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A simple and stable method for computing accurate expectation values of observables with
variational Monte Carl@vVMC) or diffusion Monte CarldDMC) algorithms is presented. The basic

idea consists in replacing the usual “bare” estimator associated with the observable by an improved
or “renormalized” estimator. Using this estimator more accurate averages are obtained: Not only the
statistical fluctuations are reduced but also the systematic €biag associated with the
approximate VMC offixed-nod¢ DMC probability densities. It is shown that improved estimators
obey a zero-variance zero-bias property similar to the usual zero-variance zero-bias property of the
energy with the local energy as improved estimator. Using this property improved estimators can be
optimized and the resulting accuracy on expectation values may reach the remarkable accuracy
obtained for total energies. As an important example, we present the application of our formalism
to the computation of forces in molecular systems. Calculations of the entire force curve of the
H,,LiH, and Li, molecules are presented. Spectroscopic consiansquilibrium distanceandw,
(harmonic frequengyare also computed. The equilibrium distances are obtained with a relative
error smaller than 1%, while the harmonic frequencies are computed with an error of about
10%. © 2003 American Institute of Physic§DOI: 10.1063/1.1621615

I. INTRODUCTION able. Other types of systematic errors may also exist,
e.g., the short-time errd?, however, such errors can
Over the recent years quantum Monte Ca(@MC) be easily controlled and, therefore, will not be consid-

methods have become more and more successful in comput- ered here.
ing ground-state total energies of molecular systems. For Now, to enlighten the major differences between energy
systems with large number of electrons the accuracy oband observable computations let us evaluate the expressions
tained by QMC is very good. As illustrated by a number of of these two errors. We shall do that within the framework of
recent calculation’;'* the quality of the results is compa- the variational Monte Carlo method where, as we shall see
rable and, in most cases, superior to that obtained with morkater, all the main aspects of this work are already present.
traditional techniquegdensity functional theory, multicon- In a variational Monte Carlo simulation the variational
figuration self-consistent field, or coupled cluster methods energy
Unfortunately, for properties other than energy the situation
is much less favorable and accurate results are difficult to — (tr[H[ o) )
obtain. To understand this point let us first define what we (Yl
mean here by accuracy. In standard quantum Monte Carlo i i i i i
schemes there exist essentially two types of error: where ¢ is the approxmat_e trial wave function used, is
re-expressed as the statistical average of the local energy
(i) The usual statistical error resulting from the necessardefined as
ily finite simulation time. This error present in any
Monte Carlo scheme behaves a4/\/N whereN is E _Hir
the number of Monte Carlo steps. LTy
(i)  The systematic errdor “bias”) associated with some
particular choice of the trial wave function. In a varia- OVer the probability density associated with, namely
tional Monte CarlogVMC) scheme it is the systematic
, ) : " E,=(EL) 2. )
error resulting from the approximate trial probability T
density. In a fixed-node diffusion Monte CafiDMC)
it is either the fixed-node error of energy calculations
or the systematic error associated with the mixed
DMC probability density for a more general observ-

@

An accurate calculation of the energy requires the two fol-
lowing conditions.
(i) The systematicor variationa) error defined as

Ag=E,—E=0, (4)
dElectronic mail: ra@Ict.jussieu.fr ) )
YElectronic mail: mc@lct.jussieu.fr whereE, is the exact energy, must be as small as possible.
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(ii) The variance of the local enerdyhich is directly
related to the magnitude of the statistical eyror

o (ED=((EL—E,))?) 2, ©)

must also be as small as possible.
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of a general observable has onlyimear zero-bias property
instead of a quadratic one like in the energy case. Even
worse, because trial wave functions are optimized to lower
the systematic error in the energgnd/or its fluctuations

and not the error in the observable, the prefactor associated

To estimate both quantities we express them in terms o\f\llth the linear error Contribution, quZ), is Usua”y much

the trial wave function errordyr= 1 — iy, Whereyy, is the

larger than in the energy case, E@). In practice, this im-

exact wave function. Regarding the systematic error it is easportant systematic error makes in general the quality of the

to check that

:<‘//T_ o|H—Eo|r— o)

Ae o)

(6)

In other wordsAg is of order two in the wave function error

Ag~O[6¢7]. ()

Now, regarding the variance, it is convenient to write the

following equality:

E :(H—Eo)(lﬂT_ o)

—-E, —Ag, 8
L - E 8
from which it is directly seen that?(E,) is also of order
two,
o*(EL)~O[6¢°]. 9

Equationq7) and(9) are at the origin of the high-quality
calculations of the energy. They show that accurate energ
calculations are directly related to good trial wave functions:
The more accurate the trial wave function is, the smaller th
statistical and systematic errors are. In the limit of an exacf!
trial wave function, both errors vanish and the energy esti
mator reduces to the exact energy. This most fundament
property is referred to in the literature as the “zero-varianc
property.” Note that a much more preferable and accurat
denomination should be “zero-variance-zero-bias property
to emphasize the existence of theo types of error. Of
course, in the case of the energy this distinction is not ne

e
Systems. In practice, the possibility of getting or not getting a

,satisfactory answer depends very much on the accuracy re-

C_

expectation value, Eq11), very poor. The second important
difference is that there is no zero-variance property at all for
observables when Ed11) is used. Indeed, even when the
exact wave function is used as trial wave function we are still
left with some finite(and eventually largestatistical fluctua-
tions, EqQ.(13). Thus, statistical fluctuations are in general
very large for properties. A simple and popular strategy to
reduce the important systematic error on properties is to mix
VMC and fixed-node DMC calculations to build up a so-
called “hybrid” or “second-order” estimator, {O)pyprig
=2(0)pmc—{O)ymc » Whose error is reducéd An elemen-
tary calculation shows that the error is now of or@¥n ¢+
—10)?], plus a linear contributio®(y§"N— 1) due to the
approximate nodes of the trial wave function. However, once
again such a solution is not, in practice, as satisfactory as it
appears at first glance because of the large prefactor associ-
ated with the second-order contribution and, also, because of
he non-negligible linear error due to the nodes. A second
ossible strategy to cope with the systematic error is to per-
orm an “exact” QMC calculation based on one of the vari-
nts of the so-called “forward walking” schenté&:*° Unfor-
tunately, although such schemes can lead to satisfactory

results for small systenfS; #they are known to be intrinsi-

cally unstable and, therefore, very time consuming for large

quired and on the type of observable considered. Therefore,
forward walking is not considered as a general practical so-

essary since, as just seen, the two errors are not independdyfion to the problem.

and vanishsimultaneouslywith the exact wave function.
However, as we shall see in the following, this peculiar as

pect will be no longer true for other properties.

In this work, we propose to follow a quite different

route. Our purpose is to show that it is possible to use much

more efficient estimators for properties than the usual bare

Let us now turn our attention to the computation of a&XPression, Eq11). More precisely, it is shown how to con-
general observable. Defining the expectation value of somgt'uct in a simple and systematic way new estimators having

arbitrary observabl® as

O
its Monte Carlo expression is given by
0,=(0)2. (12)
It is easy to verify that the systematic error behaves as
AOE<O>¢$_<O>¢/§~O[5¢], (12
while the variance is given by
o?(0)~0[1]. (13

the same remarkable quadratic zero-variance zero-bias prop-
erty as the energy case. Very recently, we have made a first
step in that direction by showing how to generalize the zero-
variance part of this properfy:>* In short, the basic idea
consists of constructing a “renormalized” or improved ob-
servable having the same average as the original one but a
lower variance. To build the renormalized observable, an
auxiliary wave function is introduced. This function plays a
role analogous to the one played by the trial wave function in
the case of the energy: The closer the auxiliary function is to
the exact solution of some zero-variance equatitime
Schralinger equation in the case of the energhe smaller

the statistical fluctuations of the renormalized observable are.
Our approach has been illustrated on some simple academic

Compared to the energy case we have two striking differexample$® and also for the much more difficult case of the
ences. First, the systematic error in the averages is muatpmputation of forces for some diatomic moleculédu-

larger. This is a direct consequence of EfR): the estimator

merical results on these examples are very satisfactory. When

Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



10538 J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 R. Assaraf and M. Caffarel

suitably chosen auxiliary functions are used, statistical errorgiewed as a special case of the general method presented

are indeed greatly reduced. here, except that their estimator does not obey a zero-
Here, we present the full generalization of the precedingrariance zero-bias property. This latter aspect has some prac-

idea: it is shown how to construct improved observabledical consequences since, as we shall see in the following,

minimizing both systematic and statistical errors with a qua-having such a property at our disposal allows more flexibility

dratic behavior similar to that obtained for the energy. As ato reduce both systematic and statistical errors.

conseqguence, any observable is expected to be calculated, at The organization of the paper is as follows: In Sec. Il we

least in principle, with the remarkable accuracy achieved byresent the Hellmann—Feynman theorem and the construc-

QMC for total energies. The basic idea behind our approackion of improved estimators for variational Monte Carlo cal-

is quite simple: it consists of making use of the relationculations. It is also shown how the idea of Umrifacon-

between energy and observable calculations as expressed $igting of introducing a special coordinate transformation can

the Hellmann—Feynma(F) theorem. As is well known this be used to build up some more general and more efficient

theorem expresses any quantum average as a total energyproved estimators. In Sec. lll we discuss the generaliza-

derivative with respect to the magnitude of the external potion of the formulas to the case of diffusion Monte Carlo

tential defined by the observable. It is shown how the zerocalculations. In Sec. IV we present the application of the

variance zero-bias principle valid for each value of the enformalism to the computation of the entire force curve for

ergy (as a function of the external potenjiaan be extended the H,,LiH, and Li, molecules. Calculations of the spectro-

to the derivative and, therefore, to the observable. Note th&&copic constant®, andw,, are also reported. Finally, in the

in the context of QMC simulations, the idea of using the HFlast section we summarize our results and present some con-

theorem to compute observables, using either a finite differcluding remarks.

ence scheme or the analytic derivative, is not new and has

been applied by several groups3*In general, the results Il. IMPROVED ESTIMATORS FOR OBSERVABLES

are good for very small systems but rapidly disappointing for

TS In order to make the connection between energy and
larger systems. Indeed, only when a clear physical insight :
: . 4 N . Observable computations we shall make use of the HF theo-
into the origin of the fluctuations of the infinitesimal differ-

A . o . rem, which expresses the expectation value of an observable
ence of energythe derivative is available is it possible to P P

propose an efficient solution to the problem. A very niceas an energy derivative,
example of such a possibility has been presented some time (o|O|¢)  dEp(N)
ago by Umrigar at the VMC lev&l and, more recently, by (Polg) — dN
Filippi and Umrigar for the more general DMC caSeBy )

using a finite representation of the energy derivative and byvhere Eq(\) is the exact ground-state energy of the “per-
introducing a special coordinate transformation allowing thefurbed” Hamiltonian defined as

electrons close to a given nucleus to move almost rigidly — H(\)=H+\O0. (15)
with that nucleus, Umrig&f has shown how to correlate
efficiently the calculation of the electronic energies associ

ated with two slightly different nuclear configurations of a ) for th h ,
diatomic molecule. As a result it is possible to get accuratdnat€ estimates for the average. In the next sections we

estimates of the energy derivativéforces for some di- _present.two choipes_ which turn out to be particularly efficient
atomic molecule€®3 Here, we show how this correlated " Practical applications.

sampling method can be re-expressed in our framework. IA. Improved estimator built from the variational

addition, by generalizing this idea it is shown how generalapproximation of the energy

coc_)rdinate tran;formations can be used to define a new class A most natural choice consists of replacing the exact
of improved estimators.

, (14
=0

By choosing various approximate expressions for the exact
energy in Eq.(14), it is possible to derive various approxi-

While finishing thi K b ¢ energy of the HF theorem by a high-quality variational ap-
st ukl)l?srllglc'is k;ngcétalssal\goaé Whﬂeellzczr:g S\gg{;ﬁe ? dZ‘:‘perproximation. To do that, we introduce sornalependent ap-

Just pub oy gno, ' . _proximate trial wave function,it(\), to describe the
underlying their work has some close relations to what is, . \nd-state oH()\) [note that, for the sake of clarity and
presented here. Ir_1 short, they propose, as we do her_e, mplicity, we shall denote in what followgi(0), H(0),
compute forces using a Hellmann—Feynman-type formalism, Eo(0) asyr, H, andE,, respectively.

Their expression to calculate forces is obtained by making  the exact average of the observable can be decomposed
the derivative of the VMClor DMC) energy average with .

respect to nuclear positions. To reduce the systematic error

these authors propose to employ trial wave functions which ~ {#%o|Ol#o) _dE,(M)]
have been very carefully optimized via energy minimization (Yol ~— d\ \A_O
(let us recall that the HF theorem is valid whenly opti-
mized wave functions are usedo decrease the very large
statistical fluctuations associated with the infinite variance,‘/’T N,

the improved estimator introduced in our previous work on HN) gr(N)
force$* is used. As we shall see in the following, the ap- EU(ME<EL()\)>¢$(A)=<W>
proach proposed by Casalegno and collaborators can be T 2

+e( Oy, 6y"), (16)

where E,(\) is the variational energy associated with

17
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and e is some correction depending &= iy5— 1 and its 02(6):<(6_<6> 2)2) 2. (26)
derivative, and vanishing when the exact wave function is vl e
used as trial wave function. Using Egs.(18) and (19) and the fact thatE; =0+ (H

Now, the important point is that the derivative of the
variational energy[dE,(\)/d\]]|,—o, iS expected to be a
better estimate of the exact average than the ordinary averadj@"’s
of the bare estimator, Eq(11), when properly chosen ,

\-dependent trial wave functions are used. This is true since O—(0),2=E[—E,+2(E ~E,) ﬁ (27)
the standard estimator, E¢l1), can be re-expressed as a T T

particular case of the derivative of the variational energy for . L )
a \-independenttrial wave function, a choice which is For the sake of clarity, let us distinguish two different con-

clearly not optimal. Before more quantitatively justifying tributions in the difference. The first contribution is given by

—EL) 4/ pr we can express the differenEb—(f))l,,% as fol-

this statement, let us rewrite the derivative as an ordinary d[E.(\)—E, (V)]
average over the densiuﬁ. This can be easily done, it E/—E,= L ? (28
gives dA A=0

dE,(N) s Using expression8) for [E, (A)—E,(\)] and performing

dn A70_<O>¢$’ (18 the derivative one obtains
whereO is a new modified local operator written as - (O—(0) ) (1= tho) . (H—Eo) (¢4~ i)
L~ B~
B=04 MBI e gy (19 l/lT "
U e _(H—Eo>(wT—¢o)w_++<o> (B

In this latter formula, and in the formulas to follow, we shall bt by %o "
use the following simplified notation: (29)

fr= df(n) (20) This latter expression is clearly of order oneyn— iy and

dx |, its derivative i+ — i . The second contribution on the right-

hand side of Eq(27) is proportional toE, —E,. We have
already seen that it is of order one jr— ¢, Egs.(7) and
(8). Finally, 6—(6)@ is found to be of order one it
— g and y1—py. The variance, Eq(26), is therefore of
er two,

wheref(\) is some arbitrary function of.

Now, we have to justify the first important result, that the
new estimatoiO is a better estimator for the exact average
than the bare observabf@. For that purpose, we compute
the systematic error in the corresponding average and th(?erd
variance of the new operator. Regarding the systematic error

we can write o?(0)~ O[(thr— tho) (1~ 15) - (30
- d[E,(N)—Eg(N)] To summarize, using the HF theorem we are able to
AoE<O>¢$_<O>¢§: d\ X_O' (21) construct an improved observalse Eqg.(19), having a qua-

dratic zero-variance zero-bias property, E(5) and (30),

Let us denotefy(\) as the exact ground state Ei{\)  similar to what is known for the energy case, E¢8. and
[with o(0)= ¢o]. Using the equality (9). The improved estimato® depends only on one single
E,(\)—Eo(\) quantity, nameIWT()_\). Accor_dingly, to get accurgte results
we need to choose in the neighborhood\ef0 a trial func-
tion accurate enough to get not only a small difference in
wave functions but also the derivative of the wave functions.
In practice, this latter point is particularly difficult to fulfill.
Indeed, at fixed values 0¥, it is known that the minimiza-

_ (r(N) = oM [HN) —Eo(M) [ h1(N) — ¢ho(N))
(M) gr(N))

and choosing the following convention of normalization

(22

(e (V)| (V) =1, (23)  tion of the fluctuations of the local energy can allow an im-
o ) portant reduction of the error in the trial wave function.
the derivative can be easily computed. We get However, there is no reason why it should also lead to a
A5=(hr— tho| O—(O) 2| thr— tho) + 2(hr— ho|H satisfactory representation of the derivative of the trial wave
0 function.
— Eo| 4 — 4h0). (24) In order to escape from this difficulty we propose here to

_ _ ~work directly at\ =0 and to optimizendependentlyhe trial
As can be seen, the systematic error is now of order two ifyave functiony; and its derivativeys;. Such procedure is

the errorsyr— iy and g — g, justified since it corresponds to choosing the following ex-
AG~O[ (= o) (W — ). (25)  Pression as\-dependent trial wave function
Now, let us compute the variance defined as Ur(N)= 1+ )\Tp, (31
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where) is some newindependentunction playing the role  since, when\O is considered as a perturbation of the Hamil-
of a trial function for the derivative of the ground state attonianH, ¢ is nothing but the first-order correction to the
N=0. In this case, the renormalized observable can be reground state an¢O),2 the first-order correction to the en-

written under the final form ergy.
~ ~ Finally, let us end this section by commenting in more
N (H-EDy _ ﬂ detail on the various terms entering expressig®) of the
O0=0+ +2(E.-E) —, (32 : e .
T T improved operator. Three different contributions can be dis-

tinguished.

where the pair of functionsiy;, ) is the current guess for (i) The ordinary bare estimatdd corresponding tG)

the exact solution i, ().
Let us now turn our attention to the problem of optimiz- . o i ~ i
(i) A second contribution given byH—E, ) /. Itis

ing the two trial functions ¢+ ,7). Regardingyr we know : . A
that the standard procedure consists in minimizing the VarifeaS)é to \{te”f%/ that this contribution has a zero average over
ance of the local energy with respect to the parameters of thé1e ensity)r,

trial function. Quite remarkably, we have here a similar re-

sult for - the best choice is obtained by minimizing the  ((H=EL)¥/¢r),2=0. (38)
variance of the renormalized operafrwith respect to the
parameters ofy. Accordingly, its role is to lower the variance of the improved

To prove this property it is sufficient to show that the estimator without changing the average of the observatule

zero-varianceor zero-fluctuationsequations folg, and0: influence on the systematic eryoNote that for applications
where the stationary density is known and can be exactly

E|_=<E,_>¢$, sampled(that is, there is no systematic error in the avejage
(33) the use of contributionsi) and (ii) is sufficient. Important
6:<6>¢2, examples include all “classical” Monte Carlo simulations
T

based on theveTrRoPOLIS algorithm or one of its variants.
are equivalent to the equations definigig and iy, namely ~ Such a possibility was the subject of a previous Work.
(H—Eg)hg=0 (iii) A third term given by ZEL—EU)(@TMT). This
0) Yo f . . . L.
(34) con'Fnbutu_)n has a very small |mpac'F on the stat|st!cal fluc-
tuations since the variance dg(—E,) is of order two in the
trial wave function error for any choice @f. Its main effect
In these formulas, the first equation is just the ordinaryjs to take into account the change of stationary density under
Schralinger equation. The second one is obtained by derivthe external perturbation defined by the observable and,
ing the Schrdinger equation: therefore, to lower the systematic error in the expectation
HON) $(0) =Eo(\) (V) (35) value_ of _the observable. Note that in the lingit= ¢, this
contribution reduces to zero and, therefore, the average of
with respect ton at A =0. Note that Eq(34) determines an this term can be understood as a correction to the Hellmann—
unique solution, (bo,wé,EO,<O>¢,(2)), as soon adH has a Feynman formula wheny; is not the exact ground state

nondegenerate ground state. Now, using Eb@.and(2) for ~ [note that similar corrections to the HF formula exist also in

the definitions of® and E,, respectively, the system of MOre ;gaditional ab initio calc;ulations, e.g., the “Pulay
equationg33) can be rewritten under the form force. resultlpg friom approx!mate Hartrge—Fotd« local
density approximationorbitals in self-consistent schenjes
(H-E,)¢r=0, (36)

(H=E,)yi+(0—(0),2) =0, (37) | | |
B. More improved estimators: Use of coordinate

which are nothing but Eq34) with (¢, ¢45) = (o, ¥0). Ac-  transformations
cordingly, the zero-variance equatiof®3) admits this latter In this section it is shown how to generalize further our
pair of functions as unique solution. _ ~ renormalized operators. The basic idea of the generalization

In practical calculations, different strategies of optimiza-is pased on an original idea proposed by UmAgand re-
.tion can be employe(_j. A first approach consists pf minimiz—cenﬂy extended by Filippi and Umrig&tWorking in a finite
ing separatelythe variance of the local energy with respect yitference formalism the forces are computed as a small but
to the wave functionj and the variance oD with respect finite difference of energies for two close enough geometries.
to 7. In this way, we get an optimal trial wave functiah In order to minimize the fluctuations a correlated sampling
for the energy and the best derivative at fixgg. However, method, in which a common Monte Carlo densftiie so-
let us emphasize that this approach is not the most generatalled primary ongis used for the two close geometries, is
we can also minimize both variances simultaneously withemployed. Written within our notations and taking the limit
respect to the two independent functions. Another remark isf the two geometries infinitely close§R— 0 is equivalent
that the second equation of systé84) can be viewed as an to\—0) it means that the variational energy is written under
ordinary first-order perturbation equation. This is expectedhe form

(H —E0)¢6+(O—<O)¢S)(//o=0.
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< ¢,$()\)> has the following smalk expression:
ELN) —%—
L2 2 xx*)cmﬁs+x@i+om% (46)
E,(\)= : 39 X)= ij A
»(N) < lﬂ-%—()\)> (39 (9XJ
s 2 and, therefore,
where ¢+(N\) is the trial wave function chosen for a param- J0X)=1, “7)
eter\ and ¢+ is the referencéprimary) trial wave function. EX| .
The price to pay when doing that is the introduction of ~ —-(0X)=V-v. (48)

some additional fluctuations associated with the weight
z/;%()\)/zp% The remedy they propose to deal with this prob-This more general operator is identical to the operator de-
lem is to use a specific coordinate transformatispace- rived in Sec. Il A plus a new contribution resulting from the
warp transformation based on physical motivations: The derivative of the coordinate transformation. This new term
transformation is built so that the electrons close to a giverhas a zero average over the VMC distributiqb%u. Accord-
nucleus move almost rigidly with that nucleus when the gedingly, its main role is to reduce further the statistical error.
ometry is changed. Here, we generalize this idea: coordinatdowever, it is important to emphasize that, when the trial
transformation can help to minimize the relative fluctuationsfunction T/, and the vector field; are optimized simulta-
when varying the external parameterAs a physical conse- neously it has also an influence on the magnitude of the
quence, estimators built from the derivative are expected tgystematic error.
have smaller fluctuations and smaller systematic errors.

Let us write a general coordinate transformation as fol-

lows:
IIl. BEYOND VARIATIONAL MONTE CARLO

y=T(\,X), 40 :
y=Tn%) 40 In Sec. Il we have shown how to construct improved

where the vectoK (or y) denotes the set of thengec elec-  gpservables), associated with accurate expectation values:
tronic coordinates. Using this transformation the variational

energy at a givem can be written as (1|0 yrr) _ {400l o)
w%[)\,'lz()\,)?)]> (¢l ) (%ol o)
2

+O[ (1= o) (= tp)]. (49

<ELD"T()‘X)]‘]()‘X) 2.2 When the errordy’ =j— ¥ in the trial function for the
P7(X) R . . .

derivative is comparable to the error in the trial function for

E.(\)= NETNE ’ the ground statedy= 1 — i, the accuracy reached with
l//T[)\lT()\!X)]
JONX) ———
wz

the preceding variational estimate, E49), can be compa-
lﬂ%(i) rable to the very good accuracy usually obtained for total
(42) energies. However, despite this remarkable improvment, we
are still left with some small residual systematic error asso-
ciated with approximates; and . In the energy case it is
known that this error can be entirely suppres&adeast for
TN, X) =X+ N5 (X)+O(\?), (42)  systems with no nodes or known nofidsy averaging the

o o _local energy over the mixed DMC probability distribution,
we can compute the derivative of the variational energy WI'[hﬂ.DMCN i instead of the VMC distributionsryyc~ 1//$.

respect tok at A=0. After some simple but tedious algebra ynfortunately, we have no such result for the improved ob-
we get the following equality: servables defined here. However, as we shall see now, we

whereJ(\,X) is the Jacobian of the transformation. Introduc-
ing the vector fieldy such that at first order ih we have

dE,(\) _ can still define some approximate way for recovering most of
ax =(0) 2, (43 the error.
A=0 A natural way of defining an exact extimator for the
whereO is a new renormalized operator given by observable is to consider the derivative of the exact DMC
H_E ) ) energy estimator instead of the VMC one,
0=0+ (—LwT+2(EL—EU)ﬁ H(N) (M)
T U)o\

VI(EL—E,)¢40]
+ 2 : (44 Making the derivative and rewriting the result as an ordinary

average we get
To derive this expression we have used the fact that the Jaco-

bian defined as dEg(N) ~
R “an =(O)yrug (51)
. dTi(N,X) A=0
J(NX)=det ——— (45 -
IX; whereO is written as

Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



10542  J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 R. Assaraf and M. Caffarel

A thus generalizing the standard result for the bare observable.
T 0 - = = -
O+ H(EL—Eo)| —+——]. (52 Note that we can use eith@pyc or Oyye [EQ. (32)] in the

bt b Yo : :

. . . latter formula since the difference between the two renormal-

Of course, written under the above-given form, this exacized operators is proportional t&,—E,, Eq. (55), and,
estimator is useless since the exact wave function is ngherefore, is also of order two ifiy [Eq. (7)]. Finally, note
known._ Here, 5V\£ propose to make the following naturalthat for Fermi systems treated within the fixed-node approxi-
approximation:* mation (DMC density given by expression(57) is
slightly modified, we have

5 (H-E)yr

s _th -
o 2(Bomc) s~ (Oouc)
FN— 2
Therefore, our final approximate DMC estimator is written OMCE i OMC/ v
s = (10| Olho) + O(8Y) + OL(y"~ o) (¥ ) 1. (58)
~ _ (H=Epy 4
Opmc=0+ T +2(EL—Eo) w (54 The latter formula shows that the dependence of the system-

- atic error on the quality ofj is quite small as soon as the
Wherelﬁ is as usual our trial function for the derivative of the nodes of the trial wave function are reasonab|y good_ When
exact wave function. Note that this estimator is very similarysing coordinate transformation we have similar results. The
to the VMC one, Eq(32). The only difference lies in the exact DMC estimator is found to be
value of the average energiy=(E,), entering the defini-

tion of Opyc. More precisely, we have _ / / /
- 5=0+ N _EUIT EL)‘//TJF(EL—EO) it
- - Y T [
Opmc—Ovmc=2(E, —Eg) o (59 . )
T N VI(EL—Eo) ¢r¢hov] (59
Now, in order to further reduce the error let us show that Ui

we can generalize the usual *hybrid formulaO) g

=2(0O)pmc—(O)vmc defined for bare observables to the 504 e propose to use the following approximate form:
case of improved observables. To do that, let us evaluate the

quantity ( 54| Opwc| 81) where sy= yr— o,

= (H-EDY [
= = ~ Opyc=0+ ————+2(E_ —(E\)) —
(84| Opmcl ¢) = (| Opmcl ¥r) — 2(¥+|Opmcl o) pme Ut (B~ (E) I
+ (o Opmcl o). (56) N VI(EL—(EL))¢40] (60
which leads to s '
2(¢1/Opwcl o) = (1| Oomcl ¢r) Because the differencee( —(E, )) is of order sy it is easy
= (o] O|ho) + A+ O(8¢2), to verify that the error in the hydrid estimator given by Eq.
) ) o ) (57) remains here also of order two.
where the intermediate quantity is defined as Before ending this section let us emphasize that it is
(H—E)¥ 7 possible to write a closed computable expression for the ex-
A= (i Y L 2(E —Ey) — o). act estimator of the observable, E§2), by expressing the
r Y unknown quantityyy/ ¢, as a computable stochastic average.
ExpandingA in terms of §y= ¢y — ¢y We get Choosing an-independent trial wave functiogr we can
Writ618’38’39
A=2(ir|EL —Eo|¢h) — 2(5y|(H—E)|)
—4(SY|EL—Eq| )+ O(8y?). Yo(AX)=gr(x)_lim
Using now the equality << l{ JT
X{(exg — | ds EL[)\,x(s)])>> ,
H—Ep)
EL—EOZ% 0 x(0)=x
! (61)
we obtain
A=0(5¢72). wherex denotes an arbitrary point in configuration space and

(- -))x0)=x denotes the sum over all drifted random walks
This latter result shows that the error in the hybrid estimatof |ength T starting atx as obtained in a pure diffusion

is of order two insy, Monte Carlo(PDMC) scheme(DMC without branching'®

~ ~ Of course, a similar formula can also be obtained in a DMC
2(Oowmc) yriy ~ (Oomic) 2= (ol Ol o) + O(8%), (61 gopomd Now, using formula(61) we get
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A T (R,0,0) and atonB located at the origin. The only nonzero
Vo lim f dt component of the local force acting on the nucléuis thex
0 T—+ /0 component given by
(Ox(®lexp— ods EINXOD oy o, .
«qu _f-lo-ds EL[)\iX(S)] )»X(O):X F=— j_\é — ZQZB _ZA_ |(rX'__RF|2) . (67)
and, therefore, the exact estimator can be written in terms of o
a standard part plus a time integral of the two-point correla- ) )
tion function between the local energy and the observable ~ In this work we present a number of VMC and fixed-
_ _ node DMC calculations for the diatomic moleculeg, HH,
~ (H=EDy v T and Li,. Implementation of the quantum Monte Carlo meth-
0=o% by +(EL_<EL>)E+T|_ITOO fo at ods is well known and will not be discussed here. For the H

molecule the trial wave function used has the following
ME (B0 I00X(1) Jexp — [5dS E))xio)=x  simple form:
((exp(—fgds EL)»X(O):X .

63) = (1lsplsg+1sglsy) +c(1splsp+ 1sglsg), (68
It is important to emphasize that this latter estimator is exactynere Isy is a 1s-Slater function centered at nucleis
averaged over the mixed DMC distribution it leads to an—_ o g with exponentu, and ¢ a parameter describing the
unbiased estimate of the exact average. However, the COgmount of ionic contribution into the wave function. Of
relator can only be obtained within a forward walking course, much more accurate trial wave functions can be con-
scheme and, therefore, the stability in time is not guaranteedyy,cted for H. However, our purpose here is to show that
In this work, we shall not use this expression, its implemench a simple form fog; is already sufficient to get accurate

tation will be presented in a forthcoming work. values of the force.
For LiH and Li, we have employed two types of trial
IV. APPLICATION TO FORCES wave function. Our main choice is standard in QMC calcu-

The average force between atoms in a molecular systerlﬁtions for molecules. The trial wave function is made of a
determinant of single-particle orbitals multiplied by a

is defined as
Jastrow factor. The determinantal part is obtained from a
E =_5Eo(Q) 64) restricted Hartree—FocKkRHF) calculation and only the
i ag; ' Jastrow factor is optimized. As we shall see in the following,

we have also used valence-bof\B)-type wave functions
consisting of a number of determinants multiplied by a
Jastrow factor. We have used such a multideterminantal de-
scription to reproduce correctly the large interatomic dis-
tance regimddissociation limi}. In the case of LiH the de-
terminantal part consists of three determinants corresponding
aV(x,Q) to the covalent VB resonating structure: s()?[2s,;1sy

aq (65 +1s42s;i] ({1sy,2s,1sy} optimized atomic orbitals for

, : the Li and H atoms, orbitals occupied by electrenand
where x represents the r§,; electronic coordinatesn(e, b y B

bor of elect 4V the total potential antisymmetrized separatg¢lyand one ionic VB structure:
number of electronsan € total potential energy opera- 1z )2(13,)2 (13,135, optimized atomic orbitals for the

tor, and making use of the HF theorem the average force cah+ and H- ions). In the case of Li we have considered a

be rewritten as th? stazttistical average of the local force OVEix-determinant representation consisting of the three cova-
the exact distributionjig(): lent VB structures describing the resonance between atomic

Eqi:“:qi(x'q»wé(x)- (66) orbitals (Z4,2sg), (2pyA,2pyB), and (33sz2sz)- This lat-
ter trial wave function reproduces not only the dissociation

Written under this form the various proposals presented ifimit but also a major part of the2-2p near-degeneracy.
the preceding sections can be applied to the calculation of |n Figs. 1-3 the energy curves obtained for, HH, and
the average force. It is important to emphasize that for apti, are presented. Upper curves are the VMC curigen
proximate probability densitie®MC or DMC) the HF theo-  squares joined by a dotted lind=or H, the two parameters
rem is no longer valid and a systematic error in the statisticahnd » have been optimized for each interatomic distance.
average(Fq (x,0)) is introduced. However, it is not a prob- For LiH and Li, the Jastrow-RHF wave functicione deter-
lem here since it is the purpose of this work to show that, byminan) has been used. All the parameters entering the Ja-
using suitable improved estimators, this error can be reducestrow factor have been optimized for all distances. Optimi-
and even suppressed in the zero-bias limit. zations have been performed by minimizing the variance of

In order to discuss the various aspects of the method wehe local energy using the correlated sampling method of
shall restrict ourselves to the case of diatomic molecules. Letmrigar et al*® The first important observation is that, ex-
us consider a diatomic molecubeB with atomA located at cept for H,, VMC curves are not smooth as a functionRaf

whereE(q) is the total electronic ground-state energy for a
given nuclear configuratiorg represents thel3,,,; nuclear
coordinates N,,.c, number of nuclgiand g; the particular
force component in which we are interested.

Defining the local force as follows:

Fqi(X,q)E -
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N -14.88} . Exact —
| L|2 VMG ~a-
] 3
® -1.05} ©-14.92
5 5
= o
g -l.1 c
W .14.96
-1.15f
1 2R(a.u.)3 3 4 5 6 7 8

FIG. 1. H, molecule. Variational Monte CarldVMC) energies(open

square} diffusion Monte CarldDMC) energieqclosed squargsand exact ~ FIG. 3. L, molecule. Variational Monte Carl¢vVMC) energies(open

nonrelativistic curve(solid line). The dotted line between VMC results is a square fixed-node diffusion Monte Carlo(DMC) energies (closed

simple linear interpolation to guide the eye. squarel and exact nonrelativistic curvesolid line). The dotted line be-
tween VMC results is a simple linear interpolation to guide the eye.

Such a result is not surprising: It is typical of a situation
where an approximate trial wave function is optimizede-
pendentlyfor different values of an external parametieere,

sampling scheme. This is a good illustration of how difficult
the calculation of forces is within a QMC framework.
Intermediate pointgclosed squaresre the DMC results
obtained from fixed-node calculations using the optimized
MIMC trial wave functions. In sharp contrast with VMC, the
DMC curves are now regular. This is so because, unlike
VMC, fixed-node DMC averages do not depend on the par-
d’cular form of the trial function used, except for the nodal
Structure. Here, the nodal hypersurfaces vary smoothly as a

. function of the distance and, therefore, the corresponding
abruptly even when the external parameter is change

smoothly. Of course, this problem can be solved in principle MC energy curves are smooth within error bars. The sec-

. L ond important observation is related to the global shape of
by making very careful optimizations on very large samples . . .
. i . . “the curves. Ideally, we are interested in having energy curves
Indeed, the functional form of the trial wave function being

identical at all distances a smooth curve must be obtainealhICh differ from the exact curve only by a constant inde-

- . . . endent of the distance. This is indeed the condition to ob-
when the correct lowest minimum of the variance is obtained_. o -
. L . ain accurate derivatives. Here, it is not the case for the VMC
at each distance. Here, this is the case fgrwhose trial

. : . curves of LiH and Lj; the difference between the VMC and
wave function contains only two variational parameters.

. ! exact energy curves is an increasing function of the distance.
However, for large systems including a much larger numbe

o It is not a surprise since in both cases the trial wave function
of variational parameters and nuclear degrees of freedom, the

- T : T IS built from a single RHF determinant based on delocalized
pOSSIb'I|I'[.y of fully qptlmlzmg the trial wave function is just . molecular orbitals which leads to a wrong description of the
unrealistic. As an important consequence, let us empha‘c"ztﬁssociation limit. However, and very interestingly, fixed-

that, in praCt'C?’ there s no h_ope .Of obtaining meanmgfmnode DMC results have a much better behavior at large dis-
forces by making straight finite differences of optimized

o ; . ) C}ances. As a consequence, one may expect at this stage to
variational energies without using some sort of correlate . 0 .
obtain accurate forces from the derivative of the fixed-node

energy curve even when relatively crude wave functions are

.= ) o used. Finally, let us note that the quality of the fixed-node
798 LiH S calculations for the molecules considered here is quite good.

To give an example, at the equilibrium distance of the Li
molecule, the total energy obtained s14.9901(6) to be
compared with the exact nonrelativistic value @&,
=—14.9954. The amount of correlation energy recovered
within the fixed-node approximation is about 95.7%. A simi-
lar quality is obtained for other distances and also for the
LiH molecule. In the case of the nodeless molecule(no
fixed-node approximation the DMC energies agree per-
fectly well with the exact ones. For the,Hnolecule the
variance of the local energy varies between 0.Bat0.8 and

o ool | CarlevMC) ( 0.02 atR=3.5; for LiH the variance is about 0.07, and for
FIG. 2. LiH molecule. Variational Monte Carl¢VMC) energies(open P ;

squarey fixed-node diffusion Monte CarloDMC) energies (closed Li I_}_r\:anes peltwe.en Or.]09 ‘f"”dlo'z' . h . f
squares and exact nonrelativistic curvesolid line). The dotted line be- e crucial point when implementing the various formu-

tween VMC results is a simple linear interpolation to guide the eye. las presented in the preceding section is the choice of the

eterg. Depending on the initial conditionsvhich are them-
selves very dependent &) the algorithm used for minimiz-
ing the variance can be trapped within one of the variou
local minima. As a consequence, the actual value obtaine
for the variance(and the corresponding enejggan vary

—
R (a.u)
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) - ~ H-E i
Li, 1 Fumc-zvl ¥, ¥min] =F + % (72)
35 o2 R\; This estimator can be viewed as the simplest improved esti-
) \»:;\ e 1 mator we can think of having a finite variance; it corresponds
g o TrelTw N W N ] to the form employed in our previous stutfyThe subscript
2 ey BT | ZV (zero varianceis used here to emphasize that the im-
g L proved estimator is built to decrease the statistical error only.
% -0.2 Exact — 1 Circles joined by a dotted line are results obtained from the
O . <P ] ZVZB improved estimator derived in the preceding section,
E <Fymczv [ ¥r¥mnl> — Eq. (32):
041 <Fymczvza [WrWminl> =~ 1 _
- ~ H-E i
Fumczvzel ¥, hmin] =F + (lﬂﬂ
3 ¥ 5 6 7 ] !
R (a.u) Do
. : . +2(EL—(E) ——. (73
FIG. 4. Various VMC average forces for Li Closed squares with large Ur

error bars:(F), Eq. (67). Open squares joined by the dashed line: . .
FEcaltr Fondy Eq. (72. Circles joined with the dotted line: Note the use of the subscript ZVZB to emphasize the two

(Euneavaslr Tmn]), EQ. (73). Solid line: exact nonrelativistic force aspects: rgductlon of statistical and systematic errors. Finally,
curve. the solid line represents the “exact” nonrelativistic force
curve for Li.
A first important observation is that using improved es-
_ timators is extremely efficient in reducing the statistical er-
trial function ¢ for the derivative. In our previous study on ror. This can be seen by comparing the magnitude of the
forceg* where we focused our attention on the reduction oferror bars on data obtained from the ordinary bare estimator
statistical fluctuations only, we proposed to employ the mini-(closed squares &=5, 6.5, and 7.5with those correspond-
mal form leading to a finite variance of the renormalizeding to other calculations based on improved estimators. A
local force. As can be viewed from Ed67), at short reduction of at least two orders of magnitude is observed. As
electron—nucleus distanae the local force behaves @  already discussed this remarkable result is a direct conse-
~1/r? and, therefore, the variangd=?)—(F)? is infinite.  quence of the fact that the infinite variance of the bare esti-
This well-known problem has been discussed in differenimator has been reduced to a finite value. At the scale of the
places(see, e.g., Ref. 15, Chap. 8.2 or Ref)3tiere, the figure error bars associated with improved estimators are al-
“minimal” form removing the singular part responsible for most not visible. A more quantitative analysis will be given

the infinite variance is written as later (see Table ).
_ Now, regarding systematic errors, results are much more
min(X) = Qr, (69 disappointing. Using the pure zero-variar@/) renormal-
o ized estimator, Eq(72), the behavior of the average force
whereQ is given by (open squares joined by the dashed line in Figagta func-
Nekeo (x _ R) tion of R appears erratic. This can be easily understood since
Q=2,2 ——-. (700  the term added to the bare force in E@2) has a zero aver-
=1 Iri—R] age and, therefore, the erratic behavior is a direct conse-

) i i . quence of the irregular VMC energy curve presented in Fig.
To see this, we just need to compute the following quantity:3 ‘\when adding the term correcting the average, the results
(H—E) T eec (x R) are improved. As seen in the figure the behavior of
L) ¥min —Z,> | I—R|_3 —VQ-Viyilr. (7)) (Fumczvzel ¥1.¥minl), EQ.(73), as a function oR, is much
Y =1 I less irregular, thus illustrating the important role played by
. . . the zero-bias additional contributigthird term on the right-
éyna?:;ngnthlzlsa:atz; iglja?(rglc?ll t%r:\/ggrfhéofea*;?r:?f’ CEC:?,]'_hand side of Eq(73)] to correct the error due to the approxi-
o g p. ) ] y ’ ~ g mate trial wave function. Despite of that, the resulting curve
tribution having a finite variance. In xvhat followgy,;, will is far from being satisfactory. To weaken the role played by
be referred to as the minimal form fafr. _ + we can think of going beyond VMC calculations. In Fig.
In Fig. 4 we present various VMC calculations of the 5 we present such calculations for, lLising the DMC-ZVZB

average force for the Limolecule as a function of the inter- ;1.\ ed estimatoE U 1 written as
atomic distance. A first set of poin{glosed squares with P owc-zvzel ¥ Yiminl

very large error bars &=5, R=6.5, andR="7.5) are results ~ ~ (H=EL) ¥min
obtained from the ordinary bare estimator, E67). Open Fomczvzel 1, ¥min] =F + T
squaregwith small error barsjoined by the dashed curve 5
correspond to results obtained by usifg;, as trial function +2(EL—(EL)) Ymin (74)

for the derivative

2
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0.1 rameters, et¢. The main advantage of using a finite-

) difference form instead of the exact derivative is practical:
To estimate the derivative we only need to compute two
additional local energies and, thus, we avoid deriving and
programming the lengthy expressions resulting from the ex-
plicit derivative. Note also that using an approximate finite-

-0.05 ] difference representation is not a problem here: In any case
Exact — Jgeriv Must be considered as an approximate trial function for

-0.1¢ EMS: 1 the exact derivative andR can always be interpreted as a

Hybrid —— new additional variational parameter fgt In practical cal-
VISg——f————¢———+——% culations, the complete set of parameters we use for mini-
R{au) mizing the fluctuations of the various improved estimators
FIG. 5. Li molecule. A . Bouna (e Brre), EGS. (73 consists of p(R), p(R+AR), andAR}.
. 5. Li, molecule. Average forces usimgyzg(¥1,¥min), EQJS. - . .
(75). VMC average: lowest curve with open circles. DMEnaverage: interme- At the VMC level we consider the following form for

diate curve with closed squares. Hybrid average: highest curve with opetn€ improved estimator
squares. Solid line: exact nonrelativistic force curve. Dashed lines between

)

=}
=}
&

Average force (a.u.
¥

QMC results are a simple linear interpolation to guide the eye. ﬁVMC_ZVZB[ Ut v?bderiv,lj]
(H - EL)Tﬂderiv Tﬁderiv
where the energy average is a fixed-node DMC average, and, ~ F+ Ut +2(E.—(EL))
also, results obtained by using the generalized hybrid for- )
mula, Eq.(57), VI(EL—(E.))¢70]
- ) 3 + L < 5 L> T . (79
F22<FDMC-ZVZB>¢T¢/O_<FVMC-ZVZB>¢$- (75 vr

A clear improvement is observed when going from VMC At the DMC level thg expression us_ed is very similar_, see Eq.

(open circles to DMC (closed squaresand, then, to hybrid (60). I_n this expressmn.the.vector fieldassociated with the

calculations(open squargs The systematic error present in coordinate transformation is chosen as follows:

VMC calculations is reduced. However, the resulting curves Nelec

are still not satisfactory. Extracting from them a meaningful ;- E efariAf,BrizAle, (80)

equilibrium distance or first derivative of the force curve i=1

(calculation of w.) is impossible. Very similar behaviors L. ) ) i

have been obtained for+and LiH. They do not need to be whereld, is the unit vector along the axis. The vgctpr field

reproduced here. depends on two parilmetetsand,B, which are optimized to
The main reason for the poor results just presented is th@wer the variance of yyc zvzs - The vector field is built so

low quality of the trial functiony,,, used. According to our that electrons close to the nucleds translate with the

general presentation of Sec. Il we know that a good triaInUCIe”S' while electrons far away do not move. In practice,
function § must be close to the derivative of the exactwe compute the additional term associated with the coordi-

- . . nate transformation using a finite-difference scheme alon
ground-state wave function with respectRo Here, this is g 9

only true when an electron approaches the nuckugsote the direction defined by the vectoy
that nucleusB has been fixed at the origin and, thus, has n 7[(E —(E >)¢’25]

pathological contribution In that case the nonvanishing part T
of the exact wave function is expected to behave as ¥r

Yo~r,rEXN(—Za|ri—R|), (76)

which leads to

1//%()?4- €v)

:(EL—<EL>)V.J+ W

(EL—(EL)(X+ ev)

adlo (Xi_R) (E E )(—> /
_70 S —(EL— X) €, (82
&R I'iHR ZA |ri_ R| ¢Oi (77) L < |_>
which is nothing bufup to a minus signthe minimal form  wherex represents the electronic coordinates aral small
for ¢ given above, Eq969) and (70). positive quantity whose magnitude can also be optimized.
In order to improve our trial wave functiogr we pro- ~_ In Fig. 6 we present VMC calculations for Liusing
pose to use the following finite-difference form: Fumc-zvzel 1, ¥min] @and Fymc.zvzel 1, ¥genv,v] as im-

proved estimators. The two estimators have been evaluated
(78  on the same Monte Carlo samples. There are two striking

~ _pr[R+ARp(R+AR)]— #1[R,p(R)]

deriv— AR . ; i
differences when using the second estimator
In this expressiorp(R) denotes the complete set of varia- Fyyc.zvzel 1, #aery.U 1. First, the gain in statistical error is
tional parameters entering the trial wave functi@oeffi-  spectaculatabout one order of magnitude, for a quantitative

cients of molecular orbitals, basis set exponents, Jastrow panalysis see the following discussion, Tablge 8econd, the
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] R —
—_ ' Exact — Exact —
5 0.08f ~ ~ 1 0.081 - e
< < Fumczvzs [ ¥ Yminl >~ Jastrow-RHF DMC
@ <Fymczvze [ VT Wperws V1> = ] 0.06 Jastrow-VB DMC ——
5 ooat N\ 3 -
S ‘ S 0041 |_|2
g 8
g o 5 002 .
[&]
s ol
= 0.04}
L -0.02 +
3 4 5 6 7 8
R (a.u.)

FIG. 6. VMC force for L. Lowest irregular curve with closed squares: FIG. 8. DMC force for Lj. Open squares: average fixed-node DMC forces

(Fwmczvl ¥ ¥minl),  Ed. (72). Upper curve with open squares: ysing the Jastrow-RHF one-determinant wave function. Open circles: aver-
(Fumczvl &7, ¥gerv,01), EQ. (79). Solid line: exact nonrelativistic force age fixed-node DMC forces using the Jastrow-VB six-determinant wave
curve. function. Solid line: exact nonrelativistic force curve.

curve is much more regular and closer to the exact resulike in the VMC case. This result takes its origin in the ap-
(solid line). The VMC results are very satisfactory at small proximation made for the exact derivative of the wave func-
distancegbetweenR=3 andR=4). However, at larger in-  tjon in the DMC estimator, Eq53) (¢4l is replaced by

teratomic distances, the VMC curve begins to separate fror{%/ 7). When using the Jastrow-VB wave function the
the exact one. This is due to the fact that the wave function i$\pc results obtained are much better.

limit is not correctly described. To address this problem wethe three molecules obtained with our best fully optimized

have considered a more sophisticated trial wave funCtioréstimatorif [ s D] and the hybrid formula. Re
P . zvzBL YT » Yderivy . -
go?sst!ng tOf a pro<tj_u|ct of a Jastrow (;ai;t(_)lr dar(;d a SXguits for the molecules HLiH, and Li, are presented in

\eterminant one-particie pa(tor_ a more detailed descrip- Figs. 9—11, respectively. As seen from these figures the over-
tion, see above This VB-ty_pe trial wave function has been all agreement between the exact curyeslid lineg and
;s_eg gnl?/ foFr_the I%alrgeztgls;]ancés.tl R:7'§’ R=8, and | QMC results(open squargsds very good. To be more quan-

t; S d 3 'tr:gfﬁ Jant tRI(: comp;r;son_ et\;vee(;] tLesu Ritative we have extracted from these curves an estimate of
obtained with the Jastrow- fone de grmlngm an € the spectroscopic constarRg (equilibrium distanckand w,
Jastrow-VB(six detgrmmant)svyave functions is prgsented. (harmonic frequengy To do that, the data have been fitted
At the VMC Ieve_l (Fig. 7), the |mpr_over_nent resulting from with a functional form given by the derivative of a Morse
the multideterminant wave function is clearly seen, the, . .-\ /e E(R)=D[exp—28(R—R)—2 exp—25(R
forces computed are much closer to the exact curve than "N Ry)] over some interval of distances around the equilibrium

the one-determinant case. At the DMC leVé&lig. 8 we eometry R between 1.1 and 2 for H between 2.6 and 4
could expect that this error disappears even with the Jastrov?—

RHF d , ; ' ) he DMC | or LiH, and between 4 and 6 for 4). Parameter®, g3, and
(one determinaptvave function since the resu .ts R have been determined via a generalized least-squares fit.
depend only on the nodal structure of the wave function

e ; Our results at the VMC, DMC, and hybrid levels are pre-
However, it is not true. The difference between the DMC

e ; sented in Table | and compared to experimental valtiés.
curve and the exact one is still important at large dIStance§een from Table | results for the equilibrium distances are

excellent. The largest systematic errors are obtained at the

0.1 — VMC level (relative errors of 4.3%, 3.3%, and 5.7% for
Exact —
0.08} Jastrow-RHF VMC ——
Jastrow-VB VMC ——
__ 006
3 . 1
S 0.04f Liy ‘ Exact —
8 Hybrid ——
= - H
S 0.02 . 3 2
O.r 9 0.5
k2
-0.021
4 5 6 7 8
R(a.u) 0. R
FIG. 7. VMC force for L. Open squares: average VMC forces from esti- T % 3
mator (79) using the Jastrow-RHF one-determinant wave function. Open R(a.u)

circles: average VMC forces from estimat@®) using the Jastrow-VB six-
determinant wave function. Solid line: exact nonrelativistic force curve.  FIG. 9. Hybrid force for LiH. Solid line: exact nonrelativistic force curve.
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TABLE I. VMC, DMC, and hybrid estimates of the equilibrium geometry
R, (a.u) and harmonic frequency, (cm~1). The atomic isotopic masses
taker? are 1.007 825 035 amu fdH and 7.016 003 0 amu fdi.i.

H, LiH Li,
—_ Re (VMC) 1.46312) 3.11117) 5.34627)
S Re (DMC) 1.42613) 3.0566) 5.20016)
s Re (hybrid) 1.39515) 3.001(15) 5.06827)
® Re (Expt)? 1.401 3.015 5.051
o
) we (VMC) 4194130 155940) 366(9)
L we (DMC) 4432165 154922) 3735)
we (hybrid) 4662205 151931) 3878)
we (Expt)? 4395.2 1405.65 351.4

“Reference 42.
bReference 41.

R (a.u.)5

FIG. 10. Hybrid force for LiH. Solid line: exact nonrelativistic force curve.

various aspects of the method, to present some comparisons
with the recent results obtained from the improved estimator
implicitly used by Casalegno and collaboratdtsnd also to
emphasize some importagiantitativeissues. In Table Il the
H,,LiH, and Li,, respectively. A reduction of a factor of Systematic and statistical errors associated with the various
about 2 is gained when DMC calculations are performedforce estimators at the VMC, DMC, and hybrid levels of
Finally, using the hybrid formula, the exact equilibrium dis- calculation are presented. The results shown are for the Li
tances are recovered within statistical errghe relative sta- molecule at the equilibrium geometrRE5.051 a.u.) where
tistical errors being 1.1%, 0.3%, and 0.5% fos,HiH, and  the exact force average, denoted(&$.,, is equal to zero.
Li,, respectively. In contrast, results for the harmonic fre- To allow direct comparisons between force estimators all av-
quencies are less accurate but still satisfactory. For the Herages have been computed in a common Monte Carlo cal-
molecule, the exact experimental result is almost recovere@ulation (identical MC samples To compare with, we also
within statistical error at the VMC, DMC, and hybrid levels, give the systematic and statistical errors on the total energy.
the relative statistical error being between 3% and 4%. Foffo give a measure of the fluctuations of each estimator the
LiH and Li, the relative statistical errors are of the samecorresponding variances at the VMC levef,(VMC), are
order of magnitude. However, a non-negligible systematidgeported. To facilitate comparisons between data all averages
error of about 10% is found for these molecules. This resultexcept for the VMC variancgsare given with five signifi-
illustrates that obtaining accurate harmonic frequencies i§ant figures after the decimal point and all statistical errors
more difficult than obtaining accurate equilibrium geom-are given on the fifth decimal pladenagnitude 10°). The
etries. first estimator presented is the bare estimatofEq. (67)].
Now, we would like to present a more quantitative dis-As already pointed out, this estimator, which has an infinite
cussion of the performance of the various force estimatoryariance, displays very large statistical fluctuatidnstween

introduced in this work. This will allow us to summarize the two and three orders of magnitude with respect to the im-
proved estimators to followand is, therefore, not at all suit-

able for practical calculations. The second estimator,

0.1 — T T Foul 7, Umin] [EQ. (72)], introduced in our previous work on
force$* is the simplest estimator having a finite variance.
However, as explained earlier, when using such an estimator
no control on the systematic error exists. The third estimator
presentedF »yzg[ 7, Yminl, is the simplest estimator having
the ZVZB property. We can see that the introduction of the
contribution associated with the ZB property, EX(
—(EL)) (Yminlt) is efficient in reducing the biaghe DMC
and hybrid errors are roughly divided by a factor Blow-
ever, as already discussed, the derivative of the trial wave
function is not correctly reproduced as a function of the in-
teratomic distance and the corresponding force curve is not
smooth (see, Figs. 4 and)5 To get accurate and well-
-0.02+ 7 behavedas a function oR) values of the force it is impor-
L . L . ' . ' . ' tant to introduce an auxiliary function close to the exact de-
R (a.u.) rivative of the wave function. The most simple estimator
o based on this idea and having a finite variance can be con-

FIG. 11. Hybrid force for Lj. Solid line: exact nonrelativistic force curve. structed by using the minimal form,, [Egs.(69) and(70)]

0.08

0.06

0.04

Force (a.u.)

0.02
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TABLE II. VMC, DMC, and hybrid systemati¢bias and statistical errors for the total energy and various force
estimators for Lj at R="5.051 a.u. The VMC variances? (VMC), are also given(E, )., and(F)., denote the

exact total energyE, )e,=—14.9954 a.u. and exact for¢€).,=0 (equilibrium geometry, respectively. To
facilitate comparisons between energy and force results all averages are given with five significant figures after
the decimal point and statistical errors are given on the fifth decimal ptaagnitude 10°). Statistical errors

on VMC variances are on the last digit.

Estimator VMC average DMC average Hybrid a? (VMC)
EL—(EL)ex 0.0387132) 0.005 3150) . 0.1135)
F—(F)ed 0.182 1723216 0.154 6212293 0.127 0733185 + o
Fldr Ymind=(Flex ~0.06352(84)  —0.04003(151) —0.01654(313)  1.2B)
vzl 1 D] (e ~005802(104) —0.02484(184) 00083882  1.32)
Bl e Dl Tsernd — (Pl 0.006 19109 0.029 93187 0.053 67390 2.81)
Bopvsal Ur Ba =01 (F)oe  0.00871218  0.00474147 000077366  14(3)
Epvmsl trr Faonesi]— (F)a 0.006 929) 0.003 5819) 0.0002439)  0.0161)
3Equation(67). dEquation(82).

PEquation(72). ®Equation(79).
‘Equation(73).

the statistical error without this term is 2%80°, while the
optimized improved estimator using theterm is decreased
down to 9x 10" °. The reduction gained in statistical error is

for the zero-variance part arfﬁderi\, [Eq. (78)], for the zero-
bias part. Such an estimator is written as

~ ~ i~ (H—EL) ¥min more than one order of magnitude. This remarkable result is

FLUT timin gerd] =F + Ut general: It is valid for all molecules and all distances treated
_ here. Another most important point is that our best improved
Uderiv estimator(79) is the only estimator presented in this work

+2(E —(EL)) (82

Ut whose statistical errothere, 9<107°) is (much smaller
than the energy ongere, 3% 10 °). Note that it is also true

Written with our notations this is in fact the estimator im- for the systematic errofwhatever the level of calculation
plicitly used by Casalegno and collaborators in their very y

recent worlC® In contrast with the other estimators presentedS uch a result s particularly important since it has been found
here this “mixed” estimator(different trial functions are that a precise control of the magnitude of the systematic error

through variance minimization of the improved force estima-
used for the V' and ZB pant$ias no ZVZB property. Ac- tors is possible only when such a condition is verified. In

co_rdm_gly,_ our general optimization _procedure _based on th%ontrast, when the statistical error on the force is larger than
minimization of the improved-estimator variance is no . L .
the energy error, the variance minimization can lead to vari-
Yus results and to get a smooth force curve is very difficult.
Actually, we would like to emphasize that obtaining results
of the quality presented in Fig. 11 for the,Lmolecule has
only been possible with the improved estimat@$). Using

Casalegnet al, to optimize estimato(82) we still have the
possibility of optimizing the parameters of the trial wave
function ¢ via energy minimization. Such a procedure is

justified because fully optimized trial wave functions are ther estimators we have not been capable of constructing a
known to verify the Hellmann—Feynman theorem. Statistical’ ' W v P ucting

errors associated with this estimator are reasonable ar{gasonable force curvsmooth and accuratdor this mol-

roughly similar to those obtained with the two previous es-eCUIe_'

timators. Systematic errors are also comparable. However, in Finally, let us say a word about the.dependence of our
contrast with all ZVZB-improved-estimators introduced in "eSUlts on the optimization procegtetermination of the op-
this work, the DMC (and hybrid calculations do not im- timal parameters entering, ¢, andu by minimization of
prove the results and, as seen in the table the hybrid result§e variance of the improved estimatoClearly, the method
can even be bad, despite the fact that VMC results are redresented in this work is useful only if the results obtained
sonable. Regarding the dependence of the results on the if0 not depend too much on the way the optimization is per-
teratomic distance we have been able to recover a relativefermed and on which particular minimum has been found for
smooth force curve for the smallest molecules ahd LiH  the varianceas already emphasized, when a large number of
but not for Li, (results not shown heyeln this latter case, parameters are considered the location of such a minimum
the systematic error is found to be much too sensitive to th€an depend very crucially on the initial conditions and/or on
quality of the optimization of the trial wave function to lead the random numbers series us€b quantify this aspect we

to reliable results. The last improved estimator presented ihave made nine independent optimizations over nine inde-
Table Il is our best proposal for the force estimator, &§). pendent sets of 2000 walkers for the, Liholecule at the
We report results with {#0) and without {=0) to en-  equilibrium geometry with our best estimator. Results show
lighten the role of the coordinate-transformation term. Asthat the VMC average force results may vary in a significant
seen, the introduction of the term is extremely efficient in  way for the different sets of optimized parameters found. In
reducing the statistical error. For example, at the VMC levelthis case, the domain of variation is about twenty times the
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magnitude of the statistical error. The domain of variation ofwith a similar result in the DMC case. This important result
the DMC average is also important but two times smallergeneralizes the well-known quadratic zero-variance zero-bias
than in the VMC case. However, it has been observed thagtroperty of the energy where the local energy,;

the hybrid averages are much less sensitive on the optimized H 1/ 47, plays the role of the improved estimator:
parameters. The error on the hybrid average force due to an

incomplete optimization has been found to be of the order of  ¢?(E )~ O[ 6¢/?] (86)
magnitude of the statistical error which is rather small.

and

V. SUMMARY AND CONCLUSIONS
Ag, ~O[847]. ®7)

In this work we have shown how to construct improved
VMC or DMC estimators for observables. By improved it is In the case of the energy we can write a zero-variance
meant that, compared to the standard bare estin@fdhe  zero-bias equation defining the optimal trial wave function
new estimator® have a lower variance and a reduced sys-by imposing that the local energy reduces to a constant,
tematic error when averaged over the approximate VMC ohamely the exact energy
(fixed-node DMC probability densities.

At the variational Monte Carlo level the most general HlﬂT

form we propose fo© is given by ¢T =Eo. (88)
~ ~ . (H-EDY v . . . -
Oumcl¥7,4,0]1=0+ —————+2(E_ —(E})) — Of course, this equation is nothing but the Schinger equa-
Ur Ur tion. Here, the zero-variance zero-bias equation for the ob-
V[(EL (EL>)¢TU] servable is obtained by imposing that the improved observ-
2 , (83  ableO reduces to the exact average
2
where averages are defined over the VMC distribution. At 6=(O)¢2. (89)

the diffusion Monte Carlo level the expression proposed is
essentially similar, except that the average of the local energy
entering the definition 0Dpyc is defined over the DMC  BY Optimizing the three quantities),#,0) so that fluctua-
distribution, Eq.(60). The various terms defining the im- tions of O are minimal we can obtain the optimal improved
proved observables have a well-defined physical origin: Th&stimator for the observable. In practice, it is done in two
first three contributions result from the change of the energteps. First, functional forms for the trial functiois and s
average when the magnitude of the observable considered age chosen in order to reproduce the best as possible the
an external field is varied, while the last contribution comesexact solution of the zero-variance equations. The choice of
from the use of a coordinate transformation correlating electhe vector field; is done on physical grounds: It corresponds
tron displacements and change of the external field. Théo the electron-coordinate transformatioy=xX+ \v(X)
functions ¢ and 3 appearing in the improved observables +O(\?), correlating as much as possible the electron dis-
play the role of trial functionsy is the ordinary trial wave placements and the change of density associated with the
function for the ground state df and ¥ is a guess for the external field defined by the bare observable. Second, the
derivative of the exact ground-state wave functigg(\), of various parameters entering the three quantities are opti-
the perturbed Hamiltonian mized by minimizing the fluctuations @ over a large but

_ finite number of configurationg&ypically, several thousand

H(M)=H+XO0 drawn according to the VMC or DMC distributions.

with respect to\ at A =0. When the trial functions are exact, It is important to emphasize that by using the improved
(g, ) = (o, dipg(N)/dX |, _o), the improved estimator re- estimators presented here it is possible to get an accuracy on
duces to a constant, namely the exact average for the obser&Xpectation values of observables which is comparable to the
able. In that case both statistical and systematic errors vaiYery good one obtained for total energies. As can be seen
ish. We have called this remarkable property “zero-variancdrom Egs.(84)—(87) this is true when we are able to reduce
zero-bias property{ZVZB). In the neighborhood of the ex- the error on the derivative of the wave function at the level of
act solution, a local expansion of the various quantities obthe error on the wave function itself, thatdgi~ 5y’
tained from the approximate guess:(,7) can be done. It is Another fact worth pointing out is that there is not an

found that there is ajuadratic behavior in the errorssyy ~ Unique way of constructing improved estimators. Here, we
— Yt and 89’ = J— . At the VMC level it reads have built our estimators by considering the derivative of the

variational, Eq.(18), or the exact DMC energy average, Eq.
02(6)5«6_<6>¢2)2>wz~o[5¢,5¢,'] (84)  (51). We have also considered the possibility of making a
o coordinate transformation before making the derivative, Egs.
and (41) and(43). Of course, we can think of many other choices
Y-S _ , and/or transformations. Ultimately, the better strategy will
AO_<O>‘/’$ <O>¢§ OLoyoy’], (89 depend very much on the specific problem considered.
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Finally, in order to go beyond VMC or DMC calcula- force vector at each Monte Carlo stdphe expensive
tions, we have shown that the reduction of error of one ordeBN,,.rlocal energy-calculation step will be done rajelin
in &y associated with the popular “hybriddr “second-  addition to this, in applications where the nuclear geometry
order”) formula mixing DMC and VMC averages can be is varied during the simulatiotmolecular dynamics-type ap-

generalized to the case of our improved estimators: plications it should also be possible to use suitable re-
. _ actualization schemes to avoid recomputing entirely the
2<ODMC>¢T¢O—(OVMC>¢$~(¢0|O|zﬂo)- (900 3N,y local energies for close nuclear configurations. Of

course, the validity of these various strategies as well as the

As an important application we have applied our formal-quality of the improved estimators presented in this work
ism to the case of the computation of forces for some simpl@eed now to be checked for realistic applications involving
diatomic molecules. In our preceding work on foréese many nuclear degrees of freedom.
have focused our attention only on the zero-variance part of
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