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Zero-variance zero-bias principle for observables in quantum Monte Carlo:
Application to forces
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A simple and stable method for computing accurate expectation values of observables with
variational Monte Carlo~VMC! or diffusion Monte Carlo~DMC! algorithms is presented. The basic
idea consists in replacing the usual ‘‘bare’’ estimator associated with the observable by an improved
or ‘‘renormalized’’ estimator. Using this estimator more accurate averages are obtained: Not only the
statistical fluctuations are reduced but also the systematic error~bias! associated with the
approximate VMC or~fixed-node! DMC probability densities. It is shown that improved estimators
obey a zero-variance zero-bias property similar to the usual zero-variance zero-bias property of the
energy with the local energy as improved estimator. Using this property improved estimators can be
optimized and the resulting accuracy on expectation values may reach the remarkable accuracy
obtained for total energies. As an important example, we present the application of our formalism
to the computation of forces in molecular systems. Calculations of the entire force curve of the
H2,LiH, and Li2 molecules are presented. Spectroscopic constantsRe ~equilibrium distance! andve

~harmonic frequency! are also computed. The equilibrium distances are obtained with a relative
error smaller than 1%, while the harmonic frequencies are computed with an error of about
10%. © 2003 American Institute of Physics.@DOI: 10.1063/1.1621615#
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I. INTRODUCTION

Over the recent years quantum Monte Carlo~QMC!
methods have become more and more successful in com
ing ground-state total energies of molecular systems.
systems with large number of electrons the accuracy
tained by QMC is very good. As illustrated by a number
recent calculations,1–14 the quality of the results is compa
rable and, in most cases, superior to that obtained with m
traditional techniques~density functional theory, multicon
figuration self-consistent field, or coupled cluster method!.
Unfortunately, for properties other than energy the situat
is much less favorable and accurate results are difficul
obtain. To understand this point let us first define what
mean here by accuracy. In standard quantum Monte C
schemes there exist essentially two types of error:

~i! The usual statistical error resulting from the necess
ily finite simulation time. This error present in an
Monte Carlo scheme behaves as;1/AN whereN is
the number of Monte Carlo steps.

~ii ! The systematic error~or ‘‘bias’’ ! associated with some
particular choice of the trial wave function. In a vari
tional Monte Carlo~VMC! scheme it is the systemati
error resulting from the approximate trial probabili
density. In a fixed-node diffusion Monte Carlo~DMC!
it is either the fixed-node error of energy calculatio
or the systematic error associated with the mix
DMC probability density for a more general obser
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able. Other types of systematic errors may also ex
e.g., the short-time error,15 however, such errors ca
be easily controlled and, therefore, will not be cons
ered here.

Now, to enlighten the major differences between ene
and observable computations let us evaluate the express
of these two errors. We shall do that within the framework
the variational Monte Carlo method where, as we shall
later, all the main aspects of this work are already prese

In a variational Monte Carlo simulation the variation
energy

Ev[
^cTuHucT&

^cTucT&
, ~1!

where cT is the approximate trial wave function used,
re-expressed as the statistical average of the local en
defined as

EL5
HcT

cT
~2!

over the probability density associated withcT
2 , namely

Ev5^EL&c
T
2. ~3!

An accurate calculation of the energy requires the two f
lowing conditions.

~i! The systematic~or variational! error defined as

DE[Ev2E0>0, ~4!

whereE0 is the exact energy, must be as small as possib
6 © 2003 American Institute of Physics
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~ii ! The variance of the local energy~which is directly
related to the magnitude of the statistical error!

s2~EL!5^~EL2Ev!2&c
T
2, ~5!

must also be as small as possible.
To estimate both quantities we express them in term

the trial wave function error,dc5cT2c0 , wherec0 is the
exact wave function. Regarding the systematic error it is e
to check that

DE5
^cT2c0uH2E0ucT2c0&

^cTucT&
. ~6!

In other words,DE is of order two in the wave function erro

DE;O@dc2#. ~7!

Now, regarding the variance, it is convenient to write t
following equality:

EL2Ev5
~H2E0!~cT2c0!

cT
2DE , ~8!

from which it is directly seen thats2(EL) is also of order
two,

s2~EL!;O@dc2#. ~9!

Equations~7! and~9! are at the origin of the high-quality
calculations of the energy. They show that accurate ene
calculations are directly related to good trial wave functio
The more accurate the trial wave function is, the smaller
statistical and systematic errors are. In the limit of an ex
trial wave function, both errors vanish and the energy e
mator reduces to the exact energy. This most fundame
property is referred to in the literature as the ‘‘zero-varian
property.’’ Note that a much more preferable and accur
denomination should be ‘‘zero-variance-zero-bias proper
to emphasize the existence of thetwo types of error. Of
course, in the case of the energy this distinction is not n
essary since, as just seen, the two errors are not indepen
and vanishsimultaneouslywith the exact wave function
However, as we shall see in the following, this peculiar
pect will be no longer true for other properties.

Let us now turn our attention to the computation of
general observable. Defining the expectation value of so
arbitrary observableO as

Ov[
^cTuOucT&

^cTucT&
, ~10!

its Monte Carlo expression is given by

Ov5^O&c
T
2. ~11!

It is easy to verify that the systematic error behaves as

DO[^O&c
T
22^O&c

0
2;O@dc#, ~12!

while the variance is given by

s2~O!;O@1#. ~13!

Compared to the energy case we have two striking dif
ences. First, the systematic error in the averages is m
larger. This is a direct consequence of Eq.~12!: the estimator
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of a general observable has only alinear zero-bias property
instead of a quadratic one like in the energy case. E
worse, because trial wave functions are optimized to low
the systematic error in the energy~and/or its fluctuations!
and not the error in the observable, the prefactor associ
with the linear error contribution, Eq.~12!, is usually much
larger than in the energy case, Eq.~7!. In practice, this im-
portant systematic error makes in general the quality of
expectation value, Eq.~11!, very poor. The second importan
difference is that there is no zero-variance property at all
observables when Eq.~11! is used. Indeed, even when th
exact wave function is used as trial wave function we are s
left with some finite~and eventually large! statistical fluctua-
tions, Eq. ~13!. Thus, statistical fluctuations are in gener
very large for properties. A simple and popular strategy
reduce the important systematic error on properties is to
VMC and fixed-node DMC calculations to build up a s
called ‘‘hybrid’’ or ‘‘second-order’’ estimator, ^O&hybrid

[2^O&DMC2^O&VMC , whose error is reduced.16 An elemen-
tary calculation shows that the error is now of orderO@(cT

2c0)2#, plus a linear contributionO(c0
FN2c0) due to the

approximate nodes of the trial wave function. However, on
again such a solution is not, in practice, as satisfactory a
appears at first glance because of the large prefactor as
ated with the second-order contribution and, also, becaus
the non-negligible linear error due to the nodes. A seco
possible strategy to cope with the systematic error is to p
form an ‘‘exact’’ QMC calculation based on one of the va
ants of the so-called ‘‘forward walking’’ scheme.17–19Unfor-
tunately, although such schemes can lead to satisfac
results for small systems,20–22 they are known to be intrinsi-
cally unstable and, therefore, very time consuming for la
systems. In practice, the possibility of getting or not gettin
satisfactory answer depends very much on the accuracy
quired and on the type of observable considered. Theref
forward walking is not considered as a general practical
lution to the problem.

In this work, we propose to follow a quite differen
route. Our purpose is to show that it is possible to use m
more efficient estimators for properties than the usual b
expression, Eq.~11!. More precisely, it is shown how to con
struct in a simple and systematic way new estimators hav
the same remarkable quadratic zero-variance zero-bias p
erty as the energy case. Very recently, we have made a
step in that direction by showing how to generalize the ze
variance part of this property.23,24 In short, the basic idea
consists of constructing a ‘‘renormalized’’ or improved o
servable having the same average as the original one b
lower variance. To build the renormalized observable,
auxiliary wave function is introduced. This function plays
role analogous to the one played by the trial wave function
the case of the energy: The closer the auxiliary function is
the exact solution of some zero-variance equation~the
Schrödinger equation in the case of the energy!, the smaller
the statistical fluctuations of the renormalized observable
Our approach has been illustrated on some simple acad
examples23 and also for the much more difficult case of th
computation of forces for some diatomic molecules.24 Nu-
merical results on these examples are very satisfactory. W
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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suitably chosen auxiliary functions are used, statistical er
are indeed greatly reduced.

Here, we present the full generalization of the preced
idea: it is shown how to construct improved observab
minimizing bothsystematic and statistical errors with a qu
dratic behavior similar to that obtained for the energy. A
consequence, any observable is expected to be calculate
least in principle, with the remarkable accuracy achieved
QMC for total energies. The basic idea behind our appro
is quite simple: it consists of making use of the relati
between energy and observable calculations as expresse
the Hellmann–Feynman~HF! theorem. As is well known this
theorem expresses any quantum average as a total en
derivative with respect to the magnitude of the external
tential defined by the observable. It is shown how the ze
variance zero-bias principle valid for each value of the
ergy ~as a function of the external potential! can be extended
to the derivative and, therefore, to the observable. Note
in the context of QMC simulations, the idea of using the H
theorem to compute observables, using either a finite dif
ence scheme or the analytic derivative, is not new and
been applied by several groups.25–34 In general, the results
are good for very small systems but rapidly disappointing
larger systems. Indeed, only when a clear physical ins
into the origin of the fluctuations of the infinitesimal diffe
ence of energy~the derivative! is available is it possible to
propose an efficient solution to the problem. A very ni
example of such a possibility has been presented some
ago by Umrigar at the VMC level28 and, more recently, by
Filippi and Umrigar for the more general DMC case.33 By
using a finite representation of the energy derivative and
introducing a special coordinate transformation allowing
electrons close to a given nucleus to move almost rigi
with that nucleus, Umrigar28 has shown how to correlat
efficiently the calculation of the electronic energies asso
ated with two slightly different nuclear configurations of
diatomic molecule. As a result it is possible to get accur
estimates of the energy derivatives~forces! for some di-
atomic molecules.28,33 Here, we show how this correlate
sampling method can be re-expressed in our framework
addition, by generalizing this idea it is shown how gene
coordinate transformations can be used to define a new c
of improved estimators.

While finishing this work, we became aware of a pap
just published by Casalegno, Mella, and Rappe.35 The idea
underlying their work has some close relations to wha
presented here. In short, they propose, as we do here
compute forces using a Hellmann–Feynman-type formali
Their expression to calculate forces is obtained by mak
the derivative of the VMC~or DMC! energy average with
respect to nuclear positions. To reduce the systematic e
these authors propose to employ trial wave functions wh
have been very carefully optimized via energy minimizati
~let us recall that the HF theorem is valid whenfully opti-
mized wave functions are used!. To decrease the very larg
statistical fluctuations associated with the infinite varian
the improved estimator introduced in our previous work
forces24 is used. As we shall see in the following, the a
proach proposed by Casalegno and collaborators can
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
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viewed as a special case of the general method prese
here, except that their estimator does not obey a ze
variance zero-bias property. This latter aspect has some p
tical consequences since, as we shall see in the follow
having such a property at our disposal allows more flexibi
to reduce both systematic and statistical errors.

The organization of the paper is as follows: In Sec. II w
present the Hellmann–Feynman theorem and the cons
tion of improved estimators for variational Monte Carlo ca
culations. It is also shown how the idea of Umrigar28 con-
sisting of introducing a special coordinate transformation c
be used to build up some more general and more effic
improved estimators. In Sec. III we discuss the general
tion of the formulas to the case of diffusion Monte Car
calculations. In Sec. IV we present the application of t
formalism to the computation of the entire force curve f
the H2,LiH, and Li2 molecules. Calculations of the spectr
scopic constants,Re andve , are also reported. Finally, in th
last section we summarize our results and present some
cluding remarks.

II. IMPROVED ESTIMATORS FOR OBSERVABLES

In order to make the connection between energy a
observable computations we shall make use of the HF th
rem, which expresses the expectation value of an observ
as an energy derivative,

^c0uOuc0&

^c0uc0&
5

dE0~l!

dl U
l50

, ~14!

whereE0(l) is the exact ground-state energy of the ‘‘pe
turbed’’ Hamiltonian defined as

H~l![H1lO. ~15!

By choosing various approximate expressions for the ex
energy in Eq.~14!, it is possible to derive various approx
mate estimates for the average. In the next sections
present two choices which turn out to be particularly efficie
in practical applications.

A. Improved estimator built from the variational
approximation of the energy

A most natural choice consists of replacing the ex
energy of the HF theorem by a high-quality variational a
proximation. To do that, we introduce somel-dependent ap-
proximate trial wave function,cT(l), to describe the
ground-state ofH(l) @note that, for the sake of clarity an
simplicity, we shall denote in what followscT(0), H(0),
andE0(0) ascT , H, andE0 , respectively#.

The exact average of the observable can be decomp
as

^c0uOuc0&

^c0uc0&
5

dEv~l!

dl U
l50

1e~dc,dc8!, ~16!

where Ev(l) is the variational energy associated wi
cT(l),

Ev~l![^EL~l!&c
T
2(l)5 K H~l!cT~l!

cT~l! L
c

T
2(l)

~17!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ande is some correction depending ondc5c02cT and its
derivative, and vanishing when the exact wave function
used as trial wave function.

Now, the important point is that the derivative of th
variational energy,@dEv(l)/dl# ul50 , is expected to be a
better estimate of the exact average than the ordinary ave
of the bare estimator, Eq.~11!, when properly chosen
l-dependent trial wave functions are used. This is true si
the standard estimator, Eq.~11!, can be re-expressed as
particular case of the derivative of the variational energy
a l-independenttrial wave function, a choice which is
clearly not optimal. Before more quantitatively justifyin
this statement, let us rewrite the derivative as an ordin
average over the densitycT

2 . This can be easily done,
gives

dEv~l!

dl U
l50

5^Õ&c
T
2, ~18!

whereÕ is a new modified local operator written as

Õ[O1
~H2EL!cT8

cT
12~EL2Ev!

cT8

cT
. ~19!

In this latter formula, and in the formulas to follow, we sha
use the following simplified notation:

f 8[
d f~l!

dl U
l50

, ~20!

where f (l) is some arbitrary function ofl.
Now, we have to justify the first important result, that t

new estimatorÕ is a better estimator for the exact avera
than the bare observableO. For that purpose, we comput
the systematic error in the corresponding average and
variance of the new operator. Regarding the systematic e
we can write

DÕ[^Õ&c
T
22^O&c

0
25

d@Ev~l!2E0~l!#

dl U
l50

. ~21!

Let us denotec0(l) as the exact ground state ofH(l)
@with c0(0)5c0]. Using the equality

Ev~l!2E0~l!

5
^cT~l!2c0~l!uH~l!2E0~l!ucT~l!2c0~l!&

^cT~l!ucT~l!&
~22!

and choosing the following convention of normalization

^cT~l!ucT~l!&51, ~23!

the derivative can be easily computed. We get

DÕ5^cT2c0uO2^O&c
0
2ucT2c0&12^cT2c0uH

2E0ucT82c08&. ~24!

As can be seen, the systematic error is now of order two
the errorscT2c0 andcT82c08 ,

DÕ;O@~cT2c0!~cT82c08!#. ~25!

Now, let us compute the variance defined as
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
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s2~Õ!5^~Õ2^Õ&c
T
2!2&c

T
2. ~26!

Using Eqs. ~18! and ~19! and the fact thatEL85O1 (H
2EL)cT8 /cT we can express the differenceÕ2^Õ&c

T
2 as fol-

lows:

Õ2^Õ&c
T
25EL82Ev812~EL2Ev!

cT8

cT
. ~27!

For the sake of clarity, let us distinguish two different co
tributions in the difference. The first contribution is given b

EL82Ev85
d@EL~l!2Ev~l!#

dl U
l50

. ~28!

Using expression~8! for @EL(l)2Ev(l)# and performing
the derivative one obtains

EL82Ev85
~O2^O&c

0
2!~cT2c0!

cT
1

~H2E0!~cT82c08!

cT

2
~H2E0!~cT2c0!

cT

cT8

cT
1^O&c

0
22^Õ&c

T
2.

~29!

This latter expression is clearly of order one incT2c0 and
its derivative,cT82c08 . The second contribution on the righ
hand side of Eq.~27! is proportional toEL2Ev . We have
already seen that it is of order one incT2c0 , Eqs.~7! and
~8!. Finally, Õ2^Õ&c

T
2 is found to be of order one incT

2c0 and cT82c08 . The variance, Eq.~26!, is therefore of
order two,

s2~Õ!;O@~cT2c0!~cT82c08!#. ~30!

To summarize, using the HF theorem we are able
construct an improved observableÕ, Eq. ~19!, having a qua-
dratic zero-variance zero-bias property, Eqs.~25! and ~30!,
similar to what is known for the energy case, Eqs.~7! and
~9!. The improved estimatorÕ depends only on one singl
quantity, namelycT(l). Accordingly, to get accurate result
we need to choose in the neighborhood ofl50 a trial func-
tion accurate enough to get not only a small difference
wave functions but also the derivative of the wave functio
In practice, this latter point is particularly difficult to fulfill
Indeed, at fixed values ofl, it is known that the minimiza-
tion of the fluctuations of the local energy can allow an im
portant reduction of the error in the trial wave functio
However, there is no reason why it should also lead to
satisfactory representation of the derivative of the trial wa
function.

In order to escape from this difficulty we propose here
work directly atl50 and to optimizeindependentlythe trial
wave functioncT and its derivativecT8 . Such procedure is
justified since it corresponds to choosing the following e
pression asl-dependent trial wave function

cT~l!5cT1lc̃, ~31!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wherec̃ is some newindependentfunction playing the role
of a trial function for the derivative of the ground state
l50. In this case, the renormalized observable can be
written under the final form

Õ[O1
~H2EL!c̃

cT
12~EL2Ev!

c̃

cT
, ~32!

where the pair of functions (cT ,c̃) is the current guess fo
the exact solution (c0 ,c08).

Let us now turn our attention to the problem of optimi
ing the two trial functions (cT ,c̃). RegardingcT we know
that the standard procedure consists in minimizing the v
ance of the local energy with respect to the parameters o
trial function. Quite remarkably, we have here a similar
sult for c̃: the best choice is obtained by minimizing th
variance of the renormalized operatorÕ with respect to the
parameters ofc̃.

To prove this property it is sufficient to show that th
zero-variance~or zero-fluctuations! equations forEL andÕ:

EL5^EL&c
T
2,

~33!
Õ5^Õ&c

T
2,

are equivalent to the equations definingc0 andc08 , namely

~H2E0!c050,
~34!

~H2E0!c081~O2^O&c
0
2!c050.

In these formulas, the first equation is just the ordina
Schrödinger equation. The second one is obtained by de
ing the Schro¨dinger equation:

H~l!c~l!5E0~l!c~l! ~35!

with respect tol at l50. Note that Eq.~34! determines an
unique solution, (c0 ,c08 ,E0 ,^O&c

0
2), as soon asH has a

nondegenerate ground state. Now, using Eqs.~19! and~2! for
the definitions ofÕ and EL , respectively, the system o
equations~33! can be rewritten under the form

~H2Ev!cT50, ~36!

~H2Ev!cT81~O2^O&c
T
2!cT50, ~37!

which are nothing but Eq.~34! with (cT ,cT8)5(c0 ,c08). Ac-
cordingly, the zero-variance equations~33! admits this latter
pair of functions as unique solution.

In practical calculations, different strategies of optimiz
tion can be employed. A first approach consists of minim
ing separatelythe variance of the local energy with respe
to the wave functioncT and the variance ofÕ with respect
to c̃. In this way, we get an optimal trial wave functioncT

for the energy and the best derivative at fixedcT . However,
let us emphasize that this approach is not the most gen
we can also minimize both variances simultaneously w
respect to the two independent functions. Another remar
that the second equation of system~34! can be viewed as an
ordinary first-order perturbation equation. This is expec
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
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since, whenlO is considered as a perturbation of the Ham
tonianH, c08 is nothing but the first-order correction to th
ground state and̂O&c

0
2 the first-order correction to the en

ergy.
Finally, let us end this section by commenting in mo

detail on the various terms entering expression~32! of the
improved operator. Three different contributions can be d
tinguished.

~i! The ordinary bare estimatorO corresponding toc̃
50.

~ii ! A second contribution given by (H2EL)c̃/cT . It is
easy to verify that this contribution has a zero average o
the densitycT

2,

^~H2EL!c̃/cT&c
T
250. ~38!

Accordingly, its role is to lower the variance of the improve
estimator without changing the average of the observable~no
influence on the systematic error!. Note that for applications
where the stationary density is known and can be exa
sampled~that is, there is no systematic error in the avera!
the use of contributions~i! and ~ii ! is sufficient. Important
examples include all ‘‘classical’’ Monte Carlo simulation
based on theMETROPOLIS algorithm or one of its variants
Such a possibility was the subject of a previous work.23

~iii ! A third term given by 2(EL2Ev)(c̃T /cT). This
contribution has a very small impact on the statistical flu
tuations since the variance of (EL2Ev) is of order two in the
trial wave function error for any choice ofc̃. Its main effect
is to take into account the change of stationary density un
the external perturbation defined by the observable a
therefore, to lower the systematic error in the expectat
value of the observable. Note that in the limitcT5c0 , this
contribution reduces to zero and, therefore, the averag
this term can be understood as a correction to the Hellma
Feynman formula whencT is not the exact ground stat
@note that similar corrections to the HF formula exist also
more traditional ab initio calculations, e.g., the ‘‘Pulay
force’’ 36 resulting from approximate Hartree–Fock~or local
density approximation! orbitals in self-consistent schemes#.

B. More improved estimators: Use of coordinate
transformations

In this section it is shown how to generalize further o
renormalized operators. The basic idea of the generaliza
is based on an original idea proposed by Umrigar28 and re-
cently extended by Filippi and Umrigar.33 Working in a finite
difference formalism the forces are computed as a small
finite difference of energies for two close enough geometr
In order to minimize the fluctuations a correlated sampl
method, in which a common Monte Carlo density~the so-
called primary one! is used for the two close geometries,
employed. Written within our notations and taking the lim
of the two geometries infinitely close (dR→0 is equivalent
to l→0) it means that the variational energy is written und
the form
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Ev~l!5

K EL~l!
cT

2~l!

cT
2 L

c
T
2

K cT
2~l!

cT
2 L

c
T
2

, ~39!

wherecT(l) is the trial wave function chosen for a param
eterl andcT is the reference~primary! trial wave function.

The price to pay when doing that is the introduction
some additional fluctuations associated with the wei
cT

2(l)/cT
2. The remedy they propose to deal with this pro

lem is to use a specific coordinate transformation~space-
warp transformation! based on physical motivations: Th
transformation is built so that the electrons close to a gi
nucleus move almost rigidly with that nucleus when the
ometry is changed. Here, we generalize this idea: coordi
transformation can help to minimize the relative fluctuatio
when varying the external parameterl. As a physical conse
quence, estimators built from the derivative are expecte
have smaller fluctuations and smaller systematic errors.

Let us write a general coordinate transformation as
lows:

yW5TW ~l,xW ! , ~40!

where the vectorxW ~or yW ) denotes the set of the 3nelec elec-
tronic coordinates. Using this transformation the variatio
energy at a givenl can be written as

Ev~l!5

K EL@l,TW ~l,xW !#J~l,xW !
cT

2@l,TW ~l,xW !#

cT
2~xW !

L
c

T
2

K J~l,xW !
cT

2@l,TW ~l,xW !#

cT
2~xW !

L
c

T
2

,

~41!

whereJ(l,xW ) is the Jacobian of the transformation. Introdu
ing the vector fieldvW such that at first order inl we have

TW ~l,xW !5xW1lvW ~xW !1O~l2!, ~42!

we can compute the derivative of the variational energy w
respect tol at l50. After some simple but tedious algeb
we get the following equality:

dEv~l!

dl U
l50

5^Õ&c
T
2, ~43!

whereÕ is a new renormalized operator given by

Õ[O1
~H2EL!cT8

cT
12~EL2Ev!

cT8

cT

1
¹W @~EL2Ev!cT

2vW #

cT
2 . ~44!

To derive this expression we have used the fact that the J
bian defined as

J~l,xW !5detF]Ti~l,xW !

]xj
G ~45!
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has the following small-l expression:

J~l,xW !5detFd i j 1l
]v i

]xj
G1O~l2! ~46!

and, therefore,

J~0,xW !51, ~47!

]J

]l
~0,xW !5¹W "vW . ~48!

This more general operator is identical to the operator
rived in Sec. II A plus a new contribution resulting from th
derivative of the coordinate transformation. This new te
has a zero average over the VMC distributioncT

2 . Accord-
ingly, its main role is to reduce further the statistical err
However, it is important to emphasize that, when the tr
function c̃ and the vector fieldvW are optimized simulta-
neously it has also an influence on the magnitude of
systematic error.

III. BEYOND VARIATIONAL MONTE CARLO

In Sec. II we have shown how to construct improv
observables,Õ, associated with accurate expectation valu

^cTuÕucT&

^cTucT&
5

^c0uOuc0&

^c0uc0&
1O@~cT2c0!~ c̃2c08!#. ~49!

When the errordc85c̃2c08 in the trial function for the
derivative is comparable to the error in the trial function f
the ground state,dc5cT2c0 , the accuracy reached wit
the preceding variational estimate, Eq.~49!, can be compa-
rable to the very good accuracy usually obtained for to
energies. However, despite this remarkable improvment,
are still left with some small residual systematic error as
ciated with approximatecT and c̃. In the energy case it is
known that this error can be entirely suppressed~at least for
systems with no nodes or known nodes! by averaging the
local energy over the mixed DMC probability distribution
pDMC;cTc0 instead of the VMC distribution,pVMC;cT

2 .
Unfortunately, we have no such result for the improved o
servables defined here. However, as we shall see now
can still define some approximate way for recovering mos
the error.

A natural way of defining an exact extimator for th
observable is to consider the derivative of the exact DM
energy estimator instead of the VMC one,

E0~l![^EL~l!&cT(l)c0(l)5 K H~l!cT~l!

cT~l! L
cT(l)c0(l)

. ~50!

Making the derivative and rewriting the result as an ordina
average we get

dE0~l!

dl U
l50

5^Õ&cTc0
, ~51!

whereÕ is written as
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Õ[O1
~H2EL!cT8

cT
1~EL2E0!S cT8

cT
1

c08

c0
D . ~52!

Of course, written under the above-given form, this ex
estimator is useless since the exact wave function is
known. Here, we propose to make the following natu
approximation:15,37

c08

c0
5

cT8

cT
. ~53!

Therefore, our final approximate DMC estimator is writt
as

ÕDMC[O1
~H2EL!c̃

cT
12~EL2E0!

c̃

cT
, ~54!

wherec̃ is as usual our trial function for the derivative of th
exact wave function. Note that this estimator is very simi
to the VMC one, Eq.~32!. The only difference lies in the
value of the average energy,E05^EL&, entering the defini-
tion of ÕDMC . More precisely, we have

ÕDMC2ÕVMC52~Ev2E0!
c̃

cT
. ~55!

Now, in order to further reduce the error let us show th
we can generalize the usual ‘‘hybrid formula’’^O&hybrid

[2^O&DMC2^O&VMC defined for bare observables to th
case of improved observables. To do that, let us evaluate
quantity ^dcuÕDMCudc& wheredc5cT2c0 ,

^dcuÕDMCudc&5^cTuÕDMCucT&22^cTuÕDMCuc0&

1^c0uÕDMCuc0&, ~56!

which leads to

2^cTuÕDMCuc0&2^cTuÕDMCucT&

5^c0uOuc0&1A1O~dc2!,

where the intermediate quantityA is defined as

A[^c0u
~H2EL!c̃

cT
12~EL2E0!

c̃

cT
uc0&.

ExpandingA in terms ofdc5cT2c0 we get

A52^cTuEL2E0uc̃&22^dcu~H2EL!uc̃&

24^dcuEL2E0uc̃&1O~dc2!.

Using now the equality

EL2E05
~H2E0!dc

cT

we obtain

A5O~dc2!.

This latter result shows that the error in the hybrid estima
is of order two indc,

2^ÕDMC&cTc0
2^ÕDMC&c

T
25^c0uOuc0&1O~dc2!, ~57!
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thus generalizing the standard result for the bare observa
Note that we can use eitherÕDMC or ÕVMC @Eq. ~32!# in the
latter formula since the difference between the two renorm
ized operators is proportional toEv2E0 , Eq. ~55!, and,
therefore, is also of order two indc @Eq. ~7!#. Finally, note
that for Fermi systems treated within the fixed-node appro
mation ~DMC density given bycTc0

FN) expression~57! is
slightly modified, we have

2^ÕDMC&cTc
0
FN2^ÕDMC&c

T
2

5^c0uOuc0&1O~dc2!1O@~c0
FN2c0!~ c̃2c08!#. ~58!

The latter formula shows that the dependence of the syst
atic error on the quality ofc̃ is quite small as soon as th
nodes of the trial wave function are reasonably good. Wh
using coordinate transformation we have similar results. T
exact DMC estimator is found to be

Õ[O1
~H2EL!cT8

cT
1~EL2E0!S cT8

cT
1

c08

c0
D

1
¹W @~EL2E0!cTc0vW #

cTc0
~59!

and we propose to use the following approximate form:

ÕDMC[O1
~H2EL!c̃

cT
12~EL2^EL&!

c̃

cT

1
¹W @~EL2^EL&!cT

2vW #

cT
2 . ~60!

Because the difference (EL2^EL&) is of orderdc it is easy
to verify that the error in the hydrid estimator given by E
~57! remains here also of order two.

Before ending this section let us emphasize that it
possible to write a closed computable expression for the
act estimator of the observable, Eq.~52!, by expressing the
unknown quantityc08/c0 as a computable stochastic averag
Choosing al-independent trial wave functioncT we can
write18,38,39

c0~l,x!5cT~x! lim
T→1`

3K K expS 2E
0

T

ds EL[l,x(s)] D L L
x(0)5x

,

~61!

wherex denotes an arbitrary point in configuration space a
^^ . . . &&x(0)5x denotes the sum over all drifted random wal
of length T starting atx as obtained in a pure diffusion
Monte Carlo~PDMC! scheme~DMC without branching!.18

Of course, a similar formula can also be obtained in a DM
scheme.17 Now, using formula~61! we get
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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c08

c0
5 lim

T→1`
E

0

T

dt

3
^̂ O@x~ t !#exp~2*0

Tds EL[l,x(s)] !&&x(0)5x

^̂ exp~2*0
Tds EL[l,x(s)] !&&x(0)5x

~62!

and, therefore, the exact estimator can be written in term
a standard part plus a time integral of the two-point corre
tion function between the local energy and the observab

Õ5O1
~H2EL!c̃

cT
1~EL2^EL&!

c̃

cT
1 lim

T→1`
E

0

T

dt

3
^̂ ~EL2^EL&!@x~0!#O@x~ t !#exp~2*0

Tds EL!&&x(0)5x

^̂ exp~2*0
Tds EL!&&x(0)5x

.

~63!

It is important to emphasize that this latter estimator is ex
averaged over the mixed DMC distribution it leads to
unbiased estimate of the exact average. However, the
relator can only be obtained within a forward walkin
scheme and, therefore, the stability in time is not guarante
In this work, we shall not use this expression, its implem
tation will be presented in a forthcoming work.

IV. APPLICATION TO FORCES

The average force between atoms in a molecular sys
is defined as

F̄qi
[2

]E0~q!

]qi
, ~64!

whereE0(q) is the total electronic ground-state energy fo
given nuclear configuration;q represents the 3Nnucl nuclear
coordinates (Nnucl, number of nuclei! and qi the particular
force component in which we are interested.

Defining the local force as follows:

Fqi
~x,q![2

]V~x,q!

]qi
, ~65!

where x represents the 3nelec electronic coordinates (nelec,
number of electrons! andV the total potential energy opera
tor, and making use of the HF theorem the average force
be rewritten as the statistical average of the local force o
the exact distributionc0

2(x):

F̄qi
5^Fqi

~x,q!&c
0
2(x) . ~66!

Written under this form the various proposals presented
the preceding sections can be applied to the calculation
the average force. It is important to emphasize that for
proximate probability densities~VMC or DMC! the HF theo-
rem is no longer valid and a systematic error in the statist
averagê Fqi

(x,q)& is introduced. However, it is not a prob
lem here since it is the purpose of this work to show that,
using suitable improved estimators, this error can be redu
and even suppressed in the zero-bias limit.

In order to discuss the various aspects of the method
shall restrict ourselves to the case of diatomic molecules.
us consider a diatomic moleculeAB with atomA located at
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(R,0,0) and atomB located at the origin. The only nonzer
component of the local force acting on the nucleusA is thex
component given by

F52
]V

]R
5

ZAZB

R2 2ZA(
i 51

nelec ~xi2R!

ur i2Ru3 . ~67!

In this work we present a number of VMC and fixe
node DMC calculations for the diatomic molecules H2 ,LiH,
and Li2 . Implementation of the quantum Monte Carlo met
ods is well known and will not be discussed here. For the2

molecule the trial wave function used has the followi
simple form:

cT5~1sA1sB11sB1sA!1c~1sA1sA11sB1sB!, ~68!

where 1sM is a 1s-Slater function centered at nucleusM
5A,B with exponentm and c a parameter describing th
amount of ionic contribution into the wave function. O
course, much more accurate trial wave functions can be c
structed for H2 . However, our purpose here is to show th
such a simple form forcT is already sufficient to get accurat
values of the force.

For LiH and Li2 we have employed two types of tria
wave function. Our main choice is standard in QMC calc
lations for molecules. The trial wave function is made of
determinant of single-particle orbitals multiplied by
Jastrow factor. The determinantal part is obtained from
restricted Hartree–Fock~RHF! calculation and only the
Jastrow factor is optimized. As we shall see in the followin
we have also used valence-bond~VB!-type wave functions
consisting of a number of determinants multiplied by
Jastrow factor. We have used such a multideterminantal
scription to reproduce correctly the large interatomic d
tance regime~dissociation limit!. In the case of LiH the de-
terminantal part consists of three determinants correspon
to the covalent VB resonating structure: (1sLi)

2@2sLi1sH

11sH2sLi# ($1sLi,2sLi,1sH% optimized atomic orbitals for
the Li and H atoms, orbitals occupied by electronsa andb
antisymmetrized separately!, and one ionic VB structure
(1s̃Li)

2(1s̃H)2 (1s̃Li,1s̃H optimized atomic orbitals for the
Li1 and H2 ions!. In the case of Li2 we have considered a
six-determinant representation consisting of the three co
lent VB structures describing the resonance between ato
orbitals (2sA,2sB), (2pyA

,2pyB
), and (2pzA

,2pzB
). This lat-

ter trial wave function reproduces not only the dissociat
limit but also a major part of the 2s– 2p near-degeneracy.

In Figs. 1–3 the energy curves obtained for H2 ,LiH, and
Li2 are presented. Upper curves are the VMC curves~open
squares joined by a dotted line!. For H2 the two parametersc
and m have been optimized for each interatomic distan
For LiH and Li2 the Jastrow-RHF wave function~one deter-
minant! has been used. All the parameters entering the
strow factor have been optimized for all distances. Optim
zations have been performed by minimizing the variance
the local energy using the correlated sampling method
Umrigar et al.40 The first important observation is that, ex
cept for H2 , VMC curves are not smooth as a function ofR.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Such a result is not surprising: It is typical of a situati
where an approximate trial wave function is optimizedinde-
pendentlyfor different values of an external parameter~here,
R) with respect to a large number of variables~for LiH and
Li2 we have used about 30 independent variational par
eters!. Depending on the initial conditions~which are them-
selves very dependent onR) the algorithm used for minimiz-
ing the variance can be trapped within one of the vario
local minima. As a consequence, the actual value obtai
for the variance~and the corresponding energy! can vary
abruptly even when the external parameter is chan
smoothly. Of course, this problem can be solved in princi
by making very careful optimizations on very large sampl
Indeed, the functional form of the trial wave function bein
identical at all distances a smooth curve must be obtai
when the correct lowest minimum of the variance is obtain
at each distance. Here, this is the case for H2 whose trial
wave function contains only two variational paramete
However, for large systems including a much larger num
of variational parameters and nuclear degrees of freedom
possibility of fully optimizing the trial wave function is jus
unrealistic. As an important consequence, let us empha
that, in practice, there is no hope of obtaining meaning
forces by making straight finite differences of optimiz
variational energies without using some sort of correla

FIG. 1. H2 molecule. Variational Monte Carlo~VMC! energies~open
squares!, diffusion Monte Carlo~DMC! energies~closed squares!, and exact
nonrelativistic curve~solid line!. The dotted line between VMC results is
simple linear interpolation to guide the eye.

FIG. 2. LiH molecule. Variational Monte Carlo~VMC! energies~open
squares!, fixed-node diffusion Monte Carlo~DMC! energies ~closed
squares!, and exact nonrelativistic curve~solid line!. The dotted line be-
tween VMC results is a simple linear interpolation to guide the eye.
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sampling scheme. This is a good illustration of how difficu
the calculation of forces is within a QMC framework.

Intermediate points~closed squares! are the DMC results
obtained from fixed-node calculations using the optimiz
VMC trial wave functions. In sharp contrast with VMC, th
DMC curves are now regular. This is so because, un
VMC, fixed-node DMC averages do not depend on the p
ticular form of the trial function used, except for the nod
structure. Here, the nodal hypersurfaces vary smoothly a
function of the distance and, therefore, the correspond
DMC energy curves are smooth within error bars. The s
ond important observation is related to the global shape
the curves. Ideally, we are interested in having energy cur
which differ from the exact curve only by a constant ind
pendent of the distance. This is indeed the condition to
tain accurate derivatives. Here, it is not the case for the VM
curves of LiH and Li2 ; the difference between the VMC an
exact energy curves is an increasing function of the distan
It is not a surprise since in both cases the trial wave funct
is built from a single RHF determinant based on delocaliz
molecular orbitals which leads to a wrong description of t
dissociation limit. However, and very interestingly, fixe
node DMC results have a much better behavior at large
tances. As a consequence, one may expect at this stag
obtain accurate forces from the derivative of the fixed-no
energy curve even when relatively crude wave functions
used. Finally, let us note that the quality of the fixed-no
calculations for the molecules considered here is quite go
To give an example, at the equilibrium distance of the L2

molecule, the total energy obtained is214.9901(6) to be
compared with the exact nonrelativistic value ofE0

5214.9954. The amount of correlation energy recove
within the fixed-node approximation is about 95.7%. A sim
lar quality is obtained for other distances and also for
LiH molecule. In the case of the nodeless H2 molecule~no
fixed-node approximation!, the DMC energies agree pe
fectly well with the exact ones. For the H2 molecule the
variance of the local energy varies between 0.3 atR50.8 and
0.02 atR53.5; for LiH the variance is about 0.07, and fo
Li2 it varies between 0.09 and 0.2.

The crucial point when implementing the various form
las presented in the preceding section is the choice of

FIG. 3. Li2 molecule. Variational Monte Carlo~VMC! energies~open
squares!, fixed-node diffusion Monte Carlo~DMC! energies ~closed
squares!, and exact nonrelativistic curve~solid line!. The dotted line be-
tween VMC results is a simple linear interpolation to guide the eye.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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trial function c̃ for the derivative. In our previous study o
forces24 where we focused our attention on the reduction
statistical fluctuations only, we proposed to employ the m
mal form leading to a finite variance of the renormaliz
local force. As can be viewed from Eq.~67!, at short
electron–nucleus distancer the local force behaves asF
;1/r 2 and, therefore, the variancêF2&2^F&2 is infinite.
This well-known problem has been discussed in differ
places~see, e.g., Ref. 15, Chap. 8.2 or Ref. 31!. Here, the
‘‘minimal’’ form removing the singular part responsible fo
the infinite variance is written as

c̃min~x!5QcT , ~69!

whereQ is given by

Q5ZA(
i 51

nelec ~xi2R!

ur i2Ru
. ~70!

To see this, we just need to compute the following quant

~H2EL!c̃min

cT
5ZA(

i 51

nelec ~xi2R!

ur i2Ru3
2¹Q•¹cT /cT . ~71!

By adding this latter quantity to the bare local force, E
~67!, the singular part is exactly removed, the remaining c
tribution having a finite variance. In what follows,c̃min will
be referred to as the minimal form forc̃.

In Fig. 4 we present various VMC calculations of th
average force for the Li2 molecule as a function of the inter
atomic distance. A first set of points~closed squares with
very large error bars atR55, R56.5, andR57.5) are results
obtained from the ordinary bare estimator, Eq.~67!. Open
squares~with small error bars! joined by the dashed curv
correspond to results obtained by usingc̃min as trial function
for the derivative

FIG. 4. Various VMC average forces for Li2 . Closed squares with large
error bars: ^F&, Eq. ~67!. Open squares joined by the dashed lin

^F̃VMC-ZV@cT ,c̃min#&, Eq. ~72!. Circles joined with the dotted line

^F̃VMC-ZVZB@cT ,c̃min#&, Eq. ~73!. Solid line: exact nonrelativistic force
curve.
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F̃VMC-ZV@cT ,c̃min#5F1
~H2EL!c̃min

cT
. ~72!

This estimator can be viewed as the simplest improved e
mator we can think of having a finite variance; it correspon
to the form employed in our previous study.24 The subscript
ZV ~zero variance! is used here to emphasize that the im
proved estimator is built to decrease the statistical error o
Circles joined by a dotted line are results obtained from
ZVZB improved estimator derived in the preceding sectio
Eq. ~32!:

F̃VMC-ZVZB@cT ,c̃min#5F1
~H2EL!c̃min

cT

12~EL2^EL&!
c̃min

cT
. ~73!

Note the use of the subscript ZVZB to emphasize the t
aspects: reduction of statistical and systematic errors. Fin
the solid line represents the ‘‘exact’’ nonrelativistic forc
curve for Li2 .

A first important observation is that using improved e
timators is extremely efficient in reducing the statistical
ror. This can be seen by comparing the magnitude of
error bars on data obtained from the ordinary bare estim
~closed squares atR55, 6.5, and 7.5! with those correspond
ing to other calculations based on improved estimators
reduction of at least two orders of magnitude is observed.
already discussed this remarkable result is a direct co
quence of the fact that the infinite variance of the bare e
mator has been reduced to a finite value. At the scale of
figure error bars associated with improved estimators are
most not visible. A more quantitative analysis will be give
later ~see Table II!.

Now, regarding systematic errors, results are much m
disappointing. Using the pure zero-variance~ZV! renormal-
ized estimator, Eq.~72!, the behavior of the average forc
~open squares joined by the dashed line in Fig. 4! as a func-
tion of R appears erratic. This can be easily understood si
the term added to the bare force in Eq.~72! has a zero aver-
age and, therefore, the erratic behavior is a direct con
quence of the irregular VMC energy curve presented in F
3. When adding the term correcting the average, the res
are improved. As seen in the figure the behavior

^F̃VMC-ZVZB@cT ,c̃min#&, Eq. ~73!, as a function ofR, is much
less irregular, thus illustrating the important role played
the zero-bias additional contribution@third term on the right-
hand side of Eq.~73!# to correct the error due to the approx
mate trial wave function. Despite of that, the resulting cur
is far from being satisfactory. To weaken the role played
cT we can think of going beyond VMC calculations. In Fi
5 we present such calculations for Li2 using the DMC-ZVZB
improved estimatorF̃DMC-ZVZB@cT ,c̃min# written as

F̃DMC-ZVZB@cT ,c̃min#5F1
~H2EL!c̃min

cT

12~EL2^EL&!
c̃min

cT
, ~74!
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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where the energy average is a fixed-node DMC average,
also, results obtained by using the generalized hybrid
mula, Eq.~57!,

F̄.2^F̃DMC-ZVZB&cTc0
2^F̃VMC-ZVZB&c

T
2. ~75!

A clear improvement is observed when going from VM
~open circles! to DMC ~closed squares! and, then, to hybrid
calculations~open squares!: The systematic error present
VMC calculations is reduced. However, the resulting curv
are still not satisfactory. Extracting from them a meaning
equilibrium distance or first derivative of the force cur
~calculation of ve) is impossible. Very similar behavior
have been obtained for H2 and LiH. They do not need to b
reproduced here.

The main reason for the poor results just presented is
low quality of the trial functionc̃min used. According to our
general presentation of Sec. II we know that a good t
function c̃ must be close to the derivative of the exa
ground-state wave function with respect toR. Here, this is
only true when an electron approaches the nucleusA ~note
that nucleusB has been fixed at the origin and, thus, has
pathological contribution!. In that case the nonvanishing pa
of the exact wave function is expected to behave as

c0; r i→R exp~2ZAur i2Ru!, ~76!

which leads to

]c0

]R
; r i→R2ZA

~xi2R!

ur i2Ru
c0 , ~77!

which is nothing but~up to a minus sign! the minimal form
for c̃ given above, Eqs.~69! and ~70!.

In order to improve our trial wave functionc̃ we pro-
pose to use the following finite-difference form:

c̃deriv5
cT@R1DR,p~R1DR!#2cT@R,p~R!#

DR
. ~78!

In this expressionp(R) denotes the complete set of vari
tional parameters entering the trial wave function~coeffi-
cients of molecular orbitals, basis set exponents, Jastrow

FIG. 5. Li2 molecule. Average forces usingF̃ZVZB(c̃T ,c̃min), Eqs. ~73!–
~75!. VMC average: lowest curve with open circles. DMC average: interm
diate curve with closed squares. Hybrid average: highest curve with o
squares. Solid line: exact nonrelativistic force curve. Dashed lines betw
QMC results are a simple linear interpolation to guide the eye.
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rameters, etc.!. The main advantage of using a finite
difference form instead of the exact derivative is practic
To estimate the derivative we only need to compute t
additional local energies and, thus, we avoid deriving a
programming the lengthy expressions resulting from the
plicit derivative. Note also that using an approximate fini
difference representation is not a problem here: In any c
c̃deriv must be considered as an approximate trial function
the exact derivative andDR can always be interpreted as
new additional variational parameter forc̃. In practical cal-
culations, the complete set of parameters we use for m
mizing the fluctuations of the various improved estimato
consists of$p(R), p(R1DR), andDR%.

At the VMC level we consider the following form fo
the improved estimator

F̃VMC-ZVZB@cT ,c̃deriv,vW #

5F1
~H2EL!c̃deriv

cT
12~EL2^EL&!

c̃deriv

cT

1
¹W @~EL2^EL&!cT

2vW #

cT
2 . ~79!

At the DMC level the expression used is very similar, see
~60!. In this expression the vector fieldvW associated with the
coordinate transformation is chosen as follows:

vW 5(
i 51

nelec

e2ar iA2br iA
2

uW x , ~80!

whereuW x is the unit vector along thex axis. The vector field
depends on two parametersa andb, which are optimized to
lower the variance ofF̃VMC-ZVZB . The vector field is built so
that electrons close to the nucleusA translate with the
nucleus, while electrons far away do not move. In practi
we compute the additional term associated with the coo
nate transformation using a finite-difference scheme al
the direction defined by the vectorvW ,

¹W @~EL2^EL&!cT
2vW #

cT
2

5~EL2^EL&!¹.vW 1F ~EL2^EL&!~xW1evW !
cT

2~xW1evW !

cT
2~xW !

2~EL2^EL&!~xW !G Y e, ~81!

wherexW represents the electronic coordinates ande a small
positive quantity whose magnitude can also be optimized

In Fig. 6 we present VMC calculations for Li2 using
F̃VMC-ZVZB@cT ,c̃min# and F̃VMC-ZVZB@cT ,c̃deriv,vW # as im-
proved estimators. The two estimators have been evalu
on the same Monte Carlo samples. There are two strik
differences when using the second estima
F̃VMC-ZVZB@cT ,c̃deriv,vW #. First, the gain in statistical error i
spectacular~about one order of magnitude, for a quantitati
analysis see the following discussion, Table II!. Second, the
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curve is much more regular and closer to the exact re
~solid line!. The VMC results are very satisfactory at sm
distances~betweenR53 andR54). However, at larger in-
teratomic distances, the VMC curve begins to separate f
the exact one. This is due to the fact that the wave functio
built from a RHF calculation and, therefore, the dissociat
limit is not correctly described. To address this problem
have considered a more sophisticated trial wave func
consisting of a product of a Jastrow factor and a s
determinant one-particle part~for a more detailed descrip
tion, see above!. This VB-type trial wave function has bee
used only for the largest distances:R57, R57.5,R58, and
R58.5. In Figs. 7 and 8 the comparison between res
obtained with the Jastrow-RHF~one determinant! and the
Jastrow-VB~six determinants! wave functions is presented
At the VMC level ~Fig. 7!, the improvement resulting from
the multideterminant wave function is clearly seen, t
forces computed are much closer to the exact curve tha
the one-determinant case. At the DMC level~Fig. 8! we
could expect that this error disappears even with the Jast
RHF ~one determinant! wave function since the DMC result
depend only on the nodal structure of the wave functi
However, it is not true. The difference between the DM
curve and the exact one is still important at large distan

FIG. 6. VMC force for Li2 . Lowest irregular curve with closed square

^F̃VMC-ZV@cT ,c̃min#&, Eq. ~72!. Upper curve with open squares

^F̃VMC-ZV@cT ,c̃deriv ,vW #&, Eq. ~79!. Solid line: exact nonrelativistic force
curve.

FIG. 7. VMC force for Li2 . Open squares: average VMC forces from es
mator ~79! using the Jastrow-RHF one-determinant wave function. O
circles: average VMC forces from estimator~79! using the Jastrow-VB six-
determinant wave function. Solid line: exact nonrelativistic force curve.
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like in the VMC case. This result takes its origin in the a
proximation made for the exact derivative of the wave fun
tion in the DMC estimator, Eq.~53! (c08/c0 is replaced by
cT8 /cT). When using the Jastrow-VB wave function th
DMC results obtained are much better.

We are now in a position to present our final curves
the three molecules obtained with our best fully optimiz
estimatorF̃ZVZB@cT ,c̃deriv,vW # and the hybrid formula. Re-
sults for the molecules H2 ,LiH, and Li2 are presented in
Figs. 9–11, respectively. As seen from these figures the o
all agreement between the exact curves~solid lines! and
QMC results~open squares! is very good. To be more quan
titative we have extracted from these curves an estimat
the spectroscopic constantsRe ~equilibrium distance! andve

~harmonic frequency!. To do that, the data have been fitte
with a functional form given by the derivative of a Mors
potential curve E(R)5D@exp22b(R2Re)22 exp22b(R
2Re)# over some interval of distances around the equilibriu
geometry (R between 1.1 and 2 for H2 , between 2.6 and 4
for LiH, and between 4 and 6 for Li2). ParametersD, b, and
Re have been determined via a generalized least-square
Our results at the VMC, DMC, and hybrid levels are pr
sented in Table I and compared to experimental values.41 As
seen from Table I results for the equilibrium distances
excellent. The largest systematic errors are obtained at
VMC level ~relative errors of 4.3%, 3.3%, and 5.7% fo

n

FIG. 8. DMC force for Li2 . Open squares: average fixed-node DMC forc
using the Jastrow-RHF one-determinant wave function. Open circles: a
age fixed-node DMC forces using the Jastrow-VB six-determinant w
function. Solid line: exact nonrelativistic force curve.

FIG. 9. Hybrid force for LiH. Solid line: exact nonrelativistic force curve
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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H2,LiH, and Li2 , respectively!. A reduction of a factor of
about 2 is gained when DMC calculations are perform
Finally, using the hybrid formula, the exact equilibrium di
tances are recovered within statistical errors~the relative sta-
tistical errors being 1.1%, 0.3%, and 0.5% for H2 ,LiH, and
Li2 , respectively!. In contrast, results for the harmonic fre
quencies are less accurate but still satisfactory. For the2

molecule, the exact experimental result is almost recove
within statistical error at the VMC, DMC, and hybrid level
the relative statistical error being between 3% and 4%.
LiH and Li2 the relative statistical errors are of the sam
order of magnitude. However, a non-negligible systema
error of about 10% is found for these molecules. This res
illustrates that obtaining accurate harmonic frequencie
more difficult than obtaining accurate equilibrium geom
etries.

Now, we would like to present a more quantitative d
cussion of the performance of the various force estima
introduced in this work. This will allow us to summarize th

FIG. 10. Hybrid force for LiH. Solid line: exact nonrelativistic force curv

FIG. 11. Hybrid force for Li2 . Solid line: exact nonrelativistic force curve
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various aspects of the method, to present some compari
with the recent results obtained from the improved estima
implicitly used by Casalegno and collaborators,35 and also to
emphasize some importantquantitativeissues. In Table II the
systematic and statistical errors associated with the var
force estimators at the VMC, DMC, and hybrid levels
calculation are presented. The results shown are for the2

molecule at the equilibrium geometry (R55.051 a.u.) where
the exact force average, denoted as^F&ex, is equal to zero.
To allow direct comparisons between force estimators all
erages have been computed in a common Monte Carlo
culation ~identical MC samples!. To compare with, we also
give the systematic and statistical errors on the total ene
To give a measure of the fluctuations of each estimator
corresponding variances at the VMC level,s2(VMC), are
reported. To facilitate comparisons between data all avera
~except for the VMC variances! are given with five signifi-
cant figures after the decimal point and all statistical err
are given on the fifth decimal place~magnitude 1025). The
first estimator presented is the bare estimator,F @Eq. ~67!#.
As already pointed out, this estimator, which has an infin
variance, displays very large statistical fluctuations~between
two and three orders of magnitude with respect to the
proved estimators to follow! and is, therefore, not at all suit
able for practical calculations. The second estima
F̃ZV@cT ,c̃min# @Eq. ~72!#, introduced in our previous work on
forces24 is the simplest estimator having a finite varianc
However, as explained earlier, when using such an estim
no control on the systematic error exists. The third estima
presented,F̃ZVZB@cT ,c̃min#, is the simplest estimator havin
the ZVZB property. We can see that the introduction of t
contribution associated with the ZB property, 2(EL

2^EL&) (c̃min /cT) is efficient in reducing the bias~the DMC
and hybrid errors are roughly divided by a factor 2!. How-
ever, as already discussed, the derivative of the trial w
function is not correctly reproduced as a function of the
teratomic distance and the corresponding force curve is
smooth ~see, Figs. 4 and 5!. To get accurate and well
behaved~as a function ofR) values of the force it is impor-
tant to introduce an auxiliary function close to the exact d
rivative of the wave function. The most simple estimat
based on this idea and having a finite variance can be c
structed by using the minimal formc̃min @Eqs.~69! and~70!#

TABLE I. VMC, DMC, and hybrid estimates of the equilibrium geomet
Re ~a.u.! and harmonic frequencyve (cm21). The atomic isotopic masse
takena are 1.007 825 035 amu for1H and 7.016 003 0 amu for7Li.

H2 LiH Li 2

Re ~VMC! 1.463~12! 3.111~17! 5.346~27!
Re ~DMC! 1.426~13! 3.056~6! 5.200~16!
Re ~hybrid! 1.395~15! 3.001~15! 5.068~27!
Re ~Expt.!b 1.401 3.015 5.051

ve ~VMC! 4194~130! 1559~40! 366~9!
ve ~DMC! 4432~165! 1549~22! 373~5!
ve ~hybrid! 4662~205! 1519~31! 387~8!
ve ~Expt.!b 4395.2 1405.65 351.4

aReference 42.
bReference 41.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 10 Mar
TABLE II. VMC, DMC, and hybrid systematic~bias! and statistical errors for the total energy and various fo
estimators for Li2 at R55.051 a.u. The VMC variances,s2 ~VMC!, are also given.̂EL&ex and^F&ex denote the
exact total energy,̂EL&ex5214.9954 a.u. and exact force^F&ex50 ~equilibrium geometry!, respectively. To
facilitate comparisons between energy and force results all averages are given with five significant figur
the decimal point and statistical errors are given on the fifth decimal place~magnitude 1025). Statistical errors
on VMC variances are on the last digit.

Estimator VMC average DMC average Hybrid s2 ~VMC!

EL2^EL&ex 0.038 71~32! 0.005 31~50! ¯ 0.113~5!
F2^F&ex

a 0.182 17~23216! 0.154 62~12293! 0.127 07~33185! 1`

F̃ZV@cT ,c̃min#2^F&ex
b 20.063 52(84) 20.040 03(151) 20.016 54(313) 1.27~5!

F̃ZVZB@cT ,c̃min#2^F&ex
c 20.058 02(104) 20.024 84(184) 0.008 34~382! 1.3~2!

F̃@cT ,c̃minuc̃deriv#2^F&ex
d 0.006 19~109! 0.029 93~187! 0.053 67~390! 2.8~1!

F̃ZVZB@cT ,c̃deriv ,vW 50#2^F&ex
e 0.008 71~218! 0.004 74~147! 0.000 77~366! 14~3!

F̃ZVZB@cT ,c̃deriv ,vW #2^F&ex
e 0.006 92~9! 0.003 58~19! 0.000 24~39! 0.016~1!

aEquation~67!. dEquation~82!.
bEquation~72!. eEquation~79!.
cEquation~73!.
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for the zero-variance part andc̃deriv @Eq. ~78!#, for the zero-
bias part. Such an estimator is written as

F̃@cT ,c̃minuc̃deriv#[F1
~H2EL!c̃min

cT

12~EL2^EL&!
c̃deriv

cT
. ~82!

Written with our notations this is in fact the estimator im
plicitly used by Casalegno and collaborators in their ve
recent work.35 In contrast with the other estimators presen
here this ‘‘mixed’’ estimator~different trial functionsc̃ are
used for the ZV and ZB parts! has no ZVZB property. Ac-
cordingly, our general optimization procedure based on
minimization of the improved-estimator variance is
longer meaningful here. Nevertheless, as pointed out
Casalegnoet al., to optimize estimator~82! we still have the
possibility of optimizing the parameters of the trial wa
function cT via energy minimization. Such a procedure
justified because fully optimized trial wave functions a
known to verify the Hellmann–Feynman theorem. Statisti
errors associated with this estimator are reasonable
roughly similar to those obtained with the two previous e
timators. Systematic errors are also comparable. Howeve
contrast with all ZVZB-improved-estimators introduced
this work, the DMC ~and hybrid! calculations do not im-
prove the results and, as seen in the table the hybrid re
can even be bad, despite the fact that VMC results are
sonable. Regarding the dependence of the results on th
teratomic distance we have been able to recover a relati
smooth force curve for the smallest molecules H2 and LiH
but not for Li2 ~results not shown here!. In this latter case,
the systematic error is found to be much too sensitive to
quality of the optimization of the trial wave function to lea
to reliable results. The last improved estimator presente
Table II is our best proposal for the force estimator, Eq.~79!.
We report results with (vW Þ0) and without (vW 50) to en-
lighten the role of the coordinate-transformation term.
seen, the introduction of thevW term is extremely efficient in
reducing the statistical error. For example, at the VMC le
 2010 to 130.120.228.223. Redistribution subject to A
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the statistical error without this term is 21831025, while the
optimized improved estimator using thevW term is decreased
down to 931025. The reduction gained in statistical error
more than one order of magnitude. This remarkable resu
general: It is valid for all molecules and all distances trea
here. Another most important point is that our best improv
estimator~79! is the only estimator presented in this wo
whose statistical error~here, 931025) is ~much! smaller
than the energy one~here, 3231025). Note that it is also true
for the systematic error~whatever the level of calculation!.
Such a result is particularly important since it has been fou
that a precise control of the magnitude of the systematic e
through variance minimization of the improved force estim
tors is possible only when such a condition is verified.
contrast, when the statistical error on the force is larger t
the energy error, the variance minimization can lead to v
ous results and to get a smooth force curve is very diffic
Actually, we would like to emphasize that obtaining resu
of the quality presented in Fig. 11 for the Li2 molecule has
only been possible with the improved estimator~79!. Using
other estimators we have not been capable of constructi
reasonable force curve~smooth and accurate! for this mol-
ecule.

Finally, let us say a word about the dependence of
results on the optimization process~determination of the op-

timal parameters enteringc̃, cT , andvW by minimization of
the variance of the improved estimator!. Clearly, the method
presented in this work is useful only if the results obtain
do not depend too much on the way the optimization is p
formed and on which particular minimum has been found
the variance~as already emphasized, when a large numbe
parameters are considered the location of such a minim
can depend very crucially on the initial conditions and/or
the random numbers series used!. To quantify this aspect we
have made nine independent optimizations over nine in
pendent sets of 2000 walkers for the Li2 molecule at the
equilibrium geometry with our best estimator. Results sh
that the VMC average force results may vary in a signific
way for the different sets of optimized parameters found.
this case, the domain of variation is about twenty times
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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magnitude of the statistical error. The domain of variation
the DMC average is also important but two times sma
than in the VMC case. However, it has been observed
the hybrid averages are much less sensitive on the optim
parameters. The error on the hybrid average force due t
incomplete optimization has been found to be of the orde
magnitude of the statistical error which is rather small.

V. SUMMARY AND CONCLUSIONS

In this work we have shown how to construct improv
VMC or DMC estimators for observables. By improved it
meant that, compared to the standard bare estimatorO, the
new estimatorsÕ have a lower variance and a reduced s
tematic error when averaged over the approximate VMC
~fixed-node! DMC probability densities.

At the variational Monte Carlo level the most gene
form we propose forÕ is given by

ÕVMC@cT ,c̃,vW #[O1
~H2EL!c̃

cT
12~EL2^EL&!

c̃

cT

1
¹W @~EL2^EL&!cT

2vW #

cT
2 , ~83!

where averages are defined over the VMC distribution.
the diffusion Monte Carlo level the expression proposed
essentially similar, except that the average of the local ene
entering the definition ofÕDMC is defined over the DMC
distribution, Eq.~60!. The various terms defining the im
proved observables have a well-defined physical origin: T
first three contributions result from the change of the ene
average when the magnitude of the observable considere
an external field is varied, while the last contribution com
from the use of a coordinate transformation correlating e
tron displacements and change of the external field.
functionscT and c̃ appearing in the improved observabl
play the role of trial functions:cT is the ordinary trial wave
function for the ground state ofH and c̃ is a guess for the
derivative of the exact ground-state wave function,c0(l), of
the perturbed Hamiltonian

H~l![H1lO

with respect tol at l50. When the trial functions are exac
(cT ,c̃)5(c0 , dc0(l)/dl ul50), the improved estimator re
duces to a constant, namely the exact average for the ob
able. In that case both statistical and systematic errors
ish. We have called this remarkable property ‘‘zero-varian
zero-bias property’’~ZVZB!. In the neighborhood of the ex
act solution, a local expansion of the various quantities
tained from the approximate guess (cT ,c̃) can be done. It is
found that there is aquadratic behavior in the errorsdc

5cT2c0 anddc85c̃2c08 . At the VMC level it reads

s2~Õ![^~Õ2^Õ&c
T
2!2&c

T
2;O@dcdc8# ~84!

and

DÕ[^Õ&c
T
22^O&c

0
2;O@dcdc8#, ~85!
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with a similar result in the DMC case. This important res
generalizes the well-known quadratic zero-variance zero-
property of the energy where the local energy,EL

5HcT /cT , plays the role of the improved estimator:

s2~EL!;O@dc2# ~86!

and

DEL
;O@dc2#. ~87!

In the case of the energy we can write a zero-varia
zero-bias equation defining the optimal trial wave functi
by imposing that the local energy reduces to a const
namely the exact energy

HcT

cT
5E0 . ~88!

Of course, this equation is nothing but the Schro¨dinger equa-
tion. Here, the zero-variance zero-bias equation for the
servable is obtained by imposing that the improved obse
ableÕ reduces to the exact average

Õ5^O&c
0
2. ~89!

By optimizing the three quantities (cT ,c̃,vW ) so that fluctua-
tions of Õ are minimal we can obtain the optimal improve
estimator for the observable. In practice, it is done in t
steps. First, functional forms for the trial functionscT andc̃
are chosen in order to reproduce the best as possible
exact solution of the zero-variance equations. The choice
the vector fieldvW is done on physical grounds: It correspon
to the electron-coordinate transformation,yW5xW1lvW (xW )
1O(l2), correlating as much as possible the electron d
placements and the change of density associated with
external field defined by the bare observable. Second,
various parameters entering the three quantities are o
mized by minimizing the fluctuations ofÕ over a large but
finite number of configurations~typically, several thousand!
drawn according to the VMC or DMC distributions.

It is important to emphasize that by using the improv
estimators presented here it is possible to get an accurac
expectation values of observables which is comparable to
very good one obtained for total energies. As can be s
from Eqs.~84!–~87! this is true when we are able to reduc
the error on the derivative of the wave function at the level
the error on the wave function itself, that isdc;dc8.

Another fact worth pointing out is that there is not a
unique way of constructing improved estimators. Here,
have built our estimators by considering the derivative of
variational, Eq.~18!, or the exact DMC energy average, E
~51!. We have also considered the possibility of making
coordinate transformation before making the derivative, E
~41! and~43!. Of course, we can think of many other choic
and/or transformations. Ultimately, the better strategy w
depend very much on the specific problem considered.
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Finally, in order to go beyond VMC or DMC calcula
tions, we have shown that the reduction of error of one or
in dc associated with the popular ‘‘hybrid’’~or ‘‘second-
order’’! formula mixing DMC and VMC averages can b
generalized to the case of our improved estimators:

2^ÕDMC&cTc0
2^ÕVMC&c

T
2;^c0uOuc0&. ~90!

As an important application we have applied our form
ism to the case of the computation of forces for some sim
diatomic molecules. In our preceding work on forces24 we
have focused our attention only on the zero-variance par
the problem. More precisely, we have employed~i! a simpli-
fied version of the renormalized force, Eq.~72!, ~ii ! the mini-
mal expression forc̃ leading to a finite variance, Eqs.~69!
and ~70!, and ~iii ! the hybrid formula mixing VMC and
DMC calculations, Eq.~90!. Results obtained for the vanish
ing force at the equilibrium distance for a number of sm
diatomic molecules were reasonably good. Here, we h
illustrated that such a strategy is in fact not valid for descr
ing the global shape of the force curve. It has been sho
that results depend very much on the trial wave funct
used and, particularly, on the quality of the optimization p
cess of the numerous parameters of the trial wave funct
As a result, the force curves obtained are not regular a
function of the interatomic distance and important spec
scopic quantities such as the equilibrium distanceRe and the
harmonic frequencyve cannot be obtained reliably. To ge
accurate curves we need not only to have a small amoun
statistical fluctuations but also a control of the systema
error. By exploiting the general ZVZB principle presented
this work it has been shown that obtaining accurate curve
now possible. The basic ingredients are:~i! the use of a trial
wave function for the derivative,c̃, built as a finite differ-
ence of the trial wave function with respect to the nucle
coordinate,~ii ! the use of a coordinate transformation in t
spirit of the works by Umrigar28 and Filippi and Umrigar33

and, finally,~iii ! the systematic minimization of the varianc
of the improved estimator with respect to all the parame
entering the two trial functions (cT ,c̃), and the vector field,
vW , associated with the coordinate transformation. Let us
phasize that to get a well-balanced optimization of the t
trial functions~leading to smooth curves for the forces!, it is
essential to reduce the variance of the improved estimato
the force at the level of the variance of the local ener
Although such a condition may appear as very difficult
fulfill ~local energies have usually very small variances!, we
have shown that it is in fact possible thanks to t
coordinate-transformation term. Such a result is remarka
and is certainly one of most important practical aspects
the approach proposed in this work.

Finally, let us remark that the price to pay with respect
the minimal scheme presented in our previous work24 lies in
the need of computing about 3Nnucl local energies to calcu
late the various components of the force. However, we
not think it represents a major difficulty for the realistic a
plications to come. Indeed, the few-percent accuracy nee
on average forces will be obtained with relatively small s
tistics and, therefore, it will not be necessary to compute
Downloaded 10 Mar 2010 to 130.120.228.223. Redistribution subject to A
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force vector at each Monte Carlo step~the expensive
3Nnucl-local energy-calculation step will be done rarely!. In
addition to this, in applications where the nuclear geome
is varied during the simulation~molecular dynamics-type ap
plications! it should also be possible to use suitable
actualization schemes to avoid recomputing entirely
3Nnucl local energies for close nuclear configurations.
course, the validity of these various strategies as well as
quality of the improved estimators presented in this wo
need now to be checked for realistic applications involvi
many nuclear degrees of freedom.
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