
Final Report: Large-scale Quantum Monte
Carlo simulations for Chemistry

PRACE Preparatory Access Call
PA0356

Michel Caffarel, Anthony Scemama
—

Laboratoire de Chimie et Physique Quantiques

CNRS-IRSAMC, Université de Toulouse, France

—

April 20, 2011

Abstract

In this document various tests realized on the Curie machine thanks
to the preparatory access call are presented. The runs performed have
allowed us to test the scalability of our quantum Monte Carlo code
and also to improve it to get the optimal efficiency. Before running
on Curie our program had already been tested up to 512 cores and
presented a very good scalability. Thanks to this preparatory access it
has been possible to run in parallel a much larger number of cores (up
to 10000) In this new regime a number of bottlenecks have appeared
and were cured. Using the results of these benchmarks, we estimate
that in real (production) situations our code is expected to have a
wall-time parallel efficiency close to 99% with 10 000 CPU cores, and
this efficiency will get even better in the near future. These results
confirm the fact that quantum Monte Carlo simulations are indeed
ideally suited to massive parallelism with maximal scalability.

Quantum Monte Carlo (QMC) methods are known to be powerful stochas-
tic approaches for solving the Schrödinger equation. Although they have been
widely used in computational physics during the last twenty years, they are
still of marginal use in computational chemistry. Two major reasons can be
invoked for that:

1

1. the N -body problem encountered in chemistry is particularly chal-
lenging (a set of strongly interacting electrons in the field of highly-
attractive nuclei)

2. the level of numerical accuracy required is very high (the so-called
“chemical accuracy”).

In practice, DFT methods are the most popular approaches, essentially
because they combine both a reasonable accuracy and a favorable scaling of
the computational effort as a function of the number of electrons. On the
other hand, post-HF methods are also employed since they lead to a greater
and much controlled accuracy than DFT. Unfortunately, the price to pay
for such an accuracy is too high to be of practical use for large molecular
systems.

QMC appears as a third promising alternative method essentially because
it combines the advantages of both approaches: a favorable scaling together
with a very good accuracy. In addition to this, the QMC approaches are ide-
ally suited to High-Performance-Computing (HPC) and, more specifically, to
massively parallel computations. As most “classical” or “quantum” Monte
Carlo approaches, the algorithm is of the number crunching type, the mem-
ory requirements remain small and bounded and the I/O flows are marginal.
Due to these extremely favorable computational aspects plus the rapid evo-
lution of computational infrastructures towards more and more numerous
and efficient processors, it is likely that QMC will play in the next years a
growing role in computational chemistry.

1 Overview of a QMC simulation

A walker is a vector X of the 3N -dimensional space containing the entire
set of the three-dimensional coordinates of the N electrons of the molecular
system. During the simulation, a walker (or a population of walkers) samples
via a Monte Carlo Markov Chain process the 3N -dimensional space according
to some target probability density (the precise density may vary from one
QMC method to another). From a practical point of view, the averages of
the quantities of interest (energy, densities, etc.) are calculated over a set as
large as possible of independent random walks. Random walks differ from
each other only in the initial electron positions X0, and in the initial random
seed S0 determining the entire series of random numbers used.

In QMC=Chem, the quantum Monte Carlo program developed by our
group, the main computational object is a block. In a block, Nwalk inde-
pendent walkers realize random walks of length Nstep, and the quantities of

2

interest are averaged over all the steps of each random walk. If Nstep is signif-
icantly larger than the auto-correlation time (which is usually rather small),
the positions of the walkers at the end of the block can be considered as
independent of their initial positions and a new block can be sampled using
these configurations as X0 and using the current random seed as S0.

The final Monte Carlo result is obtained by averaging all the results ob-
tained for each block. If the data associated with each block are saved on
disk, the averages can be calculated by post-processing the data and the cal-
culation can be easily restarted using the last positions of the walkers and
the last random seeds.

Note that the computation of the averages does not require any time
ordering. If the user provides a set of Nproc different initial conditions (walker
positions and random seed), the blocks can be computed in parallel. In
figure 1, we give a pictorial representation of four independent processors
computing blocks sequentially, each block having different initial conditions.

Nstep

Nwalk

Nproc

CPU time

Figure 1: Graphical representation of a QMC simulation. Each process gen-
erates blocks, each block being composed of Nwalk walkers realizing Nstep

Monte Carlo steps.

3

2 Design of QMC=Chem before we start the

preparatory access

QMC=Chem was designed specifically to run efficiently both on heteroge-
neous clusters via MPI and in grid environments using Python scripts. The
memory requirements, disk input/outputs and network communications were
minimized as much as possible, and the code was written in order to allow
asynchronous processes (figure 2) using the manager/worker model.

Worker Data Server

MPI Master

MPI Slave

Network Thread

I/O Thread

Database

Manager

Figure 2: Overview of QMC=Chem before the preparatory access.

When the program starts its execution, the manager runs on the master
node and forks two other processes: a worker process and a data server. The
worker is an efficient Fortran/MPI executable with minimal memory and disk
space requirements (typically a few tens of megabytes for each), where the
only MPI communication is the broadcast of the input data (wave function
parameters, initial positions in the 3N -dimensional space and random seed).
The outline of the task of a worker is the following:

while (Running)

{

compute_a_block_of_data();

Running = send_the_results_to_the_data_server();

}

The data server is an XML-RPC server implemented in Python. When
it receives the computed data of a worker, it replies to the worker the order

4

given by the manager to compute another block or to stop. The received
data is then stored in a database using an asynchronous I/O mechanism.
The manager is always aware of the results computed by all the workers and
controls the running/stopping state of the workers and the interaction of the
user during the simulation.

3 Design of QMC=Chem after the prepara-

tory access

This preparatory access allowed us to discover several bottlenecks that ap-
peared when using a very large number of processors.

3.1 Network communication improvements

First, we observed with ∼2 000 cores that the native Python XML-RPC
server is not efficient enough. A lower level RPC server has been re-written
from scratch and gives satisfactory results up to 10 000 cores.

WorkerData Server

Worker

Worker

MPI Master

Forwarder

MPI Slave MPI Slave MPI Slave

Network Thread

I/O Thread

Database

Forwarder

Forwarder

Manager

MPI SlaveMPI Slave MPI Slave

MPI Slave MPI Slave MPI Slave

Figure 3: Overview of QMC=Chem after the preparatory access.

Then, we noticed that with our original design, 10 000 workers would yield
10 000 connections to the data server with small messages. We introduced
forwarders, as shown in figure 3. Each compute node has now one forwarder
that accepts the data from all the workers running on the same node, and
forwards the data to the data server. As on the Curie machine there are 32
cores per node, this first step reduced by 32 the number of connections to
the data server, and each connection contains a larger message. In addition,
it also reduced the time spent in communications on the compute node: as
soon as the forwarder has received the data, the workers are ready to start

5

the calculation of the next block. They don’t have to wait until the data has
arrived to the data server.

Finally, the number of connections to the data server has been reduced
even more by adding a feature to the forwarders. When a forwarder is in-
stantiated, it receives from the data server the list of all the other existing
forwarders. When the forwarder has data to send, it will send it randomly
to any other forwarder of this list or to the data server: The first forwarder
will always send the data to the data server, the second forwarder will send
data to the data server or to the first forwarder, etc. This mechanism makes
fewer and larger messages to be received by the data server. At that point,
the communications are no longer a bottleneck.

3.2 I/O improvements

During a run, the I/O thread of the data server writes the computed data to
disk in a BSD database file. The keys contain the rank of the processor that
computed the block and the index of the block on this processor. The values
contain the computed data. The manager simultaneously reads this file to be
aware of the current status of the calculation. In order to perform an update
of the running averages, the manager has to find which blocks were added
since the last update. Before the preparatory access, this was done with a
O(N×n) algorithm, where N is the number of keys in the file (the number of
computed blocks) and n is the number of blocks to consider for the update,
proportional to the number of workers. This algorithm was changed using
hash tables and the manager updates are now realized in O(N) time.

4 Benchmark results

4.1 Simulation details

An input file was prepared for a wave function of the CuCl2 molecule. The
disk occupation of the input files is 1.5 MB for this molecular system. The
disk occupation corresponding to the results of one computed block is inde-
pendent of the block parameters (length and number of random walks), and
is equal to 1.2 KB. The memory required by one core to compute one block
does not depend either on the block parameters, and was measured equal to
32 MB. The CPU time used by one core to compute a block is proportional
to the number of random walks and to the number of Monte Carlo steps.

The calculation was set up such that a block is made of 10 walkers real-
izing 2 000 Monte Carlo steps. The CPU time needed to compute one block

6

is 84 seconds, and the stopping condition of the calculation is “wall time > 5
minutes”. After 5 minutes, a soft termination signal is sent to all the workers.
The workers then finish the computation of the current block, send to the
manager the result corresponding to the block as well as the final positions
of the walkers and the last random seed.

Note that in real applications, the typical number of random walks per
block is around 100, and the number of Monte Carlo steps is in the [2 000, 50 000]
range. Hence, the CPU time per block is multiplied by a factor of 10–250
keeping all the rest is identical (memory, I/Os, network traffic, etc.) These
benchmark results are representative of a very bad conditioning of the simu-
lation where the I/O and network loads are too large by more than an order
of magnitude.

4.2 Results

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 c

om
pu

te
d

b
lo

ck
s

Number of CPU cores

7

Ncores Nblocks CPU time Wall time

8 32 2638.24 352
16 64 5243.97 352
32 128 10487.02 349
64 256 21070.63 357

128 512 42717.23 361
256 1024 84581.99 361
512 2048 167951.37 366

1024 4096 338153.60 368
2048 8192 673271.54 382
3072 12288 1016684.54 402
4096 16383 1370949.05 410
5120 20480 1697630.23 418
6144 24570 2033701.44 434
7168 28668 2387299.03 465
8192 32736 2721079.24 474
9999 39713 3543935.63 483

As expected, the number of computed blocks scales linearly with the
number of CPU cores. However, the wall time increases and this will be
discussed below.

A 20% speed-up was observed when only one worker was running on one
(8-core) processor. This may be twofold:

• The “turbo” feature of the CPUs may have been activated

• As the L3-cache per processor is 24 MB large and the requested memory
per core is 32 MB, most of the data fits in the cache.

Therefore, the data for one to four workers have not been reported

4.3 Wall time analysis

Following Amdahl’s law, a perfect speed-up in terms of wall time is not
achievable. The need to broadcast the input data, retrieve the final data and
write it to disk is essentially a serial procedure that can’t be avoided.

Initialization. In our program, the following serial procedures are per-
formed before the calculation of the blocks calculation starts. A preliminary
check of the consistency of the input file is performed, and a CRC32 key
is computed from the input data. In this way it will be further possible to
check that when data arrives to the data server it corresponds to the same
input. Then the MPI process is started. The input data is read from disk

8

by the master MPI process and sent to the MPI slaves. Then the input data
is processed before the block calculation starts (matrix sparsifications, cusp
fitting, etc. . .).

Calculation. At that point, all the MPI processes work independently.
When a process has finished to compute a block, it calls a Python script to
send the computed data to the forwarder, and starts the next block. Mean-
while, the forwarders route the computed results to the data server. On the
data server, each network connection initiates a new thread and the received
data is appended to a queue. In parallel, the I/O thread of the data server
pops elements from this queue to write the data to disk.

Termination. When the forwarders run, they regularly send a heartbeat
to the data server. The reply from the data server is the order to perform a
new block or to stop. Upon a stopping request (because the user asks for it,
or because the stopping condition has been reached), all the forwarders are
informed. The workers continue to run, finish their block, and launch the
Python script to send the data to the forwarder. At that point, they obtain
the information to stop. Then, they send back the current random seed
and the last positions of the walkers. The time required by the data server
to receive all the walker positions and random seeds is a serial procedure,
affecting the speed-up.

To better understand why the wall time increases, several measures have
been realized on the master node of a 4096-core run.

9

4.3.1 CPU usage

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

%

seconds

User
System

On this graph, 100% corresponds to the full CPU utilization of the 32 cores.
The time spent to compute the blocks is colored in yellow. From this data,
one can see that 16 seconds are required for the initialization step. The
termination of the last worker is shifted from the termination of the first
worker by 10 seconds. 22 additional seconds are needed to receive and store
the final walker positions and store them to disk. On average, 2 seconds are
needed for the Python script to send the data to the forwarder at the end of
each block.

10

4.3.2 Network usage

0.0625

0.25

1

4

16

64

256

1024

4096

16384

65536

0 50 100 150 200 250 300 350 400

kb
/s

ec

seconds

lo-read
ib0-read
lo-write

ib0-write

The lo network interface is used for intra-node communications and the ib0
interface is used for inter-node communications. The base-line of ib0-read
and ib0-write is around 8 KB/sec. This comes from the heartbeat of the
forwarders and the reply of the data server. The network communications
after the end of the blocks can be clearly identified, and one can remark that
the maximum of the peak happens when the next block has already started,
giving evidence that the routing of the data to the data server is done in
parallel with the computation of the blocks. One can also note an important
traffic starting at 350 seconds, corresponding to the retrieval of the final data.
As the runs on 8–32 cores last 349–352 seconds, we can conclude that the
wall time increase with the number of cores is mainly due to the finalization
step.

11

4.3.3 CPU usage of the data server

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

%

seconds

Data Server

CPU
User

System

On this graph, 100% corresponds to the CPU utilization of one core. This
graphs shows that the data is stored in the database in parallel with the
calculation (system time). A large amount of CPU time is needed during the
retrieval of the final data. This point will be investigated.

12

4.3.4 CPU usage of the manager

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

%

seconds

Manager

CPU
User

System

5 seconds are necessary to check the input files, compute the CRC32 key
and start the data server. Then, the peaks correspond to a updates of the
running averages from the database.

4.3.5 Summary and conclusions

The parallel part of the calculation is spent to compute blocks. The block
parameters can be adjusted by the user and don’t impact the serial part of the
program. The serial part depends only on the number of computed blocks,
and does not depend on the block parameters. This serial part contains input
checking (constant, 5 seconds), MPI initialization (3–6 seconds on 4096–8192
cores), input pre-processing (constant, 7 seconds), data transfer from the
workers to the forwarders (2 seconds/block), finalization (the largest part,
depending on the number of walkers and the number of cores).

When the number of computed blocks becomes large, the CPU loads of
the manager and the data server are non-negligible. As these two processes
run on the first compute node they share their CPU resources with the run-

13

ning workers, and the additional wall time can be computed as:

Additional wall time = (CPU time per block×Nblocks/core)

(
Nprocesses/node

Ncores/node

− 1

)
(1)

On these benchmarks, the workers running on the first compute node can in
the worst case finish 21 seconds after all the other workers. This explains the
10 second shift observed in the termination of the workers on the CPU-load
data.

The additional wall time needed per computed block can be estimated by
taking the asymptote of:

Wall time per block =

(
Total Wall Time−

Nblocks/core

Nblocks

× CPU time

)
× 1

Nblocks

(2)
when the number of cores becomes large (figure 4). The additional wall-time
for one block is estimated equal to 4 milliseconds.

Using this data, one can estimate the wall time required for a real calcula-
tion on 10 000 cores and evaluate the parallel efficiency. Blocks will be made
of 100 walkers realizing 10 000 steps. The CPU time per block is expected
to be 70 minutes. If the stopping condition is “wall time > 8 hours”, 8 hours
and 10 minutes will be spent in the parallel part to compute 7 blocks per
CPU core. The serial part will contain the ∼20 second initialization, and 14
seconds of data transfer from the workers to the forwarders. In total, 70 000
blocks will be computed and the additional wall time will be estimated equal
to 280 seconds for the finalization step. The total wall time will be equal to
495.23 minutes, and the total CPU time will be equal to 4 900 000 minutes.
Hence, the parallel efficiency will be close to 99%. With this estimation, our
code is now ready to run efficiently on Curie.

5 Future improvements

Some improvements have already been implemented but have not be tested
on Curie since the allocation was exceeded. The Python script used to send
the data to the forwarders which is far too slow on these benchmarks (2
seconds) has now been accelerated by a factor of 10. Some of the work of the
data server at the finalization step (the sorting of the final walker positions,
for instance) has also been delegated to the forwarders and is now done in
parallel. Too many read-accesses to the database have been observed due to
unnecessary updates of the manager. These have been identified and were

14

0

0.005

0.01

0.015

0.02

0.025

0.03

0 2000 4000 6000 8000 10000 12000

(WallTime - 4*CPUTime/NBlocks)/NBlocks
0.0040

Figure 4: The asymptote of this curve is an estimation of the additional
wall-time needed per computed block.

15

removed just before the end of the preparatory access. An improvement of
6 wall-time seconds was measured with 4096 cores.

In the near future, the following improvements will be made. The for-
warders will be organized in a binary tree structure to gain in efficiency for
the routing of the results to the data server. Some redundancies have also
been found in the stored data and the disk occupation of the database will
readily be decreased, reducing also the I/O bandwidth and CPU load of both
the manager and the data server. This should reduce the additional wall-time
per computed block, which is the main source of speed-up degradation.

16

