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Spin stiffness and topological defects in two-dimensional frustrated spin systems
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Using acollectiveMonte Carlo algorithm we study the low-temperature and long-distance properties of two
systems of two-dimensional classical tops. Both systems have the same spin-wave dynamics~low-temperature
behavior! as a large class of Heisenberg frustrated spin systems. They are constructed so that to differ only by
their topological properties. The spin stiffnesses for the two systems of tops are calculated for different
temperatures and different sizes of the sample. This allows one to investigate the role of topological defects in
frustrated spin systems. Comparisons with renormalization group results based on a nonlinear sigma model
approach and with the predictions of some simple phenomenological model taking into account the topological
excitations are done.

DOI: 10.1103/PhysRevB.64.014412 PACS number~s!: 75.10.Hk, 05.10.Ln, 11.10.Hi, 11.10.Lm
er

o
as
en
-
e
p

o-
is
n
e

e

e
y

s-
d

la

of
th
u
as
o
i-
t

ee

th
o

th

in
a

-
for
-
ses
lso

h a
ith
spin

ure
-
m-
ect
dy-
re-
ces.
ing
ns
ach

tes

ic
ith

is
etic
he
for
er,
ls
ent
in-

icks
rge

ous
ed
I. INTRODUCTION

The long-distance behavior of the classical Heisenb
antiferromagnet on a triangular lattice~HAFT! model has
been the subject of much interest. In three dimensions a m
important issue is the nature of the universality of its ph
transition.1–7 In two dimensions, this model has also be
widely studied since it exhibits a nontrivial finite
temperature behavior due to the presence of topological
citations. Topology enters the problem since the order
rameter of the model belongs to SO~3! whose first homotopy
group isp1@SO(3)#5Z2. As a consequence, there exist t
pologically stable point defects — called vortices — for th
two-dimensional system. Arguments involving entropy a
energy of the defects suggest the occurrence of a chang
behavior at a finite temperatureTV between a pure spin wav
regime with confined vortices forT,TV and a regime of free
vortices for T.TV . Several Monte Carlo studies of th
HAFT model8–11 and of some generalizations with an eas
axis exchange anisotropy12–14have indeed revealed the exi
tence of various regimes resulting from the presence of
fects.

Here, our purpose is to shed some light on the interp
between vortices and spin waves in two dimension~2D! by
studying with Monte Carlo simulations two lattice models
ferromagnetically interacting tops. Both models have
samespin-wave dynamics as the original HAFT model b
they differ by their topological properties: the first one h
the same topological content as the HAFT model, the sec
one is topologically trivial. The role played by the topolog
cal defects emerges from the comparison between these
models. Note that this comparative study would have b
more difficult to implement directly on the original HAFT
model. The physical quantity we consider in our study is
spin stiffness which, for a spin system on a finite lattice
sizeL, measures the free-energy increment resulting from
twist of the boundary conditions.15,16 The spin-wave part of
the spin stiffness identifies with the coupling constant of
nonlinear sigma (NLs) model renormalized at scaleL by
0163-1829/2001/64~1!/014412~13!/$20.00 64 0144
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thermal fluctuations. Accordingly, the behavior of the sp
stiffness as a function of the size of the lattice provides
direct test of the perturbative renormalization group~RG!
predictions of the NLs model. For the models of tops stud
ied here we expect that, at sufficiently low temperature —
T significantly smaller thanTV— where the physics is domi
nated by pure spin waves, the behavior of the spin stiffnes
agrees with the RG predictions. On the other hand, we a
expect that, for a topologically nontrivial model, nearTV ,
the vortices also contribute to the spin stiffness. For suc
model the behavior of the spin stiffness must disagree w
the standard RG predictions. One great advantage of the
stiffnessr is that, in contrast with the correlation lengthj
which cannot be easily computed at very low temperat
since it diverges typically as exp(1/T), r has a smooth be
havior at low temperature. It is thus, in principle, easily co
putable. Regarding Monte Carlo simulations, a central asp
is that, at the low temperatures we are interested in, the
namics of 2D spin systems is governed by strongly cor
lated spin waves, independently of the presence of vorti
These modes are responsible for a severe critical slow
down which makes difficult the convergence of simulatio
based on local algorithms in which one spin is flipped at e
Monte Carlo step~‘‘local update’’ Monte Carlo schemes!.
To resort to collective algorithms based on global upda
~construction of clusters! is then important.17,18 However, as
is well known, such algorithms work well for ferromagnet
systems but not for frustrated ones. Note that together w
the ability of comparing topologically different models, th
aspect is an additional motivation to consider ferromagn
top models rather than the original HAFT one. Actually, t
implementation of the basic rules of collective algorithms
systems consisting of tops is itself not so clear. Howev
this difficulty can be circumvented by rewriting the mode
of tops considered here as ferromagnetic four-compon
spin systems while, of course, preserving both their sp
wave and topological contents. Thanks to these various tr
and to the cluster algorithm we are then able to scan a la
temperature range belowTV while fully controlling the con-
vergence of our simulations. It should be noted that previ
Monte Carlo calculations of the spin stiffness on relat
©2001 The American Physical Society12-1
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models~HAFT model and generalizations! have been done
by using Monte Carlo schemes with local updates.8–13 Note
that, in contrast with these works, we have considered h
very small temperatures,T!TV . To resort to a nonlocal al
gorithm to accelerate the convergence of simulations
therefore essential. Note also that at the intermediate t
peratures where the necessity of using global Monte C
schemes is less important we have also found a clear
provement associated with the use of cluster algorithms.

The main result of this paper is that we have found so
striking differences in the behavior of the spin stiffnesses
a function of the linear size for the two models, with a
without topological excitations. At very low temperatures t
temperature-rescaled spin-stiffnessr̃5r/T ~the natural
quantity to consider, see below! of both models displays the
characteristic behavior:

r̃5
r

T
;

1

4p
ln

j

L
~1!

predicted by the perturbative RG approach of the Ns
model.16 This is, of course, expected since the spin-wa
contents of both models are identical. We call the regi
corresponding to this range of temperatures the ‘‘spin-wav
regime. Note that, for one value of the temperature, t
asymptotic scaling ofr̃ with respect to lnL has already been
confirmed directly on the HAFT model by Southern a
Young.9 At higher, but still low, temperatures the two mo
els begin to display different behaviors. While the spin st
ness of the topologically nontrivial model still displays th
previous characteristic behavior, its absolute magnitude w
respect to the trivial model is found to decrease quite rap
as a function of the temperature. We propose to refer to
regime as an ‘‘almost-spin-wave’’ regime, a regime whe
the only significant effect of vortices is just to shift down th
value ofr/T. Next, at higher temperatures we enter a regi
called here the ‘‘vortex’’ regime where the vortices play
major role. In this regime, the spin stiffness loses its regu
behavior. It exhibits large fluctuations around its mean va
with the presence of ‘‘plateaux’’ and abrupt jumps as a fu
tion of the linear size. Nevertheless, by considering the g
bal behavior of the curve it is still possible to define som
effective linear regime as a function of lnL similar to that
described by Eq.~1!. However, in contrast with the spin
wave regime, the slope of the spin stiffness is no lon
constant (1/4p) and is found to increase quite rapidly as
function of the temperature. It is remarkable that this regi
is observable only within a narrow range of temperatures
slightly higher temperatures, the curve of the spin stiffn
recovers a much more conventional behavior: smooth
crease as a function of the size and cancellation ofr at some
finite lattice size corresponding to some finite correlat
length. Regarding the theoretical interpretation of our resu
we show that the very low-temperature regime is in f
agreement with the RG predictions. The so-called ‘‘almo
spin wave’’ and ‘‘vortex’’ regimes are much more puzzlin
However, it is shown that the most salient features indu
by the topological defects in these regimes can be rather
reproduced using some simple phenomenological RG e
01441
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tions which combine the topology of theXY model and the
spin-wave content of the O~4! model.

The organization of the paper is as follows. In Sec. II, t
various actions of the lattice models are presented. In S
III, the expressions of the spin stiffnesses suitable for Mo
Carlo simulations are given. In Sec. IV, we present brie
the Wolff-Swendsen-Wang algorithm used. Our results
given in Sec. V. In this latter section we present the behav
of the spin stiffnesses as a function of the lattice size in
various temperature regimes going from low to high te
peratures. Finally, we present in the last section our fi
attempt toward a theoretical interpretation of the effect of
vortices in the almost-spin-wave and vortex regimes.

II. THE LATTICE MODELS

A. The SO„3…‹O„2… top model

Our first step is to map the HAFT model into an equiv
lent nonfrustrated one. As shown by Dombre and Read19 and
Azariaet al.20 the long-distance effective Hamiltonian of th
HAFT model consists in a system of classical interact
tops. This can be understood from the fact that the 1
structure of the spins of the HAFT model in the ground st
fully breaks the SO~3! symmetry so that the order paramet
is a rotation matrixRPSO(3), aclassical top. As in the
nonfrustrated case, once the theory is reformulated in te
of the order parameter, the effective interaction becomes
romagnetic. The Hamiltonian of the top model thus reads19,20

H152(
^ i , j &

Tr~PRi
21Rj !, ~2!

whereRi is a rotation matrix of SO~3! defined on sitei and
P5diag(p1 ,p1 ,p3) is a diagonal matrix of positive coupling
constants which represents the interaction strengths betw
the different axes of the tops. Note that the temperature
been included in thepi ’s. The HAFT model corresponds t
the special casep350.19,20 The SO~3! symmetry of the
HAFT is realized here through the rotational invariance
Hamiltonian ~2! under left global SO~3! rotations Ri
→URi , UPSO(3). With the matrixP considered here it is
also invariant under the O~2! group of right global transfor-
mations:Ri→RiV that commute with the matrixP. Thus,
Hamiltonian ~2! is invariant under the groupG5SO(3)
^ O(2). This left O~2! group is reminiscent of theC3v sym-
metry of the triangular lattice. Note that it will be convenie
in the following to consider the casep3Þ0 since the Hamil-
tonian made with thisP is the general one invariant unde
G5SO(3)̂ O(2) and that, as well known,20,16the condition
p350 is not preserved by renormalization.

The symmetry breaking pattern described by Hamilton
~2! is G5SO(3)̂ O(2) broken down toH5O(2):

G

H
5

SO~3! ^ O~2!

O~2!
[SO~3!, ~3!

where the notation[ means thatG/H is topologically iso-
morphic to SO~3!. The symmetry breaking pattern thus co
2-2



.
et

)
,

ni
in
e
ns
-
g

e
pa
s

tu
u

-

pa

ld
-

t
ss

s

ia

)

ur

re

ver-
the

re
is

ial
al
-
on-

-
and
are

al-
es.
is

a

a
-

e
-

ture
-
il-

e

SPIN STIFFNESS AND TOPOLOGICAL DEFECTS IN . . . PHYSICAL REVIEW B64 014412
responds to a fully broken SO~3! group. For the original
HAFT model, this symmetry breaking pattern isG/H
5SO(3)̂ C3v /C3v and is thus identical to that given by Eq
~2!. This is the reason why the substitution of the discr
C3v by the continuous O~2! one in Hamiltonian~2! is harm-
less. It is interesting to note the identity SO(3
5SO(4)/@SO(3)̂ Z2#5S3 /Z2 , S3 being the three-sphere
since it shows that the model of tops~2! is equivalent to that
of four-component spins living on the four-dimensional u
sphere with antipodal points identified. This will allow us,
the following, to build a vector model equivalent to the pr
ceding matrix one and suitable for Monte Carlo simulatio
Note finally that whenp15p3 the symmetry group is en
larged to G5SO(3)̂ SO(3) and the symmetry breakin
pattern isG/H5SO(3)̂ SO(3)/SO(3).

B. The SU„2…‹U„1… top model

We now build the topologically trivial counterpart of th
previous top model. We want to preserve the spin-wave
of the model while discarding the topological excitation
Since the spin-wave excitations correspond to small fluc
tions of the order parameter, they only probe the local str
ture of the order parameter spaceG/H and not its global —
topological — structure. This local structure is itself com
pletely determined by the Lie algebras ofG andH.20,21 We
thus need a model defined by an order parameter s
G8/H8 locally isomorphic toG/H and topologically trivial.
This is obtained by considering the covering group SU~2! of
SO~3!. The relevant model is thus built on the manifo
SU(2)^ U(1)/U(1). Themost general Hamiltonian invari
ant under SU(2)̂ U(1) writes

H252(
^ i , j &

H 2~p11p3!Tr gi
21gj1

1

2
~p12p3!

3~Tr s3gi
21gj !

2J , ~4!

wheregiPSU(2) ands3 is the third Pauli matrix. The firs
term in this Hamiltonian is clearly invariant under the cro
product of a left SU~2! group and a right SU~2! group: gi
→MgiN, M ,NPSU(2). Thesecond one explicitly break
the right SU~2! down to a right U~1! so that the Hamiltonian
is generically SU(2)̂ U(1) invariant. This U~1! symmetry
corresponds to the O~2! symmetry of Hamiltonian~2!.

The symmetry breaking pattern described by Hamilton
~4! is G85SU(2)^ U(1) broken down toH85U(1):

G8

H8
5

SU~2! ^ U~1!

U~1!
[SU~2! ~5!

so that it corresponds to a fully broken SU~2! group. Again,
it is interesting for the following to note the identity SU(2
5SO(4)/SO(3)5S3 which means that the model~4! is
equivalent to that of four-component spins living on the fo
dimensional unit sphere. Again, whenp15p3, the symmetry
group is enlarged toG85SU(2)^ SU(2) and the symmetry
breaking pattern becomes SU(2)^ SU(2)/SU(2). Note fi-
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nally that the choice of coupling constants in Eq.~4! is such
that the two models~2! and ~4! have the same temperatu
scale.

The models corresponding to Eqs.~2! and ~4! have, by
construction, the same spin-wave dynamics but can ne
theless strongly differ when excitations associated with
topology are activated. The SU(2)^ U(1) model being topo-
logically trivial, i.e.,p1@SU(2)#50, we expect that a Monte
Carlo study of this model will be well reproduced by a pu
spin-wave approach. We show in the following that this
indeed what happens: as in the topologically triv
O(N)/O(N21) ferromagnetic spin systems, the critic
properties of the SU(2)̂ U(1) model are in perfect agree
ment with the perturbative RG predictions made on the c
tinuous limit of the top model, a NLs model. On the other
hand, the SO(3)̂ O(2) model being topologically non
trivial, some disagreement between the perturbative
Monte Carlo approaches at sufficiently high temperatures
found, as expected.

C. The vectorial version of the SO„3…‹O„2… model

As already mentioned in the Introduction, the cluster
gorithms are easier to implement for spins than for matric
We thus need vectorial versions of our Hamiltonians. This
achieved by using the decomposition of a rotation matrixRi

of SO~3! in terms of a four-component unit vectorSW i

5(Si
0 ,Si)5(Si

0 ,Si
1 ,Si

2 ,Si
3):

Ri
kl52S Si

kSi
l2

1

4
dklD12eklmSi

0Si
m12S Si

022
1

4D dkl . ~6!

The Hamiltonian~2! then takes the form

H1852(
^ i , j &

H 4p1S ~SW i •SW j !
22

1

4D14~p32p1!

3F ~Si
0Sj

01Si
3Sj

3!~Si
1Sj

11Si
2Sj

2!1~Si
0Sj

32Sj
0Si

3!

3~Si
1Sj

22Si
2Sj

1! 1
1

4
~Si

021Si
322Si

122Si
22!

3~Sj
021Sj

322Sj
122Sj

22!G J . ~7!

The first term of Eq.~7! represents the hamiltonian of
system of spherical tops, i.e., SO(3)^ SO(3).SO(4) sym-
metric, for whichp15p3. This term is also invariant under
local-gauge-Z2 group. ThisZ2 symmetry expresses the non
trivial topological character of the SO~3! group. The first
term of Eq. ~7! is also known as the Hamiltonian of th
RP35SO(4)/@SO(3)̂ Z2# model which expresses the iso
morphism between the manifolds SO~3! and RP3. This
model and, more generally, theRPN models for generalN
have been extensively studied and the question of the na
of their continuum limit22–27 strongly debated, also in con
nection with topological defects. The second term of Ham
tonian~7! also displays theZ2 local symmetry but breaks th
2-3



ri-

n

ro
T

-
a
a

m

c
th

-

-
n

o

ith

ge

a-

es-
o

ent
m

nd
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global SO~4! symmetry so that the Hamiltonian is gene
cally globally SO(3)̂ O(2) and locallyZ2 symmetric.

D. The vectorial version of the SU„2…‹U„1… spin model

It is also possible to express Hamiltonian~4! in terms of
four-component vectorsSW i . Using the decomposition of a
SU~2! matrix

gi5Si
01 i s•Si , ~8!

sk , k51,2,3 being the Pauli matrices, Hamiltonia
~4! writtes

H2852(
^ i , j &

4~p11p3!SW i •SW j12~p12p3!

3~Si
0Sj

32Sj
0Si

32Si
2Sj

11Sj
2Si

1!2. ~9!

In this expression the first term is O~4! globally invariant and
corresponds to the Hamiltonian of a four-component fer
magnet whereas the second term breaks this symmetry.
Hamiltonian ~9! is thus generically globally SU(2)̂U(1)
symmetric. Note that theZ2 local symmetry has now disap
peared. This is a consequence of the trivial topological ch
acter of SU~2!. Note also that the scale of temperature h
been chosen so that both HamiltoniansH18 , Eq. ~7!, andH28 ,
Eq. ~9!, have the same linearized spin-wave form in the sy
metric case (p15p3), namely, H1/28 52(^ i , j &8p1dSW i•dSW j

where dSW represents the spin deviation from the referen
vector. Finally, remark that the Jacobians resulting from
change of variables: matrices→ spins in both SO(3)
^ O(2) and SU(2)̂ U(1) are trivial and thus do not con
tribute to the free energy.

III. THE SPIN STIFFNESSES

A. The spin stiffnesses of the lattice models

The spin stiffnessra to be computed numerically is de
fined as the free energy increment under twisting the bou
ary conditions, for instance in thex direction around the
directiona. This is realized by coupling the system with tw
walls of topsR(x50)5R1 andR(x5L)5R2 , R2 being de-
duced fromR1 by a rotation of angleua around the direction
a and by measuring the variation of the free energy w
respect toua :

ra5
]2F~ua!

]ua
2 U

ua50

. ~10!

For a system with partition function

Z5(
[Ri ]

e2H ~11!

we have
01441
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ra52TF2 K ]H

]ua
L 2

2K ]2H

]ua
2 L 1 K S ]H

]ua
D 2L G

ua50

.

~12!

SinceH is even in theua’s, the average value of]H/]ua is
equal to zero and only the two last terms of Eq.~12! need to
be computed.

1. The spin stiffnesses of the SO(3)‹O(2) model

In principle we have to compute the different avera
values in Eq.~12! from the partition function

Z5(
[Ri ]

expS (
^ i , j &

TrPRi
21Rj D ~13!

constrained by the boundary conditions

R~x50!5R0 ,

R~x5L !5R0eiua Ta, ~14!

whereR0 is a rotation matrix of reference~e.g.,R051), Ta
is the generator of rotation around thea direction, andua the
angle of rotation@Eq. ~14! must be understoodwithout the
sum overa]. However, in practice, the presence of deriv
tives with respect toua in Eq. ~12! as well as the fact that the
cluster algorithm is implemented with spins, makes expr
sion ~12! not suitable for our simulations. We proceed in tw
steps to reformulate the model in a numerically conveni
way. First, to get rid of the derivatives, we compute the
analytically and rewrite the average values in Eq.~12! as
ua-independent quantities. To do this we decomposeRi into
a zero temperature partRi

cl and a fluctuation parthi :

Ri5Ri
clhi , ~15!

where bothRi
cl andhi belong to SO~3!. In Eq. ~15!, Ri

cl is by
definition a solution of the classical equations of motion a
thus reads

Ri
cl5e2 iuaTa(xi /L) ~16!

and thehi ’s satisfy the boundary conditions

h~x50!5h~x5L !51. ~17!

We thus have

]H

]ua
U

ua50

5
1

L (
^ i , j &,k,l ,m

pkea lmhi
klhj

km~xi2xj !,

]2H

]ua
2 U

ua50

5
1

L2 (
^ i , j &,k,l ,m

pk@d lmhi
klhj

km2hi
kahj

ka#~xi2xj !
2.

~18!

The average values in Eq.~12! must now be computed with

Z5(
[hi ]

expS (
^ i , j &

Tr Phi
21hj D ~19!
2-4
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with the boundary conditions~17!. At this stage, everything
is written in terms of theh’s. Thus we can now perform th
second step of our derivation that consists in using in E
~17!, ~18! and~19! the same decomposition as in Eq.~6! but
now for thehi ’s

hi
kl52S Si

kSi
l2

1

4
dklD12eklmSi

0Si
m12S Si

022
1

4D dkl .

~20!

Since now all thermal average values are entirely expres
in terms of four-component spins, the cluster algorithm c
be implemented to compute the spin stiffnesses.

2. The spin-stiffnesses of the SU(2)‹U(1) model

The same method can be employed for the SU
^ U(1) model for which we have

Z5(
[gi ]

expS (
^ i , j &

2~p11p3!Tr gi
21gj1

1

2
~p12p3!

3~Tr s3gi
21gj !

2D ~21!

with, again, the fixed boundary conditions
01441
s.

ed
n

)

g~x50!5g0 ,

g~x5L !5g0eiua(sa /2), ~22!

where g0 is a rotation matrix of reference of SU(2)~e.g.,
g051), sa is a Pauli matrix, andua the angle of rotation
@again in Eq.~22! there is no sum overa].

As in the SO(3) case, we make the decomposition
classical and fluctuating parts

gi5gi
clhi ~23!

with

gi
cl5eiua(sa/2)(xi /L) ~24!

andh satisfying

h~x50!5h~x5L !51. ~25!

The different terms of Eq.~12! are separated into SO~4!
and SU(2)̂ U(1) symmetric parts. WritingS5SSO(4)
1SSU(2)^ U(1) and using the decomposition

hi5Si
01 i s•Si , ~26!

we have with obvious notations
]HO(4)

]S u1

u2

u3

D U
ua50

5
2

L
~p11p3!(

^ i , j & S Si
0Sj

12Si
1Sj

01Si
3Sj

22Si
2Sj

3

Si
0Sj

22Si
2Sj

01Si
1Sj

32Si
3Sj

1

Si
0Sj

32Si
3Sj

01Si
2Sj

12Si
1Sj

2
D ~xj2xi !,

]HSU(2)^ U(1)

]S u1

u2

u3
D U

ua50

5
2

L
~p32p1!(

^ i , j &
v i j

3 S Si
3Sj

11Si
1Sj

32Si
2Sj

02Si
0Sj

1

Si
3Sj

21Si
2Sj

31Si
1Sj

01Si
0Sj

2

Si
0Sj

01Si
3Sj

32Si
1Sj

12Si
2Sj

2
D ~xj2xi !,

]2HO(4)

]S u1
2

u2
2

u3
2
D U

ua50

5
1

L2 ~p11p3!(
^ i , j & S SW i .SW j

SW i .SW j

SW i .SW j

D ~xj2xi !
2,

]2HSU(2)^ U(1)

]S u1
2

u2
2

u3
2
D U

ua50

5
1

L2 ~p12p3!(
^ i , j & S ~Si

3Sj
11Si

1Sj
32Si

2Sj
02Si

0Sj
2!22v i j

3 2

~Si
3Sj

21Si
2Sj

31Si
1Sj

01Si
0Sj

1!22v i j
3 2

~Si
0Sj

01Si
3Sj

32Si
1Sj

12Si
2Sj

2!22v i j
3 2
D ~xj2xi !

2, ~27!
2-5
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with

v i j
3 52Si

0Sj
31Si

3Sj
02Si

1Sj
21Si

2Sj
1 . ~28!

The spin stiffnesses can now be computed with

Z5(
[hi ]

expS (
^ i , j &

2~p11p3!Tr hi
21hj1

1

2
~p12p3!

3~Trs3hi
21hj !

2D ~29!

with the set of equations~27! and the boundary condition
~25! or, in terms of the four-component vectorSW :

SW ~x50!5SW ~x5L !5~1,0,0,0!. ~30!

B. The spin-stiffnesses of the NLs models

The spin stiffnesses can be analytically computed fr
the continuum versions of the top models, which is a non
ear sigma (NLs) model. They identify with the effective
coupling constants of the NLs model at scaleL, renormal-
ized by thermal fluctuations. Let us recall that the pertur
tive treatment of the NLs model takes only into account th
spin-wave part of the spin stiffnesses. Indeed, theb func-
tions of any NLs model are completely determined by th
local properties, i.e., by the metric, of the manifoldG/H
while they are insensitive to its global, i.e., topologic
structure. Since the metric itself is completely determined
the Lie algebras ofG andH, the perturbativeb functions —
and thus the behavior of the spin-wave part of the spin s
nesses — of the SO(3)̂O(2) and SU(2)̂ U(1) NLs mod-
els are identical by construction. They are given at two-lo
order by20,16

]r̃1~ l !

] l
52

1

2p
1

1

4p

r̃3~ l !

r̃1~ l !
2

5

32p2

r̃3~ l !2

r̃1~ l !3
1

3

8p2

r̃3~ l !

r̃1~ l !2

2
1

4p2r̃1~ l !
,

]r̃3~ l !

] l
52

1

4p

r̃3~ l !2

r̃1~ l !2
2

1

32p2

r̃3~ l !3

r̃1~ l !4
, ~31!

with l 5 ln L/a whereL is the system size,a the lattice spac-
ing, the initial conditions of the RG flow being given by

r̃1~ l 50!5p11p3 ,

r̃3~ l 50!52p1 . ~32!

Note that the RG equations~31! are written in terms of quan
tities that contain, in their definition, the temperature, as i
clear from Eq.~32! since the temperature is included in th
pi ’s. The Monte Carlo counterpart of ther̃a’s are thus given
by thera /T’s previously defined.

In contrast with the O~N! case, there area priori three
different spin stiffnesses in our case but, in fact, only two
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independent since the left O~2! symmetry constrains two o
them to be identical. Note that, asymptotically, i.e., forL

@a, the behavior of ther̃a’s is given by the infrared limit of
the flow equations. It is easy to show that, in this limitr̃1

→ r̃3 and the model becomes effectively SO(3)^ SO(3)
;SO(4) symmetric. This is the known phenomenon of e
larged symmetry.4,20 We recover therefore the universal sca
ing of the spin stiffness of a ferromagneticN54 vector
model. At leading order we have16

r̃1;r̃3;
1

4p
ln

j

L
, ~33!

wherej is the correlation length. Note, of course, that sin
the spin stiffnesses in Eq.~31! are calculated perturbatively
they can only be valid in a limited range oflow temperatures
where the perturbation theory at two-loop order is meani
ful.

From the preceding analysis, it should be clear that fo
topologically trivial model, the spin-wave part of the sp
stiffnessr̃a identifies withra /T, so that we can expect tha
this last quantity follows the RG equations calculated
perturbation theory. Indeed, for theO(N) model, it has been
checked28 that at sufficiently low temperature, the spin stif
nessra /T follows the RG equations calculated by means
theO(N) NLs model up to two loop order.29,15 In the same
way, we expect the different spin stiffnessesra /T of the
lattice SU(2)̂ U(1) model calculated by Monte Carlo simu
lation to follow the RG equations~31! in a large range of low
temperatures since it is topologically trivial. On the oth
hand, we expect the behavior of the spin stiffnessesra /T of
the lattice SO(3)̂ O(2) model to agree with Eq.~31! at very
low temperature, i.e., belowTV , where the topological de
fects are not activated, but to disagree with the perturba
RG predictions near and above the crossover tempera
TV .

IV. WOLFF-SWENDSEN-WANG ALGORITHM

The simulations presented in this paper are based o
generalization of the Wolff-Swendsen-Wang17,18,30,31 algo-
rithm to N-vector models as presented by Caraccioloet al. in
Ref. 32. The method is based on an embedding of Ising s
e into the N component~here N54) continuous spinsSW
according to

SW i5SW i
'1e i uSW i

iurW, ~34!

whererW is a unit vector chosen randomly on the sphereS3,
SW i

'5SW i2(SW i•rW)rW andSW i
i5(SW i•rW)rW are the components of th

spin vector perpendicular and parallel to the unit vectorrW,
the Ising variablee i being given bye i5sgn (SW i•rW)561.
Once this embedding is done, our initial Hamiltonian writt
in terms of continuous spins — here, Hamiltonians~7! and
~9! — can be rewritten as a generalized random-bond Is
model. In the Monte Carlo simulation the spin variables
this new problem are updated using an efficient nonlo
algorithm for Ising variables~e.g., the standard Swendse
Wang algorithm!. To flip the Ising variablee i corresponds to
2-6
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make a reflection of the vectorSW i in the hyperplane perpen
dicular torW. A necessary condition to get an efficient Wolf
type algorithm is that this transformation preserves the t
energy of the system. In that case its application to a large
of spins costs only a surface energy and large-scale cha
in the spin configuration are possible. Here, such a condi
is verified only for the symmetric part (p15p3) of the
Hamiltonians. As a consequence, we have chosen to per
our simulations with the reference symmetric Hamiltonia
More precisely, for the SO(3)̂O(2) model we consider

H (0)52(
^ i , j &

4p1S ~SW i•SW j !
22

1

4D ~35!

and for the SU(2)̂ U(1) model we take

H (0)52(
^ i , j &

8p1SW i•SW j . ~36!

Note that both Hamiltonians reduce to the same Hamilton
in the spin-wave approximation (HSW52(^ i , j &8p1dSW i•dSW j

where dSW represents the spin deviation from the referen
vector!. Note also that the zero-temperature ground-state
ergies are different for the two Hamiltonians. This is n
important since the various quantities computed in this w
do not depend on this reference energy.

Calculation of exact properties associated with the
Hamiltonians are done by reweighting appropriately
Monte Carlo averages. Let us writeQ̄ the average of an
arbitrary functionQ(S) of the spin configurationS

Q̄5E dSW 1•••E dSW MQ~S!e2H(S)/T/Z, ~37!

whereM is the total number of spins considered,H(S) is the
exact Hamiltonian, andZ the partition function. We reex
pressQ̄ as follows:

Q̄5E dSW 1•••E dSW MQ~S!e2V(S)/T

3e2H(0)(S)/T/

E dSW 1•••E dSW Me2V(S)/T

3e2H(0)(S)/T, ~38!

whereV is the difference between the exact and refere
Hamiltonian V[H2H (0). The Monte Carlo averages ar
performed over the set of spin configurations distributed
cording to the Boltzmann weight associated with the ref
ence Hamiltonian~denoted here aŝ̂ •••&&0)

Q̄5^^Q~S!e2V(S)/T&&0 /^^e2V(S)/T&&0 . ~39!

By using such a procedure we are sure that at the symm
point (p15p3) our simulations are free from the critica
slowing down problem~see, Ref. 32!. Away from the sym-
metric point, the situation is less clear. There is a sub
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interplay between the loss due to the undesirable fluctuat
of the weight in averages~a growing source as the asymme
ric parameterDp[p12p3 is increased! and the gain ob-
tained from the treatment of the large-scale collective-mo
moves issued from the reference Hamiltonian. In pract
we have found that realistic calculations can be done only
a small value ofDp with a maximum value of about 0.2
Although we have not made a systematic study of the eff
tive ~associated withH and notH (0)) dynamical exponent,
we are quite confident that, in the regimeDp,0.2, the con-
vergence of the estimators at the very low temperatures
have considered is very satisfactory. In order to compute
spin stiffnesses we have used formulas~12!, ~18!, and ~27!
presented in the previous section.

V. MONTE CARLO RESULTS

In this section we present the calculations of the spin st
nesses for the SO(3)̂O(2) and SU(2)̂ U(1) models. Be-
fore that, let us first give a qualitative visualization of th
effect of topology in this problem. Figure 1 presents the s
cific heat as a function of the temperature for the two mod
and for three different lattice sizes: 434, 10310, and 20
320. Already for these relatively small systems the effect
topology is striking. In the SO(3)̂ O(2) case, the specific
heat curves show a marked maximum whereas it is not
case for the topologically trivial SU(2)̂U(1) model. This
maximum is usually interpreted as the signature of the p
ence of topological excitations. Note that the location of t
maximum provides a rough estimate of the crossover te
perature at which these excitations are activated.8 Here, and
without making a detailed analysis based on much big
sizes, we get approximatelyTV;2.6. From our numerica
results we propose to distinguish four different temperat
regimes.

FIG. 1. Specific heat as a function of the temperature for
SO(3)̂ O(2) and SU(2)̂ U(1) models. Three different sizes hav
been considered: 434 ~crosses!, 10310 ~solid triangles!, and 20
320 ~solid squares!. For the SU(2)̂ U(1) case the curves corre
sponding to the two largest sizes are undistinguishable.
2-7



w
th

a
e
G

-

o
ive

nc-
op
lly

-
and
ra-

der
the
sses

els,
or-

to

this

m-

om

ual.
e,

nc-

c-
f

c-
f

l

CAFFAREL, AZARIA, DELAMOTTE, AND MOUHANNA PHYSICAL REVIEW B 64 014412
A. The spin-wave regime

The spin-wave regime corresponds to the very-lo
temperature regime. We have plotted in Figs. 2 and 3
spin stiffnessesr1 /T andr3 /T as functions of lnL at tem-
peratureT50.5 for the SO(3)̂ O(2) and SU(2)̂ U(1)
models, respectively. The parameters of the action
(p1 ,p1 ,p3)5(1,1,0.9). The behaviors of the spin stiffness
of both models are in full agreement with the two-loop R
predictions~solid line!, Eq. ~31!. As expected from our esti
mate ofTV , these results show that atT50.5 the topological
excitations are not yet activated and that the physics is c
trolled by spin waves well described by the perturbat

FIG. 2. SO(3)̂ O(2) spin stiffnessesr1 /T ~lower curve! and
r3 /T ~upper curve! as a function of lnL. TemperatureT50.5 and
(p1 ,p1 ,p3)5(1,1,0.9). The solid line is the two-loop RG predi
tion as given by Eq.~31!. Open boundary conditions. Number o
clusters used ranges from 53106 to 83106.

FIG. 3. SU(2)̂ U(1) spin stiffnessesr1 /T ~lower curve! and
r3 /T ~upper curve! as a function of lnL. TemperatureT50.5 and
(p1 ,p1 ,p3)5(1,1,0.9). The solid line is the two-loop RG predi
tion as given by Eq.~31!. Open boundary conditions. Number o
clusters ranges from 23106 to 43106.
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NLs model. For this temperature and for the parametersp1

andp3 chosen, we find an almost linear behavior as a fu
tion of the logarithm of the size. In other words, the two-lo
effects are almost negligible. The numerical slopes are fu
compatible with the theoretical slope of 1/4p as given by the
one-loop equation~33!. Note that, by measuring the two in
dependent spin stiffnesses of the HAFT model, Southern
Young9 had already confirmed, for one value of the tempe
ture, the RG predictions.

This overall behavior persists up to temperatures of or
T;1 where we enter a new regime. Finally, note that
absolute values of the temperature-rescaled spin stiffne
for the two models atT50.5 are different. BetweenT50
and T;1 this difference is almost constant. AtT50, this
constant can be calculated analytically, on the lattice mod
from the finite parts of the one-loop counterterms that ren
malize the couplings. It is found to be equal to 5/16.

B. The almost-spin-wave regime

For T.1, the spin stiffnesses of the two models start
differ: whereas their variations as a function of lnL are cor-
rectly described by Eq.~31! ~see Fig. 4! the absolute values
of r1 /T and r3 /T for the SO(3)̂ O(2) model get smaller
and smaller compared to those of the SU(2)^ U(1) model as
the temperature increases. We have decided to refer to
regime as the almost-spin-wave regime.

Let us now give a quantitative account of this pheno
enon. Since the difference betweenr1 /T andr3 /T turns out
to be irrelevant for this discussion, we restrict ourselves fr
now on to the fully symmetric SO(3)̂SO(3) and SU(2)
^ SU(2) models where all three spin stiffnesses are eq
The important point is that in the almost-spin-wave regim
the spin stiffness still displays a linear behavior as the fu
tion of lnL even for the topologically nontrivial model. It is
thus natural to define a characteristic lengthjeff as:

FIG. 4. Spin stiffness as a function of lnL at T51.5 for the two
models in the symmetric case (p15p3). Note that in this case al
three spin stiffnesses are equal.
2-8
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SPIN STIFFNESS AND TOPOLOGICAL DEFECTS IN . . . PHYSICAL REVIEW B64 014412
r/T[
1

4p
ln

jeff

L
~40!

with jeff being a function ofT only. We recall that in the
topologically trivial SU(2)̂ SU(2) model and at the one
loop approximation,jeff is the correlation length@see Eq.
~33!#. Thus, the simplest hypothesis is that thejeff of the
SO(3)̂ SO(3) model is still, in this regime, proportional t
the correlation length. One can thus expect the ratio

RMC~T![
jeff@SU~2! ^ SU~2!#

jeff@SO~3! ^ SO~3!#
~41!

to be a good indicator of the influence of the topology. W
give in Fig. 5,RMC(T) as a function of the temperature.

From this figure, we see that at low temperatures~in the
spin-wave regime! RMC(T) is almost independent on th
temperature. Note that atT50 it converges to a value dif
ferent from one because of the constant shift of 5/16 betw
the two temperature-rescaled spin stiffnesses as discu
above. Within the range of temperaturesTP@1,2.1# the ratio
is found to increase extremely rapidly. We have found t
the curve can be well fitted using the form

RMC~T!5C expF a

~T2Tc!
bG . ~42!

The ‘‘best’’ values found are C523.52,a51.655,b
50.600, andTc52.532. This clearly indicates that the top
logically nontrivial model becomes more disordered than
topologically trivial one at a temperature of orderTc52.5, a
value compatible with that obtained from the peak of t
specific heat. Of course, the analytical form chosen in
~42! must be taken with lot of caution. Many different an
lytical forms could have been used and give similar resu

FIG. 5. Ratio of correlation lengths as a function of the tempe
ture as defined in the text. The solid line is just to guide the ey
The separation atT;1 between the pure spin-wave~SW! and the
almost-spin-wave regimes is rather arbitrary.
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C. The vortex regime

At temperatures higher than typicallyT52.1, we enter in
a new regime that we propose to call the vortex regime
which the topological excitations play a major role. Figur
6, 7, 8, and 9 present, for the two models, the spin-stiffn
as a function of the size at the temperaturesT52.2, 2.4, and
2.6, respectively. For the SU(2)̂SU(2) model~Fig. 9! the
spin stiffness is still correctly described by the two-loo
NLs model predictions Eq.~31!. For the SO(3)̂ SO(3)
model it is still possible to define an effective slope at su
ciently small sizes but it now differs significantly from th
RG predictions. This effective slope is found to increase a
function of the temperature. For example, atT52.2 the slope
is about;20.115 to be compared with21/4p;20.080.
At T52.4 the slope is;20.158, a value approximately tw
times larger than in the spin-wave regime. Moreover,
spin stiffness displays some irregularities which could

-
s.

FIG. 6. SO(3)̂ SO(3) spin stiffness as a function of lnL. T
52.2. The solid line is the two-loop RG prediction.

FIG. 7. SO(3)̂ SO(3) spin stiffness as a function of lnL. T
52.4. The solid line is the two-loop RG prediction.
2-9
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CAFFAREL, AZARIA, DELAMOTTE, AND MOUHANNA PHYSICAL REVIEW B 64 014412
associated with the presence of long-lived topological c
figurations that affect the dynamics. The most irregular cu
has been obtained at temperatureT52.6 ~Fig. 8!.

D. The high-temperature regime

At temperatures higher than typicallyT52.6 the spin
stiffnesses as a function of the size of the SO(3)^ SO(3)
model recovers a smooth behavior. Figure 10 presents su
behavior at temperature,T52.9. Figure 11 presents the spi
stiffness for the SU(2) case atT57.7. The overall behavio
of the spin stiffnesses is quite different. In the SO(
^ SO(3) caser/T vanishes abruptly with a change of co
cavity whereas in the SU(2)̂SU(2) case it goes slowly
down to zero without any change of concavity.

FIG. 8. SO(3)̂ SO(3) spin-stiffness as a function of lnL. T
52.6.

FIG. 9. SU(2)̂ SU(2) spin stiffnesses as a function of lnL for
T52.2, T52.4, andT52.6. The solid lines are the two-loop RG
predictions.
01441
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VI. DISCUSSION

We now attempt to give a theoretical analysis of our
sults. It is notoriously difficult to tackle with the physics o
Z2 topological defects since in this case there is noth
equivalent to the Villain transformation. In the usual ferr
magnetic case,O(N)/O(N21), Cardy and Hamber hav
proposed to describe the effect of compacity of the sph
SN21 by means of additional terms in the RG equation
the temperature.33 These equations, valid in the vicinity o
N52 and at orderT3 — which correspond to two-loop in
perturbation theory — read33

dT~ l !

dl
5~N22!

T~ l !2

2p
1~N22!

T~ l !3

~2p!2 14p3y~ l !21•••,

dy~ l !2

dl
5S 42

2p

T~ l ! D y~ l !21•••. ~43!

FIG. 10. SO(3)̂ SO(3) spin-stiffness as a function of lnL. T
52.9. High-temperature regime for the model.

FIG. 11. SU(2)̂ SU(2) spin-stiffness as a function of lnL. T
57.7. High-temperature regime for the model.
2-10
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SPIN STIFFNESS AND TOPOLOGICAL DEFECTS IN . . . PHYSICAL REVIEW B64 014412
These equations have been derived by assuming analy
in y2 and inN and by requiring that the two following lim
iting cases are recovered:~i! the perturbativeb function of
the O(N) model for N>3; and ~ii ! the Kosterlitz-Thouless
equations forN52. In fact, Cardy and Hamber have show
that it is the only set of equations compatible with the
requirements.33 For N52, one recovers the Kosterlitz
Thouless ~KT! equations34,35 where y identifies with the
fugacity of vortices. The casey50 leads to the two-loop
perturbativeb function of theO(N)/O(N21) NLs model
in two dimensions. ForNÞ2, y lacks of a clear interpreta
tion but it has been conjectured that it encodes the effec
compacity. Clearly, the (N.3, yÞ0) case we consider her
could very well lie outside the domain of validity of thes
equations. It is therefore important to insist on the fact t
they must only be considered as some phenomenologica
equations for a model displaying topological defects,y play-
ing the role of a fugacity by analogy with the KT case. O
aim is to show that they are able to reproduce the gr
features of the behavior of the spin stiffness and correla
length found in our case. As in the KT case, the physi
‘‘fugacity’’ y( l 50) that appears as the initial condition
Eq. ~43! is not independent on the temperature. However
contrast with this last case its dependence on the phys
temperatureT( l 50) is unknown. The simplest assumptio
we can think of is

y~ l 50!5e2g/T( l 50) ~44!

as in the KT case. In Eq.~44!, g is an adjustable paramete
Equations~43! are considered in the caseN54 since

SO(3)̂ SO(3)/SO(3) and SO(4)/SO(3)have the same
spin-wave content and differ by their topological properti
These latter properties are expected to be taken into acc
via they terms in Eq.~43!. Moreover, we write them in term
of the spin stiffness of the SO(3)̂SO(3)/SO(3)model.
These equations are obtained by the substitution 1/T( l )
→4r̃( l ):

dr̃~ l !

dl
52

1

4p
2

1

32p2r̃~ l !
216p3y~ l !2r̃~ l !2,

dy~ l !2

dl
5S 42

8p

r̃~ l !
D y~ l !2. ~45!

By direct integration of Eqs.~45! up to the scaleL of the
lattice sizel 5 ln L/a one can obtain the dependence ofr̃( l )
on the temperatureT( l 50) and onL. To make contact with
our Monte Carlo results, we are also interested in the co
lation lengthj. This last quantity is defined, as usual, fro
the fact that when the RG scaleel becomes of the order ofj,
the spin stiffnessr̃( l ) vanishes, see Eq.~40!:

j/a;el with r̃~ l !.0. ~46!

As in the Monte Carlo simulations, we compute from E
~45! the spin stiffnesses and correlation lengths in both s
ations: without and with defects. This consists in setting
spectivelyy( l ) to zero or not in Eq.~45!. Note finally that,
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for simplicity, we have chosen to take the same normali
tion at zero-temperature for the spin stiffnesses with a
without defects.

Let us now show that we retrieve the essential feature
the regimes previously identified except, obviously, for t
high-temperature regime which is out of reach of the R
equations~45! which, for the spin-wave part, are perturbativ
in the temperature. At very low temperatures,y( l ) is very
small and remains small along the RG flow. As a result
find almost no difference between the systems with and w
out vortices: this is the spin-wave regime that we reco
trivially.

As the temperature increases, they-term plays a more and
more important role. Adjusting the free parameterg at a
valueg50.45 the temperature where the defects start to p
a significant role is typicallyT( l 50);0.15. We plot in Fig.
12 the spin stiffnesses as a function of the system size
slightly higher temperatureT( l 50)50.2. The upper curve
corresponds to the system without defects and the lower
to that with defects.

As in our Monte Carlo simulations, we find that the a
solute value of the spin stiffness is decreased by the pres
of defects. After an abrupt jump at very small sizes the s
stiffness is found to be linear as a function lnL. Up to an
accuracy of a few percent, the slope is not affected by
defects. Its value20.080;21/4p, corresponds to the per
turbative RG result. This behavior is similar to that predict
by the spin-wave analysis, except that the absolute valu
the spin stiffness is smaller. This corresponds to the alm
spin-wave regime previously identified.

To obtain a completely consistent picture, it is also ne
essary to see whether the ratio of the correlation leng
without and with defects, considered as a function ofT( l
50):

R~T!5
jy( l )50

jy( l )Þ0
~47!

behaves asRMC, Fig. 5. We give in Fig. 13, the ratioR
obtained by direct integration of Eq.~45!. This figure clearly

FIG. 12. Spin stiffness as a function of lnL with and without
defects.T( l 50)50.2.
2-11
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CAFFAREL, AZARIA, DELAMOTTE, AND MOUHANNA PHYSICAL REVIEW B 64 014412
shows a behavior comparable to that observed in Fig. 5.
At higher temperature, one enters in a regime where

spin-stiffness as a function of the size begins to displa
different behavior. Figure 14 presents the spin stiffnesse
T50.5 ~to facilitate the comparison the dashed line rep
sents the linear behavior associated with the model with
defects!. It is possible to define a linear regime but now wi
a slightly greater slope than in the defect-free case. The
ference between the two slopes is about 10%. As the t
perature is increased the spin-stiffness still displays a lin
behavior but now with an increasing temperature-depend
slope.

Such a behavior has been numerically observed in
vortex regime~see, Figs. 6 and 7 where some ‘‘effective
linear behavior with a larger slope is observed!. However,
note that the irregular behavior found in Fig. 8 is not rep
duced here. Of course, the range of temperature over w
this linear behavior is observed, as well as the variation
the slope withT( l 50) depends rather strongly in our calc
lation on the relation betweeny( l 50) and T( l 50), Eq.

FIG. 13. RatioR(T) of correlation lengths as a function o
T( l 50).
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~44!. With our choice ofg, the maximum variation found for
the slope as a function of the temperature is about 1
which is somewhat below what is obtained in the simu
tions. This could certainly be corrected by another choice
y(T).

At even higher temperature, Eqs.~45! are no longer valid
since they are based on a low-temperature expansion an
comparison with the numerical results does not make se
The preceding analysis shows that the simple set of eq
tions ~45! together with the relation~44! seem to capture
some of the important features of the presence of topolog
defects in the almost-spin-wave and vortex regimes.
course, only a microscopical approach of the problem co
allow to go beyond this semiquantitative description.

ACKNOWLEDGMENTS

B.D. and D.M. thank B. Douc¸ot and J. Vidal for discus-
sions. LCT, LPTL, and LPTHE are Laboratoires associe´s au
CNRS: UMR 7676, 7600, and 7589.

FIG. 14. Spin stiffness as a function of lnL with and without
defects,T( l 50)50.5. The dashed line represents the linear beh
ior associated with the model without defects. A slight increase
the slope is observed when the defects are present.
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