
Implementation of parallelism
in QMC=Chem
Anthony Scemama <scemama@irsamc.ups-tlse.fr>
Michel Caffarel <michel.caffarel@irsamc.ups-tlse.fr>

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Parallelization of VMC
In VMC, all the trajectories are completely independent:

1

• Pack together a pool of N walk walkers

• Cut the trajectories in smaller pieces of equal size (N step)

• Each CPU computes a block: N walk executing N step

Nstep

Nproc

Nwalk

CPU time

2

Naive implementation:

• Parallelize with MPI

• At the end of each block, call MPI_all_reduce to update the running averages

• If too much memory is used, eventually add an OpenMP layer
This approach is not optimal *:

• At every synchronization, all processes will wait until the slowest has finished.
Perfect parallel speed-up is impossible to obtain.

• The calculation can't start until all resources are available

• If one compute node crashes, all the simulation is crashed.

• If more resources become available, it is impossible to attach more CPUs to a
running calculation

* "Manager–worker-based model for the parallelization of quantum Monte Carlo on
heterogeneous and homogeneous networks", M. T. Feldmann, J. C. Cummings, D. R.
Kent, R. P. Muller, W. A. Goddard III, J. Comput. Chem. 29, 8–16 (2008).

3

Our approach † :

• Manager/worker model: all CPUs are desynchronized, they start immediately

• The length of the block is not fixed: termination is immediate

• Use as less memory/core as possible (<100 MiB / core)

• Implement a client/server model (in Python):

• allows client nodes to crash

• allows to dynamically add/remove clients
• Avoid the traditional input/output file model. All data is stored in a database,
and data is post-processed.

• Possibility to use computing grids (EGI ‡)

† "Quantum monte carlo for large chemical systems: Implementing efficient strategies
for petascale platforms and beyond", A. Scemama, M. Caffarel, E. Oseret and W. Jalby, J.
Comput. Chem 34, 938–951 (2013).

‡ "Large-scale quantum Monte Carlo electronic structure calculations on the EGEE grid",
A. Monari, A. Scemama and M. Caffarel, Remote Instrumentation for eScience and Related
Aspects, 195--207, Springer (2012).

4

Master compute node

Data Server Slave Compute node

Manager

Database

Main worker thread

Forwarder

Forwarder

Worker WorkerWorker

Network Thread

I/O Thread Worker WorkerWorker

• All I/O and network communications are non-blocking

• Worker: Single-core Fortran executable piped to a forwarder

• A Worker stops cleanly when its receives the SIGTERM signal

5

Fault-tolerance

• No access to the filesystem: scripts, binary and input data are broadcasted to
the client nodes and stored in /dev/shm. Local disks can crash.

• Blocks have a Gaussian distribution. Losing blocks doesn't change the
average. Any worker can be removed.

• Every forwarder can always reach the data server. Any node can be removed.

• If the data server is lost, it is always possible to continue the calculation in
another run.

6

Parallelization of DMC

• In the standard DMC algorithm, the walkers are no more independent.

• Communications are expected to kill the ideal speed-up.

• The Pure Diffusion MC algorithm § allows to obtain the DMC energy with
re-weighting instead of branching: no more communication.

• PDMC introduces too much fluctuations in the total energies

• We use an algorithm that combines branching and re-weighting. ¶ Small
populations can be used, and multiple independent runs can be done.

§ "Development of a pure diffusion quantum Monte Carlo method using a full generalized
Feynman–Kac formula.", M. Caffarel, J. Chem. Phys. 88, 1088 (1988)

¶ "Diffusion monte carlo methods with a fixed number of walkers", R. Assaraf, M. Caffarel,
A. Khelif, Phys Rev E 61(4 Pt B), 4566-75 (2000).

7

Why a database?

• Input and output data are tightly linked

• An output file can be generated on demand

• Easy connection to GUI

• An API simplifies scripting to manipulate results

• Checkpoint/restart is trivial

• Additional calculation can be done even if the calculation is finished. No need
to re-run.

• Combining results obtained on different datacenters is trivial

• Multiple independent runs can write in the same database : dynamic number of
CPUs.

• The name of the database is an MD5 key, corresponding to critical input data.

8

Initial conditions

• Different initial walker positions are needed

• At the end of each block, the final positions are sent to the forwarder

• Each forwarder keeps a sample of the populations of its workers

• Sometimes, the forwarder sends its walkers to its parent in the tree

• The data server receives a sample of the population of all the walkers and
merges it with its population

• Periodically, the population is saved to disk

• When a new run is started, each worker gets N walk walkers drawn randomly
from this population

9

Termination
When the manager wants to terminate the calculation (catches SIGTERM, or
termination condition reached):

• It sends to the leaves of the tree a termination signal

• The leaves send a SIGTERM to the workers

• Each forwarder gets the data of the last blocks from the workers

• When the workers have terminated, the forwarder sends the data to its parent
with a termination signal

• When the data server receives the termination signal, it the calculation is
finished

10

Parallel speed-up

Estimation checked on 100 nodes/1 hour. Accuracy of 0.9992

11

The parallel speed-up is almost ideal.

Single-core optimization is crucial : Every percent gained on one core will be
gained on the parallel simulation

12

	Parallelization of VMC
	Fault-tolerance
	Parallelization of DMC
	Why a database?
	Initial conditions
	Termination
	Parallel speed-up

