15%
hich is somewhat below what is obtained in the simula-
ions. This could certainly be corrected by another choice of
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