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We consider the use in quantum Monte Carlo calculations of two types of valence bond wave
functions based on strictly localized active orbitals, namely valence bond self-consistent-field and
breathing-orbital valence bond wave functions. Complemented by a Jastrow factor, these Jastrow-
valence-bond wave functions are tested by computing the equilibrium well depths of the four
diatomic molecules C2, N2, O2, and F2 in both variational Monte Carlo and diffusion Monte Carlo.
We show that it is possible to design compact wave functions based on chemical grounds that are
capable of describing both static and dynamic electron correlations. These wave functions can be
systematically improved by inclusion of valence bond structures corresponding to additional bond-
ing patterns. © 2011 American Institute of Physics. [doi:10.1063/1.3555821]

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods (see, e.g.,
Refs. 1–3) constitute an alternative to standard quantum
chemistry approaches for accurate calculations of the elec-
tronic structure of atoms, molecules, and solids. The most
commonly used approach consists of optimizing a flexible
trial wave function in a variational Monte Carlo (VMC) cal-
culation, and then using the resulting wave function in a
more accurate fixed-node (FN) diffusion Monte Carlo (DMC)
calculation.

For atoms and molecules, the most common form of trial
wave function consists of a Jastrow factor, expected to de-
scribe a major part of the dynamic electron correlation effects,
multiplied by a single Slater determinant of orbitals expanded
in a localized one-particle basis. For systems featuring im-
portant static correlation effects, the single Slater determinant
is usually replaced by a linear combination of several Slater
determinants. This has been shown to lead to systematic im-
provements of both VMC and DMC total energies, provided
that the wave function is properly reoptimized.4–6 In particu-
lar, full-valence complete active space (FVCAS) expansions,
i.e., including all the Slater determinants that can be gener-
ated by distributing all the valence electrons in all the valence
orbitals, were found to yield near chemical accuracy for bond-
ing energies of first-row homonuclear diatomic molecules at
the DMC level.6

However, FVCAS expansions involve large numbers of
Slater determinants that scale exponentially with system size,
so this approach cannot be applied for large systems. Instead,
more compact and yet systematic wave functions are desired
for QMC calculations. Naively truncated expansions of Slater
determinants of delocalized molecular orbitals cannot be seen
as a general solution, since they often suffer from lack of

a)Author to whom correspondence should be addressed. Electronic mail:
benoit.braida@upmc.fr.

consistency for calculating energy differences between two
systems or two states. In contrast, pairing-type wave func-
tions should be an adequate, compact and systematic way of
describing static correlation in QMC. Indeed, several forms
of pairing wave functions have recently been used in QMC,
namely antisymmetrized geminal power,7–9 pfaffians,10, 11 and
generalized valence bond (GVB),12 with promising results on
atoms and small molecules.

Here, we explore the use in QMC of valence bond (VB)
wave functions based on nonorthogonal active orbitals that
are localized on a single atom (for a review of VB the-
ory, see Refs. 13–15). The merits of valence bond self-
consistent field (VBSCF) wave functions16 are tested, along
with more flexible breathing-orbital valence bond (BOVB)
wave functions.17, 18 These approaches can describe static
correlation effects with compact wave functions containing
only a limited number of VB structures (i.e., linear combi-
nations of Slater determinants made of spin–singlet pairs of
orbitals), which are selected on chemical grounds. In compar-
ison to the GVB method, which is usually considered in the
perfect-pairing and strong-orthogonality approximations, the
VBSCF and BOVB approaches are more flexible and pro-
vide a greater chemical interpretability thanks to the use of
localized nonorthogonal orbitals. In contrast to traditional
analytical calculations, nonorthogonal orbitals do not lead
to extra computational cost in QMC. On the contrary, the
use of localized nonorthogonal orbitals could potentially re-
duce the computational cost as compared with a delocalized
molecular-orbital approach in three ways: (a) localized or-
bitals are negligibly small and need not be computed be-
yond some cutoff distance, (b) the number of determinants
needed may be reduced by having nonorthogonal orbitals,
and (c) in the absence of spatial symmetry, the number of
orbital parameters to be optimized is smaller for localized
orbitals.

BOVB wave functions improve upon VBSCF wave func-
tions by allowing a different set of orbitals in each VB
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structure, effectively introducing dynamic correlation into
the Slater determinants, but in a different way than through
backflow coordinate transformations19 or orbital-attached
multi-Jastrow factors.20 In VB practice, it is known that bond-
ing energies at the BOVB level are significantly improved as
compared with the VBSCF level, especially in cases where
dynamic correlation is important. In QMC, this form of wave
functions has already successfully been tested on acetylene
dissociation energies.21 However, it is not known whether the
breathing-orbital relaxation yields significant improvement
when the wave function is fully optimized in QMC, because it
is conceivable that the Jastrow factor in QMC provides much
of the same variational freedom.

The paper is organized as follows. In Sec. II, we offer
a brief review of the VBSCF and BOVB approaches, and
describe our corresponding Jastrow-valence-bond wave func-
tions used in QMC. In Sec. III, we present results for the four
diatomic molecules C2, N2, O2, and F2, which span different
types of bonding (single, multiple, and three-electron bond)
and electron correlation (strong dynamic correlation for O2

and F2, and strong static correlation for C2 and N2). We dis-
cuss the type of electron correlation to include in the wave
functions to obtain accurate equilibrium well depths, as well
as the importance of orbital optimization in QMC, and the
computational cost of our wave functions. Section IV sum-
marizes our conclusions.

II. METHODOLOGY

A. Valence-bond wave functions

The different valence bond methods can be classified
into two main families, depending of the degree of localiza-
tion of the active orbitals: semilocalized orbitals and strictly
localized orbitals.15, 22 In the first family, the optimized ac-
tive orbitals are expanded on all the basis functions of the
entire molecule and are, thus, free to fully delocalize, al-
though most of the time they appear to be fairly local-
ized. The GVB method23, 24 and the spin-coupled valence
bond (SCVB) method25 belong to this family. In the second
family, each active orbital is expanded in basis functions
centered on a single atom or the atoms of a fragment
of the molecule (alternative definition of strictly localized or-
bitals exists, Ref. 26). The VBSCF (Refs. 16 and 27) and
BOVB (Refs. 17 and 18) methods belong to this family.
The semilocalized approaches usually provide more com-
pact wave functions, but the delocalization tails of the or-
bitals may hinder their chemical readability. The strictly lo-
calized approaches usually involve more VB structures, but
permit the distinction between covalent and ionic contribu-
tions to the bonds, thus providing more insight into the na-
ture of the chemical bonds. The interpretative power of the
strictly localized VB approaches is hence greater and al-
lows, among other examples, the characterization of charge-
shift bonding,28–30 three-electron bonds,31–33 or hypervalent
bonding.33–35 Further, most applications involving VB curve-
crossing diagrams15, 36 are within the strictly localized VB
formalism.

Any VBSCF wave function can be written as a linear
combination:

|�VBSCF〉 =
∑

I

cI |�I 〉, (1)

where |�I 〉 are spin-adapted VB structures, each one being
determined by a choice of an orbital configuration (or orbital
occupation) and a spin coupling of these orbitals. We consider
VB structures of the form (disregarding normalization)

|�I 〉 =
inactive∏

p

â†
p↑â†

p↓

active
pairs∏
(i j)

(
â†

i↑â†
j↓ − â†

i↓â†
j↑

)

×

active
unpaired∏

q

â†
q↑|vac〉, (2)

where â†
pσ (σ =↑,↓) is a spin-orbital creation operator and

|vac〉 is the vacuum state of second quantization. The VB
structures are, thus, made of inactive (always closed-shell)
orbitals p, spin–singlet pairs of active orbitals (i j), and pos-
sibly remaining unpaired spin-up active orbitals q. We use
inactive orbitals that are either localized (expanded on the ba-
sis functions centered on a single atom), e.g., for core or-
bitals, or delocalized (expanded on all the basis functions
of all the atoms), e.g., for bonds made of inactive orbitals
that do not mix with the active orbitals. We use active or-
bitals that are always localized on a single atom, and they
are typically identified with valence atomic (hybrid) orbitals.
Note that Eq. (2) encompasses the case of spin–singlet pair-
ing of an active orbital with itself, i.e., i = j giving simply
â†

i↑â†
i↓ − â†

i↓â†
i↑ = 2â†

i↑â†
i↓. The spin-coupling scheme based

on singlet pairing used in Eq. (2) is usually referred to as the
Heitler–London–Slater–Pauling (HLSP) scheme. There exist
other spin-coupling schemes, but the HLSP scheme has the
advantage of providing a clear correspondence between each
VB structure and a Lewis chemical structure, two singlet-
paired active orbitals representing either a bond or a lone
pair. In principle, considering all possible pairings exhausts,
for a given orbital configuration, all the spin eigenstates (or
spin couplings) of fixed quantum numbers S = Nunpaired/2
and MS = +S (Nunpaired is the number of spin-up unpaired
electrons). In fact, considering all possible pairings leads to
an overcomplete set of spin couplings, but they can be re-
duced to a complete basis of (nonredundant) spin couplings,
also called Rumer basis.15, 37, 38 In practice, for most practical
applications, only a small number of chemically relevant VB
structures are kept in the calculation.

In practical VBSCF calculations, each VB structure is
expanded in 2Npairs Slater determinants, |�I 〉 = ∑

μ dI,μ|Dμ〉,
where Npairs is the number of pairs of different active orbitals
(i �= j). The coefficients of the determinants dI,μ for a given
VB structure are all equal in absolute value. The VB structure
coefficients and orbital coefficients on the basis are then opti-
mized using a direct generalization of the usual multiconfig-
uration self-consistent-field (MCSCF) algorithm for arbitrary
nonorthogonal orbitals,27 or algorithms more specific to VB
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theory.39, 40 In fact, this VBSCF procedure is general enough
to also permit optimization of GVB and SCVB wave func-
tions if the active orbitals are allowed to delocalize. Note that
GVB wave functions, in the most commonly used perfect-
pairing approximation, are made of only one VB structure,
while the SCVB wave functions include all possible spin
couplings.

As an illustration, consider the single-bonded Li2
molecule. A typical VBSCF wave function is

|�VBSCF〉 = c1|�cov〉 + c2|�ionA〉 + c3|�ionB〉, (3)

with a covalent VB structure obtained by spin pairing the
2s orbital of the first Li (A) with the 2s orbital of the second
Li (B)

|�cov〉 = â†
1sA↑â†

1sA↓â†
1sB↑â†

1sB↓

×
(

â†
2sA↑â†

2sB↓ − â†
2sA↓â†

2sB↑
)

|vac〉, (4)

and two ionic VB structures obtained by either spin pairing
2sA with itself,

|�ionA〉 = â†
1sA↑â†

1sA↓â†
1sB↑â†

1sB↓â†
2sA↑â†

2sA↓|vac〉, (5)

or, symmetrically, by spin pairing 2sB with itself,

|�ionB〉 = â†
1sA↑â†

1sA↓â†
1sB↑â†

1sB↓â†
2sB↑â†

2sB↓|vac〉, (6)

the core inactive orbitals 1sA and 1sB remaining always dou-
bly occupied. These three VB structures correspond respec-
tively to three Lewis chemical structures, Li—Li, −Li Li+,
and +Li Li−, respectively. Obviously, in this case, spatial
symmetry implies that c2 = c3 and the two ionic VB struc-
tures can, thus, be combined in a single “symmetry-adapted
structure,” which we refer to as a configuration state function
(CSF). In this simple case, the VBSCF wave function is es-
sentially a complete active space (CAS) wave function with
the two valence electrons distributed in the valence bonding
σg and antibonding σu molecular orbitals, i.e., CAS(2,2), and
would be strictly identical to it in a minimal basis set. In less
trivial cases, the selected VB structures correspond only to a
subspace of a CAS. However, if structure selection is correctly
made, the VBSCF wave function can lead to observable pre-
dictions in close agreement to a CAS wave function. Indeed,
in addition to the most chemically significant structures, the
CAS wave function includes a lot of improbable covalent and
(multi-) ionic structures that are of little importance. Thus, a
VB wave function can represent an intelligent way of truncat-
ing a CAS expansion based on chemical grounds.

We adopt the usual definitions of electron correlations
used in quantum chemistry. Static correlation corresponds to
the correlation included in a FVCAS wave function as com-
pared with a Hartree–Fock reference, and dynamic correla-
tion corresponds to the remaining correlation resulting from
all the outer-valence excitations in a full configuration interac-
tion expansion. The VBSCF method handles static correlation
only. Dynamic correlation can be added in the usual way by
performing configuration interaction on top of VBSCF,41, 42

referred to as VBCI, or through a perturbative treatment.42, 43

The BOVB method is an alternative way of incorporating
some dynamic correlation, keeping the wave function as com-
pact as the VBSCF one. This method consists in allowing

a different set of (inactive and active) orbitals in each VB
structure. The orbitals can, thus, adapt to the different charge
distributions in the VB structures. For example, for the Li2
wave function of Eqs. (3)–(6), in BOVB the 2s orbitals can
become more diffuse in the ionic structures than in the cova-
lent structure. This extra degree of freedom is seen as intro-
ducing dynamic correlation, since it roughly corresponds to
adding excitations to atomic orbitals of higher principal quan-
tum numbers. Just as in the VBSCF method, inactive valence
orbitals can be chosen to be either localized or delocalized in
the BOVB method. Finally, in the ionic structures, a doubly
occupied active orbital (the 2s orbital for Li2) is sometimes
split into two independent orbitals that are spin–singlet cou-
pled, which introduces additional dynamic correlation. The
most flexible BOVB method is, thus, obtained by both split-
ting of active orbitals in the ionic structures and delocalization
of inactive orbitals, which is referred to as split-delocalized-
BOVB (SD-BOVB) in the VB literature.

B. Jastrow-valence-bond wave functions

We discuss now the parametrization of the two types
of Jastrow-valence-bond wave functions, J-VBSCF and J-
BOVB, which we use in QMC. The J-VBSCF wave function
is parameterized as (see Ref. 6)

|�J−VBSCF〉 = Ĵ eκ̂
∑

I

cI |�I 〉, (7)

where Ĵ is a Jastrow operator, eκ̂ is an orbital “rotation”
operator, and |�I 〉 are CSFs, i.e., VB structures or linear
combination of a few VB structures to accommodate spa-
tial symmetry. Each CSF is a short linear combination of
products of spin-up and spin-down Slater determinants, com-
posed generally of nonorthogonal orbitals expanded on Slater
basis functions. The orbital operator κ̂ is κ̂ = ∑

kl κkl Êkl,

where κkl are the orbital rotation parameters and Êkl is
the singlet excitation operator from orbital l to orbital k, Êkl

= â†
k↑b̂l↑ + â†

k↓b̂l↓, written with dual biorthogonal orbital

creation and annihilation operators â†
kσ and b̂lσ (see, e.g.,

Ref. 44). The parameters to optimize are the parameters in
the Jastrow factor, the CSF coefficients, the orbital rotation
parameters, and the exponents of the basis functions.

The J-BOVB wave function is similar except that each
CSF is allowed to have a different set of orbitals, which can
be written as

|�J−BOVB〉 = Ĵ
∑

I

cI eκ̂I |�I 〉, (8)

where κ̂I is the orbital operator for the set of orbitals in the
CSF |�I 〉. In practice, Eq. (8) can be recast in the form of Eq.
(7) by defining the orbital operator κ̂ to operate on all sets of
orbitals: κ̂ = ∑

I κ̂I .
We use a Jastrow factor consisting of the exponential of

the sum of electron–nucleus, electron–electron, and electron–
electron–nucleus terms, written as systematic polynomial and
Padé expansions45 (see also Refs. 46 and 47).
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C. Computational details

We start by generating a standard restricted Hartree-Fock
(RHF) wave function with the program GAUSSIAN (Ref. 48)
and a VBSCF or BOVB wave function with the program
XMVB.49 We use the core-valence triple-zeta quality Slater
basis (CVB1) of Ema et al.50 For the XMVB calculations, each
Slater function is expanded into 15 (core basis functions), 9
(s and p valence basis functions), or 6 (d polarization func-
tions) Gaussian functions. We use here 5 d spherical functions
while 6 d Cartesian functions were used in Ref. 6. The stan-
dard RHF, VBSCF, or BOVB wave function is then multiplied
by our Jastrow factor, and QMC calculations are performed
with the program CHAMP (Ref. 51) using the true Slater basis
set rather than its Gaussian expansion.

The Jastrow, CSF, orbital and basis exponent parame-
ters are simultaneously optimized by minimizing the energy
plus a small percentage of the energy variance (1%) with the
linear optimization method4–6 in VMC, using an accelerated
Metropolis algorithm.52, 53 Once the trial wave function has
been optimized, we perform a DMC calculation within the
short-time and FN approximations (see, e.g., Refs. 54–58).
We use an imaginary time step of τ = 0.01 hartree−1 in an
efficient DMC algorithm with very small time-step errors.59

For orbital optimization, the orbitals are partitioned into
three sets: inactive (doubly occupied in all determinants),
active (occupied in some determinants and unoccupied in
others), and virtual (unoccupied in all determinants). All
inactive (including 1 s core) and active orbitals are opti-
mized. The nonredundant excitations to consider are inactive
→ active, inactive → virtual, active → virtual, and active →
active. If the action of the excitation Êkl on the wave func-
tion is not zero but the reverse excitation Êlk is zero, then
the orthogonality condition κlk = −κkl is imposed. For some
active–active excitations, both direct and reverse excitations
(Êkl and Êlk) may be allowed, and, thus, it makes sense for
localized orbitals to remove the orthogonality constraint by
treating κkl and κlk as independent parameters. This results in
only a very few (if any at all) additional orbital parameters for
the wave functions considered here. We note that, when con-
sidering active–active excitations, redundancies between two
orbital wave-function derivatives or between an orbital wave-
function derivative and a CSF frequently occur, and must be
detected and eliminated. Localized orbitals do not have the
point group symmetry of the system, so the number of or-
bital excitations cannot be reduced based on the nonmixing
of irreducible representations, as usually done. However, the
number of orbital excitations is greatly reduced by forbidding
mixing between orbitals of different localization classes, i.e.,
expanded on different subsets of basis functions. For BOVB
wave functions, one has a different set of (occupied and unoc-
cupied) orbitals for each CSF (Ref. 60) and only orbitals that
belong to the same set are allowed to mix.

III. RESULTS

The Jastrow-valence-bond wave functions are tested on
the ground states of the molecules C2 (1�+

g ), N2 (1�+
g ),

O2 (3�−
g ), and F2 (1�+

g ) at their experimental bond lengths of

1.2425, 1.0977, 1.2075, and 1.4119 Å, respectively. The core
inactive 1s orbitals are always taken as localized. For O2 and
F2, we use delocalized inactive π orbitals both at the VBSCF
and BOVB levels. This reduces the Pauli repulsion between
the otherwise localized lone pairs. The precise composi-
tion of all wave functions is explained below. In addition to
total energies, we present molecular well depths all computed
with respect to the separated atoms calculated at the FV-
CAS level. For the N2, O2, and F2 molecules, both VBSCF
and BOVB wave functions in the limit of a complete ba-
sis of structures (Rumer basis) dissociate into the FVCAS
atomic limit, which simply corresponds for these atoms to
single-determinant wave functions. For C2, VBSCF in the
limit of a complete basis of structures also dissociates into the
FVCAS atomic limit, which corresponds for the carbon atom
in its triplet ground state to a CAS(2,2) wave function, since
the carbon lone pair can doubly occupy either a 2s or a 2p
orbital. With this definition, the well depths actually allow a
comparison of the absolute quality of the different molecular
wave functions at equilibrium since the atomic reference is
the same.

A. Single bonding-pattern wave functions

We first consider wave functions describing what we call
a single bonding pattern (SBP). A bonding pattern is a com-
pact Lewis-style picture of the molecular electronic structure,
but which is made of several (covalent and ionic) VB struc-
tures. The dominant bonding patterns of C2, N2, O2, and F2

are depicted in Fig. 1. The conventions of the drawings are the
following. Each single line connecting two atoms represents
a σ or π two-electron bond. In our wave functions, each two-
electron bond is generally composed of one covalent and two
ionic components. Hence, F2 (single bond) is described by
a wave function containing three VB structures, whereas N2

(triple bond) leads to a wave function with 33 = 27 VB struc-
tures. Each pair of dots on a single atom represents a lone pair,
which is described by two opposite-spin electrons occupying
the same orbital.

The single dots connected by a curve which appears for
C2 represent a (formally covalent) singlet coupling between
two electrons occupying two different orbitals, one located
on each carbon in that case. The two corresponding coupled
orbitals are sp hybrids pointing in opposite direction, so that
they overlap and, thus, interact very weakly. Hence, this cor-
responds to a singlet biradical state, the coupling between the
two single electrons being only formal to ensure the proper
spin symmetry. Very recent VB calculations by Su et al.62

have shown this biradical triple-bond situation to be the dom-
inant bonding pattern for C2 at equilibrium distance. In order
to keep the number of VB structures low, only the single-ionic
structures, as well as the double-ionic structures with opposite

FIG. 1. Dominant bonding patterns for the C2, N2, O2, and F2 molecules,
defining our single bonding-pattern VB wave functions.
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TABLE I. Relative contributions of the different types of electron correla-
tion to the equilibrium well depths for C2, N2, O2, and F2. Starting from the
RHF well depth, the “left-right” static correlation is defined as the contri-
bution recovered by a single bonding-pattern VBSCF calculation, the other
parts of static correlation as the additional contributions recovered by a
FVCAS MCSCF calculation, and the dynamic correlation as the remaining
contribution necessary to reach the exact well depth.

Static correlation

Left-right Other Dynamic correlation
(%) (%) (%)

C2 77 18 5
N2 70 14 16
O2 60 8 32
F2 60 8 32

charges on each carbon, are included in our wave function.
This leads to a wave function with 21 VB structures.

The O2 molecule is considered in its spin-triplet (para-
magnetic) ground state. The picture in Fig. 1 corresponds to
the textbook molecular-orbital diagram for this molecule, dis-
playing a σ two-electron bond (single line connecting the two
oxygens), and two π three-electron half-bonds, each one rep-
resented by a three-dot symbol. In our wave functions, the
σ bond is composed of one covalent and two ionic compo-
nents, and each three-electron bond is composed of the two
resonating structures typical of this kind of bond.31, 32 This
leads to a wave function with 12 VB structures.

In each wave function, structures equivalent by symme-
try are further grouped together into CSFs. For each dimer,
the VBSCF and BOVB wave functions have exactly the same
number of CSFs, the only difference being that different sets
of orbitals are used for the different CSFs of the BOVB wave
functions.

A rough analysis of the relative contributions of the dif-
ferent types of electron correlation to the equilibrium well
depths for the four molecules is given in Table I. This anal-
ysis leads us to consider separately the case of the O2 and F2

molecules, which have strong dynamic correlation, and the
case of the C2 and N2 molecules, which have strong static
correlation.

1. Systems with strong dynamic correlation: O2
and F2

The total energies and well depths of O2 and F2 computed
with standard VB methods and QMC methods are displayed
in Table II. We start by analyzing the standard VB results.
The difference between the RHF and VBSCF energies can be
taken as the definition of the left-right part of static correla-
tion. In VB theory, the left–right correlation is viewed as the
energy gained by restoration of the correct balance between
covalent and ionic contributions to the bond, starting from
the incorrect 50% covalent – 50% ionic RHF description.
The contributions of left–right correlation to the well depths
appear to be very large here, 59.3 and 45.1 kcal/mol for O2

and F2, respectively. A significant part of dynamic correlation
is retrieved by going from VBSCF to BOVB, improving well
depths by 33.2 and 18.9 kcal/mol for O2 and F2, respectively.
Another 3.9 kcal/mol improvement is obtained for F2 by split-

TABLE II. Total energies (in hartree) and well depths (in kcal/mol) for the
ground states of O2 and F2 at their experimental bond lengths calculated
in RHF, VBSCF, and BOVB, and in VMC and DMC using corresponding
Jastrow-valence-bond wave functions with all the parameters (Jastrow, CSF
coefficients, orbitals, and basis exponents) fully optimized in VMC. For com-
parison, DMC results for FVCAS wave functions from a previous study are
also shown.

O2 F2

Total Well Total Well
energies depths energies depths

RHF –149.6567 22.4 –198.7608 –36.2
VBSCF –149.7512 81.7 –198.8327 8.9
BOVBa –149.8042b 114.9b –198.8627 27.8
BOVB-splitc –198.8689 31.7

VMC J-RHF –150.2287(5) 99.0(4) –199.4204(5) 12.4(4)
VMC J-VBSCF –150.2414(5) 107.0(4) –199.4400(5) 24.7(4)
VMC J-BOVBa –150.2496(5) 112.1(4) –199.4456(5) 28.3(4)
VMC J-BOVB-splitc –199.4494(5) 30.6(4)

DMC J-RHF –150.2861(2) 114.7(2) –199.4833(2) 29.8(2)
DMC J-VBSCF –150.2889(2) 116.5(2) –199.4900(2) 34.0(2)
DMC J-BOVBa –150.2922(2) 118.5(2) –199.4922(2) 35.4(2)
DMC J-BOVB-splitc –199.4962(2) 37.9(2)

DMC J-FVCASd –150.2944(1) 119.6(1) –199.4970(1) 37.9(1)
Estimated exacte –150.3274 120.9(<1) –199.5304 39.0(1)

aBOVB with delocalized π orbitals, which is referred to as π-D-BOVB in the VB
literature.
bStarting from an optimized BOVB wave function with all localized orbitals, delocal-
ized π orbitals are allowed and optimized but keeping all the other orbitals frozen.
Optimization of all the orbitals with delocalized π orbitals was not stable. This problem
was not encountered in the VMC optimization.
c“BOVB-split” (usually referred to as SD-BOVB in the VB literature): in each of the
ionic structures, the doubly occupied active orbital is split into two singlet-coupled
singly occupied orbitals.
dReference 6.
eReference 61.

ting the doubly occupied active orbital in the ionic structures,
which brings radial correlation to the active electron pair. The
agreement between the BOVB and exact well depths is quite
reasonable considering the compactness of these wave func-
tions: only 12 VB structures (combined into five CSFs) for
O2 and three VB structures (combined into two CSFs) for F2.

We now discuss the VMC results. The Jastrow factor
keeps electrons apart and describes part of dynamic and static
correlations. It is a particularly efficient way of including
dynamic correlation, that otherwise requires in configura-
tion interaction calculations a very large number of highly
excited determinants. It also includes some static left–right
correlation since it greatly reduces the probability of ionic
configurations.6 As expected, a sharp decrease of the total en-
ergies is observed in VMC, indicating that a large amount
of the total correlation energy is recovered by the Jastrow
factor. However, for well depths, and most chemical prop-
erties, we are instead interested in a balanced description
of the differential correlation energy in the molecule and
the separated atoms. The well depths improve considerably
going from RHF to J-RHF, by 76.6 and 48.6 kcal/mol for
O2 and F2, respectively, confirming that the Jastrow factor
recovers as well a significant part of left–right static cor-
relation. Consequently, going from J-RHF to J-VBSCF
wave functions improves the VMC well depths by only
8.0 and 11.7 kcal/mol for O2 and F2, respectively, much
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less that is gained by going from standard RHF to stan-
dard VBSCF. The J-VBSCF VMC well depths remain in
relatively poor agreement with the exact values, underes-
timated by 13.9 and 14.3 kcal/mol for O2 and F2, re-
spectively. It is expected that these errors are mainly due
to some missing dynamic correlation, rather than static
correlation corresponding to some missing VB structures.
This point will be checked in Sec. III B.

Additional correlation can be introduced in VMC by
replacing the VBSCF determinant expansion by the more
flexible BOVB form. By using a different set of orbitals in
each VB structure, the BOVB wave function allows the or-
bitals to be more diffuse on the negatively charged atom and
more compact on the positively charged atom of the ionic
structures, compared to the neutral covalent structure. This
“breathing-orbital effect” can be seen as a manifestation of
dynamic correlation. It is clear that such breathing-orbital ef-
fects are partly redundant with the correlations introduced by
the Jastrow factor. In practice, it is observed that with the lim-
ited form of the Jastrow factor employed, the J-BOVB wave
functions improve a bit upon J-VBSCF wave functions: the
VMC well depths are bettered by 5.1 and 2.5 kcal/mol for
O2 and F2, respectively. As expected, these improvements
are much smaller than those obtained when going from stan-
dard VBSCF to BOVB, showing that a large part of dynamic
correlation is already described by the Jastrow factor. The
agreement between the VMC J-BOVB well depths and the
exact values is still not good, with an underestimation of
8.8 kcal/mol for O2 and 10.7 kcal/mol (8.4 kcal/mol with
BOVB-split) for F2, respectively. Even more disappointing,
the VMC J-BOVB well depth is actually worse than the stan-
dard BOVB one for O2, and the same is true for BOVB-split
for F2. This indicates that our Jastrow factor describes cor-
relation effects in the atom more accurately than in the (less
symmetric) diatomic molecule. By incorporating more corre-
lation in the separated atoms than in the molecule, the Jas-
trow factor, thus, makes the BOVB well depths less accurate.
In fact, it is significant that for F2 splitting the ionic electron
pairs improve the VMC well depth by 2.3 kcal/mol, indicat-
ing that this radial correlation effect in the molecule was not
well described by the Jastrow factor. The more flexible multi-
Jastrow approach of Ref. 20 could solve this problem by better
handling the delicate balance between atomic and molecular
correlation effects.63

Let us now consider the fixed-node DMC results. The
total energies and the well depths reflect the quality of the
nodes of the different wave functions. Both total energies and
well depths are much improved compared to the VMC results.
J-RHF wave functions give DMC well depths of moderate ac-
curacy, underestimated by 6.2 and 9.2 kcal/mol for O2 and F2,
respectively. J-VBSCF wave functions improve DMC well
depths but by rather limited amounts, 1.8 and 4.2 kcal/mol
for O2 and F2, respectively, showing that most of left–right
correlation was already recovered with the J-RHF nodes. Us-
ing J-BOVB wave functions allow further gains in accuracy,
leading to results close to the ones obtained with much less
compact J-FVCAS wave functions. The best DMC J-BOVB
calculations underestimate the well depths by only 2.4 and
1.1 kcal/mol for O2 and F2, respectively.

2. Systems with strong static correlation: C2 and N2

Let us now consider C2 and N2, two molecules having
strong static correlation even at equilibrium distance. RHF
is expected to be particularly poor for these molecules, be-
cause of the triple bond nature of these systems. In a RHF
wave function, each two-electron bond is constrained to be
50% covalent – 50% ionic, and in addition all (multi-) ionic
forms are constrained to have the same weights, which is un-
physical. In particular, bi-ionic structures with two positive
charges on one atom and two negative charges on the other
will have the same weight as neutral bi-ionic structures (one
positive and one negative charge on each atom). Similarly,
tri-ionic structures with three (positive or negative) charges
of the same sign on each atom will be forced to have the
same weight as the mono-charged-atom tri-ionic structures.
Note that GVB wave functions also have these constraints on
the weights of multi-ionic structures, this form of VB wave
function being only able to take into account intrapair left–
right correlation (covalent versus ionic balance within only
one two-electron bond) but not interpair correlation. On the
other hand, a VBSCF wave function can include both intra-
pair and interpair left–right correlation. More importantly, for
C2, the singlet biradical character is expected to generate ad-
ditional static correlation beyond left–right correlation, which
will require extra bonding patterns.

The total energies and well depths of these molecules are
displayed in Table III. As expected, RHF strongly underesti-
mates the well depths (note that the negative well depth ob-
tained for C2 is in fact due to the choice of the FVCAS ref-
erence for the separate atoms). VBSCF appears to retrieve
a large part of the missing correlation, as it improves the
well depths by 120.6 and 78.8 kcal/mol for C2 and N2, re-
spectively, as compared with RHF values. The VBSCF well
depths are, however, still underestimated by more than 30
kcal/mol for both molecules. It was impossible to carry out
standard BOVB calculations to assess dynamic correlation

TABLE III. Total energies (in hartree) and well depths (in kcal/mol) for
the ground states of C2 and N2 at their experimental bond lengths calculated
in RHF and VBSCF, and in VMC and DMC using corresponding Jastrow-
valence-bond wave functions with all the parameters (Jastrow, CSF coeffi-
cients, orbitals, and basis exponents) fully optimized in VMC. For compari-
son, DMC results for FVCAS wave functions from a previous study are also
shown.

C2 N2

Total Well Total Well
energies depths energies depths

RHF –75.4014 –8.8 –108.9856 115.8
VBSCF –75.5936 111.8 –109.1112 194.6

VMC J-RHF –75.8132(5) 101.9(4) –109.4516(5) 204.2(4)
VMC J-VBSCF –75.8635(5) 133.4(4) –109.4723(5) 217.2(4)

DMC J-RHF –75.8667(2) 121.8(2) –109.5039(2) 221.2(2)
DMC J-VBSCF –75.8954(2) 139.9(2) –109.5119(2) 226.3(2)

DMC J-FVCASa –75.9106(1) 149.5(1) –109.5206(1) 231.5(1)
Estimated exactb –75.9265 148.5(5) –109.5427 228.5(<1)

aReference 6.
bReference 61.
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effects at the VB level, as the number of VB structures (21
for C2 and 27 for N2) is too large to allow such calculations.
Last, we checked that GVB (not shown in Table III) greatly
underestimates the well depths as expected, giving 84.0 and
164.9 kcal/mol for C2 and N2, respectively, values which are
about 30 kcal/mol worse than those from VBSCF.

As for O2 and F2, addition of a Jastrow factor in
VMC considerably improves the results. This improvement is
dramatic for single-determinant wave functions, the J-RHF
well depths being bettered by 110.7 and 88.4 kcal/mol for C2

and N2, respectively, as compared with the RHF ones. The im-
provement is much less important but still significant for the
VBSCF wave functions, with J-VBSCF well depths improved
by 21.6 and 22.6 kcal/mol for C2 and N2, respectively, com-
pared to the VBSCF ones. As for O2 and F2, these findings
show that the Jastrow factor can retrieve a significant amount
of left–right correlation. The accuracy of the VMC J-VBSCF
calculations is similar to what has been found for O2 and F2,
with well depths underestimated by 15.1 and 11.3 kcal/mol
for C2 and N2, respectively.

The DMC results follow the trends found in VMC, but
the differences between C2 and N2 show up more clearly. The
N2 well depth is underestimated by 7.3 kcal/mol with a J-
RHF wave function, which is actually in the range of what
was observed for O2 and F2. A J-VBSCF wave function leads
to a DMC well depth close to chemical accuracy, indicat-
ing that the quality of the J-VBSCF nodes is good enough
to get good energy differences. The situation is quite differ-
ent for C2. The J-RHF DMC well depth is underestimated
by 26.7 kcal/mol, far from the accuracy reached for the other
molecules. Using a J-VBSCF wave function greatly improves
the DMC well depth, but with an error of 8.6 kcal/mol, it is
still far from chemical accuracy. For O2 and F2, a further im-
provement is possible by using J-BOVB wave functions, but
for C2 even if it were possible to use a J-BOVB wave func-
tion a significant improvement is not expected. Because of the
multiradical character of C2, we expect the missing correla-
tion to still be of static nature, rather than dynamic. The route
for improvement is to go beyond a single bonding-pattern
description.

B. Multiple bonding-pattern wave functions

A straightforward way of improving our J-VBSCF wave
functions, particularly for the C2 molecule, is to increase
the number of VB structures included in the wave function.
Adding VB structures should be done in a systematic but se-
lective way, as the total number of nonredundant VB struc-
tures (for all orbital configurations and spin couplings) can be
very large, e.g., up to 1764 structures for C2 (for the formula
giving the number of VB structures in a complete (Rumer)
basis, see Ref. 64). A route to extend the VB description be-
yond a single bonding pattern is to systematically derive pos-
sible alternative bonding patterns and classify them in terms
of stability following Lewis-type rules. In particular, the most
bonded patterns will be preferred over the less bonded ones, a
σ bond will be preferred over a π one, and a three-electron (or
one-electron) bond will be counted as half a bond. Following

FIG. 2. Most important resonant bonding patterns for the C2, N2, O2, and F2
molecules, defining our multiple bonding-pattern VB wave functions.

these rules of thumb, a description extended to multiple bond-
ing patterns is proposed in Fig. 2 for the C2, N2, O2, and F2

molecules.
The main bonding pattern for C2 is of acetylenic type,

displaying one σ and two π bonds, as well as two singlet-
coupled (biradical) electrons. It is natural to postulate for
this molecule a secondary bonding pattern of ethylenic type,
with one σ and one π bond, thus leaving one pair of singlet-
coupled electrons on each atom. Another doubly bonded
pattern could be postulated for C2, with two π bonds.
However, by applying our simple rules, it is expected to be

TABLE IV. Well depths (in kcal/mol) for the ground states of C2, N2,
O2, and F2 at their experimental bond lengths calculated in VBSCF, VMC
J-VBSCF, and DMC J-VBSCF using single and multiple bonding-pattern
wave functions. All the parameters of the J-VBSCF wave functions (Jastrow,
CSF coefficients, orbitals, and basis exponents) have been fully optimized in
VMC. For comparison, results for FVCAS wave functions from a previous
study are also shown.

C2 N2 O2 F2

Single bonding pattern

VBSCF 111.8 194.6 81.7 8.9
VMC J-VBSCF 133.4(4) 217.2(4) 107.0(4) 24.7(4)
DMC J-VBSCF 139.9(2) 226.3(2) 116.5(2) 34.0(2)

Multiple bonding patterns
VBSCF 127.2 203.4 84.1 9.6
VMC J-VBSCF 142.4(4) 220.2(4) 108.2(4) 26.9(4)
DMC J-VBSCF 144.8(2) 228.1(2) 117.5(2) 35.7(2)

References

MCSCF FVCASa 140.8 210.0 89.9 15.3
VMC J-FVCASa 146.9(1) 225.5(2) 108.7(2) 27.4(2)
DMC J-FVCASa 149.5(1) 231.5(1) 119.6(1) 37.9(1)
Estimated exactb 148.5(5) 228.5(<1) 120.9(<1) 39.0(1)

aReference 6.
bReference 61.
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less stable than the ethylenic pattern, as σ bonds are usually
more stable than π ones. In a recent VB study, this π -doubly
bonded pattern has indeed been found to be of very little
importance for the ground state at equilibrium distance,62 so
it will not be considered here. Considering a C2 description
with two bonding patterns (acetylenic and ethylenic), and
including the two covalent and all mono-ionic and neutral
bi-ionic structures, leads to a set of 35 VB structures, which
can be combined into only 12 CSFs when all the structures
that must have equal weights by symmetry are combined.
All calculated well depths are gathered in Table IV. The first
three lines just repeat, for ease of comparison, the well depths
obtained using single bonding-pattern (J-)VBSCF wave
functions, previously shown in Tables II and III. The next
three lines display the well depths obtained using multiple
bonding-patterns (J-)VBSCF wave functions and the last
three lines some reference data. At the standard VBSCF
level already, the well depth of C2 is significantly improved,
by 15.4 kcal/mol, when going from the single bonding
pattern to the multiple bonding-pattern (MBP) wave function.
Interestingly, a large part of this gain is retained at the
VMC J-VBSCF level, with a 9 kcal/mol improvement. This
suggests that the Jastrow function is not able to significantly
recover the part of static correlation that is included when
going from single bonding pattern to multiple bonding pat-
terns. This observation partly transfers to the DMC results as
well, with a significant 4.9 kcal/mol improvement of the well
depth. In conclusion, the multiple bonding-pattern J-VBSCF
wave function for C2 gives both VMC and DMC well depths
in reasonable agreement with estimated exact values (errors
of 6.1 and 3.7 kcal/mol, respectively) while still being a very
compact wave function (only 12 CSFs compared to 165 CSFs
for the FVCAS wave function). The remaining error could
be progressively eliminated by adding VB structures corre-
sponding to additional bonding patterns, starting with the
pattern with two π bonds and no σ bond, and then including
patterns with only one (σ or π ) bond. It is expected that a
J-VBSCF wave function including all the main VB structures
belonging to these bonding patterns would give almost exact
dissociation energies, as has recently been shown to be the
case at the VBCI level,62 while still having a significantly
more compact wave function than the FVCAS one.

Following the same reasoning as for C2, a secondary
bonding pattern displaying one σ and one π bond can be pos-
tulated for the N2 molecule, corresponding to picture (b) in
Fig. 2. This bonding pattern could also be obtained by start-
ing from the common Lewis structure of spin–singlet O2 and
doubly ionizing one of the two lone pairs. For N2, a π -doubly
bonded pattern is likely to be of even less importance than for
C2, as this would result in an N atom with a completely filled
σ space, i.e., two (highly repulsive) σ lone pairs facing each
other, so we rule it out. Last, singly bonded patterns with ei-
ther a σ or a π bond, corresponding to picture (c), are also
included, by analogy with the secondary bonding pattern of
C2. For all these extra patterns, the covalent and all the neu-
tral and mono-charged-atom ionic VB structures are included.
This gives 27 extra VB structures, and so a total of 54 struc-
tures (with the main bonding pattern) which can be combined
into 24 CSFs. This multiple bonding-pattern wave function

improves the VBSCF well depth of N2 by 15.4 kcal/mol in
comparison to the single bonding-pattern calculation while
still being a substantially more compact wave function than
the FVCAS one (24 versus 107 CSFs). The improvements
in VMC and DMC are less pronounced, though not negli-
gible, with a 2–3 kcal/mol gain. The DMC J-VBSCF well
depth is very close to the estimated exact value, indicating
the good quality of the nodes of the multiple bonding-pattern
wave function.

For O2, the main bonding pattern corresponds to a
double-bond situation, with a σ bond and two π half-bonds.
There are not many possibilities for deriving alternative pat-
terns that are compatible with the spatial and spin-triplet sym-
metry of the ground state, and in particular it is impossible to
preserve the σ bond. Pattern b keeps the two three-electron
bonds, while pattern c has one three-electron and one one-
electron π half-bonds and a completely filled σ space on each
atom. There are a total number of 12 VB structures emerging
from patterns b and c, and when added to the previous set
we arrive at a total number of 24 structures (10 CSFs). Ob-
viously, even if these extra patterns can be associated with
a formal bond order of one, they are not expected to be of
much importance in the ground state. This expectation is al-
ready confirmed at the standard VBSCF level, as the well
depth is improved by only 2.4 kcal/mol, much less than what
was observed for C2 and N2. Quite logically, the gains are

TABLE V. Well depths (in kcal/mol) for the ground states of C2, N2, O2,

and F2 at their experimental bond lengths calculated in VMC and DMC us-
ing single bonding-pattern J-VBSCF wave functions with partial or complete
VMC optimization of the parameters: Jastrow (J), CSF coefficients (c), or-
bital coefficients (o), and basis exponents (e).

Optimized
param.

C2 N2 O2 F2

VMC
J-RHF

J 86.4(4) 191.0(4) 84.5(4) –0.2(4)

VMC
J-RHF

J+o 100.9(4) 202.7(4) 91.0(4) 11.7(4)

VMC
J-RHF

J+o+e 101.9(4) 204.2(4) 99.0(4) 12.4(4)

VMC
J-VBSCF

J+c 125.6(4) 207.6(4) 95.8(4) 13.4(4)

VMC
J-VBSCF

J+c+o 129.5(4) 213.8(4) 100.0(4) 24.0(4)

VMC
J-VBSCF

J+c+o+e 133.4(4) 217.2(4) 107.0(4) 24.7(4)

DMC
J-RHF

J 114.5(2) 218.8(2) 110.9(2) 25.0(2)

DMC
J-RHF

J+o 122.1(2) 219.7(2) 113.0(2) 30.8(2)

DMC
J-RHF

J+o+e 121.8(2) 221.2(2) 114.7(2) 29.8(2)

DMC
J-VBSCF

J+c 135.5(2) 222.7(2) 113.8(2) 30.1(2)

DMC
J-VBSCF

J+c+o 138.5(2) 224.4(2) 113.6(2) 33.4(2)

DMC
J-VBSCF

J+c+o+e 139.9(2) 226.3(2) 116.5(2) 34.0(2)

Estimated
exacta

148.5(5) 228.5(<1) 120.9(<1) 39.0(1)

aReference 61.
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TABLE VI. Numbers of CSFs (NCSF), numbers of unique spin-up + spin-down determinants (Ndet) in ground-state wave functions, and numbers of unique
spin-up + spin-down singly excited determinants (N exc

det ) for orbital optimization for the single bonding-pattern (SBP) and multiple bonding-pattern (MBP)
VBSCF and BOVB wave functions employed in this work. Values for FVCAS wave functions are also shown for comparison.

C2 N2 O2 F2

NCSF Ndet N exc
det NCSF Ndet N exc

det NCSF Ndet N exc
det NCSF Ndet N exc

det

SBP VBSCF 8 32 1488 10 16 1280 5 10 848 2 4 232
SBP BOVB 5 32 2144 2 20 1428
MBP VBSCF 12 64 2992 24 72 5152 10 28 2282 5 16 1572
FVCAS 165 140 6120 107 112 5864 30 52 2548 8 16 984

even smaller in VMC and DMC, with about 1 kcal/mol
improvement only. It, thus, seems that for O2 the single
bonding-pattern wave function already contains most of the
static correlation, and that further gain in accuracy requires
instead improvement of the description of dynamic correla-
tion, as previously found when going from J-VBSCF to J-
BOVB wave functions.

For F2, alternatives to the usual σ bond situation are lim-
ited too. A π bond situation can be postulated; however, it
comes with a (highly repulsive) completely filled σ space on
each atom. A situation with a σ three-electron bond can be
envisaged [picture (b)] as it corresponds to the (quite stable)
ground state of the difluorine anion, but it comes here with
a singly ionized σ lone pair. Considering all these bonding
patterns generates a set of 13 VB structures (5 CSFs). As ex-
pected, the multiple bonding-pattern wave function gives very
small improvements. As for O2, a much more significant im-
provement was previously obtained for F2 by using a BOVB
wave function.

C. Effect of orbital optimization

Although for some systems reoptimizing the orbitals in
QMC in the presence of the Jastrow factor leads to only
small improvements, it is known that it can be very impor-
tant for other systems, e.g., for calculating certain excitation
energies.65–67 To examine the effect of orbital optimization,
we show in Table V the VMC and DMC well depths of
the four molecules for J-RHF and single bonding-pattern J-
VBSCF wave functions with or without VMC optimization of
the orbital coefficients and the basis exponents. In each case,
of course, the same level of optimization has been used for
the atoms. At the VMC level, optimization of the orbital co-
efficients and the basis exponents improves the well depths
by the order of 10 kcal/mol for J-RHF and J-VBSCF wave
functions. In DMC, the gain from optimization of the orbital
coefficients and the basis exponents is smaller but still sig-
nificant, ranging from about 2 to 7 kcal/mol. This shows that
orbital optimization in QMC has a significant impact of the
nodes of the wave functions. These improvements in VMC
and DMC are primarily due to the optimization of the orbital
coefficients, the gains from reoptimization of the basis expo-
nents being generally smaller, except in the case of O2.

D. Computational cost

Finally, we discuss the computational cost of our Jastrow-
valence-bond wave functions. In QMC calculations, using

multideterminant wave functions, the major bottleneck is the
evaluation of Slater determinants along with their first- and
second-order derivatives with respect to electron coordinates,
so that the computational cost is usually directly determined
by the number of these determinants. In addition, orbital op-
timization in VMC using a super-configuration-interaction-
type algorithm4, 6 requires evaluation of numerous singly
excited determinants, which is often the bottleneck of the
optimization calculations. It is, thus, desirable to have com-
pact wave functions with small numbers of determinants. In
practice, each determinant is actually broken into the product
of a spin-up and a spin-down determinant, and only the list
of unique spin-up and spin-down determinants is computed.
In Table VI, we have reported the numbers of CSFs, numbers
of unique spin-up + spin-down determinants, and the num-
bers of unique spin-up + spin-down singly excited determi-
nants for the VBSCF and BOVB wave functions employed in
this work. It is seen that there are about 4–7 times less de-
terminants to evaluate for the single bonding-pattern VBSCF
wave functions, in comparison to the FVCAS wave functions.
For orbital optimization, these single bonding-pattern VBSCF
wave functions also generate about 3–5 times less singly ex-
cited determinants. On the other hand, single bonding-pattern
BOVB wave functions do not appear as computationally ad-
vantageous in comparison to FVCAS wave functions. For O2,
the BOVB wave function has only a few less determinants,
and for F2 the BOVB wave function in fact has more deter-
minants than the FVCAS wave function. Multiple bonding-
pattern VBSCF wave functions give less determinants than
FVCAS wave functions for C2, N2, and O2, but the reduction
is rather modest with at most about a factor of 2 less deter-
minants for C2. For F2, the multiple bonding-pattern VBSCF
wave function actually generates more singly excited determi-
nants than the FVCAS wave function. This happens because
for these small F2 wave functions, it is more advantageous to
restrict the number of single excitations based on the spatial
symmetry of the molecular orbitals, as done in the FVCAS
calculations, rather than based on a localization criterion of
the VBSCF orbitals.

IV. CONCLUSIONS

We have performed VMC and DMC calculations us-
ing compact Jastrow-valence-bond wave functions based
on strictly localized active orbitals. The J-VBSCF wave
functions are based on a chemically intuitive description of
bonding, including either a single bonding pattern (Fig. 1) or
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multiple bonding patterns (Fig. 2). The J-BOVB wave
functions introduce additional correlation through orbital
relaxation.

For N2, O2, and F2, the single bonding-pattern J-VBSCF
wave functions yield DMC equilibrium well depths with er-
rors ranging from about 2 to 5 kcal/mol. This is quite a rea-
sonable accuracy considering the compactness of the wave
functions. For C2, a system with very strong static cor-
relation, a two-bonding-pattern J-VBSCF wave function is
necessary to reach a similar accuracy. Optimization of all
the wave-function parameters in VMC, and in particular the
orbitals, is important to reach this accuracy. As regards com-
putational cost, these VBSCF wave functions contain signif-
icantly less Slater determinants than FVCAS expansions and
are, therefore, more efficient to evaluate. The J-BOVB wave
functions are much more costly to evaluate than the J-VBSCF
wave functions and give only moderate improvement of well
depths.

The VB ansatz provides a general way to design com-
pact wave functions that capture the essential physics of the
chemical bond, by including only the most chemically rel-
evant structures. These wave functions could be further im-
proved, by including more and more structures belonging
to secondary bonding patterns, depending on the accuracy
needed.

For first-row diatomic molecules this approach is of
limited interest since it is easily possible to use FVCAS
expansions. However, for molecules requiring larger active
spaces, very compact valence bond wave functions can still be
designed, and this becomes a great advantage over molecu-
lar orbital based multideterminant approaches. Also, for large
systems with regions of interest localized on a few atoms,
which is usually the case in chemical reactions, strictly lo-
calized orbitals enable both a reduction of the active space
and a reduction of the orbital optimization cost, as compared
to delocalized molecular orbital approaches.
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