
QuantumMonte Carlo with
QMC=Chem : Basic concepts

Michel Caffarel and Anthony Scemama

CNRS and Université de Toulouse

Presentation of the basic notions required for the tutorial.

More information on our scientific website :
http :∥ qmcchem.ups-tlse.fr

– p. 1/37

Variational Monte Carlo (VMC)

In the tutorial method = "VMC"

• N electrons with positions : r1, ..., rN

• Given a trial approximate wavefunction ΨT(r1, ..., rN)

we want to compute the variational energy

E =
〈ΨT|H|ΨT〉
〈ΨT|ΨT〉

or any property

〈A〉 = 〈ΨT|A|ΨT〉
〈ΨT|ΨT〉

– p. 2/37

Variational Monte Carlo (VMC)

In the tutorial the trial wavefunction used is either a
Hartree-Fock or a CAS-SCF wavefunction

The molecule treated will be N2

14 electrons and 7 double-occupied molecular orbitals :
φ1, ..., φ7 in the S = 0 ground-state

– p. 3/37

N2 molecule

φ1 = 1σ1s φ2 = 1σ∗
1s

(core orbitals not shown on the diagram)
φ3 = 2σ2s φ4 = 2σ∗

2s
φ5 = 1π2px φ6 = 1π2py φ7 = 3σ2pz

– p. 4/37

Variational Monte Carlo (VMC)

In quantum chemistry ΨSCF is usually expressed using
space r and spin variables, σ = α (or ↑) and σ = β (or ↓)

ΨSCF(r1, σ1, ..., rN, σN) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1α

φ1β
...

...
...

φ7α

φ7β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

– p. 5/37

Variational Monte Carlo (VMC)

In QMC methods we use an equivalent spin-free formalism
(averages are the same) = the wavefunction ΨT depends
only on the spatial positions of electrons.

Here, electrons 1 to 7 have been chosen as α electrons and
electrons 8 to 14 as β electrons (arbitrary)

ΨSCF
T (r1, ..., rN) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) . . . φ1(r7)
...

...
...

φ7(r1) . . . φ7(r7)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r8) . . . φ1(r14)
...

...
...

φ7(r8) . . . φ7(r14)

∣

∣

∣

∣

∣

∣

∣

∣

∣

– p. 6/37

Variational Monte Carlo (VMC)

CAS-SCF wavefunction based on the determinantal
expansion over all possible excitations within a set of Nact

active orbitals chosen among the M molecular orbitals (M =
total size of the basis set)

ΨCAS−SCF
T =

∑

all excitations K=(kα
1
,...,k

β

1
,...)

cK

∣

∣

∣

∣

∣

∣

∣

∣

∣

φkα
1
(r1) . . . φkα

1
(r7)

...
...

...

φkα
7
(r1) . . . φkα

7
(r7)(r7)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ
k
β

1

(r8) . . . φ
k
β

1

(r14)
...

...
...

φ
k
β

7

(r8) . . . φ
k
β

7

(r14)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

– p. 7/37

Variational Monte Carlo (VMC)

In this tutorial HF and CASSCF wave functions from
GAMESS.

– p. 8/37

Variational Monte Carlo (VMC)

How to compute the variational energy ?

E =
〈ΨT|H|ΨT〉
〈ΨT|ΨT〉

Standard ab initio wft approaches

• ΨT = expansion over a sum of determinants
• Each determinant is an antisymmetrized product of
molecular orbitals φi

• Each molecular orbital is expressed as a sum over
primitive gaussian functions : φi =

∑

j ci jχ j

⇒ E is obtained as a huge sum of elementary one-electron
and bielectronic integrals

– p. 9/37

Variational Monte Carlo (VMC)

VMC= computing the very same variational energy using
Monte Carlo techniques

Big advantage = no need of calculating the numerous
one-electron and bielectronic integrals.

– p. 10/37

Variational Monte Carlo (VMC)

VMC= generate in a probabilistic way billions of "electronic
configurations" R = (r1, ..., rN) distributed in 3N-dimensional
space according to the density probability

Π(R) =
Ψ2

T
(r1, ..., rN)

∫

dr1, ..., drNΨ
2
T
(r1, ..., rN)

The average energy can be expressed as

E =
〈ΨT|H|ΨT〉
〈ΨT|ΨT〉

=

∫

dr1...drNΨ
2
T
(r1, ..., rN)

HΨT

ΨT
∫

dr1...drNΨ
2
T
(r1, ..., rN)

E =

∫

dRΠ(R)
HΨT

ΨT

– p. 11/37

Variational Monte Carlo (VMC)

Here, let us define the local energy EL as

EL(r1, ..., rN) ≡
HΨT

ΨT

we have :

E = lim
K→+∞

=
1

K

K
∑

k=1

EL(R
(k))

K = number of electronic configurations generated by
Monte Carlo

– p. 12/37

Metropolis algorithm

How to generate electronic configurations according to Π?

Answer : Thanks to a Metropolis algorithm (many variants
of it)

In a Metropolis algorithm there are two steps :

1) Move the electrons with a certain probability

2) Accept or reject this move according to some probability

– p. 13/37

Metropolis algorithm

A first type of Metropolis algorithm : sampling="Brownian"

1) Electronic configurations are moved according to :

p(R→ R′) =
1

(2πτ)3N/2
exp[−(R

′ − R − b(R)τ)2

2τ
]

b = drift vector= ∇ψT

ψT
and τ = time-step

2) Configurations are accepted/rejected with probability q

q =Min[1,
Π(R′)p(R′ → R)

Π(R)p(R→ R′)
]

A random number χ is drawn ∈ (0,1). If q > χ move
accepted, if not rejected.

– p. 14/37

Metropolis algorithm

In practice, drawing new configurations R′ according to
p(R→ R′) is very simple. The probability is a product of 3N
independent 1D probability density

p(R→ R′) =

N
∏

i=1

1
√
2πτ

exp [−
(x′

i
− xi − bxi(R)τ)

2)

2τ
]

1
√
2πτ

exp [−
(y′

i
− yi − byi(R)τ)

2

2τ
]

1
√
2πτ

exp [−
(z′

i
− zi − bzi(R)τ)

2

2τ
]

– p. 15/37

Metropolis algorithm

Simply draw 3N independent gaussian numbers η with zero
mean and variance 1
x′
i
−xi−bxi (R)τ√

τ
= ηx

i

y′
i
−yi−byi (R)τ√

τ
= η

y

i

z′
i
−zi−bzi (R)τ√

τ
= ηz

i

or

x′
i
= xi + bx

i
(R)τ +

√
τηx

i

y′
i
= yi + b

y

i
(R)τ +

√
τη

y

i

z′
i
= zi + bz

i
(R)τ +

√
τηz

i

– p. 16/37

Metropolis algorithm

Second type : sampling="Langevin"
Use of the true Langevin equation :

dR(t) = P(t)/mdt

dP(t) = −gradV(R(t))dt − γP(t)dt + σdW(t)

Instead of
dR(t) = b(R(t))dt + σdW(t)

See, A. Scemama, T. Lelièvre, G. Stoltz, E. Cancès, and
M.C J. Chem. Phys. vol.125, 114105 (2006).

– p. 17/37

Summary about VMC

To make a VMC calculation we need to compute at each
Monte Carlo step :

• Values of ΨT, b = ∇ψT

ψT
, and EL = HψT/ψT = −1/2∇2ΨT/ΨT

• Draw gaussian and random numbers

Very easy to do, no one- or two-electron integrals to
compute.

Important consequence : any form for the trial
wavefunction can be used

In the tutorial : HF and CASSCF wavefunctions so we can
compare the standard approach and the Monte Carlo one.

In practice, more sophisticated wavefunctions whose
averages cannot be calculated using the standard approach
are used.

– p. 18/37

Slater-Jastrow trial wavefunction

Most popular form

ΨT = eJ(r1,...,rN)
Ndet
∑

k=1

cKDetK({φαki})Detk({φβki})

with (typically)

J(r1, . . . , rN) =
∑

i< j

ve−e(ri j)+
∑

α

ve−n(riα)+
∑

i< j

∑

α

ve−e−n(ri j, riα, r jα)

Electron-electron CUSP conditions : when electrons i and j
are very close ve−e(ri j)→ 1/2 ri j(spin-unlike) or 1/4 ri j
(spin-like)

– p. 19/37

Other trial wavefunctions

• Jastrow-Geminal wavefunction (Casula, Sorella and coll.)
•Wavefunctions with backflow (Drummond, Rios, Needs,
Mitas, and coll.)
• Pfaffian wavefunction (Mitas and coll.)
• MultiJastrow wavefunction (Bouabça, MC and coll.)
• VB-type wavefunctions (Braida, MC, Goddard and coll.)
• etc.

– p. 20/37

Fixed-Node Diffusion Monte Carlo (DMC)

DMC = VMC (move + acceptance/rejection step) +
Birth-death (branching) process

Birth-death process : After VMC step the electronic
configuration is duplicated into M copies (M = 0, 1, 2, ..)

M = Integer_part(exp [−τ(EL − Ere f)] + u)

where u is a uniform random number in (0,1) (so that the
average number of copies is equal to exp [−τ(EL − Ere f)])

– p. 21/37

Population of walkers in DMC

Because of the possible variation of the number of
electronic configurations, to perform a DMC calculations we
need to introduce a population of electronic configurations
(or walkers). In QMC=Chem this number is denoted
walk_num .

It can be shown that by adjusting Ere f = E0 the size of
population of walkers can be kept constant in average.

Note that in VMC it is not necessary to introduce a
population of walkers but in general we also consider
walk_num walkers.

– p. 22/37

Fixed-Node Diffusion Monte Carlo (DMC)

Using DMC rules the density obtained is

Π(R) =
ΨT(r1, ..., rN)Φ

FN
0
(r1, ..., rN)

∫

dr1, ..., drNΨT(r1, ..., rN)Φ0(r1, ..., rN)

where ΦFN
0
(r1, ..., rN) = solution of the Schrödinger equation :

HΦFN
0 (r1, ..., rN) = EFN

0 Φ
FN
0 (r1, ..., rN)

with the Fixed-Node (FN) constraint : ΦFN
0
(r1, ..., rN) = 0

whenever ΨT(r1, ..., rN) = 0

– p. 23/37

Fixed-Node Diffusion Monte Carlo (DMC)

The estimate of the exact energy is obtained as in VMC by
averaging the local energy

<< EL >>=

∫

dr1...drNΨTφ
FN
0

HΨT

ΨT
∫

dr1...drNΨTφ
FN
0

=

∫

dr1...drNφ
FN
0
HΨT

∫

dr1...drNΨTφ
FN
0

= EFN
0

• In general the fixed-node error is small (a few percents of
the correlation energy)

• Variational property : EFN
0
≥ E0

– p. 24/37

Fixed-Node Diffusion Monte Carlo (DMC)

The expectation value of an observable A is biased in DMC

< A >=

∫

dr1...drNΨTφ0A
∫

dr1...drNΨTφ0

,

∫

dr1...drNφ
2
0
A

∫

dr1...drNφ
2
0

A simple way of improving the average

< A >∼ 2 < A >DMC − < A >VMC

Indeed : 〈φ0|A|φ0〉 = 〈ΨT + δφ|A|ΨT + δφ〉
where δφ = φ0 −ΨT

〈φ0|A|φ0〉 = 〈ΨT|A|ΨT〉 + 2〈δφ|A|ΨT〉 +O(δφ2)

〈φ0|A|φ0〉 = 2〈φ0|A|ΨT〉 − 〈ΨT|A|ΨT〉 +O(δφ2)

– p. 25/37

QMC is fully parallelizable

– p. 26/37

Do not forget to show the
video !

– p. 27/37

Benchmarks

• S. Manten and A. Luchow, J.Chem.Phys. 115, 5362
(2001).
• J.C. Grossman J.Chem.Phys. 117, 1434 (2002).
• Nemec et al., J.Chem.Phys. 132, 034111 (2010).

G1 set Pople et collab. (1990) = 55 molecules. Atomization
energies.
Mean Absolute Deviation ǫMAD

• FN-DMC : ǫMAD = 2.9kcal/mol

• LDA : ǫMAD ∼ 40kcal/mol

• (B3LYP et B3PW91) ǫMAD ∼ 2.5kcal/mol

• CCSD(T)/aug-cc-pVQZ ǫMAD ∼ 2.8kcal/mol

– p. 28/37

QMC simulations for Amyloid β

Aβ(28-35) β-Strand structure simulated with QMC

Aβ(28-35) α-Helix structure simulated with QMC

– p. 29/37

Petascale QMC simulations

• Simulations done on CURIE supercomputer at CEA,
France, december 2011. Key people : Anthony Scemama
(LCPQ) and Bull engineers

• QMC simulations involving 122 atoms and 432 electrons
(largest chemical system to date).

• Use of about 80 000 cores during about 24h, ∼ 960
Tflops/s (real performance)

• 32.5% of the peak performance of the INTEL
SANDY BRIDGE processor thanks to optimization tools
(Exascale Computing Research Lab.)

– p. 30/37

Practical aspects : Convergence of energy

As we have seen in VMC and DMC the energy is estimated
as the average of the local energy over K electronic
configurations

E ∼ 1

K

K
∑

k=1

EL(R
(k))

How to get an estimation of the statistical error for E?.

– p. 31/37

Practical aspects : Convergence of energy

1) Generation of a certain number of "blocks" Nb defined as
a set of walk_num walkers having made num_step moves

2) Each block k contains about Nk = walk_num × num_step
values of the local energy leading to

Ek =
1

Nk

Nk
∑

i=1

EL(R
(i))

3) If num_step is sufficiently large, such blocks must be
statistically independent and gaussian distributed
(central-limit theorem for Markovian processes)

– p. 32/37

Practical aspects : Convergence of energy

4) The energy is then estimated as the average over the Nb

blocks

E =
1

Nb

Nb
∑

k=1

Ek

and the error by

δE =
σ
√
Nb

where σ is an estimate of the standard deviation of the
gaussian distribution

σ =

√

√

√

1

Nb − 1

Nb
∑

k=1

(Ek − E)2

– p. 33/37

Practical aspects : Convergence of energy

The final result is written under the form

E ± δE

Exact result within one standard deviation (E ± δE) :
probability = 68.2%

Exact result within two standard deviations (E ± 2δE) :
probability = 95.4%

– p. 34/37

Practical aspects : Convergence of energy

It is important to check

1) The transient regime is attained. For that the evolution of
E as a function of the number of blocks must be looked at.

2) The distribution of blocks is indeed gaussian.

– p. 35/37

Other practical aspects

1) Choice of the value of the time-step

2) Treatment of electron-nucleus CUSP

– p. 36/37

Other practical aspects

1) Choice of the value of the time-step

2) Treatment of electron-nucleus CUSP

– p. 37/37

Implementation of parallelism
in QMC=Chem
Anthony Scemama <scemama@irsamc.ups-tlse.fr>
Michel Caffarel <michel.caffarel@irsamc.ups-tlse.fr>

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Parallelization of VMC
In VMC, all the trajectories are completely independent:

1

• Pack together a pool of N walk walkers

• Cut the trajectories in smaller pieces of equal size (N step)

• Each CPU computes a block: N walk executing N step

Nstep

Nproc

Nwalk

CPU time

2

Naive implementation:

• Parallelize with MPI

• At the end of each block, call MPI_all_reduce to update the running averages

• If too much memory is used, eventually add an OpenMP layer
This approach is not optimal *:

• At every synchronization, all processes will wait until the slowest has finished.
Perfect parallel speed-up is impossible to obtain.

• The calculation can't start until all resources are available

• If one compute node crashes, all the simulation is crashed.

• If more resources become available, it is impossible to attach more CPUs to a
running calculation

* "Manager–worker-based model for the parallelization of quantum Monte Carlo on
heterogeneous and homogeneous networks", M. T. Feldmann, J. C. Cummings, D. R.
Kent, R. P. Muller, W. A. Goddard III, J. Comput. Chem. 29, 8–16 (2008).

3

Our approach † :

• Manager/worker model: all CPUs are desynchronized, they start immediately

• The length of the block is not fixed: termination is immediate

• Use as less memory/core as possible (<100 MiB / core)

• Implement a client/server model (in Python):

• allows client nodes to crash

• allows to dynamically add/remove clients
• Avoid the traditional input/output file model. All data is stored in a database,
and data is post-processed.

• Possibility to use computing grids (EGI ‡)

† "Quantum monte carlo for large chemical systems: Implementing efficient strategies
for petascale platforms and beyond", A. Scemama, M. Caffarel, E. Oseret and W. Jalby, J.
Comput. Chem 34, 938–951 (2013).

‡ "Large-scale quantum Monte Carlo electronic structure calculations on the EGEE grid",
A. Monari, A. Scemama and M. Caffarel, Remote Instrumentation for eScience and Related
Aspects, 195--207, Springer (2012).

4

Master compute node

Data Server Slave Compute node

Manager

Database

Main worker thread

Forwarder

Forwarder

Worker WorkerWorker

Network Thread

I/O Thread Worker WorkerWorker

• All I/O and network communications are non-blocking

• Worker: Single-core Fortran executable piped to a forwarder

• A Worker stops cleanly when its receives the SIGTERM signal

5

Fault-tolerance

• No access to the filesystem: scripts, binary and input data are broadcasted to
the client nodes and stored in /dev/shm. Local disks can crash.

• Blocks have a Gaussian distribution. Losing blocks doesn't change the
average. Any worker can be removed.

• Every forwarder can always reach the data server. Any node can be removed.

• If the data server is lost, it is always possible to continue the calculation in
another run.

6

Parallelization of DMC

• In the standard DMC algorithm, the walkers are no more independent.

• Communications are expected to kill the ideal speed-up.

• The Pure Diffusion MC algorithm § allows to obtain the DMC energy with
re-weighting instead of branching: no more communication.

• PDMC introduces too much fluctuations in the total energies

• We use an algorithm that combines branching and re-weighting. ¶ Small
populations can be used, and multiple independent runs can be done.

§ "Development of a pure diffusion quantum Monte Carlo method using a full generalized
Feynman–Kac formula.", M. Caffarel, J. Chem. Phys. 88, 1088 (1988)

¶ "Diffusion monte carlo methods with a fixed number of walkers", R. Assaraf, M. Caffarel,
A. Khelif, Phys Rev E 61(4 Pt B), 4566-75 (2000).

7

Why a database?

• Input and output data are tightly linked

• An output file can be generated on demand

• Easy connection to GUI

• An API simplifies scripting to manipulate results

• Checkpoint/restart is trivial

• Additional calculation can be done even if the calculation is finished. No need
to re-run.

• Combining results obtained on different datacenters is trivial

• Multiple independent runs can write in the same database : dynamic number of
CPUs.

• The name of the database is an MD5 key, corresponding to critical input data.

8

Initial conditions

• Different initial walker positions are needed

• At the end of each block, the final positions are sent to the forwarder

• Each forwarder keeps a sample of the populations of its workers

• Sometimes, the forwarder sends its walkers to its parent in the tree

• The data server receives a sample of the population of all the walkers and
merges it with its population

• Periodically, the population is saved to disk

• When a new run is started, each worker gets N walk walkers drawn randomly
from this population

9

Termination
When the manager wants to terminate the calculation (catches SIGTERM, or
termination condition reached):

• It sends to the leaves of the tree a termination signal

• The leaves send a SIGTERM to the workers

• Each forwarder gets the data of the last blocks from the workers

• When the workers have terminated, the forwarder sends the data to its parent
with a termination signal

• When the data server receives the termination signal, it the calculation is
finished

10

Parallel speed-up

Estimation checked on 100 nodes/1 hour. Accuracy of 0.9992

11

The parallel speed-up is almost ideal.

Single-core optimization is crucial : Every percent gained on one core will be
gained on the parallel simulation

12

Easy and effficient
programming with IRPF90
Anthony Scemama <scemama@irsamc.ups-tlse.fr>
Michel Caffarel <michel.caffarel@irsamc.ups-tlse.fr>

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Introduction

• A program is a function of its input data: output = program(input)

• A program can be represented as a tree where:

• the vertices are the variables

• the edges represent the relation 'depends on'

• The root of the tree is the output of the program

• The leaves are the input data

1

u (x, y) = x + y + 1
v (x, y) = x + y + 2
w (x) = x + 3
t (x, y) = x + y + 4
This production tree computes
t(u(d1, d2), v(u(d3, d4), w(d5)))

2

Usual programming

program exemple_1
 implicit none
 integer :: d1,d2,d3,d4,d5 ! Input data
 integer :: u1, u2, w, v ! Temporary variables
 integer :: t ! Output data

 call read_data(d1,d2,d3,d4,d5)
 call compute_u(d1,d2,u1)
 call compute_u(d3,d4,u2)
 call compute_w(d5,w)
 call compute_v(u2,w,v)
 call compute_t(u1,v,t)

 print * , 't=', t
end program

3

Alternative way with functions

program exemple_2
 implicit none
 integer :: d1,d2,d3,d4,d5 ! Input data
 integer :: u1, u2, w, v, t ! Variables
 integer :: compute_u,compute_t,compute_w,compute_w

 call read_data(d1,d2,d3,d4,d5)
 u1 = compute_u(d1,d2)
 u2 = compute_u(d3,d4)
 w = compute_w(d5)
 v = compute_v(u2,w)
 t = compute_t(u1,v)

 print * , 't=', t
end program

4

Single-line with functions

program exemple_3
 implicit none
 integer :: d1,d2,d3,d4,d5 ! Input data
 integer :: u, v, w, t

 call read_data(d1,d2,d3,d4,d5)

 print * , 't=', &
 t(u(d1,d2), v(u(d3,d4), w(d5)))
end program

Now, the sequence of execution is handled by the compiler.

5

Same example with IRPF90

program exemple_4
 implicit none
 print * , 't=', t
end program

That's it!

• Using t triggers the exploration of the production tree

• Completely equivalent to the previous example, but the parameters of the
function t are not expressed

• IRP : Implicit Reference to Parameters

6

Definition of the nodes of the tree
For each node, we write a provider. This is a subroutine whose role is to build
the variable and guarantee that it is built properly.

file: uvwt.irp.f

BEGIN_PROVIDER [integer, t]
 t = u1+v+4
END_PROVIDER

BEGIN_PROVIDER [integer,w]
 w = d5+3
END_PROVIDER

BEGIN_PROVIDER [integer, v]
 v = u2+w+2
END_PROVIDER

7

BEGIN_PROVIDER [integer, u1]
 u1 = d1+d2+1
END_PROVIDER

BEGIN_PROVIDER [integer, u2]
 u2 = d3+d4+1
END_PROVIDER

8

file : input.irp.f

 BEGIN_PROVIDER [integer, d1]
&BEGIN_PROVIDER [integer, d2]
&BEGIN_PROVIDER [integer, d3]
&BEGIN_PROVIDER [integer, d4]
&BEGIN_PROVIDER [integer, d5]
 read(*,*) d1
 read(*,*) d2
 read(*,*) d3
 read(*,*) d4
 read(*,*) d5
END_PROVIDER

9

When you write a provider for x, you only have to focus on

• How do I build x?

• What are the variables that I need to build x?

• Am I sure that x is built correctly when I exit the provider?

Using this method:

• You don't have to know the execution sequence

• If you need a variable (node), you are sure that it has been built properly when
you use it

• You will never break other parts of the program

• Many people can work simultaneously on the same program with minimal
effort

• If a node has already been built, it will not be built again. The correct value will
be returned by the provider.

10

Fortran code generation

• Run irpf90 in the current directory

• irpf90 reads all the *.irp.f files

• All the providers are identified

• All the corresponding variables (IRP entities) are searched for in the code

• The dependence tree is built

• Providers are transformed to subroutines (subroutine provide_*)

• Calls to provide_* are inserted in the code

• Each file *.irp.f generates a module containing the IRP entities, and a Fortran
file containing the subroutines/functions

• As the dependence tree is built, the dependences between the files are known
and the makefile is built automatically

11

12

Generated code example
! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

program irp_program ! irp_example1: 0
 call irp_example1 ! irp_example1.irp.f: 0
 call irp_finalize_742559343() ! irp_example1.irp.f: 0
end program ! irp_example1.irp.f: 0
subroutine irp_example1 ! irp_example1.irp.f: 1
 use uvwt_mod
 implicit none ! irp_example1.irp.f: 2
 character*(12) :: irp_here = 'irp_example1' ! irp_example1.irp.f: 1

13

 if (.not.t_is_built) then
 call provide_t
 endif
 print *, 't = ', t ! irp_example1.irp.f: 3
end ! irp_example1.irp.f: 4

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

module uvwt_mod
 integer :: u1
 logical :: u1_is_built = .False.
 integer :: u2
 logical :: u2_is_built = .False.

14

 integer :: t
 logical :: t_is_built = .False.
 integer :: w
 logical :: w_is_built = .False.
 integer :: v
 logical :: v_is_built = .False.
end module uvwt_mod

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

subroutine provide_u1
 use uvwt_mod

15

 use input_mod
 implicit none
 character*(10) :: irp_here = 'provide_u1'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.d1_is_built) then
 call provide_d1
 endif
 if (.not.u1_is_built) then
 call bld_u1
 u1_is_built = .True.

 endif
end subroutine provide_u1

subroutine bld_u1
 use uvwt_mod
 use input_mod

16

 character*(2) :: irp_here = 'u1' ! uvwt.irp.f: 13
 u1 = d1+d2+1 ! uvwt.irp.f: 14
end subroutine bld_u1
subroutine provide_u2
 use uvwt_mod
 use input_mod
 implicit none
 character*(10) :: irp_here = 'provide_u2'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.d1_is_built) then
 call provide_d1
 endif
 if (.not.u2_is_built) then
 call bld_u2
 u2_is_built = .True.

 endif

17

end subroutine provide_u2

subroutine bld_u2
 use uvwt_mod
 use input_mod
 character*(2) :: irp_here = 'u2' ! uvwt.irp.f: 17
 u2 = d3+d4+1 ! uvwt.irp.f: 18
end subroutine bld_u2
subroutine provide_t
 use uvwt_mod
 implicit none
 character*(9) :: irp_here = 'provide_t'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.u1_is_built) then
 call provide_u1
 endif
 if (.not.v_is_built) then

18

 call provide_v
 endif
 if (.not.t_is_built) then
 call bld_t
 t_is_built = .True.

 endif
end subroutine provide_t

subroutine bld_t
 use uvwt_mod
 character*(1) :: irp_here = 't' ! uvwt.irp.f: 1
 t = u1+v+4 ! uvwt.irp.f: 2
end subroutine bld_t
subroutine provide_w
 use uvwt_mod
 use input_mod
 implicit none

19

 character*(9) :: irp_here = 'provide_w'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.d1_is_built) then
 call provide_d1
 endif
 if (.not.w_is_built) then
 call bld_w
 w_is_built = .True.

 endif
end subroutine provide_w

subroutine bld_w
 use uvwt_mod
 use input_mod
 character*(1) :: irp_here = 'w' ! uvwt.irp.f: 5
 w = d5+3 ! uvwt.irp.f: 6

20

end subroutine bld_w
subroutine provide_v
 use uvwt_mod
 implicit none
 character*(9) :: irp_here = 'provide_v'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.w_is_built) then
 call provide_w
 endif
 if (.not.u2_is_built) then
 call provide_u2
 endif
 if (.not.v_is_built) then
 call bld_v
 v_is_built = .True.

 endif

21

end subroutine provide_v

subroutine bld_v
 use uvwt_mod
 character*(1) :: irp_here = 'v' ! uvwt.irp.f: 9
 v = u2+w+2 ! uvwt.irp.f: 10
end subroutine bld_v

Code execution with debug mode on:

$./irp_example1
 0 : -> provide_t
 0 : -> provide_u1
 0 : -> provide_d1
 0 : -> d1
1
2
3
4

22

5
 0 : <- d1 0.0000000000000000
 0 : <- provide_d1 0.0000000000000000
 0 : -> u1
 0 : <- u1 0.0000000000000000
 0 : <- provide_u1 0.0000000000000000
 0 : -> provide_v
 0 : -> provide_w
 0 : -> w
 0 : <- w 0.0000000000000000
 0 : <- provide_w 0.0000000000000000
 0 : -> provide_u2
 0 : -> u2
 0 : <- u2 0.0000000000000000
 0 : <- provide_u2 0.0000000000000000
 0 : -> v
 0 : <- v 0.0000000000000000
 0 : <- provide_v 0.0000000000000000

23

 0 : -> t
 0 : <- t 0.0000000000000000
 0 : <- provide_t 0.0000000000000000
 0 : -> irp_example1
 t = 26
 0 : <- irp_example1 0.0000000000000000

24

Using subroutines/functions

BEGIN_PROVIDER [integer, u1]
 integer :: fu
 u1 = fu(d1,d2)
END_PROVIDER

BEGIN_PROVIDER [integer, u2]
 integer :: fu
 u2 = fu(d3,d4)
END_PROVIDER

integer function fu(x,y)
 integer :: x,y
 fu = x+y+1
end function

25

Providing arrays
An array is considered built when all its elements are built. Its dimensions can be
provided variables, constants and intervals (a:b).

BEGIN_PROVIDER [integer, fact_max]
 fact_max = 10
END_PROVIDER

BEGIN_PROVIDER [double precision, fact, (0:fact_max)]
 integer :: i

 fact(0) = 1.d0
 do i=1,fact_max
 fact(i) = fact(i-1)*dble(i)
 enddo
END_PROVIDER

26

program test
 print *, fact(5)
end

$./test
 0 : -> provide_fact
 0 : -> provide_fact_max
 0 : -> fact_max
 0 : <- fact_max 0.0000000000000000
 0 : <- provide_fact_max 0.0000000000000000
 0 : -> fact
 0 : <- fact 0.0000000000000000
 0 : <- provide_fact 0.0000000000000000
 0 : -> test
 120.00000000000000
 0 : <- test 0.0000000000000000

The allocation behaves as follows:

• If the array is not already allocated, it is allocated

27

• If the array already allocated, check if the dimensions have changed

• If the dimensions have not changed, then OK.

• Else deallocate the array and re-allocate it with the correct dimensions

• All allocations/deallocations are checked with stat=err

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

subroutine provide_fact_max
 use fact_mod
 implicit none
 character*(16) :: irp_here = 'provide_fact_max'
 integer :: irp_err

28

 logical :: irp_dimensions_OK
 if (.not.fact_max_is_built) then
 call bld_fact_max
 fact_max_is_built = .True.

 endif
end subroutine provide_fact_max

subroutine bld_fact_max
 use fact_mod
 character*(8) :: irp_here = 'fact_max' ! fact.irp.f: 1
 fact_max = 10 ! fact.irp.f: 2
end subroutine bld_fact_max
subroutine provide_fact
 use fact_mod
 implicit none
 character*(12) :: irp_here = 'provide_fact'
 integer :: irp_err

29

 logical :: irp_dimensions_OK
 if (.not.fact_max_is_built) then
 call provide_fact_max
 endif
 if (allocated (fact)) then
 irp_dimensions_OK = .True.
 irp_dimensions_OK = irp_dimensions_OK.AND. &
 (SIZE(fact,1)==(fact_max - (-1)))
 if (.not.irp_dimensions_OK) then
 deallocate(fact,stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Deallocation failed: fact'
 print *, ' size: (0:fact_max)'
 endif
 if ((fact_max - (-1)>0)) then
 allocate(fact(0:fact_max),stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Allocation failed: fact'

30

 print *, ' size: (0:fact_max)'
 endif
 endif
 endif
 else
 if ((fact_max - (-1)>0)) then
 allocate(fact(0:fact_max),stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Allocation failed: fact'
 print *, ' size: (0:fact_max)'
 endif
 endif
 endif
 if (.not.fact_is_built) then
 call bld_fact
 fact_is_built = .True.

 endif

31

end subroutine provide_fact

subroutine bld_fact
 use fact_mod
 character*(4) :: irp_here = 'fact' ! fact.irp.f: 5
 integer :: i ! fact.irp.f: 6
 fact(0) = 1.d0 ! fact.irp.f: 8
 do i=1,fact_max ! fact.irp.f: 9
 fact(i) = fact(i-1)*dble(i) ! fact.irp.f: 10
 enddo ! fact.irp.f: 11
end subroutine bld_fact

32

Modifying a variable outside of its provider
In iterative processes, a variable needs to be modified outside of its provider. If it
is the case, IRPF90 has to be informed of the change by the TOUCH keyword.

Example: computing numerical derivatives

BEGIN_PROVIDER [real, dPsi]
 x += 0.5*delta_x
 TOUCH x
 dPsi = Psi
 x -= delta_x
 TOUCH x
 dPsi = (dPsi - Psi)/delta_x
 x += 0.5*delta_x
 SOFT_TOUCH x
END_PROVIDER

33

Generated code:

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

subroutine provide_dpsi
 use y_mod
 use x_mod
 implicit none
 character*(12) :: irp_here = 'provide_dpsi'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.x_is_built) then
 call provide_x

34

 endif
 if (.not.psi_is_built) then
 call provide_psi
 endif
 if (.not.delta_x_is_built) then
 call provide_delta_x
 endif
 if (.not.dpsi_is_built) then
 call bld_dpsi
 dpsi_is_built = .True.

 endif
end subroutine provide_dpsi

subroutine bld_dpsi
 use y_mod
 use x_mod
 use y_mod ! x.irp.f: 3

35

 use y_mod ! x.irp.f: 6
 use y_mod ! x.irp.f: 9
 character*(4) :: irp_here = 'dpsi' ! x.irp.f: 1
 x =x +(0.5*delta_x) ! x.irp.f: 2
! ! x.irp.f: 3
! >>> TOUCH x ! x.irp.f: 3
 call touch_x ! x.irp.f: 3
! <<< END TOUCH ! x.irp.f: 3
 if (.not.x_is_built) then
 call provide_x
 endif
 if (.not.psi_is_built) then
 call provide_psi
 endif
 if (.not.delta_x_is_built) then
 call provide_delta_x
 endif
 dPsi = Psi ! x.irp.f: 4

36

 x =x -(delta_x) ! x.irp.f: 5
! ! x.irp.f: 6
! >>> TOUCH x ! x.irp.f: 6
 call touch_x ! x.irp.f: 6
! <<< END TOUCH ! x.irp.f: 6
 if (.not.x_is_built) then
 call provide_x
 endif
 if (.not.psi_is_built) then
 call provide_psi
 endif
 if (.not.delta_x_is_built) then
 call provide_delta_x
 endif
 dPsi = (dPsi - Psi)/delta_x ! x.irp.f: 7
 x =x +(0.5*delta_x) ! x.irp.f: 8
! ! x.irp.f: 9
! >>> TOUCH x ! x.irp.f: 9

37

 call touch_x ! x.irp.f: 9
! <<< END TOUCH (Soft) ! x.irp.f: 9
end subroutine bld_dpsi

How this works:

38

Templates
When pieces of code are very similar, it is possible to use a template:

BEGIN_TEMPLATE

 subroutine insertion_$Xsort (x,iorder,isize)
 implicit none
 $type,intent(inout) :: x(isize)
 integer,intent(inout) :: iorder(isize)
 integer,intent(in) :: isize
 $type :: xtmp
 integer :: i, i0, j, jmax

 do i=1,isize
 xtmp = x(i)
 i0 = iorder(i)
 j = i-1

39

 do j=i-1,1,-1
 if (x(j) > xtmp) then
 x(j+1) = x(j)
 iorder(j+1) = iorder(j)
 else
 exit
 endif
 enddo
 x(j+1) = xtmp
 iorder(j+1) = i0
 enddo

 end

SUBST [X, type]

 ; real ;;
 d ; double precision ;;

40

 i ; integer ;;

END_TEMPLATE

Generated code:

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

 subroutine insertion_sort (x,iorder,isize) !x.irp.f_tpl_35: 3
 implicit none !x.irp.f_tpl_35: 4
 character*(14) :: irp_here='insertion_sort' !x.irp.f_tpl_35: 3
 real,intent(inout) :: x(isize) !x.irp.f_tpl_35: 5
 integer,intent(inout) :: iorder(isize) !x.irp.f_tpl_35: 6

41

 integer,intent(in) :: isize !x.irp.f_tpl_35: 7
 real :: xtmp !x.irp.f_tpl_35: 8
 integer :: i, i0, j, jmax !x.irp.f_tpl_35: 9
 do i=1,isize !x.irp.f_tpl_35: 11
 xtmp = x(i) !x.irp.f_tpl_35: 12
 i0 = iorder(i) !x.irp.f_tpl_35: 13
 j = i-1 !x.irp.f_tpl_35: 14
 do j=i-1,1,-1 !x.irp.f_tpl_35: 15
 if (x(j) > xtmp) then !x.irp.f_tpl_35: 16
 x(j+1) = x(j) !x.irp.f_tpl_35: 17
 iorder(j+1) = iorder(j) !x.irp.f_tpl_35: 18
 else !x.irp.f_tpl_35: 19
 exit !x.irp.f_tpl_35: 20
 endif !x.irp.f_tpl_35: 21
 enddo !x.irp.f_tpl_35: 22
 x(j+1) = xtmp !x.irp.f_tpl_35: 23
 iorder(j+1) = i0 !x.irp.f_tpl_35: 24
 enddo !x.irp.f_tpl_35: 25

42

 end !x.irp.f_tpl_35: 27
 subroutine insertion_dsort (x,iorder,isize) !x.irp.f_tpl_35: 32
 implicit none !x.irp.f_tpl_35: 33
 character*(15) :: irp_here='insertion_dsort'!x.irp.f_tpl_35: 32
 double precision,intent(inout) :: x(isize)!x.irp.f_tpl_35: 34
 integer,intent(inout) :: iorder(isize) !x.irp.f_tpl_35: 35
 integer,intent(in) :: isize !x.irp.f_tpl_35: 36
 double precision :: xtmp !x.irp.f_tpl_35: 37
 integer :: i, i0, j, jmax !x.irp.f_tpl_35: 38
 do i=1,isize !x.irp.f_tpl_35: 40
 xtmp = x(i) !x.irp.f_tpl_35: 41
 i0 = iorder(i) !x.irp.f_tpl_35: 42
 j = i-1 !x.irp.f_tpl_35: 43
 do j=i-1,1,-1 !x.irp.f_tpl_35: 44
 if (x(j) > xtmp) then !x.irp.f_tpl_35: 45
 x(j+1) = x(j) !x.irp.f_tpl_35: 46
 iorder(j+1) = iorder(j) !x.irp.f_tpl_35: 47
 else !x.irp.f_tpl_35: 48

43

 exit !x.irp.f_tpl_35: 49
 endif !x.irp.f_tpl_35: 50
 enddo !x.irp.f_tpl_35: 51
 x(j+1) = xtmp !x.irp.f_tpl_35: 52
 iorder(j+1) = i0 !x.irp.f_tpl_35: 53
 enddo !x.irp.f_tpl_35: 54
 end !x.irp.f_tpl_35: 56
 subroutine insertion_isort (x,iorder,isize) !x.irp.f_tpl_35: 61
 implicit none !x.irp.f_tpl_35: 62
 character*(15) :: irp_here='insertion_isort'!x.irp.f_tpl_35: 61
 integer,intent(inout) :: x(isize) !x.irp.f_tpl_35: 63
 integer,intent(inout) :: iorder(isize) !x.irp.f_tpl_35: 64
 integer,intent(in) :: isize !x.irp.f_tpl_35: 65
 integer :: xtmp !x.irp.f_tpl_35: 66
 integer :: i, i0, j, jmax !x.irp.f_tpl_35: 67
 do i=1,isize !x.irp.f_tpl_35: 69
 xtmp = x(i) !x.irp.f_tpl_35: 70
 i0 = iorder(i) !x.irp.f_tpl_35: 71

44

 j = i-1 !x.irp.f_tpl_35: 72
 do j=i-1,1,-1 !x.irp.f_tpl_35: 73
 if (x(j) > xtmp) then !x.irp.f_tpl_35: 74
 x(j+1) = x(j) !x.irp.f_tpl_35: 75
 iorder(j+1) = iorder(j) !x.irp.f_tpl_35: 76
 else !x.irp.f_tpl_35: 77
 exit !x.irp.f_tpl_35: 78
 endif !x.irp.f_tpl_35: 79
 enddo !x.irp.f_tpl_35: 80
 x(j+1) = xtmp !x.irp.f_tpl_35: 81
 iorder(j+1) = i0 !x.irp.f_tpl_35: 82
 enddo !x.irp.f_tpl_35: 83
end !x.irp.f_tpl_35: 85

45

Metaprogramming
Shell scripts can be inserted in the IRPF90 code, and the output of the script will
be inserted in the generated Fortran. For example:

program test
 BEGIN_SHELL [/bin/bash]
 echo print *, \'Compiled by $(whoami) on $(date)\'
 END_SHELL
end

Generated code:

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !

46

!---!

program irp_program ! test: 0
 call test ! test.irp.f: 0
 call irp_finalize_491024427() ! test.irp.f: 0
end program ! test.irp.f: 0
subroutine test ! test.irp.f: 1
 character*(4) :: irp_here = 'test' ! test.irp.f: 1
print *, 'Compiled by scemama on Mon Jul 8 11:28:16 CEST 2013' ! test.irp.f_shell_4: 1
end ! test.irp.f: 5

Example: Computing powers of x

BEGIN_SHELL [/usr/bin/python]

POWER_MAX = 20

def compute_x_prod(n,d):
 if n == 0:
 d[0] = None
 return d
 if n == 1:
 d[1] = None

47

 return d
 if n in d:
 return d
 m = n/2
 d = compute_x_prod(m,d)
 d[n] = None
 d[2*m] = None
 return d

def print_subroutine(n):
 keys = compute_x_prod(n,{}).keys()
 keys.sort()
 output = []
 print "real function power_%d(x1)"%n
 print " real, intent(in) :: x1"
 for i in range(1,len(keys)):
 output.append("x%d"%keys[i])
 if output != []:

48

 print " real :: "+', '.join(output)
 for i in range(1,len(keys)):
 ki = keys[i]
 ki1 = keys[i-1]
 if ki == 2*ki1:
 print " x%d"%ki + " = x%d * x%d"%(ki1,ki1)
 else:
 print " x%d"%ki + " = x%d * x1"%(ki1)
 print " power_%d = x%d"%(n,n)
 print "end"

for i in range(POWER_MAX):
 print_subroutine (i+1)
 print ''

END_SHELL

49

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

real function power_1(x1) ! power.irp.f_shell_44: 1
 character*(7) :: irp_here = 'power_1' ! power.irp.f_shell_44: 1
 real, intent(in) :: x1 ! power.irp.f_shell_44: 2
 power_1 = x1 ! power.irp.f_shell_44: 3
end ! power.irp.f_shell_44: 4
real function power_2(x1) ! power.irp.f_shell_44: 6
 character*(7) :: irp_here = 'power_2' ! power.irp.f_shell_44: 6
 real, intent(in) :: x1 ! power.irp.f_shell_44: 7
 real :: x2 ! power.irp.f_shell_44: 8
 x2 = x1 * x1 ! power.irp.f_shell_44: 9

50

 power_2 = x2 ! power.irp.f_shell_44: 10
end ! power.irp.f_shell_44: 11
real function power_3(x1) ! power.irp.f_shell_44: 13
 character*(7) :: irp_here = 'power_3' ! power.irp.f_shell_44: 13
 real, intent(in) :: x1 ! power.irp.f_shell_44: 14
 real :: x2, x3 ! power.irp.f_shell_44: 15
 x2 = x1 * x1 ! power.irp.f_shell_44: 16
 x3 = x2 * x1 ! power.irp.f_shell_44: 17
 power_3 = x3 ! power.irp.f_shell_44: 18
end ! power.irp.f_shell_44: 19
real function power_4(x1) ! power.irp.f_shell_44: 21
 character*(7) :: irp_here = 'power_4' ! power.irp.f_shell_44: 21
 real, intent(in) :: x1 ! power.irp.f_shell_44: 22
 real :: x2, x4 ! power.irp.f_shell_44: 23
 x2 = x1 * x1 ! power.irp.f_shell_44: 24
 x4 = x2 * x2 ! power.irp.f_shell_44: 25
 power_4 = x4 ! power.irp.f_shell_44: 26
end ! power.irp.f_shell_44: 27

51

real function power_5(x1) ! power.irp.f_shell_44: 29
 character*(7) :: irp_here = 'power_5' ! power.irp.f_shell_44: 29
 real, intent(in) :: x1 ! power.irp.f_shell_44: 30
 real :: x2, x4, x5 ! power.irp.f_shell_44: 31
 x2 = x1 * x1 ! power.irp.f_shell_44: 32
 x4 = x2 * x2 ! power.irp.f_shell_44: 33
 x5 = x4 * x1 ! power.irp.f_shell_44: 34
 power_5 = x5 ! power.irp.f_shell_44: 35
end ! power.irp.f_shell_44: 36
real function power_6(x1) ! power.irp.f_shell_44: 38
 character*(7) :: irp_here = 'power_6' ! power.irp.f_shell_44: 38
 real, intent(in) :: x1 ! power.irp.f_shell_44: 39
 real :: x2, x3, x6 ! power.irp.f_shell_44: 40
 x2 = x1 * x1 ! power.irp.f_shell_44: 41
 x3 = x2 * x1 ! power.irp.f_shell_44: 42
 x6 = x3 * x3 ! power.irp.f_shell_44: 43
 power_6 = x6 ! power.irp.f_shell_44: 44
end ! power.irp.f_shell_44: 45

52

real function power_7(x1) ! power.irp.f_shell_44: 47
 character*(7) :: irp_here = 'power_7' ! power.irp.f_shell_44: 47
 real, intent(in) :: x1 ! power.irp.f_shell_44: 48
 real :: x2, x3, x6, x7 ! power.irp.f_shell_44: 49
 x2 = x1 * x1 ! power.irp.f_shell_44: 50
 x3 = x2 * x1 ! power.irp.f_shell_44: 51
 x6 = x3 * x3 ! power.irp.f_shell_44: 52
 x7 = x6 * x1 ! power.irp.f_shell_44: 53
 power_7 = x7 ! power.irp.f_shell_44: 54
end ! power.irp.f_shell_44: 55
real function power_8(x1) ! power.irp.f_shell_44: 57
 character*(7) :: irp_here = 'power_8' ! power.irp.f_shell_44: 57
 real, intent(in) :: x1 ! power.irp.f_shell_44: 58
 real :: x2, x4, x8 ! power.irp.f_shell_44: 59
 x2 = x1 * x1 ! power.irp.f_shell_44: 60
 x4 = x2 * x2 ! power.irp.f_shell_44: 61
 x8 = x4 * x4 ! power.irp.f_shell_44: 62
 power_8 = x8 ! power.irp.f_shell_44: 63

53

end ! power.irp.f_shell_44: 64
real function power_9(x1) ! power.irp.f_shell_44: 66
 character*(7) :: irp_here = 'power_9' ! power.irp.f_shell_44: 66
 real, intent(in) :: x1 ! power.irp.f_shell_44: 67
 real :: x2, x4, x8, x9 ! power.irp.f_shell_44: 68
 x2 = x1 * x1 ! power.irp.f_shell_44: 69
 x4 = x2 * x2 ! power.irp.f_shell_44: 70
 x8 = x4 * x4 ! power.irp.f_shell_44: 71
 x9 = x8 * x1 ! power.irp.f_shell_44: 72
 power_9 = x9 ! power.irp.f_shell_44: 73
end ! power.irp.f_shell_44: 74
real function power_10(x1) ! power.irp.f_shell_44: 76
 character*(8) :: irp_here = 'power_10' ! power.irp.f_shell_44: 76
 real, intent(in) :: x1 ! power.irp.f_shell_44: 77
 real :: x2, x4, x5, x10 ! power.irp.f_shell_44: 78
 x2 = x1 * x1 ! power.irp.f_shell_44: 79
 x4 = x2 * x2 ! power.irp.f_shell_44: 80
 x5 = x4 * x1 ! power.irp.f_shell_44: 81

54

 x10 = x5 * x5 ! power.irp.f_shell_44: 82
 power_10 = x10 ! power.irp.f_shell_44: 83
end ! power.irp.f_shell_44: 84
real function power_11(x1) ! power.irp.f_shell_44: 86
 character*(8) :: irp_here = 'power_11' ! power.irp.f_shell_44: 86
 real, intent(in) :: x1 ! power.irp.f_shell_44: 87
 real :: x2, x4, x5, x10, x11 ! power.irp.f_shell_44: 88
 x2 = x1 * x1 ! power.irp.f_shell_44: 89
 x4 = x2 * x2 ! power.irp.f_shell_44: 90
 x5 = x4 * x1 ! power.irp.f_shell_44: 91
 x10 = x5 * x5 ! power.irp.f_shell_44: 92
 x11 = x10 * x1 ! power.irp.f_shell_44: 93
 power_11 = x11 ! power.irp.f_shell_44: 94
end ! power.irp.f_shell_44: 95
real function power_12(x1) ! power.irp.f_shell_44: 97
 character*(8) :: irp_here = 'power_12' ! power.irp.f_shell_44: 97
 real, intent(in) :: x1 ! power.irp.f_shell_44: 98
 real :: x2, x3, x6, x12 ! power.irp.f_shell_44: 99

55

 x2 = x1 * x1 ! power.irp.f_shell_44: 100
 x3 = x2 * x1 ! power.irp.f_shell_44: 101
 x6 = x3 * x3 ! power.irp.f_shell_44: 102
 x12 = x6 * x6 ! power.irp.f_shell_44: 103
 power_12 = x12 ! power.irp.f_shell_44: 104
end ! power.irp.f_shell_44: 105
real function power_13(x1) ! power.irp.f_shell_44: 107
 character*(8) :: irp_here = 'power_13' ! power.irp.f_shell_44: 107
 real, intent(in) :: x1 ! power.irp.f_shell_44: 108
 real :: x2, x3, x6, x12, x13 ! power.irp.f_shell_44: 109
 x2 = x1 * x1 ! power.irp.f_shell_44: 110
 x3 = x2 * x1 ! power.irp.f_shell_44: 111
 x6 = x3 * x3 ! power.irp.f_shell_44: 112
 x12 = x6 * x6 ! power.irp.f_shell_44: 113
 x13 = x12 * x1 ! power.irp.f_shell_44: 114
 power_13 = x13 ! power.irp.f_shell_44: 115
end ! power.irp.f_shell_44: 116
real function power_14(x1) ! power.irp.f_shell_44: 118

56

 character*(8) :: irp_here = 'power_14' ! power.irp.f_shell_44: 118
 real, intent(in) :: x1 ! power.irp.f_shell_44: 119
 real :: x2, x3, x6, x7, x14 ! power.irp.f_shell_44: 120
 x2 = x1 * x1 ! power.irp.f_shell_44: 121
 x3 = x2 * x1 ! power.irp.f_shell_44: 122
 x6 = x3 * x3 ! power.irp.f_shell_44: 123
 x7 = x6 * x1 ! power.irp.f_shell_44: 124
 x14 = x7 * x7 ! power.irp.f_shell_44: 125
 power_14 = x14 ! power.irp.f_shell_44: 126
end ! power.irp.f_shell_44: 127
real function power_15(x1) ! power.irp.f_shell_44: 129
 character*(8) :: irp_here = 'power_15' ! power.irp.f_shell_44: 129
 real, intent(in) :: x1 ! power.irp.f_shell_44: 130
 real :: x2, x3, x6, x7, x14, x15 ! power.irp.f_shell_44: 131
 x2 = x1 * x1 ! power.irp.f_shell_44: 132
 x3 = x2 * x1 ! power.irp.f_shell_44: 133
 x6 = x3 * x3 ! power.irp.f_shell_44: 134
 x7 = x6 * x1 ! power.irp.f_shell_44: 135

57

 x14 = x7 * x7 ! power.irp.f_shell_44: 136
 x15 = x14 * x1 ! power.irp.f_shell_44: 137
 power_15 = x15 ! power.irp.f_shell_44: 138
end ! power.irp.f_shell_44: 139
real function power_16(x1) ! power.irp.f_shell_44: 141
 character*(8) :: irp_here = 'power_16' ! power.irp.f_shell_44: 141
 real, intent(in) :: x1 ! power.irp.f_shell_44: 142
 real :: x2, x4, x8, x16 ! power.irp.f_shell_44: 143
 x2 = x1 * x1 ! power.irp.f_shell_44: 144
 x4 = x2 * x2 ! power.irp.f_shell_44: 145
 x8 = x4 * x4 ! power.irp.f_shell_44: 146
 x16 = x8 * x8 ! power.irp.f_shell_44: 147
 power_16 = x16 ! power.irp.f_shell_44: 148
end ! power.irp.f_shell_44: 149
real function power_17(x1) ! power.irp.f_shell_44: 151
 character*(8) :: irp_here = 'power_17' ! power.irp.f_shell_44: 151
 real, intent(in) :: x1 ! power.irp.f_shell_44: 152
 real :: x2, x4, x8, x16, x17 ! power.irp.f_shell_44: 153

58

 x2 = x1 * x1 ! power.irp.f_shell_44: 154
 x4 = x2 * x2 ! power.irp.f_shell_44: 155
 x8 = x4 * x4 ! power.irp.f_shell_44: 156
 x16 = x8 * x8 ! power.irp.f_shell_44: 157
 x17 = x16 * x1 ! power.irp.f_shell_44: 158
 power_17 = x17 ! power.irp.f_shell_44: 159
end ! power.irp.f_shell_44: 160
real function power_18(x1) ! power.irp.f_shell_44: 162
 character*(8) :: irp_here = 'power_18' ! power.irp.f_shell_44: 162
 real, intent(in) :: x1 ! power.irp.f_shell_44: 163
 real :: x2, x4, x8, x9, x18 ! power.irp.f_shell_44: 164
 x2 = x1 * x1 ! power.irp.f_shell_44: 165
 x4 = x2 * x2 ! power.irp.f_shell_44: 166
 x8 = x4 * x4 ! power.irp.f_shell_44: 167
 x9 = x8 * x1 ! power.irp.f_shell_44: 168
 x18 = x9 * x9 ! power.irp.f_shell_44: 169
 power_18 = x18 ! power.irp.f_shell_44: 170
end ! power.irp.f_shell_44: 171

59

real function power_19(x1) ! power.irp.f_shell_44: 173
 character*(8) :: irp_here = 'power_19' ! power.irp.f_shell_44: 173
 real, intent(in) :: x1 ! power.irp.f_shell_44: 174
 real :: x2, x4, x8, x9, x18, x19 ! power.irp.f_shell_44: 175
 x2 = x1 * x1 ! power.irp.f_shell_44: 176
 x4 = x2 * x2 ! power.irp.f_shell_44: 177
 x8 = x4 * x4 ! power.irp.f_shell_44: 178
 x9 = x8 * x1 ! power.irp.f_shell_44: 179
 x18 = x9 * x9 ! power.irp.f_shell_44: 180
 x19 = x18 * x1 ! power.irp.f_shell_44: 181
 power_19 = x19 ! power.irp.f_shell_44: 182
end ! power.irp.f_shell_44: 183
real function power_20(x1) ! power.irp.f_shell_44: 185
 character*(8) :: irp_here = 'power_20' ! power.irp.f_shell_44: 185
 real, intent(in) :: x1 ! power.irp.f_shell_44: 186
 real :: x2, x4, x5, x10, x20 ! power.irp.f_shell_44: 187
 x2 = x1 * x1 ! power.irp.f_shell_44: 188
 x4 = x2 * x2 ! power.irp.f_shell_44: 189

60

 x5 = x4 * x1 ! power.irp.f_shell_44: 190
 x10 = x5 * x5 ! power.irp.f_shell_44: 191
 x20 = x10 * x10 ! power.irp.f_shell_44: 192
 power_20 = x20 ! power.irp.f_shell_44: 193
end ! power.irp.f_shell_44: 194

61

IRPF90 for HPC
Using the --align option, IRPF90 can introduce compiler directives for the Intel
Fortran compiler, such that all the arrays are aligned. The $IRP_ALIGN variable
corresponds to this alignment.

For example,

integer function align_double(i)
 integer, intent(in) :: i
 integer :: j
 j = mod(i,max($IRP_ALIGN,4)/4)
 if (j==0) then
 align_double = i
 else
 align_double = i+4-j
 endif
end

62

 BEGIN_PROVIDER [integer, n]
&BEGIN_PROVIDER [integer, n_aligned]
 integer :: align_double
 n = 19
 n_aligned = align_double(19)
END_PROVIDER

BEGIN_PROVIDER [double precision, Matrix, (n_aligned,n)]
 Matrix = 0.d0
END_PROVIDER

program test
 print *, size(Matrix,1), size(Matrix,2)
end

Generated code without alignment:

! -*- F90 -*-
!

63

!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

module matrix_mod
 double precision, allocatable :: matrix (:,:)
 logical :: matrix_is_built = .False.
 integer :: n_aligned
 integer :: n
 logical :: n_is_built = .False.
end module matrix_mod

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !

64

! !
! DO NOT MODIFY IT BY HAND !
!---!

subroutine provide_matrix
 use matrix_mod
 implicit none
 character*(14) :: irp_here = 'provide_matrix'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.n_is_built) then
 call provide_n
 endif
 if (allocated (matrix)) then
 irp_dimensions_OK = .True.
 irp_dimensions_OK = irp_dimensions_OK.AND.(SIZE(matrix,1)==(n_aligned))
 irp_dimensions_OK = irp_dimensions_OK.AND.(SIZE(matrix,2)==(n))
 if (.not.irp_dimensions_OK) then

 deallocate(matrix,stat=irp_err)
 if (irp_err /= 0) then

65

 print *, irp_here//': Deallocation failed: matrix'
 print *, ' size: (n_aligned,n)'
 endif
 if ((n_aligned>0).and.(n>0)) then
 allocate(matrix(n_aligned,n),stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Allocation failed: matrix'
 print *, ' size: (n_aligned,n)'
 endif
 endif
 endif
 else
 if ((n_aligned>0).and.(n>0)) then
 allocate(matrix(n_aligned,n),stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Allocation failed: matrix'
 print *, ' size: (n_aligned,n)'
 endif

66

 endif
 endif
 if (.not.matrix_is_built) then
 call bld_matrix
 matrix_is_built = .True.

 endif
end subroutine provide_matrix

subroutine bld_matrix
 use matrix_mod
 character*(6) :: irp_here = 'matrix' ! matrix.irp.f: 19
 Matrix = 0.d0 ! matrix.irp.f: 20
end subroutine bld_matrix
subroutine provide_n
 use matrix_mod
 implicit none
 character*(9) :: irp_here = 'provide_n'

 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.n_is_built) then
 call bld_n
 n_is_built = .True.

67

 endif
end subroutine provide_n

subroutine bld_n
 use matrix_mod
 character*(1) :: irp_here = 'n' ! matrix.irp.f: 12
 integer :: align_double ! matrix.irp.f: 14
 n = 19 ! matrix.irp.f: 15
 n_aligned = align_double(19) ! matrix.irp.f: 16
end subroutine bld_n
integer function align_double(i) ! matrix.irp.f: 1
 character*(12) :: irp_here = 'align_double'! matrix.irp.f: 1
 integer, intent(in) :: i ! matrix.irp.f: 2
 integer :: j ! matrix.irp.f: 3
 j = mod(i,max(1,4)/4) ! matrix.irp.f: 4
 if (j==0) then ! matrix.irp.f: 5
 align_double = i ! matrix.irp.f: 6

68

 else ! matrix.irp.f: 7
 align_double = i+4-j ! matrix.irp.f: 8
 endif ! matrix.irp.f: 9
end ! matrix.irp.f: 10

Output:

$./test
 19 19

Generated code with an alignment of 32 bytes:

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

69

module matrix_mod
 double precision, allocatable :: matrix (:,:)
 !DIR$ ATTRIBUTES ALIGN: 32 :: matrix
 logical :: matrix_is_built = .False.
 integer :: n_aligned
 integer :: n
 logical :: n_is_built = .False.
end module matrix_mod

! -*- F90 -*-
!
!---!
! This file was generated with the irpf90 tool. !
! !
! DO NOT MODIFY IT BY HAND !
!---!

subroutine provide_matrix

70

 use matrix_mod
 implicit none
 character*(14) :: irp_here = 'provide_matrix'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.n_is_built) then
 call provide_n
 endif
 if (allocated (matrix)) then
 irp_dimensions_OK = .True.
 irp_dimensions_OK = irp_dimensions_OK.AND.(SIZE(matrix,1)==(n_aligned))
 irp_dimensions_OK = irp_dimensions_OK.AND.(SIZE(matrix,2)==(n))
 if (.not.irp_dimensions_OK) then
 deallocate(matrix,stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Deallocation failed: matrix'
 print *, ' size: (n_aligned,n)'
 endif

 if ((n_aligned>0).and.(n>0)) then
 allocate(matrix(n_aligned,n),stat=irp_err)

71

 if (irp_err /= 0) then
 print *, irp_here//': Allocation failed: matrix'
 print *, ' size: (n_aligned,n)'
 endif
 endif
 endif
 else
 if ((n_aligned>0).and.(n>0)) then
 allocate(matrix(n_aligned,n),stat=irp_err)
 if (irp_err /= 0) then
 print *, irp_here//': Allocation failed: matrix'
 print *, ' size: (n_aligned,n)'
 endif
 endif
 endif
 if (.not.matrix_is_built) then
 call bld_matrix
 matrix_is_built = .True.

72

 endif
end subroutine provide_matrix

subroutine bld_matrix
 use matrix_mod
 character*(6) :: irp_here = 'matrix' ! matrix.irp.f: 19
 Matrix = 0.d0 ! matrix.irp.f: 20
end subroutine bld_matrix
subroutine provide_n
 use matrix_mod
 implicit none
 character*(9) :: irp_here = 'provide_n'
 integer :: irp_err
 logical :: irp_dimensions_OK
 if (.not.n_is_built) then
 call bld_n
 n_is_built = .True.

 endif
end subroutine provide_n

subroutine bld_n

73

 use matrix_mod
 character*(1) :: irp_here = 'n' ! matrix.irp.f: 12
 integer :: align_double ! matrix.irp.f: 14
 n = 19 ! matrix.irp.f: 15
 n_aligned = align_double(19) ! matrix.irp.f: 16
end subroutine bld_n
integer function align_double(i) ! matrix.irp.f: 1
 character*(12) :: irp_here = 'align_double'! matrix.irp.f: 1
 integer, intent(in) :: i ! matrix.irp.f: 2
 integer :: j ! matrix.irp.f: 3
 j = mod(i,max(32,4)/4) ! matrix.irp.f: 4
 if (j==0) then ! matrix.irp.f: 5
 align_double = i ! matrix.irp.f: 6
 else ! matrix.irp.f: 7
 align_double = i+4-j ! matrix.irp.f: 8
 endif ! matrix.irp.f: 9
end ! matrix.irp.f: 10

Output:

74

$./test
 20 19

To remove all compiler directives introduced by the programmer, it is possible to
use irpf90 --no-directives.

75

More about IRPF90

• ArXiv: http://arxiv.org/abs/0909.5012

• Web site: http://irpf90.ups-tlse.fr

76

http://arxiv.org/abs/0909.5012
http://irpf90.ups-tlse.fr

Single core optimization in
QMC=Chem
Anthony Scemama <scemama@irsamc.ups-tlse.fr>
Michel Caffarel <michel.caffarel@irsamc.ups-tlse.fr>

Labratoire de Chimie et Physique Quantiques
IRSAMC (Toulouse)

Hardware considerations
Intel(R) Xeon(R) CPU E31220 @ 3.10GHz
3.4GHz turbo, 8 MiB shared L3, 256 KiB L2, 32 KiB L1

• The AVX instruction set allows to perform vector operations on 256 bits : 8
single precision (SP) elements or 4 double precision (DP) elements

• The vector ADD and MUL operations have a throughput of 1 per cycle
(pipelining)

• One vector ADD, one vector MUL and one integer ADD (loop count) can be
performed simultaneously

• Therefore, the peak performance of an Intel Sandy/Ivy Bridge core is 16
floating point operations (flops) per cycle (SP) or 8 flops/cycle (DP)

• One E31220 core has a peak performance of 54.4 Gflops/s (SP), 27.2
Gflops/s (DP)

• In the peak regime, one flop takes in average 0.018 ns (SP) or 0.037 ns (DP)

1

On modern architectures, reducing the number of flops does not systematically
reduce the execution time.

Memory access is much more critical. Understanding how the data arrives to the
CPU helps to write efficient code *.

* "What Every Programmer Should Know About Memory, U. Drepper, (2007),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.957

2

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.957

Measures obtained with LMbench †

1 cycle = 0.29 ns, 1 peak flop SP = 0.018 ns

Integer (ns) bit ADD MUL DIV MOD

32 bit
64 bit

0.3
0.3

0.04
0.04

0.9
0.9

6.7
13.2

7.7
12.9

Floating Point (ns) ADD MUL DIV

32 bit
64 bit

0.9
0.9

1.5
1.5

4.4
6.8

Data read (ns) Random Prefetched

L1
L2
L3
Memory

1.18
3.5
13
75-80

1.18
1.6
1.7

3.

† http://www.bitmover.com/lmbench/

3

http://www.bitmover.com/lmbench/

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 10 100 1000 10000 100000 1e+06

n
a
n
o
se

co
n
d
s

KiB

Random read
Stride=16

Stride=128
Stride=256

4

• Random access to memory is very slow : 79 ns = 270 CPU cycles : 4300 flops
(Peak SP)

• Strided access to memory with a stride < 4096 KiB (1 page) triggers the
hardware prefetchers, reducing the memory latencies. Smaller strides are
better, and give latencies comparable to L2 latencies.

Recomputing data may be faster than fetching it randomly in memory

Other important numbers:

Mutex lock/unlock ~100 ns

Infiniband ~1 200 ns

Ethernet ~50 000 ns

Disk seek (SSD) ~50 000 ns

Disk seek (15k rpm) ~2 000 000 ns

5

Example : squared distance matrix
do j=1,n
 do i=1,j
 dist1(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
 end do
end do

do j=1,n
 do i=j+1,n
 dist1(i,j) = dist1(j,i)
 end do
end do

t(n=133) = 13.0 s, 3.0 GFlops/s
t(n=4125) = 95.4 ms, 0.44 GFlops/s

6

do j=1,n
 do i=1,j
 dist2(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
 dist2(j,i) = dist2(i,j)
 end do
end do

t(n=133) = 11.5 s : 1.13x speed-up, 3.5 GFlops/s
t(n=4125) = 90.4 ms : 1.05x speed-up, 0.47 GFlops/s

do j=1,n
 do i=1,n
 dist3(i,j) = X(i,1)*X(j,1) + X(i,2)*X(j,2) + X(i,3)*X(j,3)
 end do
end do

2x more flops!
t(n=133) = 10.3 s : 1.12x speed up, 8.2 GFlops/s
t(n=4125) = 15.7 ms : 5.75x speed up, 5.4 GFlops/s

7

Vector operations
AVX single instruction / multiple data (SIMD) instructions operate on 256-bit
floating point registers:

Example : vector ADD in double precision:

Requirements:

• The elements of each SIMD vector must be contiguous in memory

• The first element of each SIMD vector must be aligned on a 32 byte boundary

8

Automatic vectorization
The compiler can generate automatically vector instructions when possible. An
auto-vectorized loop generates 3 loops:
Peel loop (scalar)

First elements until the 32 byte boundary is met
Vector loop

Vectorized version until the last vector of 4 elements
Tail loop (scalar)

Last elements

9

10

Intel specific Compiler directives
To remove the peel loop, you can tell the compiler to align the arrays on a 32 byte
boundary using:

double precision, allocatable :: A(:), B(:)
!DIR$ ATTRIBUTES ALIGN : 32 :: A, B

Then, before using the arrays in a loop, you can tell the compiler that the arrays
are aligned. Be careful: if one array is not aligned, this may cause a segmentation
fault.

!DIR$ VECTOR ALIGNED
do i=1,n
 A(i) = A(i) + B(i)
end do

To remove the tail loop, you can allocate A such that its dimension is a multiple of
4 elements:

11

n_4 = mod(n,4)
if (n_4 == 0) then
 n_4 = n
else
 n_4 = n - n_4 + 4
endif
allocate (A(n_4), B(n_4))

and rewrite the loop as follows:

do i=1,n,4
 !DIR$ VECTOR ALIGNED
 !DIR$ VECTOR ALWAYS
 do k=0,3
 A(i+k) = A(i+k) + B(i+k)
 end do
end do

12

In that case, the compiler knows that each inner-most loop cycle can be
transformed safely into only vector instructions, and it will not produce the tail and
peel loops with the branching. For small arrays, the gain can be significant.

For multi-dimensional arrays, if the 1st dimension is a multiple of 4 elements, all
the columns are aligned:

double precision, allocatable :: A(:,:)
!DIR$ ATTRIBUTES ALIGN : 32 :: A
allocate(A(n_4,m))
do j=1,m
 do i=1,n,4
 !DIR$ VECTOR ALIGNED
 !DIR$ VECTOR ALWAYS
 do k=0,3
 A(i+k,j) = A(i+k,j) * B(i+k,j)
 end do
 end do
end do

13

Warning :

In practice, using multiples of 4 elements is not always the best choice. Using
multiples of 8 or 16 elements can be better because the inner-most loop may be
unrolled by the compiler to improve the efficiency of the pipeline.

14

Example : squared distance matrix
do j=1,n
 do i=1,n,8
 !DIR$ VECTOR ALIGNED
 !DIR$ VECTOR ALWAYS
 do k=0,7
 dist4(i+k,j) = X(i+k,1)*X(j,1) + X(i+k,2)*X(j,2) + X(i+k,3)*X(j,3)
 end do
 end do
end do

t(n=133) = 7.2 s : 1.44x speed-up, 12.1 GFlops/s
t(n=4125) = 15.5 ms : 1.01x speed-up, 7.5 GFlops/s.

15

Hot spots of QMC algorithms
At every Monte Carlo step, the following quantities have to be computed:

•

Slater matrix:

•

•

16

Calculation of the Slater matrices
The Slater matrices have to be computed, as well as their gradients and
Laplacian.

It is necessary to compute the values, gradients and Laplacian of the Molecular
Orbitals (MOs) at the electron positions.

• C is the matrix of MO coefficients (constant)

• A1 : MO values

• B1 : AO values

• A2, A3, A4 : MO gradients (x,y,z)

17

• B2, B3, B4 : AO gradients (x,y,z)

• A5 : of MO Laplacian

• B5 : of AO Laplacian

We need to compute Ai = C x Bi efficiently:

• Single precision is sufficient

• AOs are not orthonormal and centered on nuclei

• All Bi have null elements where |r-ri |
2 is large : only non-zero elements are

computed

• All Bi are sparse with non-zero elements at the same indices

• C is constant and dense

• The size of Ai is small (~ Nelec / 2)

• We have implemented a very efficient dense x sparse matrix product for small
matrices

18

Dense Matrix x Sparse Vector Product
To improve cache locality and reduce memory, we:

• compute one column of all Bi and store them sparse

• make the product of C with these vectors and store all Ai
The sparse vectors are represented as:

19

20

In QMC=Chem, all arrays are aligned on a 32 byte boundary by IRPF90. The
leading dimension is always a multiple of 8 elements.

! $IRP_ALIGN = 32
! $IRP_ALIGN/4-1 = 7

! Initialize output vectors
! -------------------------

 !DIR$ VECTOR ALIGNED
 do j=1,LDA,max(1,$IRP_ALIGN/4)
 !DIR$ VECTOR ALIGNED
 A1(j:j+$IRP_ALIGN/4-1) = 0.
 !DIR$ VECTOR ALIGNED
 A2(j:j+$IRP_ALIGN/4-1) = 0.
 !DIR$ VECTOR ALIGNED
 A3(j:j+$IRP_ALIGN/4-1) = 0.
 !DIR$ VECTOR ALIGNED
 A4(j:j+$IRP_ALIGN/4-1) = 0.

21

 !DIR$ VECTOR ALIGNED
 A5(j:j+$IRP_ALIGN/4-1) = 0.
 enddo

! Unroll and jam x 4
! ------------------

 kmax2 = indices(0)-mod(indices(0),4)
 do kao=1,kmax2,4

 ! Fetch column indices
 ! --------------------

 k_vec(1) = indices(kao)
 k_vec(2) = indices(kao+1)
 k_vec(3) = indices(kao+2)
 k_vec(4) = indices(kao+3)

22

 ! Fetch column factors (1,2)
 ! ---------------------------

 d11 = B1(kao)
 d21 = B1(kao+1)
 d31 = B1(kao+2)
 d41 = B1(kao+3)

 d12 = B2(kao)
 d22 = B2(kao+1)
 d32 = B2(kao+2)
 d42 = B2(kao+3)

 ! A += C x B (1,2)
 ! ----------------

 !DIR$ VECTOR ALIGNED
 !DIR$ LOOP COUNT (256)

23

 do j=1,LDA,max(1,$IRP_ALIGN/4)

 !DIR$ VECTOR ALIGNED
 A1(j:j+$IRP_ALIGN/4-1) = A1(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d11 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(2))*d21 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(3))*d31 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(4))*d41

 !DIR$ VECTOR ALIGNED
 A2(j:j+$IRP_ALIGN/4-1) = A2(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d12 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(2))*d22 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(3))*d32 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(4))*d42

 enddo

24

 ! Fetch column factors (3,4)
 ! ---------------------------

 d13 = B3(kao)
 d23 = B3(kao+1)
 d33 = B3(kao+2)
 d43 = B3(kao+3)

 d14 = B4(kao)
 d24 = B4(kao+1)
 d34 = B4(kao+2)
 d44 = B4(kao+3)

 ! A = C x B (3,4)
 ! ---------------

 !DIR$ VECTOR ALIGNED
 do j=1,LDA,max(1,$IRP_ALIGN/4)

25

 !DIR$ VECTOR ALIGNED
 A3(j:j+$IRP_ALIGN/4-1) = A3(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d13 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(2))*d23 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(3))*d33 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(4))*d43

 !DIR$ VECTOR ALIGNED
 A4(j:j+$IRP_ALIGN/4-1) = A4(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d14 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(2))*d24 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(3))*d34 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(4))*d44

 enddo

 ! Fetch column factors (5)

26

 ! ---------------------------

 d15 = B5(kao)
 d25 = B5(kao+1)
 d35 = B5(kao+2)
 d45 = B5(kao+3)

 ! A += C x B (5), unrolled 2x by compiler
 ! ---------------------------------------

 !DIR$ VECTOR ALIGNED
 do j=1,LDA,max(1,$IRP_ALIGN/4) ! Unroll 2 times

 !DIR$ VECTOR ALIGNED
 A5(j:j+$IRP_ALIGN/4-1) = A5(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d15 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(2))*d25 + &

27

 C(j:j+$IRP_ALIGN/4-1,k_vec(3))*d35 + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(4))*d45

 enddo

 enddo

! Tail loop of outer loop
! -----------------------

 do kao = kmax2+1, indices(0)

 ! Fetch column indice
 ! -------------------

 k_vec(1) = indices(kao)

28

 ! Fetch column factors (1-5)
 ! ---------------------------

 d11 = B1(kao)
 d12 = B2(kao)
 d13 = B3(kao)
 d14 = B4(kao)
 d15 = B5(kao)

 ! A += B x C (1-5)
 ! ----------------

 !DIR$ VECTOR ALIGNED
 do j=1,LDA,max(1,$IRP_ALIGN/4)

 !DIR$ VECTOR ALIGNED
 A1(j:j+$IRP_ALIGN/4-1) = A1(j:j+$IRP_ALIGN/4-1) + &

29

 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d11

 !DIR$ VECTOR ALIGNED
 A2(j:j+$IRP_ALIGN/4-1) = A2(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d12

 !DIR$ VECTOR ALIGNED
 A3(j:j+$IRP_ALIGN/4-1) = A3(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d13

 !DIR$ VECTOR ALIGNED
 A4(j:j+$IRP_ALIGN/4-1) = A4(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d14

 !DIR$ VECTOR ALIGNED
 A5(j:j+$IRP_ALIGN/4-1) = A5(j:j+$IRP_ALIGN/4-1) + &
 C(j:j+$IRP_ALIGN/4-1,k_vec(1))*d15

30

 enddo
 enddo

Inner-most loops:

• Perfect ADD/MUL balance

• Does not saturate load/store units

• Only vector operations with no peel/tail loops

• Uses 15 AVX registers. No register spilling

• If all data fits in L1, 100% peak is reached (16 flops/cycle)

• In practice: memory bound, so 50-60% peak is measured.

31

Other QMC codes use 3D splines to avoid the computation of AOs, and the
matrix products but:

• To do the 3D interpolation, 8 values are needed (corners of a cube)

• This represents 4 random memory accesses : ~320 nanoseconds + the time to
compute the interpolation

• In 360 nanoseconds, we can do ~ 12 000 flops.

• The average computation time of 1 element with our matrix product is
proportional to the number of non-zero elements in Bi (<500 flops).

• We have shown that our implementation (calculation of Ai and matrix products)
is faster than the interpolation by factors of 1.0x to 1.5x

• 3D splines have to be pre-computed on a grid. It takes initialization time

• 3D splines needs many GiB of RAM, so only small systems can be handled,
and OpenMP parallelism is often required.

32

Inverse Slater matrices

To compute and , one needs the inverse of the Slater matrices:

• needs

• needs
A unique list of alpha and beta Slater matrices is generated, and the results are
combined at the end to produce the alpha x beta determinant products.

To give accurate results, double precision is required. For each spin, the first
inverse Slater matrix is fully calculated:

• < 5x5 : hand-written O(N!) algorithm (5! < 53)

• > 5x5 : MKL library : dgetrf, dgetri
The next determinants are calculated using the Shermann-Morisson-Woodbury
formula : if only one column differs, the new inverse can be computed in O(N2).

33

A CAS-SCF wave function with 10 000 determinant products has 100 unique
alpha and 100 unique beta determinants. One of those will be computed in O(N3)
and all others will be computed in O(N2). For a 40 electrons system (20 alpha, 20
beta), computing 10 000 determinants will be only ~6x longer than the
single-determinant calculation.

34

Tutorial: Quantum Monte Carlo with QMC=Chem
In this tutorial, We will study the dissociation energy of N

2
using a Hartree-Fock (HF) trial wave function

and a complete active space (CAS-SCF) trial wave function. The HF wave function for dissociated N
2

is
computed within restricted open-shell HF with a spin multiplicity of 7. These wave functions were prepared
using the GAMESS 1 program. The dissociation energy is evaluated by calculating the energy difference
of N

2
at and at , where is the inter-atomic distance.

In your directory, you should have:

$ ls
1.1.CAS/ 1.1.HF/ 1.1.HF.1core.sub 4.CAS/ 4.HF/
1.1.CAS.out 1.1.HF.160core.sub 1.1.HF.out 4.CAS.out 4.HF.out

• The *.out files are the GAMESS output files

• The *.sub files are the files needed to submit a job

• The directories are the corresponding QMC=Chem EZFIO database files 2

Running a VMC calculation

Single core run
To access the input data, run

$ qmcchem_edit.py 1.1.HF

This command will open a temporary file containing the different parameters of the simulation. Modify
them as follows:

Simulation

end_condition = "wall_time > 300"
jastrow = False
method = "VMC"
nucl_fitcusp = True
num_step = 10000
sampling = "Langevin"
time_step = 0.2
title = "HF, 1.1 angstroms"
walk_num = 20

end_condition

Stopping condition of the run. 5 minutes is fine.

jastrow

If true, use a Jastrow factor to improve the trial wave function. In this tutorial, we will not use it.

method

VMC: Variational Monte Carlo.

nucl_fitcusp

Impose the correct electron-nucleus cusp at the nucleus to avoid the divergence of the energy at the
nuclei. This doesn't change the energy but considerably reduces its variance.

num_step

Number of steps per block. This is usually adjusted such that the time spent to compute one block is
not too small or not too large. Typically, for very short runs 20 seconds is OK, and for usual
production runs, this parameters is adjusted to 10 minutes per block.

sampling

The Monte Carlo sampling algorithm. Langevin is the best for VMC.

time_step

Simulation time step. Using the Langevin algorithm, 0.2 is usually a good choice.

title

Title of the run. You can put whatever you want.

walk_num

Number of walkers (independent trajectories in VMC).

When you save the fiel and exit the text editor, the EZFIO database has been updated. You can now run
the QMC calculation. First, run a single-core run:

$ ccc_msub -A <your_curie_account> 1.1.HF.1core.sub

In QMC=Chem, there is no output file. At any time, you can see what has been computed by running:

$ qmcchem_result.py -s 1.1.HF

The output of this command should look like this:

Summary
#--
Number of blocks : 26
Number of blocks per core : 26
Total CPU time : 0:04:51
CPU time / block : 11.192(79)
Acceptance rate : 0.92348(10)
#--
e_loc : -108.9842(52)
Variance of e_loc : 25.75(30)
Min of e_loc : -351.467898466
Max of e_loc : 503.693209743
#--

Number of blocks

Total number of blocks in the database.

Number of blocks per core

Each CPU core has individually made this number of blocks.

Total CPU time

Sum of the CPU times of all the cores.

CPU time / block

Average CPU time per block.

Acceptance rate

Average Metropolis acceptance rate.

e_loc

Average of the local energy.

Variance of e_loc

Variance () of the local energy.

Min/Max of e_loc

Min or Max value of the local energy encountered in the simulation.

At the end of the run, check that the average of the local energy corresponds to the Hartree-Fock energy
given by GAMESS (within the error bars).

You can plot the convergence of the local energy using:

$ qmcchem_result.py -p E_loc 1.1.HF

The blue curve is the convergence plot of the local energy by cumulating blocks from the first block to the
last block. The red curve is the same convergence plot but using the blocks from the last one to the first
one. If the calculation is converged, the blocks are independent between each other and the shape of the
curve should not depend on the order in which the blocks are taken. If the blue and the red convergence
plots are not compatible, the QMC run is not converged.

Multi-core run
Your first calculation has finished. If you want, you can add more blocks to the EZFIO database. To do
this, run a calculation in parallel using

$ ccc_msub -A <your_curie_account> 1.1.HF.160core.sub

Check that the error bar is significantly reduced, and that the total CPU time is 160x larger:

$ qmcchem_result.py -s -c 1.1.HF
Summary
#--
Number of blocks : 3168
Number of blocks per core : 27
Total CPU time : 9:49:16
CPU time / block : 11.292(19)
Acceptance rate : 0.923571(13)
#--
e_loc : -108.98489(56)
Variance of e_loc : 26.082(58)
Min of e_loc : -397.069319894

Max of e_loc : 4547.98196953
#--

Now, you have enough blocks to verify that the blocks have a Gaussian distribution:

$ qmcchem_result.py -H E_loc 1.1.HF

Run VMC calculations for the 3 other trial wave functions and check that the energy corresponds to the
energy given by GAMESS.

Running DMC calculations
For each EZFIO directory, modify the simulation parameters as follows:

$ qmcchem_edit.py 1.1.HF

method = "DMC"
sampling = "Brownian"
time_step = 0.0001
title = "1.1 HF DMC"
walk_num = 40

method

Choose DMC to perform a Diffusion Monte Carlo calculation.

sampling

Choose the Brownian motion for DMC. Langevin is not adapted.

time_step

With the Brownian motion, this time step is sufficiently small to obtain a small time step error, and the
Metropolis acceptance rate is close to 99.9%.

walk_num

We use a DMC algorithm with a fixed number of walkers with no population control bias. The counter
part is that with a small number of walkers, additional fluctuations of the local energy are introduced.
It is preferable to increase the number of walkers for the DMC calculation.

This set of parameters is fine for all the runs. As the effective time step is approximately 10 times less
than in VMC, the total computational time to obtain an error bar comparable to the error bar obtained in
VMC will be 10 times longer.

Run a first short DMC calculation with a small number of cores (typically one node), such that the walkers
move from the VMC distribution to the DMC distribution. Clear the computed data by un-commenting
clear(blocks), since this calculation it is not well converged:

$ qmcchem_edit.py 1.1.HF

Clear

clear(all_blocks)
clear(blocks)
clear(jastrow)
clear(walkers)

Then, run a longer calculation on 10 nodes.

You should obtain these energies:

Nodes R <E> (DMC) (a.u)

HF 1.1 -109.4869(63)

4.0 -109.1498(76)

CAS 1.1 -109.5094(66)

4.0 -109.1360(61)

Dissociation energies:

W.F. Delta E (a.u)

HF 0.1883

CAS 0.3246

DMC/HF 0.3371(98)

DMC/CAS 0.3734(90)

Exact 0.3632

Adding a new property
In this section, we will modify the sources of QMC=Chem to compute a new property. The 3D space is
partitioned in two subspaces separated by the plane perpendicular to the N-N bond. We will compute the
probability to find 1,2,3,4,...,14 electrons in one subspace. The corresponding local operator is
implemented as an array P(elec_num). P(m) = 1.d0 where m is the number of electrons in the subspace,
and P = 0.d0 eleswhere. The average of this operator will give the probability of finding 1,2,3,4,...,14
electrons in the subspace.

Adding the property to the sources
First, go into the QMC=Chem source directory:

$ cd ${QMCCHEM_PATH}/src

Create a new file, named properties_cecam.irp.f with the following content:

!==!
! PROPERTIES
!==!

BEGIN_PROVIDER [double precision, proba_N2, (14)]
 implicit none
 BEGIN_DOC
! Probability of finding N electrons on one N atom in N2
 END_DOC
 integer :: i, n

 n = 0
 proba_N2 = 0.d0
 do i=1,elec_num
 if (elec_coord(i,3) > 0.d0) then
 n += 1
 endif
 enddo
 if (n>0) then
 proba_N2(n) = 0.5d0
 proba_N2(elec_num-n) = 0.5d0
 endif

END_PROVIDER

Do not remove the 3 first commented lines: they are used by an embedded shell script to detect that what
follows are properties to compute.

Then, build the program:

$ cd ${QMCCHEM_PATH}
$ make

Before runnning tests, we will have to restore the VMC parameters in our EZFIO databases.

Restoring the VMC configuration
QMC=Chem keeps track of all the modifications if the EZIO database:

$ qmcchem_log.py 1.1.HF
 | Date | MD5 |
 --
 1 | 2013-07-08 14:05:39 | 97395378eaa00b194de0536dbd172153 | Edit
 2 | 2013-07-08 14:05:42 | 97395378eaa00b194de0536dbd172153 | Generate new walkers
 3 | 2013-07-08 14:05:43 | 97395378eaa00b194de0536dbd172153 | Start run
 4 | 2013-07-08 14:06:08 | 97395378eaa00b194de0536dbd172153 | Stop run
 5 | 2013-07-08 14:06:28 | f622a3fc6e35fc3a75717d43e1b84de2 | Edit
 6 | 2013-07-08 14:06:36 | 9e8b5122372c7f6e7698a8a55861131b | Edit
 7 | 2013-07-08 14:06:43 | 9e8b5122372c7f6e7698a8a55861131b | Clear all_blocks
 8 | 2013-07-08 15:41:20 | 295d77618e1507bbd3152d6e33610ddb | Start run
 9 | 2013-07-08 15:43:28 | 295d77618e1507bbd3152d6e33610ddb | Stop run
 10 | 2013-07-09 11:38:40 | 93b358fb4ead5aa061b40c2807ea0e73 | Edit
 11 | 2013-07-09 11:38:59 | 93b358fb4ead5aa061b40c2807ea0e73 | Start run
 12 | 2013-07-09 11:44:07 | 93b358fb4ead5aa061b40c2807ea0e73 | Stop run

From this data, you can identify that the DMC run should be at step number 10, as the MD5 key has
changed. To verify this, run:

$ qmcchem_log.py log 10 1.1.HF
Date : 2013-07-09 11:38:40

MD5 : 93b358fb4ead5aa061b40c2807ea0e73
Description : Edit

Wave function
=============

N_atoms = 2
N_electrons = 14 (7 alpha, 7 beta)
N_det = 1
N_MOs = 60
N_AOs = 70
no Jastrow
nuclear cusp fitting

DMC
====

time_step = 0.0001
sampling = Brownian
N_steps = 10000
N_walkers = 40

Modified
========

simulation/http_server
simulation/time_step
simulation/sampling
electrons/elec_walk_num
simulation/method
simulation/title

You see that it is a DMC run, and that simulation/method has been modified from the previous step. This
confirms it is the first DMC calculation. Now, you can check out the configuration of the VMC run just
before this DMC run:

$ qmcchem_log.py checkout 9 1.1.HF

 Date : 2013-07-09 23:22:29
 MD5 : 295d77618e1507bbd3152d6e33610ddb
 Description : Checked out 9

 Wave function
 =============

 N_atoms = 2
 N_electrons = 14 (7 alpha, 7 beta)
 N_det = 1
 N_MOs = 60
 N_AOs = 70
 no Jastrow
 nuclear cusp fitting

 VMC
 ====

 time_step = 0.2
 sampling = Langevin
 N_steps = 10000
 N_walkers = 20

 Modified
 ========

 electrons/elec_coord.gz
 simulation/http_server
 simulation/time_step
 simulation/print_level
 simulation/sampling
 electrons/elec_walk_num
 simulation/method
 simulation/title

You can verify that this corresponds to the VMC configuration.

Running the code with the new property to sample
Now, when you run qmcchem_edit.py, a new item appears:

Properties

...
() e_ref_weight
() proba_n2
() voronoi_charges
...

Activate the proba_n2 property by putting an X between the brackets:

(X) proba_n2

Then, submit VMC calculations for both the HF and the CAS-SCF trial wave functions at The
results can be checked using:

$ qmcchem_result.py -t proba_n2 1.1.HF

proba_n2
#--
Idx Average
 1 0.000000
 2 0.000000
 3 0.000156(15)
 4 0.01629(26)
 5 0.09477(52)
 6 0.23309(38)
 7 0.15568(52)
 8 0.23309(38)
 9 0.09477(52)

 10 0.01629(26)
 11 0.000156(15)
 12 0.000000
 13 0.000000
 14 0.000000

Now, check out the corresponding DMC calculations and sample the histograms. The DMC sampled
quantities correspond to the mixed distribution . A first-order approximation to the properties
computed with can by obtained by

Here are the expected probabilities P(n):

n HF DMC(HF) 2DMC-VMC(HF) CAS-SCF DMC(CAS-SCF) 2DMC-VMC(CAS-SCF)

4 0.016 0.010 0.004 0.004 0.004 0.004

5 0.095 0.077 0.059 0.054 0.051 0.048

6 0.233 0.240 0.247 0.244 0.244 0.244

7 0.156 0.173 0.190 0.198 0.201 0.204

8 0.233 0.240 0.247 0.244 0.244 0.244

9 0.095 0.077 0.059 0.054 0.051 0.048

10 0.016 0.010 0.010 0.004 0.004 0.004

Going from the HF wave function to the CAS-SCF wave function tends to increase the weight of the
neutral components (the probabilities of finding 7 electrons), which is expected. One can also remark that
even with HF nodes, this is realized by the DMC algorithm. Using CAS-SCF nodes, the trial wave function
has much better probabilities, and the DMC has less work to do. This shows that the the CAS-SCF nodes
are much more physical than the HF nodes, and illustrates the difference observed in total energies when
going from HF nodes to CAS-SCF nodes.

1 http://www.msg.ameslab.gov/gamess/
2 http://ezfio.sourceforge.net . EZFIO is the Easy Fortran I/O library generator written

with IRPF90. The data is organized using the filesystem tree in plain text (eventually
gzipped) files.

http://www.msg.ameslab.gov/gamess/
http://ezfio.sourceforge.net

1

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

Quantum Monte Carlo Methods in Chemistry

Synonyms and Acronyms

Fixed-node diffusion Monte Carlo (FN-DMC); Green’s function Monte Carlo (GFMC); Pure diffusion Monte Carlo (PDMC);
 Monte Carlo (RMC); Stochastic reconfiguration Monte Carlo (SRMC); Variational Monte Carlo (VMC)Reptation

Description of the Problem

The problem considered here is to obtain accurate solutions of the time-independent Schrödinger equation for a general
molecular system described as electrons moving within the external potential of a set of fixed nuclei. This problem canN
be considered as the central problem of theoretical and . Using the atomic units adapted to thecomputational chemistry
molecular scale the Schrödinger equation to solve can be written as

(1)

where is the Hamiltonian operator given byH

(2)

 the spatial positions of the electrons, the Laplacian operator forN

electron of coordinates , the wavefunction, the total energy (a real constant), and the potentiali Ψ E V

energy function expressed as

(3)

In this formula is the interelectronic distance, the charge of nucleus (a positive integer), itsZα α

vector position, , and . The Schrödinger equation being invariant under

complex conjugation, we can restrict without loss of generality the eigensolutions to be . The boundaryreal-valued
conditions are of Dirichlet-type: Eigenfunctions are imposed to vanish whenever one electron (or more) goes to infinityΨ

(4)

In addition, the mathematical constraints resulting from the Pauli principle must be considered. Within a space-only
formalism as employed in QMC, two types of electron – usually referred to as the “spin-up” and “spin-down” electrons –
are distinguished and the Pauli principle is expressed as follows. Among all eigenfunctions verifying (1)–(4) only those
that are are physically allowed. Because of theantisymmetric under the exchange of any pair of spin-like electrons
permutational invariance, the spin-up electrons can be arbitrarily chosen as those having the first labels and theN↑
mathematical conditions can be written as

(5a)

2

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

and

(5b)

for all pairs (,) of spin-like electrons. Equations 1–5b define the mathematical problem discussed here. Although such a i j
 model results from a number of approximations, it contains the bulk of most chemical phenomenamathematical physical

and solving it with enough accuracy (=chemical accuracy) can be considered as the major problem of computational
chemistry. The two standard approaches to deal with the electronic structure problem in chemistry are the density
functional theory () and the post-Hartree–Fock wavefunction approaches ((DFT) Density Functional Theory Post-Hartree

, Coupled-Cluster Methods). Quantum Monte Carlo (QMC) presented hereFock Methods and Excited States Modelling
may be viewed as an alternative approach aiming at circumventing the limitations of these two well-established methods
(for a detailed presentation of QMC, see, e.g., []). In contrast with these approaches, QMC is based on a 1 deterministic

 sampling of the electronic . In the recent years, a number of remarkable applications havestochastic configuration space
been presented, thus establishing QMC as a high potential approach although a number of limitations are still present.
Here, we shall present the two most popular approaches used in chemistry, namely, the variational Monte Carlo (VMC)
and the fixed-node diffusion Monte Carlo (FN-DMC) methods.

The Variational Monte Carlo (VMC) Method

The variational Monte Carlo (VMC) method is the simpler and the most popular quantum Monte Carlo approach. From a
mathematical point of view, VMC is a standard method. Introducing an Markov chain Monte Carlo (MCMC) approximate

trial wavefunction known in an analytic form (a good approximation of the unknown wavefunction),

the Metropolis-Hastings algorithm is used to generate sample points distributed in the 3 -dimensional configurationN
space according to the quantum-mechanical probability density π associated with ΨT

(6)

where is a compact notation representing the positions of the electrons, . ExpectationN

values corresponding to various physical properties can be rewritten as averages over π. As an important example, the
total energy defined as

(7)

may be rewritten under the form

(8)

where is the local energy defined as

(9)

In VMC, the total energy is thus estimated as a simple average of the local energy over a sufficiently large number ofK

configurations generated with the Monte Carlo procedure

3

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

(10)

the estimator becoming exact as goes to infinity with a statistical error decreasing as . Properties other thanK

the energy can be obtained in a similar way.
In the case of the energy, it can be shown that there exists a expressed as for any ,variational principle (Ψ)≥EVMC T E0 ΨT
the equality being obtained for the exact ground-state wavefunction of energy . In addition, there also exists a E0

 stating that the closer the trial wavefunction is from the exact solution, the smaller the fluctuationszero-variance principle
of the local energy are, the statistical error vanishing in the limit of an exact trial wavefunction. In practice, both principles
– minimization of the energy and/or of the fluctuations of the local energy – are at the basis of the various approaches
proposed for optimizing the parameters entering the trial wavefunction.

The Diffusion Monte Carlo (DMC) Method

The fundamental idea is to introduce a formal between the quantum and stochastic worlds bymathematical connection
introducing a time dynamics as followsfictitious

(11)

where plays the role of a time variable, , a time-dependent real wavefunction, and , some constantt ET
reference energy. The solution of this equation is uniquely defined by the choice of the initial wavefunction,

. Using the spectral decomposition of the self-adjoint (hermitic) Hamiltonian operator, the solution of (11)

can be written as

(12)

where the sum is performed over the complete set of the eigensolutions of the Hamiltonian operator

(13)

and .

As seen from (12) the knowledge of the solution of the Schrödinger equation allows to have direct accesstime-dependent

to information about the eigensolutions, . As an important example, the exact ground-statetime-independent

wavefunction (corresponding to the smaller eigenvalue) can be obtained by considering the large-time limit of theE0
time-dependent wavefunction

(14)

up to an unessential multiplicative factor.
In practice, to have an efficient of the original time-dependent equation, we need to employ someMonte Carlo simulation
sort of , that is, a practical scheme for sampling only the regions of the very high-dimensional importance sampling

 where the quantities to be averaged have a non-vanishing contribution. Here, it is realized byconfiguration space

4

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

introducing a trial wavefunction (usually optimized in a preliminary VMC step) and by defining a new time-dependentΨT
density as follows

(15)

The equation that obeys can be derived without difficulty from (11) and (15), we getπ

(16)

where is a forward Fokker-Planck operator defined as (see, e.g., [])L 2

(17)

and the drift vector given by

(18)

In order to define a step-by-step Monte Carlo algorithm, the fundamental equation (16) is rewritten under the following
equivalent integral form describing the evolution of the density during a time interval τ

(19)

where is the following integral kernel (or imaginary-time propagator)K

(20)

For an arbitrary value of , the kernel is not known. However, for small enough time-step accurate approximations of τ K
can be obtained and sampled. To see this, let us first split the exponential operator into a product of exponentials by using
the Baker-Campbell-Hausdorff formulas []3

(21)

and then introduce a short-time gaussian approximation of the Fokker-Planck kernel [],2

(22)

Finally, a working short-time approximation of the kernel can be written asDMC

(23)

By considering small enough , the residual error (called the in the context of QMC) can be madeτ short-time error
arbitrarily small. In practice, the DMC simulation is performed as follows. A population of [or configuration walkers

] propagated stochastically from generation to generation according to the DMC kernel is introduced. At each

5

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

step, the walkers are moved according to the gaussian transition probability, (22). Next, each walker is killed, kept
unchanged, or duplicated a certain number of times proportionally to the remaining part of the kernel, namely, KDMC

. In practice, an unbiased estimator defining the number of copies (=integer M M

0, 1,) is used, = [+], where is the integer part and is a uniform random number in (0, 1) (unbiased… M E w u E u

). In contrast with the Fokker-Planck part, this (or birth-death) process causesbranching

fluctuations in the number of walkers. Because of that, some sort of step is needed []. The population control 1 stationary
 resulting from these stochastic rules can be obtained as the time-independent solution of (16). After somedistribution

simple algebra we get

(24)

provided the reference energy is adjusted to the exact value, . From this DMC distribution density, aET = ET E0 mixed

simple and estimator of the total energy is obtainedunbiased

(25)

For properties other than the energy, the exact distribution density, , must be sampled. This can be realized inΨ0
2

different ways, for example, by using a forward walking scheme Ref.[] or a Monte Carlo algorithm, Ref.[].4 reptation 5

The Fixed-Node Approximation

In the preceding section, the DMC approach has been presented without taking care of the specific mathematical
constraints resulting from the Pauli principle, (5b). As it is, this algorithm can be directly employed for quantum systems
not subject to such constraints (bosonic systems, quantum oscillators, ensemble of distinguishable particles, etc.). An
important remark is that the algorithm converges to the stationary density, (24), associated with the lowest eigenfunction

 which, in the case of a Hamiltonian of the form , is known to have a constant sign (say,

positive). This property is the generalization to continuous operators of the Perron-Frobenius theorem valid for matrices
with off-diagonal elements of the same sign.
For electronic systems, the additional fermionic constraints are to be taken into account and we must now force the DMC
algorithm to converge to the lowest eigenfunction obeying the Pauli principle (the “physical” or fermionic ground-state)
and not to the “mathematical” (or bosonic) ground-state having a constant sign. Unfortunately, up to now it has not been
possible to define a computationally tractable (polynomial) algorithm implementing exactly such a property for a general
fermionic system (known as the “sign problem”). However, at the price of introducing a , a stablefixed-node approximation
method can be defined. This approach called fixed-node (FN-DMC) just consists in choosing a trial wavefunctionDMC
fulfilling the fermionic constraints, (5b). In contrast with the bosonic-type simulations where the trial wavefunction does not
vanish at finite distances, the walkers are now no longer free to move within the entire configurational space. This
property results directly from the fact that the nodes of the trial wavefunction [defined as the -dimensional(3 − 1)N

hypersurface where] act as infinitely repulsive barriers for the walkers [divergence of the drift vector,

(18)]. Each walker is thus trapped within the nodal pocket cut by the nodes of where it starts from and theforever ΨT
Schrödinger equation is now solved with the defined asadditional fixed-node boundary conditions

(26)

When the nodes of coincide with the exact nodes, the algorithm is exact. If not, a fixed-node error is introduced.ψT
Hopefully, all the nodal pockets do not need to be sampled – which would be an unrealistic task for large systems – due

6

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

to the existence of a “tilling” theorem stating that all the nodal pockets of the fermionic ground-state are essentially
equivalent and related by permutational invariance []. For a mathematical presentation of the fixed-node approximation,6
see Ref.[]. Finally, remark that in principle defining an exact fermionic DMC scheme avoiding the fixed-node7
approximation is not difficult. For example, by letting the walkers go through the nodes and by keeping track of the various
changes of signs of the trial wavefunction. However, in practice all the schemes proposed up to now are faced with the
existence of an exponentially vanishing signal-to-noise problem related to the uncontrolled fluctuations of the trial
wavefunction sign. For details, the reader is referred to the work by Ceperley and Alder [].8

The Trial Wavefunction

A standard form for the trial wavefunction is

(27)

where the term is usually referred to as the Jastrow factor describing explicitly the electron-electron interactions

at different level of approximations. A quite general form employed for is

(28)

where ’s are simple functions (Many different expressions have been employed). The second part of the wavefunction isU
quite standard in chemistry and describes the shell-structure of molecules via a of a product of twolinear combination
Slater determinants built from one-electron molecular orbitals. Note that several other forms for the trial wavefunction
have been introduced in the literature but so far they have remained of marginal use. Finally, let us emphasize that the
magnitude of the statistical error and the importance of the fixed-node bias being directly related to the quality of the trial
wavefunction (both errors vanish in the limit of an exact wavefunction), it is in general quite profitable to optimize the
parameters of the trial wavefunction. Several approaches have been proposed, we just mention here the recently
proposed method of Umrigar and collaborators [].9

Applications

In , the vast majority of the VMC and FN-DMC applications have been concerned with thecomputational chemistry
calculation of total energies and differences of total energies: atomization energies, electronic affinities, ionization
potentials, reaction barriers, excited-state energies, etc. To get a brief view of what can be achieved with QMC, let us
mention the existence of several benchmark studies comparing FN-DMC with the standard and post-HF methods [DFT 10
–]. In such studies, FN-DMC appears to be as accurate as the most accurate post-HF methods and advanced DFT12
approaches. In addition, like DFT – but in sharp contrast with the post-HF methods – the scaling of the computational cost
as a function of the system size is favorable, typically in (). However, QMC simulations are much more CPU-intensiveO N3

than DFT ones. To date the largest systems studied involve about 2,000 active electrons, see, e.g., []. Finally, note that13
in principle, all chemical properties can be evaluated using QMC. Unfortunately, to reach the desired accuracy is often
difficult in practice. More progress is needed to improve the QMC estimators of such properties.

QMC and High-Performance Computing (HPC)

Let us end by emphasizing on one of the most important practical aspect of QMC methods, namely, their remarkable
adaptation to high (HPC) and, particularly, to massive parallel computations. As most Monteperformance computing
Carlo algorithms, the computational effort is almost exclusively concentrated on pure (“number crunching method”).CPU

7

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

In addition, – and this is the key aspect for massive parallelism – calculations of averages can be decomposed at will: n
Monte Carlo steps over a single processor being equivalent to ∕ steps over processors with no communicationn p p
between the processors (apart from the initial/final data transfers). Very recently, it has been demonstrated that an almost
perfect parallel efficiency up to about 100,000 compute cores is achievable in practice [,]. In view of the formidable14 15
development of computational platforms: Presently up to a few hundreds of thousands compute cores (petascale
platforms) and many more soon (exascale in the near future) this property could be critical in assuring the success of
QMC in the years to come.

References

1. Foulkes, W.M.C., Mitas, L., Needs, R.J., Rajagopal, G.: Quantum Monte Carlo simulations of Solids. Rev. Mod.
Phys. , 33–83 (2001)73
2. Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in
Synergetics, 3rd edn. Springer, Berlin (1996)
3. Gilmore, R.: Baker-Campbell-Hausdorff formulas. J. Math. Phys. , 2090–2092 (1974)15
4. Caffarel, M., Claverie, P.: Development of a pure diffusion quantum Monte Carlo method using a full
generalized Feynman-Kac formula. I. Formalism. J. Chem. Phys. , 1088–1099 (1988)88
5. Baroni, S., Moroni, S.: Reptation quantum Monte Carlo: a method for unbiased ground-state averages and
imaginary-time correlations. Phys. Rev. Lett. , 4745–4748 (1999)82
6. Ceperley, D.M.: Fermion nodes. J. Stat. Phys. , 1237–1267 (1991)63
7. Cancès, E., Jourdain, B., Lelièvre, T.: Quantum Monte Carlo simulation of fermions. A mathematical analysis of
the fixed node approximation. Math. Model Method App. Sci. , 1403–1440 (2006)16
8. Ceperley, D.M., Alder, B.J.: Quantum Monte Carlo for molecules: Green’s function and nodal release. J. Chem.
Phys. , 5833–5844 (1984)81
9. Umrigar, C.J., Toulouse, J., Filippi, C., Sorella, S., Hennig, R.G.: Alleviation of the Fermion-sign problem by
optimization of many-body wave functions. Phys. Rev. Lett. , 110201 (2007)98
10. Manten, S., Lüchow, A.: On the accuracy of the fixed-node diffusion quantum Monte Carlo methods. J. Chem.
Phys. , 5362–5366 (2001)115
11. Grossman, J.C.: Benchmark QMCarlo calculations. J. Chem. Phys. , 1434–1440 (2002)117
12. Nemec, N., Towler, M.D., Needs, R.J.: Benchmark all-electron ab initio quantum Monte Carlo calculations for
small molecules. J. Chem. Phys. , 034111-7 (2010)132
13. Sola, E., Brodholt, J.P., Alfè, D.: Equation of state of hexagonal closed packed iron under Earth’s core
conditions from quantum Monte Carlo calculations. Phys. Rev. B 79: 024107-6 (2009)
14. Esler, K.P., Kim, J., Ceperley, D.M., Purwanto, W., Walter, E.J., Krakauer, H., Zhang, S.: Quantum Monte
Carlo algorithms for electronic structure at the petascale; the endstation project. J. Phys. Conf. Ser. 012057125
(2008)
15. Gillan, M.J., Towler, M.D., Alfè, D.: Petascale computing opens new vistas for quantum Monte Carlo Psi-k
Highlight of the Month (February, 2011) (2011)

8

SpringerReference
Michel Caffarel
Quantum Monte Carlo Methods in Chemistry

16 Jul 2012 13:27http://www.springerreference.com/index/chapterdbid/333776

© Springer-Verlag Berlin Heidelberg 2012

Quantum Monte Carlo Methods in Chemistry

Michel
Caffarel

Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université de Toulouse,
Toulouse, France

DOI: 10.1007/SpringerReference_333776

URL: http://www.springerreference.com/index/chapterdbid/333776

Part of: Encyclopedia of Applied and Computational Mathematics

Editors: -

PDF created
on:

July, 16, 2012 13:27

© Springer-Verlag Berlin Heidelberg 2012

Quantum Monte Carlo for Large Chemical Systems:
Implementing Efficient Strategies for Petascale Platforms
and Beyond

Anthony Scemama,*[a] Michel Caffarel,[a] Emmanuel Oseret,[b] and William Jalby[b]

Various strategies to implement efficiently quantum Monte

Carlo (QMC) simulations for large chemical systems are

presented. These include: (i) the introduction of an efficient

algorithm to calculate the computationally expensive Slater

matrices. This novel scheme is based on the use of the highly

localized character of atomic Gaussian basis functions (not the

molecular orbitals as usually done), (ii) the possibility of

keeping the memory footprint minimal, (iii) the important

enhancement of single-core performance when efficient

optimization tools are used, and (iv) the definition of a

universal, dynamic, fault-tolerant, and load-balanced

framework adapted to all kinds of computational platforms

(massively parallel machines, clusters, or distributed grids).

These strategies have been implemented in the QMC¼Chem

code developed at Toulouse and illustrated with numerical

applications on small peptides of increasing sizes (158, 434,

1056, and 1731 electrons). Using 10–80 k computing cores of

the Curie machine (GENCI-TGCC-CEA, France), QMC¼Chem has

been shown to be capable of running at the petascale level,

thus demonstrating that for this machine a large part of

the peak performance can be achieved. Implementation of

large-scale QMC simulations for future exascale platforms

with a comparable level of efficiency is expected to be

feasible. VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23216

Introduction

Quantum Monte Carlo (QMC) is a generic name for a large

class of stochastic approaches solving the Schr€odinger equa-

tion by using random walks. In the last 40 years, they have

been extensively used in several fields of physics including nu-

clear physics,[1] condensed-matter physics,[2] spin systems,[3]

quantum liquids,[4] infrared spectroscopy,[5,6] and so on. In

these domains, QMC methods are usually considered as rou-

tine methods and even in most cases as state-of-the-art

approaches. In sharp contrast, this is not yet the case for the

electronic structure problem of quantum chemistry, where

QMC[7,8] is still of confidential use when compared to the two

well-established methods of the domain [Density Functional

Theory (DFT) and post-Hartree–Fock methods]. Without enter-

ing into the details of the forces and weaknesses of each

approach, a major limiting aspect of QMC hindering its diffu-

sion is the high computational cost of the simulations for real-

istic systems.

However—and this is the major concern of this work—a

unique and fundamental property of QMC methods is their re-

markable adaptation to high-performance computing (HPC)

and, particularly, to massively parallel computations. In short,

the algorithms are simple and repetitive, central memory

requirements may be kept limited whatever the system size,

and I/O flows are negligible. As most Monte Carlo algorithms,

the computational effort is almost exclusively concentrated on

pure CPU (‘‘number crunching method’’) and the execution

time is directly proportional to the number of Monte Carlo

steps performed. In addition, and this is a central point for

massive parallelism, calculations of averages can be decom-

posed at will: n Monte Carlo steps over a single processor

being equivalent to n/p Monte Carlo steps over p processors

with no communication between the processors (apart from

the initial/final data transfers). Once the QMC algorithm is suit-

ably implemented the maximum gain of parallelism (ideal scal-

ability) should be expected.

A most important point is that mainstream high-level quan-

tum chemistry methods do not enjoy such a remarkable prop-

erty. They are essentially based on iterative schemes defined

within the framework of linear algebra and involve the manip-

ulation and storage of extremely large matrices. Their adapta-

tion to extreme parallelism is intrinsically problematic.

Now, in view of the formidable development of computa-

tional platforms, particularly in terms of the number of com-

puting cores (presently up to a few hundreds of thousands

and many more to come) the practical bottleneck associated

with the high-computational cost of QMC is expected to

become much less critical. Thus, QMC may become in the

coming years a method of practical use for treating chemical

problems out of the reach of present-day approaches. Follow-

ing this line of thought, a number of QMC groups are pres-

ently working on implementing strategies allowing their QMC

codes to run efficiently on very large-scale parallel

[a] A. Scemama, M. Caffarel

Laboratoire de Chimie et Physique Quantiques, CNRS-IRSAMC, Universit�e de

Toulouse, France

[b] E. Oseret, W. Jalby

Exascale Computing Research Laboratory, GENCI-CEA-INTEL-UVSQ,

Universit�e de Versailles Saint-Quentin, France

E-mail: scemama@irsamc.ups-tlse.fr

Contract/grant sponsor: ANR (to AS and MC); Contract/grant number:

ANR 2011 BS08 004 01.

VC 2013 Wiley Periodicals, Inc.

938 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

FULL PAPERWWW.C-CHEM.ORG

computers.[9–11] Essentially, most strategies rely on massive

parallelism and on some efficient treatment (‘‘linear-scaling’’-

type algorithms) for dealing with the matrix computations and

manipulations that represent the most CPU-expensive part of

the algorithm.

Here, we present several strategies implemented in the

QMC¼Chem code developed in our group at the University of

Toulouse.[12] A number of actual simulations realized on the

Curie machine at the French GENCI-TGCC-CEA computing cen-

ter with almost ideal parallel efficiency in the range 10,000–

80,000 cores and reaching the petascale level have been

realized.

The contents of this article are as follows. In the first section,

a brief account of the QMC method used is presented. Only

those aspects essential to the understanding of the computa-

tional aspects discussed in this article are given. In second sec-

tion, the problem of computing efficiently the Slater matrices at

the heart of the QMC algorithm (computational hot spot) is

addressed. A novel scheme taking advantage of the highly-

localized character of the atomic Gaussian basis functions [not

the molecular orbitals (MOs) as usually done] is proposed. A cru-

cial point is that the approach is valid for an arbitrary molecular

shape (e.g., compact molecules), there is no need of considering

extended or quasi-one-dimensional molecular systems as in lin-

ear-scaling approaches. The third section discusses the overall

performance of the code and illustrates how much optimizing

the single-core performance of the specific processor at hand

can be advantageous. The fourth section is devoted to the way

our massively parallel simulations are deployed on a general

computational platform and, particularly, how fault-tolerance is

implemented, a crucial property for any large-scale simulation.

Finally, a summary of the various strategies proposed in this ar-

ticle is presented in the last section.

The QMC Method

In this article, we shall consider a variant of the fixed-node diffu-

sion Monte Carlo (FN-DMC) approach, the standard QMC method

used in computational chemistry. Here, we shall insist only on the

aspects needed for understanding the rest of the work. For a com-

plete presentation of the FN-DMC method, the reader is referred,

for example, to Refs. [2], [7], or [8] and references therein.

Fixed-node diffusion Monte Carlo (FN-DMC)

Diffusion Monte Carlo. In a diffusion Monte Carlo scheme, a fi-

nite population of ‘‘configurations’’ or ‘‘walkers’’ moving in the

3N-dimensional space (N, number of electrons) is introduced.

A walker is described by a 3N-dimensional vector R :
(r1, r2,…, rN) giving the positions of the N electrons. At each

Monte Carlo step, each walker of the population is diffused

and drifted according to

R0 ¼ Rþ sbðRÞ þ
ffiffiffi
s

p
g (1)

where s is a small time-step, g is a Gaussian vector (3N inde-

pendent normally distributed components simulating a free

Brownian diffusion), and b(R) the drift vector given by

bðRÞ � rwTðRÞ
wTðRÞ

; (2)

where wT, the trial wave function, is a known computable

approximation of the exact wavefunction. At the end of this

drift/diffusion step, each walker is killed, kept unchanged, or

duplicated a certain number of times proportionally to the

branching weight w given by

w ¼ e�
s
2½ðELðR0Þ�ETÞþðELðRÞ�ETÞ� (3)

where ET is some reference energy and EL the local energy

defined as

ELðRÞ �
HwTðRÞ
wTðRÞ

: (4)

The population is propagated and after some equilibrium time

it enters a stationary regime, where averages are evaluated. As

an important example, the exact energy may be obtained as

the average of the local energy.

The fixed-node approximation. Apart from the statistical and

the short-time (finite time step) errors which can be made ar-

bitrary small, the only systematic error left in a DMC simulation

is the so-called fixed-node (FN) error. This error results from

the fact that the nodes of the trial wavefunction [defined as

the (3N � 1)-dimensional hypersurface where WT(R) ¼ 0] act

as infinitely repulsive barriers for the walkers [divergence of

the drift vector, eq. (2)]. Each walker is thus trapped forever

within the nodal pocket delimited by the nodes of WT where

it starts from. When the nodes of wT coincide with the exact

nodes, the algorithm is exact. If not, a variational FN error is

introduced. However, with the standard trial wavefunctions

used, this error is in general small,* a few percent of the corre-

lation energy for total energies.

Parallelizing FN-DMC

Each Monte Carlo step is carried out independently for each

walker of the population. The algorithm can thus be easily par-

allelized over an arbitrary number of processors by distributing

the walkers among the processors, but doing this implies syn-

chronizations of the CPUs since the branching step requires

that all the walkers have first finished their drifted-diffusion

step.

To avoid this aspect, we have chosen to let each CPU core

manage its own population of walkers without any communi-

cation between the populations. On each computing unit a

population of walkers is propagated and the various averages

of interest are evaluated. At the end of the simulation, the

*A word of caution is necessary here. Although the FN error on total energies

is indeed usually very small compared with typical errors of standard compu-

tational chemistry methods, this error can still be large enough to have a non-

negligible impact on small energy differences of interest in chemistry (binding

energies, energy barriers, electronic affinities, etc.). Accordingly, to have to our

disposal nodal hypersurfaces of sufficient quality for a general molecular sys-

tem remains an important issue of QMC approaches.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 939

http://onlinelibrary.wiley.com/

averages obtained on each processor are collected and

summed up to give the final answers. Regarding parallelism

the situation is thus ideal since, apart from the negligible ini-

tial/final data transfers, there are no communications among

processors.

The only practical problem left with FN-DMC is that the

branching process causes fluctuations in the population size

and thus may lead to load-balancing problem among process-

ors. More precisely, nothing prevents the population size from

decreasing or increasing indefinitely during the Monte Carlo

iterations. To escape from this, a common solution consists in

forcing the number of walkers not to deviate too much from

some target value for the population size by introducing a

population control step. It is usually realized by monitoring in

time the value of the reference energy ET via a feedback

mechanism, see, for example, Ref. [13]. The price to pay is the

introduction of some transient load imbalances and inter-proc-

essor communications/synchronization to redistribute walkers

among computing cores, inevitably degrading the parallel

speedup. This solution has been adapted by several groups

and some tricks have been proposed to keep this problem

under control.[9–11,14]

Here, we propose to avoid this problem directly from the be-

ginning by using a variant of the FN-DMC working with a con-

stant number of walkers. Several proposals can be found in the

literature, for example, Refs. [15,16]. Here, we shall use the

method described in Ref. [16]. In this approach, the branching

step of standard DMC is replaced by a so-called reconfiguration

step. Defining the normalized branching weights as follows:

pk ¼ wkPM
i¼1wi

(5)

the population of walkers is ‘‘reconfigured’’ by drawing at each

step M walkers among the M walkers according to the proba-

bilities pk. At infinite population, the normalization factor
P

M
i¼1

wi is a constant and this step reduces to the standard branch-

ing step, where walkers are deleted or duplicated proportion-

ally to the weight w. At finite M, the normalization factor now

fluctuates and a finite-population bias is introduced. A simple

way to remove this error and to recover the exact averages

consists in adding to the averages a global weight given by

the product of the normalization factors of all preceding gen-

erations, thus compensating exactly the same product intro-

duced into the dynamics by successive reconfiguration steps.

The price to pay is some increase of statistical fluctuations due

to the presence of an additional fluctuating weight. However,

this increase is found to be rapidly very moderate when M is

increased. In practice, thanks to this algorithm free of a finite-

population bias, rather small walker populations on each core

can be used (typically, we use 10–100 walkers per core). For all

details, the reader is referred to Ref. [16].

Critical CPU part

At each Monte Carlo step, the CPU effort is almost completely

dominated by the evaluation of the wavefunction WT and its

first and second derivatives (computational hot spot). More

precisely, for each walker the values of the trial wavefunction,

WT, its first derivatives with respect to all 3N-coordinates [drift

vector, eq. (2)], and its Laplacian !2WT [kinetic part of the

local energy, eq. (4)] are to be calculated. It is essential that

such calculations be as efficient as possible since in realistic

applications their number may be very large (typically of the

order of 109–1012).

A common form for the trial wavefunction is

WTðRÞ ¼ eJðRÞ
X

K¼ðK";K#Þ
cKDetK" ðr1;…; rN" ÞDetK# ðrN# ;…; rNÞ: (6)

where the electron coordinates of the N: (respectively, N;)

electrons of spin : (respectively, ;) have been distinguished, N

¼ N: þ N;. In this formula, eJ(R) is the Jastrow factor describing

explicitly the electron–electron interactions at different levels

of approximations. A quite general form may be written as

JðRÞ ¼
X
a

Uðe�nÞðriaÞ þ
X
i;j

Uðe�eÞðrijÞ þ
X
ai;j

Uðe�e�nÞðrij; ria; rjaÞ

þ …

(7)

where rij ¼ |ri � rj| is the inter-electronic distance and ria ¼
|ri � Qa| is the distance between electron i and nucleus a
located at Qa. Here, U’s are simple functions and various

expressions have been used in the literature. The Jastrow factor

being essentially local, short-ranged expressions can be used

and the calculation of this term is usually a small contribution to

the total computational cost. As a consequence, we shall not

discuss further the computational aspect of this term here.

The second part of the wavefunction describes the shell-struc-

ture in terms of single-electron MOs and is written as a linear

combination of products of two Slater determinants, one for the

: electrons and the other for the ; electrons. Each Slater matrix

is built from a set of MOs /i(r) usually obtained from a prelimi-

nary DFT or self consistent field (SCF) calculations. The Norb mo-

lecular orbitals (MOs) are expressed as a sum over a finite set of

Nbasis basis functions [atomic orbitals (AOs)]

/iðrÞ ¼
XNbasis

j¼1

aijvjðrÞ (8)

where the basis functions vj(r) are usually expressed as a prod-

uct of a polynomial and a linear combination of Gaussian func-

tions. In the present article, the following standard form is

used

vðrÞ ¼ ðx � QxÞnx ðy � QyÞny ðz � QzÞnz gðrÞ (9)

with

gðrÞ ¼
X
k

cke
�ckðr�QÞ2

: (10)

Here, Q ¼ (Qx, Qy, Qz) is the vector position of the nucleus-

center of the basis function, n ¼ (nx, ny, nz) a triplet of positive

FULL PAPER WWW.C-CHEM.ORG

940 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

integers, g(r) is the spherical Gaussian component of the AO,

and ck its exponents. The determinants corresponding to spin

:-electrons are expressed as

DetK" ðr1;…; rN" Þ ¼ Det

/i1ðr1Þ … /i1ðrN" Þ
..
. ..

. ..
.

/iN"
ðr1Þ … /iN"

ðrN" Þ

0
B@

1
CA (11)

where K: is a compact notation for denoting the set of indices

{i1, …, iN:
} specifying the subset of the MOs used for this par-

ticular Slater matrix. A similar expression is written for spin

;-electrons.

In contrast to the calculation of the Jastrow factor, the eval-

uation of the determinantal part of the wavefunction and its

derivatives is critical. To perform such calculations, we use a

standard approach[7] consisting in calculating the matrices of

the first and second (diagonal) derivatives of each MO /i with

respect to the three space variables l ¼ x, y, z evaluated for

each electron position rj, namely,

D
ð1Þ
l;i j �

@/iðrjÞ
@xjl

(12)

D
ð2Þ
l;i j �

@2/iðrjÞ
@xjl

2
(13)

and then computing the inverse D�1 of the Slater matrix

defined as Dij ¼ /i(rj). The drift components and the Laplacian

corresponding to the determinantal part of the trial wavefunc-

tion are thus evaluated as simple vector-products

1

DetðRÞ
@DetðRÞ

@xil
¼

X
j¼1; N

D
ð1Þ
l;i jD

�1
ji (14)

1

DetðRÞ
@2DetðRÞ

@xil
2

¼
X
j¼1; N

D
ð2Þ
l;i jD

�1
ji (15)

From a numerical point of view, the computational time T

needed to evaluate such quantities as a function of the num-

ber of electrons N scales as OðN3Þ

T ¼ aN3 þ bN3: (16)

The first N3-term results from the fact that the N2 matrix ele-

ments of the Slater matrices are to be computed, each ele-

ment being expressed in terms of the Nbasis � N basis func-

tions needed to reproduce an arbitrary delocalized MO. The

second N3-term is associated with the generic cubic scaling of

any linear algebra method for inverting a general matrix.

Exploiting the Highly Localized Character of
Atomic Basis Functions

As seen in the previous section, one of the two computational

hot spots of QMC is the calculation of the derivatives of the

determinantal part of the trial wave function for each elec-

tronic configuration (r1,…,rN) at each Monte Carlo step. To be

more precise, the Norb MO used in the determinantal expan-

sion (6) are to be computed (here, their values will be denoted

as C1) together with their first derivatives with respect to x, y,

and z (denoted C2,C3,C4) and their Laplacians (denoted C5).

Calculations are made in single precision using an efficient ma-

trix product routine we describe now. The matrix products

involve the matrix of the MO coefficients aij, eq. (8) (here

denoted as A) the matrix of the atomic Gaussian basis func-

tions evaluated at all electronic positions, vj(ri) (denoted B1),

their first derivatives (denoted B2,B3,B4), and Laplacians

(denoted B5). The five matrix products are written under the

convenient form

Ci ¼ ABi i ¼ 1; 5 (17)

Note that matrix A remains constant during the simulation,

whereas matrices Bi and Ci depend on electronic configura-

tions. The matrix sizes are as follows: Norb � N for the Ci’s, Norb

� Nbasis for A, and Nbasis � N for B. In practical applications,

Norb is of the order of N, whereas Nbasis is greater than N by a

factor 2 or 3 for standard calculations and much more when

using high-quality larger basis sets. The expensive part is

essentially dominated by the Nbasis multiplications. The total

computational effort is thus of order Norb � N � Nbasis, that is,

� OðN3Þ.
The standard approach proposed in the literature for reduc-

ing the N3-price is to resort to the so-called linear-scaling or

OðNÞ-techniques.[17–22] The basic idea consists in introducing

spatially localized MOs instead of the standard delocalized (ca-

nonical) ones obtained from diagonalization of reference Hamil-

tonians (usually, Hartree–Fock or Kohn–Sham). Since localized

orbitals take their value in a finite region of space—usually in

the vicinity of a fragment of the molecule—the number of basis

set functions Nbasis needed to represent them with sufficient ac-

curacy becomes essentially independent of the system size (not

scaling with N as in the case of canonical ones). In addition to

this, each electron contributes only to a small subset of the

localized orbitals (those nonvanishing in the region where the

electron is located). As a consequence, the number of nonvan-

ishing matrix elements of the Ci matrices no longer scales as

Norb � N � N2 but linearly with N. Furthermore, each matrix ele-

ment whose computation was proportional to the number of

basis set functions used, Nbasis � N, is now calculated in a finite

time independent of the system size. Putting together these

two results, we are led to a linear dependence of the computa-

tion of the Ci matrices upon the number of electrons.

Here, we choose to follow a different path. Instead of local-

izing the canonical MOs, we propose to take advantage of the

localized character of the underlying atomic Gaussian basis set

functions. The advantages are essentially three-fold:

1. The atomic basis set functions are naturally localized in-

dependently of the shape of the molecule. This is the most im-

portant point since the localization procedures are known to

be effective for chemical systems having a molecular shape

made of well-separated subunits (e.g., linear systems) but

much less for general compact molecular systems that are

ubiquitous in chemistry.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 941

http://onlinelibrary.wiley.com/

2. The degree of localization of the standard atomic Gaus-

sian functions is much larger than that obtained for MOs after

localization (see results below)

3. By using the product form, eq. (17), the localized nature

of the atomic Gaussian functions can be exploited very effi-

ciently (see next section).

In practice, when the value of the spherical Gaussian part

g(r) of an AO function v(r) is smaller than a given threshold e
¼ 10�8, the value of the AO, its gradients and Laplacian are

considered null. This property is used to consider the matrices

B1,…,B5 as sparse. However, in contrast with linear-scaling

approaches, the MO matrix A is not considered here as sparse.

We shall come back to this point later. To accelerate the calcu-

lations, an atomic radius is computed as the distance beyond

which all the Gaussian components g(r) of the AOs v(r) cen-

tered on the nucleus are less than e. If an electron is farther

than the atomic radius, all the AO values, gradients and Lapla-

cians centered on the nucleus are set to zero.

The practical implementation to perform the matrix prod-

ucts is as follows. For each electron, the list of indices (array

‘‘indices’’ in what follows) where g(r) > 0 is calculated. Then,

the practical algorithm can be written as

C1 ¼ 0.

C2 ¼ 0.

C3 ¼ 0.

C4 ¼ 0.

C5 ¼ 0.

do i¼1, Number of electrons

do k¼1, Number of non-zero AOs for electron i

do j¼1, Number of molecular orbitals

C1 (j, i) þ¼ A (j, indices (k, i)) *B1 (k, i)

C2 (j, i) þ¼ A (j, indices(k, i)) *B2 (k, i)

C3 (j, i) þ¼ A (j, indices(k, i)) *B3 (k, i)

C4 (j, i) þ¼ A (j, indices(k, i)) *B4 (k, i)

C5 (j, i) þ¼ A (j, indices(k, i)) *B5 (k, i)

end do

end do

end do

(where x þ¼ y denotes x ¼ x þ y).

This implementation allows to take account of the sparsity

of the B matrices, while keeping the efficiency due to a possi-

ble vectorization of the inner loop. The load/store ratio is 6/5

(6 load-from-memory instructions, 5 store-to-memory instruc-

tions) in the inner loop: the elements of Bn are constant in the

inner loop (in registers), and the same element of A is used at

each line of the inner loop (loaded once per loop cycle). As

store operations are more expensive than load operations,

increasing the load/store ratio improves performance as will

be shown in the next section. Using this algorithm, the scaling

of the matrix products is expected to drop from OðN3Þ to a

scaling roughly equal to OðN2Þ (in a regime where N is large

enough, see discussion in the next section). Let us now illus-

trate such a property in the applications to follow.

The different systems used here as benchmarks are repre-

sented in Figure 1. The trial wavefunctions used for describing

each system are standard Hartree–Fock wavefunctions (no Jas-

trow factor) with MOs expressed using various Gaussian basis

sets. System 1 is a copper complex with four ligands having

158 electrons and described with a cc-pVDZ basis set. System

2 is a polypeptide taken from Ref. [23] (434 electrons and 6-

31G* basis set). System 3 (not shown in Figure 1) is identical

Figure 1. Molecular systems used as benchmarks.

FULL PAPER WWW.C-CHEM.ORG

942 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

to System 2 but using a larger basis set, namely, the cc-pVTZ

basis set. System 4 is the 1ZE7 molecule from the Protein Data

Bank (1056 electrons, 6-31G*), and System 5 is the 1AMB mole-

cule from the Protein Data Bank (1731 electrons, 6-31G*).

Table 1 shows the level of sparsity of the matrices A (Aij :
aij) and B1 (B1ij

: vi(rj)) for the five systems (matrices Bn with

n > 1 behave as B1 with respect to sparsity). As seen the num-

ber of basis set functions used is proportional to the number

of electrons with a factor ranging from about 2.2 to 6.8.

Regarding the matrix A of MO coefficients, the results are

given both for standard canonical (delocalized) MOs and for

localized orbitals. To get the latter ones, different localization

schemes have been applied.[24–26] However, they essentially lead

to similar results. Here, the results presented are those obtained

by using the Cholesky decomposition of the density matrix

expressed in the AO basis set.[26] As seen the level of sparsity of

the matrix A is low. Although it increases here with the system

size it remains modest for the largest size (there are still about

one third of nonzero elements). Of course, such a result strongly

depends on the type of molecular system considered (compact

or not compact) and on the diffuse character of the atomic basis

set. Here, we have considered typical systems of biochemistry.

Next, the level of sparsity of the B matrices is illustrated.

The percentage of nonzero values of vi(rj) has been obtained

as an average over a variational Monte Carlo (VMC) run. In

sharp contrast with MOs the AOs are much more localized,

thus leading to a high level of sparsity. For the largest system,

only 3.9% of the basis function values are nonnegligible.

In the last line of the table the maximum number of non-

zero elements obtained for all the columns of the matrix dur-

ing the entire Monte Carlo simulation is given. A first remark is

that this number is roughly constant for all system sizes. A sec-

ond remark is that the maximum number of non-zero values is

only slightly greater than the average, thus showing that the

B matrices can be considered sparse during the whole simula-

tion, not only in average. As an important consequence, the

loop over the number of non-zero AOs for each electron in

the practical algorithm presented above (loop over k index) is

expected to be roughly constant as a function of the size at

each Monte Carlo step. This latter remark implies for this part

an expected behavior of order OðN2Þ for large N. Let us now

have a closer look at the actual performance of the code.

Overall Performance of QMC5CHEM

When discussing performance several aspects must be consid-

ered. A first one, which is traditionally discussed, is the formal

scaling of the code as a function of the system size N (N �
number of electrons). As already noted, due to the innermost

calculation, products, and inversion of matrices, such a scaling

is expected to be cubic, OðN3Þ. However, there is a second im-

portant aspect, generally not discussed, which is related to the

way the expensive innermost floating-point operations are

implemented and on how far and how efficiently the potential

performance of the processor at hand is exploited. In what fol-

lows, we shall refer to this aspect as ‘‘single-core optimization.’’

It is important to emphasize that such an aspect is by no way

minor and independent on the previous ‘‘mathematical’’ one.

To explicit this point, let us first recall that the computational

time T results essentially from two independent parts, the first

one resulting from the computation of the matrix elements, T1

� aN3 and the second one from the inversion of the Slater ma-

trix, T2 � bN3. Now, let us imagine that we have been capable of

devising a highly efficient linear-scaling algorithm for the first

contribution such that T � eN � T2 within the whole range of

system sizes N considered. We would naturally conclude that

the overall computational cost T � T2 is cubic. In the opposite

case where a very inefficient linear-scaling algorithm is used for

the first part, T � T1 � T2, we would conclude to a linear-scaling

type behavior. Of course, mathematically speaking such a way

of reasoning is not correct since scaling laws are only meaning-

ful in the asymptotic regime where N goes to infinity. However,

in practice only a finite range of sizes is considered (here,

between 2 and about 2000 active electrons) and it is important

to be very cautious with the notion of scaling laws. A more cor-

rect point of view consists in looking at the global performance

of the code in terms of total CPU time for a given range of sys-

tem sizes, a given compiler, and a given type of CPU core.

Finally, a last aspect concerns the memory footprint of the

code whose minimization turns out to be very advantageous.

Indeed, the current trend in supercomputer design is to

increase the number of cores more rapidly than the available

total memory. As the amount of memory per core will con-

tinue to decrease, it is very likely that programs will need to

have a low memory footprint to take advantage of exascale

Table 1. System sizes, percentage of nonzero molecular orbital

coefficients, and average percentage of nonzero atomic orbital values.

Smallest

system b-strand b-strand TZ 1ZE7 1AMB

Numb. of

electrons, N

158 434 434 1056 1731

Numb. of

basis functions,

Nbasis

404 963 2934 2370 3892

% of non-zero[a]

canonical MO

coefficients

aij(Aij = 0)

(99.4%) (76.0% (81.9%) (72.0%) (66.1%)

% of non-zero[a]

localized MO

coefficients

aij(Aij = 0)

81.3% 48.4% 73.4% 49.4% 37.1%

Average % of

non-zero[b] basis

functions vi (rj)

(B1ij = 0)

40.3% 19.1% 9.0% 6.5% 4.5%

Average number

of non-zero

elements per

column of B1ij

163 184 266 155 175

Maximum number

of non-zero

elements per

column of B1ij

251 298 394 246 305

[a] Zero MO coefficients are those below 10�5. [b] Zero AO matrix ele-

ments are those for which the radial component of the basis function

has a value below 10�8 for given electron positions.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 943

http://onlinelibrary.wiley.com/

computers. Another point is that when less memory is used

less electrical power is needed to perform the calculation: data

movement from the memory modules to the cores needs

more electrical power than performing floating point opera-

tions. Although at present time the power consumption is not

yet a concern to software developers, it is a key aspect in pres-

ent design of the exascale machines to come.

In this section, the results discussed will be systematically

presented by using two different generations of Intel Xeon

processors. The first processor, referred to as Core2, is an Intel

Xeon 5140, Core2 2.33 GHz, Dual core, 4 MiB shared L2 cache.

The second one, referred to as Sandy Bridge, is an Intel Xeon

E3-1240 at 3.30 GHz, Quad core, 256 KiB L2 cache/core, 8 MiB

shared L3 cache (3.4 GHz with turbo). Note also that the paral-

lel scaling of QMC being close to ideal (see next section), sin-

gle-core optimization is very interesting: the gain in execution

time obtained on the single-core executable is directly trans-

ferred to the whole parallel simulation.

Improving the innermost expensive floating-point operations

For the Core2 architecture, the practical algorithm presented

above may be further improved by first using the unroll and

jam technique,[27] which consists in unrolling the outer loop

and merging multiple outer-loop iterations in the inner loop:

do i¼1, Number of electrons

do k¼1, Number of non-zero AOs for electron i, 2

do j¼1, Number of molecular orbitals

C1 (j, i) þ¼ A (j, indices (k, i)) *B1 (k, i) þ &

A (j, indices (kþ1, i)) * B1 (kþ1, i)

C2 (j, i) þ¼ A (j, indices (k, i)) * B2 (k ,i) þ &

A (j, indices (kþ1, i)) * B2 (kþ1, i)

...

end do

end do

end do

To avoid register spilling, the inner loop is split in two

loops: one loop computing C1, C2, C3 and a second loop

computing C4, C5. The load/store ratio is improved from 6/5

to 5/3 and 4/2.

For the Sandy Bridge architecture, the external body is

unrolled four times instead of two, and the most internal loop

is split in three loops: one loop computing C1, C2, a second

loop computing C3, C4, and a third loop computing C5. The

load/store ratio is improved from 6/5 to 6/2 and 5/1.

Then, all arrays were 256-bit aligned using compiler direc-

tives and the first dimensions of all arrays were set to a multi-

ple of eight elements (if necessary, padded with zeros at the

end of each column) to force a 256-bit alignment of every col-

umn of the matrices. These modifications allowed the compiler

to use only vector instructions to perform the matrix products,

both with the Streaming SIMD Extension (SSE) or the

Advanced Vector Extension (AVX) instruction sets. The x86_64

version of the MAQAO framework[28] indicates that, as the

compiler unrolled twice the third loop (C5), these three loops

perform 16 floating point operations per cycle, which is the

peak performance on this architecture.

Finally, to improve the cache hit probability, blocking was

used on the first dimension of Bn (loop over k). In each block,

the electrons (columns of B) are sorted by ascending first ele-

ment of the indices array in the block. This increases the prob-

ability that columns of A will be in the cache for the computa-

tion of the values associated with the next electron.

The results obtained using the Intel Fortran Compiler XE

2011 are presented in Table 2 for both the Core2 and the

Sandy Bridge architectures. The single-core double-precision

Linpack benchmark is also mentioned for comparison. The

results show that the full performance of the matrix products

is already reached for the smallest system. However, as

opposed to dense matrix product routines, we could not

approach further the peak performance of the processor since

the number of memory accesses scales as the number of float-

ing point operations (both OðN2Þ): the limiting factor is inevi-

tably the data access. Nevertheless, the DECAN tool[29]

revealed that data access only adds a 30% penalty on the

pure arithmetic time, indicating an excellent use of the hier-

archical memory and the prefetchers.

Single-core performance

Computational cost as a function of the system size. In Table 3,

the memory required together with the CPU time obtained for

Table 2. Single core performance (GFlops/s) of the matrix products (single precision), inversion (double precision), and overall performance of QMC 5

Chem (mixed single/double precision).

Core2 Sandy Bridge

Products Inversion Overall Products Inversion Overall

Linpack (DP) 7.9 (84.9%) 24.3 (92.0%)

Peak 18.6 9.3 52.8 26.4

Smallest system 9.8 (52.7%) 2.6 (28.0%) 3.3 26.6 (50.3%) 8.8 (33.3%) 6.3

b-Strand 9.7 (52.2%) 4.3 (46.2%) 3.7 33.1 (62.7%) 13.7 (51.2%) 13.0

b-Strand TZ 9.9 (53.2%) 4.3 (46.2% 4.5 33.6 (63.6%) 13.7 (51.2%) 14.0

1ZE7 9.3 (50.0%) 5.2 (55.9% 4.6 30.6 (57.9%) 15.2 (57.6%) 17.9

1AMB 9.2 (49.5%) 5.6 (60.2% 5.0 28.2 (53.4%) 16.2 (61.4%) 17.8

The percentage of the peak performance is given in parentheses.

Core2: Intel Xeon 5140, Core2 2.33 GHz, Dual core, 4 MiB shared L2 cache.

Sandy Bridge: Intel Xeon E3–1240, Sandy Bridge 3.30 GHz, Quad core, 256 KiB L2 cache/core, 8 MiB shared L3 cache (3.4 GHz with turbo).

FULL PAPER WWW.C-CHEM.ORG

944 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

one VMC step for the five systems are presented using both

processors. The two expensive computational parts (matrix

products and inversion) are distinguished. A first remark is that

the trends for both processors are very similar so we do not

need to make a distinction at this moment. A second remark

is that the memory footprint of QMC¼Chem is particularly

low. For the biggest size considered (1731 electrons), the

amount of RAM needed is only 313 MiB. Finally, another im-

portant remark is that at small number of electrons the multi-

plicative part is dominant while this is not the case at larger

sizes. Here, the change of regime is observed somewhere

between 400 and 1000 electrons but its precise location

depends strongly on the number of basis functions used. For

example, for systems 3 and 4 corresponding to the same mol-

ecule with a different number of basis functions, the multipli-

cative part is still dominant for the larger basis set (b-strand

with cc-pVTZ) while it is no longer true for the smaller basis

set (b-strand with 6-31G*). In Figure 2, a plot of the total com-

putational time for the Sandy Bridge core as a function of the

number of electrons is presented. A standard fit of the curve

with a polynomial form Nc leads to a c-value of about 2.5.

However, as discussed above such a power is not really mean-

ingful. From the data of Table 3, it is easy to extract the pure

contribution related to the inversion and a factor very close to

3 is obtained, thus illustrating that for this linear algebra part

we are in the asymptotic regime. For the multiplicative part,

the pure N2 behavior is not yet recovered and we are in an in-

termediate regime. Putting together these two situations leads

to some intermediate scaling around 2.5.

Sparsity. In our practical algorithm, for the matrix products we

have chosen to consider the B matrices as sparse as opposed

to the A matrix which is considered dense. The reason for that

is that considering the matrix A sparse would not allow us to

write a stride-one inner loop. In single precision, SSE instruc-

tions executed on Intel processors can perform up to eight

instructions per CPU cycle (one four-element vector ADD

instruction and one four-element vector MUL instruction in

parallel). Using the latest AVX instruction set available on the

Sandy Bridge architecture, the width of the SIMD vector regis-

ters have been doubled and the CPU can now perform up to

16 floating point operations per cycle. A necessary condition

for enabling vectorization is a stride-one access to the data.

This implies that using a sparse representation of A would dis-

able vectorization, and reduce the maximum number of float-

ing operations per cycle by a factor of four using SSE (respec-

tively, eight using AVX). If matrix A has more than 25%

(respectively, 12.5%) nonzero elements, using a sparse repre-

sentation is clearly not the best choice. This last result is a

nice illustration of the idea that the efficiency of the formal

mathematical algorithm depends on the core architecture.

Inversion step. Now, let us consider the inversion step which is

the dominant CPU-part for the big enough systems (here, for

about a thousand electrons and more). In Table 2, the per-

formance in GFlops/s of the inversion step is presented for

both processors. For comparisons, the theoretical single-core

peak and single-core Linpack performance are given. For each

processor the third column gives the overall performance of

the code while the second column is specific to the inversion

part. As seen the performance of both parts increases with the

number of electrons. For largest systems, the performance rep-

resents more than 50% of the peak performance of each proc-

essor. For the largest system, the whole code has a perform-

ance of about 54% of the peak performance for the Core2 and

about 61% for the Sandy Bridge. The performance is still

Table 3. Single-core memory consumption and elapsed time for one VMC step.

Smallest system b-strand b-strand TZ 1ZE7 1AMB

RAM (MiB) 9.8 31 65 133 313

Core2

QMC step(s) 0.0062 0.0391 0.0524 0.2723 0.9703

Inversion 15% 31% 21% 47% 58%

Products 25% 23% 35% 21% 18%

Sandy Bridge

QMC step(s) 0.0026 0.0119 0.0187 0.0860 0.3042

Inversion 12% 26% 17% 42% 52%

Products 24% 22% 32% 21% 20%

Values in % represent the percentage of the total CPU time.

Core2: Intel Xeon 5140, Core2 2.33 GHz, Dual core, 4 MiB shared L2 cache.

Sandy Bridge: Intel Xeon E3–1240, Sandy Bridge 3.30 GHz, Quad core, 256 KiB L2 cache/core, 8 MiB shared L3 cache (3.4 GHz with turbo).

Figure 2. Single-core scaling with system size. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 945

http://onlinelibrary.wiley.com/

better for the inversion part: 60.2% for the Core2 and 61.4%

for the Sandy Bridge.

Determinant calculation compared to spline interpolation. Most

authors use three-dimensional spline representations of the

MOs to compute in constant time the values, first derivatives

and Laplacians of one electron in one MO, independently of

the size of the atomic basis set. This approach seems efficient

at first sight, but the major drawback is that the memory

required for a single processor can become rapidly prohibitive

since each MO has to be precomputed on a three-dimensional

grid. To overcome the large-memory problem, these authors

use shared memory approaches on the computing nodes,

which implies coupling between the different CPU cores. In

this paragraph, we compare the wall time needed for spline

interpolation or computation of the values, first derivatives

and Laplacians of the wave function at all electron positions.

Version 0.9.2 of the Einspline package[30] was used as a refer-

ence to compute the interpolated values, gradients and Lapla-

cians of 128 MOs represented on 23 � 21 � 29 single precision

arrays. The ‘‘multiple uniform splines’’ set of routines were used.

To evaluate the value, gradient and Laplacian of one MO at one

electron coordinate, an average of 1200 CPU cycles was meas-

ured using LIKWID[31] on the Core2 processor versus 850 CPU

cycles on the Sandy Bridge processor. Even if the interpolation is

done using a very small amount of data and of floating point

operations, it is bound by the memory latency. Indeed, the

needed data is very unlikely to be in the CPU cache and this

explains why the number of cycles per matrix element is quite

large. As our code uses a very small amount of memory, and as

the computationally intensive routines are very well vectorized

by the compiler, the computation of the matrix elements is

bound by the floating point throughput of the processor.

The number of cycles needed to build the C1 … C5 matrices

is the number of cycles needed for one matrix element scaled

by the number of matrix elements N2
a þ N2

b. Table 4 shows the

number of CPU cycles needed to build the full C1 … C5 matri-

ces for a new set of electron positions using spline interpola-

tion or using computation. The computation includes the com-

putation of the values, gradients and Laplacians of the AOs

(matrices B1 … B5) followed by the matrix products.

Using a rather small basis set (6-31G*), the computation of

the matrices in the 158-electron system is only 10% slower

than the interpolation on the Core2 architecture. Using a

larger basis set (cc-pVTZ), the computation is only 57% slower.

As the frequency is higher in our Sandy Bridge processor than in

our Core2 processor, we would have expected the number of cycles

of one memory latency to increase, and therefore we would have

expected the Einspline package to be less efficient on that specific

processor. One can remark that the memory latencies have been

dramatically improved from the Core2 to the Sandy Bridge architec-

tures and the number of cycles for the interpolation decreases.

The full computation of the matrix elements benefits from the

improvement in the memory accesses, but also from the enlarge-

ment of the vector registers from 128 to 256 bits. This higher vec-

torization considerably reduces the number of cycles needed to

perform the calculation such that in the worst case (the largest

basis set), the full computation of the matrix elements takes as

much time as the interpolation. In all other cases, the computa-

tion is faster than the spline interpolation. Finally, let us mention

that as the memory controller is directly attached to the CPU, on

multisocket computing nodes the memory latencies are higher

when accessing a memory module attached to another CPU

(Non-uniform memory access (NUMA) architecture).

Parallelism: Implementing a Universal,
Dynamic, and Fault-Tolerant Scheme

Our objective was to design a program that could take maxi-

mum advantage of heterogeneous clusters, grid environments,

the petaflops platforms available now and those to come soon

(exascale).

To achieve the best possible parallel speed-up on any hard-

ware, all the parallel tasks have to be completely decoupled. Feld-

man et al. have shown that a naive implementation of parallelism

does not scale well on commodity hardware.[32] Such bad scal-

ings are also expected to be observed on very large-scale simula-

tions. Therefore, we chose an implementation where each CPU

core realizes a QMC run with its own population of walkers inde-

pendently of all the other CPU cores. The run is divided in blocks

over which the averages of the quantities of interest are com-

puted. The only mandatory communications are the one-to-all

communication of the input data and the all-to-one communica-

tions of the results, each result being the Monte Carlo average

computed with a single-core executable. If a single-core execut-

able is able to start as soon as the input data is available and stop

at any time sending an average over all the computed Monte

Carlo steps, the best possible parallel speed-up on the machine

can always be obtained. This aspect is detailed in this section.

Fault-tolerance

Fault-tolerance is a critical aspect since the mean time before

failure increases with the number of hardware components:

using N identical computing nodes for a singe run multiplies by

Table 4. Number of million CPU cycles needed for the computation of the values, gradients and Laplacians of the molecular orbitals using the

Einspline package and using our implementation for the Core2 and the Sandy Bridge micro-architectures. The ratio QMC 5 Chem/Einspline is also given.

Core2 Sandy Bridge

QMC ¼ Chem Einspline Ratio QMC ¼ Chem Einspline Ratio

Smallest system 16.7 15.0 1.11 9.2 10.6 0.87

b-strand TZ 177.3 113.0 1.57 81.7 80.1 1.02

1ZE7 783.5 669.1 1.17 352.0 473.9 0.74

1AMB 2603.0 1797.8 1.45 1183.9 1273.5 0.93

FULL PAPER WWW.C-CHEM.ORG

946 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

N the probability of failure of the run. If one computing node is

expected to fail once a year, a run using 365 computing nodes is

not expected to last more than a day. As our goal is the use both

of massive resources and commodity clusters found in laborato-

ries, hardware failure is at the center of our software design.

The traditional choice for the implementation of parallelism is

the use of the message passing interface (MPI).[33] Efficient libra-

ries are proposed on every parallel machine, and it is probably

the best choice in most situations. However, all the complex fea-

tures of MPI are not needed for our QMC program, and it does

not really fit our needs: in the usual MPI implementations, the

whole run is killed when one parallel task is known not be able

to reach the MPI_Finalize statement. This situation occurs when

a parallel task is killed, often due to a system failure (I/O error,

frozen computing node, hardware failure, etc). For deterministic

calculations where the result of every parallel task is required,

this mechanism prevents from unexpected dead locks by imme-

diately stopping a calculation that will never end. In our imple-

mentation, as the result of the calculation of a block is a Gaus-

sian distributed random variable, removing the result of a block

from the simulation is not a problem since doing that does not

introduce any bias in the final result. Therefore, if one comput-

ing node fails, the rest of the simulation should survive.

We wrote a simple Python TCP client/server application to han-

dle parallelism. To artificially improve the bandwidth, all network

transfers are compressed using the Zlib library,[34] and the results

are transferred asynchronously in large packets containing a col-

lection of small messages. Similarly, the storage of the results is

executed using a nonblocking mechanism. The computationally

intensive parts were written using the IRPF90 code generator,[35]

to produce efficient Fortran code that is also easy to maintain.

The architecture of the whole program is displayed in Figure 3.

Program interface

Our choice concerning the interaction of the user with the

program was not to use the usual ‘‘input file and output file’’

structure. Instead, we chose to use a database containing all

the input data and control parameters of the simulation, and

also the results computed by different runs. A few simple

scripts allow the interaction of the user with the database.

This choice has several advantages:

• The input and output data are tightly linked together. It is

always possible to find to which input corresponds output data.

• If an output file is needed, it can be generated on

demand using different levels of verbosity.

• Graphical and web interfaces can be trivially connected

to the program.

• Simple scripts can be written by the users to manipulate

the computed data in a way suiting their needs.

Instead of storing the running average as the output of a run,

we store all the independent block-averages in the database,

and the running averages are post-processed on demand by

database queries. There are multiple benefits from this choice:

• Checkpoint/restart is always available

• It is possible to compute correlations, combine different

random variables, and so on, even when the QMC run is finished.

• Combining results computed on different clusters con-

sists in simply merging the two databases, which allows auto-

matically the use of the program on computing grids.[36]

• Multiple independent jobs running on the same cluster

can read/write in the same database to communicate via the

file system. This allows to gather more and more resources as

they become available on a cluster or to run a massive num-

ber of tasks in a best effort mode.†

Error checking

We define the critical data of a simulation as the input data

that characterizes uniquely a given simulation. For instance,

the molecular coordinates, the MOs, the Jastrow factor param-

eters are critical data since they are fixed parameters of the

wave function during a QMC run. In contrast, the number of

walkers of a simulation is not critical data for a VMC run since

Figure 3. Overview of the QMC¼Chem architecture. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

†When cluster resources are unused, a QMC job starts. When another user

requests the resources, the QMC job is killed.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 947

http://onlinelibrary.wiley.com/

the results of two VMC simulations with a different number of

walkers can be combined together. A 32-bit cyclic redundancy

code (CRC-32 key) is associated with the critical data to char-

acterize a simulation. This key will be used to guarantee that

the results obtained in one simulation will never be mixed

with the results coming from another simulation and corrupt

the database. It will also be used to check that the input data

have been well transferred on every computing node.

Program execution

When the program starts its execution, the manager process

runs on the master node and spawns two other processes: a

data server and a main worker process.

At any time, new clients can connect to the data server to

add dynamically more computational resources to a running

calculation, and some running clients can be terminated with-

out stopping the whole calculation. The manager periodically

queries the database and computes the running averages

using all the blocks stored in the database. It controls the run-

ning/stopping state of the workers by checking if the stopping

condition is reached (based, e.g., on the wall-clock time, on

the error bar of the average energy, a Unix signal, etc).

When running on super-computers, the main worker process

spawns one single instance of a forwarder on each computing

node given by the batch scheduler system using an MPI

launcher. As soon as the forwarders are started the MPI launcher

terminates, and each forwarder connects to the data server to

retrieve the needed input data. The forwarder then starts multi-

ple workers on the node with different initial walker positions.

Each worker is an instance of the single-core Fortran execut-

able, connected to the forwarder by Unix pipes. Its behavior is

the following:while (.True.)

{

compute_a_block_of_data();

send_the_results_to_the_forwarder();

}

Unix signals SIGTERM and SIGUSR2 are trapped to trigger the

send_the_results_to_the_forwarder procedure followed by the

termination of the process. Using this mechanism, any single-

core executable can be stopped immediately without losing a

single Monte Carlo step. This aspect is essential to obtain the

best possible speed-up on massively parallel machines. Indeed,

using the matrix product presented in the previous section

makes the CPU time of a block nonconstant. Without this

mechanism, the run would finish when the last CPU finishes,

and the parallel efficiency would be reduced when using a

very large number of CPU cores.

While the workers are computing the next block, the for-

warder sends the current results to the data-server using a

path going through other forwarders. The forwarders are

organized in a binary tree as displayed in Figure 4: every node

of the tree can send data to all its ancestors, to deal with pos-

sible failures of computing nodes. This tree-organization

reduces the number of connections to the data server, and

also enlarges the size of the messages by combining in a sin-

gle message the results of many forwarders.

At the end of each block, the last walker positions are sent

from the worker to the forwarder. The forwarder keeps a

fixed-sized list of Nkept walkers enforcing the distribution of

local energies: when a forwarder receives a set of N walkers, it

appends the list of new walkers to its Nkept list, and sorts the

Nkept þ N list by increasing local energies. A random number

g is drawn to keep all list entries at indices bg þ i (Nkept þ N)/

Nkeptc, i ¼ {1,…Nkept}. After a random timeout, if the forwarder

is idle, it sends its list of walkers to its parent in the binary

tree which repeats the list merging process. Finally, the data

server receives a list of walkers, merges it with its own list and

writes it to disk when idle. This mechanism ensures that the

walkers saved to disk will represent homogeneously the whole

run and avoids sending all the walkers to the data server.

These walkers will be used as new starting points for the next

QMC run.

Using such a design the program is robust to system fail-

ures. Any computing node can fail with a minimal impact on

the simulation:

• If a worker process fails, only the block being computed

by this worker is lost. It does not affect the forwarder to which

it is linked.

• If a forwarder fails, then only one computing node is lost

thanks to the redundancy introduced in the binary tree of

forwarders.

• The program execution survives short network disruption

(a fixed timeout parameter). The data will arrive to the data

server when the network becomes operational again.

• The disks can crash on the computing nodes: the tempo-

rary directory used on the computing nodes is a RAM-disks (/

dev/shm).

Figure 4. Connections of the forwarders with the data server.

FULL PAPER WWW.C-CHEM.ORG

948 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

• The shared file system can fail as the single-core static

executable, the python scripts and input files are broadcast to

the RAM-disks of the compute nodes with the MPI launcher

when the run starts.

• Redundancy can be introduced on the data server by

running multiple jobs using the same database. Upon a failure

of a data server, only the forwarders connected to it will be

lost.

• In the case of a general power failure, all the calculations

can be restarted without losing what has already been stored

in the database.

Finally, we have left the possibility of using different execut-

ables connected to the same forwarder. This will allow a com-

bined use of pure CPU executables with hybrid CPU/GPU and

CPU/MIC executables, to use efficiently all the available hard-

ware. The extension to hybrid architectures will be the object

of a future work.

Parallel speed-up

The benchmarks presented in this section were performed on

the Curie machine (GENCI-TGCC-CEA, France). Each computing

node is a dual socket Intel Xeon E5-2680: 2� (8 cores, 20 MiB

shared L3-cache, 2.7 GHz) with 64 GiB of RAM. The benchmark

is a DMC calculation of the b-strand system with the cc-PVTZ

basis set (Table 1) using 100 walkers per core performing 300

steps in each block. Note that these blocks are very short

compared to realistic simulations, where the typical number of

steps would be larger than 1000 to avoid the correlation

between the block averages.

Intra node. The CPU consumption of the forwarder is negligi-

ble (typically 1% of the CPU time spent in the single-core exe-

cutables). The speed-up with respect to the number of sockets

is ideal. Indeed, the single-core binaries do not communicate

between each other, and as the memory consumption per

core is very low, each socket never uses memory modules

attached to another socket. When multiple cores on the same

socket are used, we observed a slow-down for each core due

to the sharing of the L3-cache and memory modules. Running

simultaneously 16 instances of the single-core binaries on our

benchmark machine yields an increase of 10.7% of the wall-

clock time compared to running only one instance. For a 16-

core run, we obtained a 14.4 � speed-up (the Turbo feature of

the processors was deactivated for this benchmark).

Inter node. In this section, the wall-clock time is measured

from the very beginning to the very end of the program exe-

cution using the standard GNU time tool. Hence, the wall-clock

time includes the initialization and finalization steps.

The initialization step includes

• Input file consistency checking

• Creating a gzipped tar file containing the input files

(wave function parameters, simulation parameters, a pool of

initial walkers), the Python scripts and static single-core exe-

cutable needed for the program execution on the slave nodes

• MPI initialization

• Broadcasting the gzipped tar file via MPI to all the slave

nodes

• Extracting the tar file to the RAM-disk of the slave nodes

• Starting the forwarders

• Starting the single-core instances.

Note that as no synchronization is needed between the

nodes, the computation starts as soon as possible on each

node.

The finalization step occurs as follows. When the data server

receives a termination signal, it sends a termination signal to

all the forwarders that are leaves in the tree of forwarders.

When a forwarder receives such a signal, it sends a SIGTERM

signal to all the single-core binary instances of the computing

node which terminate after sending to the forwarder the aver-

ages computed over the truncated block. Then, the forwarder

sends this data to its parent in the binary tree with a termina-

tion signal and sends a message to the data server to inform

it that it is terminated. This termination step walks recursively

through the tree. When all forwarders are done, the data

server exits. Note that if a failure happened on a node during

the run, the data server never receives the message corre-

sponding to a termination of the corresponding forwarder.

Therefore, when the data server receives the termination signal

coming from the forwarders tree, if the data server is still run-

ning after a given timeout it exits.

We prepared a 10-min run for this section to compute the

parallel speed-up curve as a function of the number of 16-

core nodes given in Figure 5. The data corresponding to this

curve are given in Table 5. The reference for the speed-up is

the one-node run. The speed-up for N nodes is computed as:

tCPUðNÞ=tWallðNÞ
tCPUð1Þ=tWallð1Þ

: (18)

The initialization time was 9 s for the single node run and 22 s

for the 1000 nodes run. The finalization time was 13 s for the

single node run and 100 s for the 1000 nodes run.

Apart from the initialization and finalization steps (which

obviously do not depend on the total execution time), the

Figure 5. Parallel speed-up of QMC¼Chem with respect to 16-core com-

pute nodes (reference is one 16-core node).

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 949

http://onlinelibrary.wiley.com/

parallel speed-up is ideal. This allowed us to estimate the

speed-ups, we would have obtained for a 1-h run and for a 3-

h run. For instance, to estimate the 1-h run we added 50 min

to the wall-clock time and 50 min � 16 � number of nodes �
0.99 to the CPU time. The 99% factor takes account of the

CPU consumption of the forwarder for communications. Our

simple model was checked by performing a 1-h run on one

node and a 1-h run on 100 nodes. An excellent agreement

with the prediction was found: a 99.5 � speed-up was pre-

dicted for 100 nodes and a 99.3 � speed-up was measured.

Finally, a production run was made using 76,800 cores of

Curie (4800 nodes) on the b-strand molecule with a cc-pVTZ

basis set via 12 runs of 40 nodes, and a sustained performance

of 960 TFlops/s was measured. All the details and scientific

results of this application will be presented elsewhere (Caffarel

and Scemama, Unpublished).

Summary

Let us summarize the main results of this work. First, to

enhance the computational efficiency of the expensive inner-

most floating-point operations (calculation and multiplication of

matrices), we propose to take advantage of the highly localized

character of the atomic Gaussian basis functions, in contrast

with the standard approaches using localized MOs. The advan-

tages of relying on atomic localization have been illustrated on

a series of molecules of increasing sizes (number of electrons

ranging from 158 to 1731). In this article, it is emphasized that

the notion of scaling of the computational cost as a function of

the system size has to be considered with caution. Here,

although the algorithm proposed is formally quadratic it dis-

plays a small enough prefactor to become very efficient in the

range of number of electrons considered. Furthermore, our

implementation of the linear-algebra computational part has

allowed to enlighten a fundamental issue rarely discussed,

namely the importance of taking into consideration the close

links between algorithmic structure and CPU core architecture.

Using efficient techniques and optimization tools for enhancing

single-core performance, this point has been illustrated in vari-

ous situations. Remark that this aspect is particularly important:

as the parallel speed-up is very good, the gain in execution

time obtained for the single-core executable will also be effec-

tive in the total parallel simulation.

In our implementation, we have chosen to minimize the mem-

ory footprint. This choice is justified first by the fact that today the

amount of memory per CPU core tends to decrease and second

by the fact that small memory footprints allow in general a more

efficient usage of caches. In this spirit, we propose not to use 3D-

spline representation of the MOs as usually done. We have shown

that this can be realized without increasing the CPU cost. For our

largest system with 1731 electrons, only 313 MiB of memory per

core was required. As a consequence, the key limiting factor of

our code is only the available CPU time and neither the memory

nor disk space requirements, nor the network performance. Let us

reemphasize that this feature is well aligned with the current

trends in computer architecture for large HPC systems.

Finally, let us conclude by the fact that there is no funda-

mental reason why the implementation of such a QMC simula-

tion environment which has been validated at petaflops level

could not be extended to exascale.

Acknowledgments

This work was possible thanks to the generous computational sup-

port from CALMIP (Universit�e de Toulouse), under the allocation

2011-0510, GENCI under the allocation GEN1738, CCRT (CEA), and

PRACE under the allocation RA0824. The authors would also like to

thank Bull, GENCI and CEA for their help in this project.

Keywords: quantum Monte Carlo � petascale � parallel spee-

dup � single-core optimization � large systems

How to cite this article: A. Scemama, M. Caffarel, E. Oseret, W.

Jalby, J. Comput. Chem. 2013, 34, 938–951. DOI: 10.1002/jcc.23216

[1] S. Gandolfi, F. Pederiva, S. Fantoni, K. Schmidt, Phys. Rev. Lett. 2007, 98,

102503, available at: http://link.aps.org/doi/10.1103/PhysRevLett.98.102503

Table 5. Data relative to the scaling curve (Fig. 5).

Number of

16-core nodes

10 min 60 min (estimated)
180 min (estimated)

speed-upCPU (s) Wall (s) Speed-up CPU (s) Wall (s) Speed-up

1 9627 625 1.0 57,147 3625 1.00 1.00

57,332 3629 1.00

10 95,721 627 9.9 570,921 3627 9.98 9.99

25 239,628 629 24.7 1427,628 3629 24.95 24.98

50 477,295 631 49.1 2,853,295 3631 49.85 49.95

100 952,388 636 97.2 5704,388 3636 99.52 99.84

5,708,422 3638 99.32

200 1,869,182 637 190.5 11,373,182 3637 198.36 199.45

400 3,725,538 648 373.3 22,733,538 3648 395.30 398.42

500 4,479,367 641 453.7 28,239,367 3641 491.98 497.31

1000 8,233,981 713 749.7 55,753,981 3713 952.50 983.86

CPU time is the cumulated CPU time spent only in the Fortran executables, Wall time is the measured wall-clock time, including initialization and

finalization steps (serial).

The 10-min run were measured, and the longer runs are estimated from the 10-min run data.

Two checks were measured for the 60-min runs with 1 and 100 nodes (in italics).

FULL PAPER WWW.C-CHEM.ORG

950 Journal of Computational Chemistry 2013, 34, 938–951 WWW.CHEMISTRYVIEWS.COM

[2] W. Foulkes, L. Mitas, R. Needs, G. Rajagopal, Rev. Mod. Phys. 2001, 73,

33; available at: http://link.aps.org/doi/10.1103/RevModPhys.73.33

[3] M. Suzuki, Quantum Monte Carlo Methods in Condensed Matter

Physics; World Scientific: Singapore, 1994.

[4] D. Ceperley, Rev. Mod. Phys. 1995, 67, 279.

[5] D. Coker, R. Watts, J. Phys. Chem. 1987, 91, 2513.

[6] M. Caffarel, P. Claverie, C. Mijoule, J. Andzelm, D. Salahub, J. Chem.

Phys. 1989, 90, 990.

[7] B. Hammond, W. Lester, Jr., P. Reynolds, Monte Carlo Methods in Ab

Initio Quantum Chemistry, Vol. 1 of Lecture and Course Notes in Chem-

istry; World Scientific: Singapore, 1994; ISBN 978-981-02-0322-1, World

Scientific Lecture and Course Notes in Chemistry, Vol. 1.

[8] M. Caffarel, In Encyclopedia of Applied and Computational Mathemat-

ics; B. Engquist, Ed.; Springer, 2012; available at: http://qmcchem.ups-

tlse.fr/files/caffarel/qmc.pdf. Accessed December 21, 2012.

[9] K. P. Esler, J. Kim, D. M. Ceperley, W. Purwanto, E. J. Walter, H. Krakauer,

S. Zhang, P. R. C. Kent, R. G. Hennig, C. Umrigar, M. Bajdich, J. Kolor-

enč, L. Mitas, A. Srinivasan, J. Phys.: Conf. Series 2008, 125, 1.

[10] J. Kim, K. Esler, J. McMinis, D. M. Ceperley, In Proceedings of the 2010

Scientific Discovery through Advanced Computing (SciDac) Confer-

ence, Tennessee, 11–15 July, 2010, Oak Ridge National Laboratory.

[11] M. Gillan, M. Towler, D. Alf, In Psi-k Highlight of the Month, February,

2011.

[12] Quantum Monte Carlo for Chemistry@Toulouse, available at: http://

qmcchem.ups-tlse.fr. Accessed December 21, 2012.

[13] C. Umrigar, M. Nightingale, K. Runge, J. Chem. Phys. 1993, 99, 2865.

[14] J. Krogel, D. Ceperley, In Advances in Quantum Monte Carlo; W. L. J.

S. Tanaka, S. Rothstein, Eds.; Vol. 1094 of ACS Symposium Series, 2012i;

pp. 13–26.

[15] M. C. Buonaura, S. Sorella, Phys. Rev. B 1998, 57, 11446.

[16] R. Assaraf, M. Caffarel, A. Khelif, Phys. Rev. E 2000, 61, 4566.

[17] A. Williamson, R. Hood, J. Grossman, Phys. Rev. Lett. 2001, 87, 246406.

[18] D. Alfè, M. J. Gillan, J. Phys.: Condens. Matter 2004, 16, 305.

[19] A. Aspuru-Guzik, R. S. N-Ferrer, B. Austin, W. Lester, Jr., J. Comput.

Chem. 2005, 26, 708.

[20] F. A. Reboredo, A. J. Williamson, Phys. Rev. B 2005, 71, 121105(R).

[21] J. Kussmann, H. Riede, C. Ochsenfeld, Phys. Rev. B 2007, 75, 165107.

[22] J. Kussmann, C. Ochsenfeld, J. Chem. Phys. 2008, 128, 134104.

[23] S. Nagarajan, J. Rajadas, E. P. Malar, J. Struct. Biol. 2010, 170, 439, ISSN

1047-8477, available at: http://www.sciencedirect.com/science/article/

pii/S104784771000064X

[24] S. Boys, Rev. Mod. Phys. 1960, 32, 296.

[25] J. Pipek, P. Mezey, J. Chem. Phys. 1989, 90, 4916.

[26] F. Aquilante, T. B. Pedersen, A. Sanchez de Mers, H. Koch, J. Chem,

Phys. 2006, 125, 174101, available at: http://link.aip.org/link/?JCP/125/

174101/1

[27] N. Zingirian, M. Maresca, In High-Performance Computing and Net-

working; P. Sloot, M. Bubak, A. Hoekstra, B. Hertzberger, Eds.; Springer:

Berlin/Heidelberg, 1999; Vol. 1593 of Lecture Notes in Computer Sci-

ence, pp. 633–642, ISBN 978-3-540-65821-4, 10.1007/BFb0100624.

[28] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.- T. Acquaviva, W.

Jalby, In Workshop on EPIC Architectures and Compiler Technology,

San Jose, CA, 2005.

[29] S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang, W.

Jalby, In LCPC, 2009, pp. 111–125.

[30] http://einspline.sourceforge.net. Accessed December 21, 2012.

[31] J. Treibig, G. Hager, G. Wellein, In 39th International Conference on

Parallel Processing Workshops (ICPPW), San Diego, CA, 2010; pp. 207–

216, ISSN 1530–2016.

[32] M. T. Feldman, C. Julian, D. R. Cummings, R. Kent IV, R. P. Muller, W. A.

Goddard III, J. Comput. Chem. 2008, 29, 8.

[33] W. Gropp, E. Lusk, N. Doss, A. Skjellum, Parallel Comput. 1996, 22, 789.

[34] http://zlib.net

[35] A. Scemama, ArXiv e-prints [cs.SE], 0909.5012v1, 2009, arXiv:0909.5012v1,

available at: http://arxiv.org/abs/0909.5012. Accessed December 21, 2012.

[36] A. Monari, A. Scemama, M. Caffarel, In Remote Instrumentation for

eScience and Related Aspects; F. Davoli, M. Lawenda, N. Meyer, R.

Pugliese, J. Wglarz, S. Zappatore, Eds.; Springer: New York, 2012; pp.

195–207, ISBN 978-1-4614-0508-5, available at: http://dx.doi.org/

10.1007/978-1-4614-0508-5_13. Accessed December 21, 2012.

Received: 28 September 2012
Revised: 27 November 2012
Accepted: 1 December 2012
Published online on 3 January 2013

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2013, 34, 938–951 951

http://onlinelibrary.wiley.com/

IRPF90: a programming environment for high performan
e

omputing

Anthony S
emama

Laboratoire de Chimie et Physique Quantiques,

CNRS-UMR 5626,

IRSAMC Université Paul Sabatier,

118 route de Narbonne

31062 Toulouse Cedex, Fran
e

(Dated: O
tober 22, 2009)

Abstra
t

IRPF90 is a Fortran programming environment whi
h helps the development of large Fortran

odes. In Fortran programs, the programmer has to fo
us on the order of the instru
tions: before

using a variable, the programmer has to be sure that it has already been
omputed in all possible

situations. For large
odes, it is
ommon sour
e of error. In IRPF90 most of the order of instru
tions

is handled by the pre-pro
essor, and an automati
 me
hanism guarantees that every entity is

built before being used. This me
hanism relies on the {needs/needed by} relations between the

entities, whi
h are built automati
ally. Codes written with IRPF90 exe
ute often faster than Fortran

programs, are faster to write and easier to maintain.

1

I. INTRODUCTION

The most popular programming languages in high performan
e
omputing (HPC) are

those whi
h produ
e fast exe
utables (Fortran and C for instan
e). Large programs written

in these languages are di�
ult to maintain and these languages are in
onstant evolution to

fa
ilitate the development of large
odes. For example, the C++ language[1℄ was proposed

as an improvement of the C language by introdu
ing
lasses and other features of obje
t-

oriented programming. In this paper, we propose a Fortran pre-pro
essor with a very limited

number of keywords, whi
h fa
ilitates the development of large programs and the re-usability

of the
ode without a�e
ting the e�
ien
y.

In the imperative programming paradigm, a
omputation is a ordered list of
ommands

that
hange the state of the program. At the lowest level, the ma
hine
ode is imperative:

the
ommands are the ma
hine
ode instru
tions and the state of the program is represented

by to the
ontent of the memory. At a higher level, the Fortran language is an imperative

language. Ea
h statement of a Fortran program modi�es the state of the memory.

In the fun
tional programming paradigm, a
omputation is the evaluation of a fun
tion.

This fun
tion, to be evaluated, may need to evaluate other fun
tions. The state of the

program is not known by the programmer, and the memory management is handled by the

ompiler.

Imperative languages are easy to understand by ma
hines, while fun
tional languages are

easy to understand by human beings. Hen
e,
ode written in an imperative language
an

be made extremely e�
ient, and this is the main reason why Fortran and C are so popular

in the �eld of High Performan
e Computing (HPC).

However,
odes written in imperative languages usually be
ome ex
essively
ompli
ated

to maintain and to debug. In a large
ode, it is often very di�
ult for the programmer to

have a
lear image of the state of the program at a given position of the
ode, espe
ially when

side-e�e
ts in a pro
edure modi�y memory lo
ations whi
h are used in other pro
edures.

In this paper, we present a tool
alled �Impli
it Referen
e to Parameters with Fortran 90�

(IRPF90). It is a Fortran pre-pro
essor whi
h fa
ilitates the development of large simulation

odes, by allowing the programmer to fo
us on what is being
omputed, instead of how it is

omputed. This last senten
e often des
ribes the di�eren
e between the fun
tional and the

imperative paradigms[2℄. From a pra
ti
al point of view, IRPF90 is a program written in

the Python[3℄ language. It produ
es Fortran sour
e �les from IRPF90 sour
e �les. IRPF90

sour
e �les are Fortran sour
e �les with a limited number of additional statements. To

explain how to use the IRPF90 tool, we will write a simple mole
ular dynami
s program as

a tutorial.

II. TUTORIAL: A MOLECULAR DYNAMICS PROGRAM

A. Imperative and fun
tional implementation of the potential

We �rst
hoose to implement the Lennard-Jones potential[4℄ to
ompute the intera
tion

of pairs of atoms:

V (r) = 4ǫ

[

(

σ

r

)12

−
(

σ

r

)6
]

(1)

2

 1 program potential_with_imperative_style
 2 implicit none
 3 double precision :: sigma_lj, epsilon_lj
 4 double precision :: interatomic_distance
 5 double precision :: sigma_over_r
 6 double precision :: V_lj
 7 print * , 'Sigma?'
 8 read (* , *) sigma_lj
 9 print * , 'Epsilon?'
 10 read (* , *) epsilon_lj
 11 print * , 'Interatomic Distance?'
 12 read (* , *) interatomic_distance
 13 sigma_over_r = sigma_lj / interatomic_distance
 14 V_lj = 4.d0 * epsilon_lj * (sigma_over_r ** 12 &
 15 − sigma_over_r ** 6)
 16 print * , 'Lennard−Jones potential:'
 17 print * , V_lj
 18 end program

FIG. 1: Imperative implementation of the Lennard-Jones potential.

where r is the atom-atom distan
e, ǫ is the depth of the potential well and σ is the value of

r for whi
h the potential energy is zero. ǫ and σ are the parameters of the for
e �eld.

Using an imperative style, one would obtain the program given in �gure 1. One
an

learly see the sequen
e of statements in this program: �rst read the data, then
ompute

the value of the potential.

This program
an be re-written using a fun
tional style, as shown in �gure 2. In the

fun
tional form of the program, the sequen
e of operations does not appear as
learly as in

the imperative example. Moreover, the order of exe
ution of the
ommands now depends

on the
hoi
e of the
ompiler: the fun
tion sigma_over_r and the fun
tion epsilon_lj are

both
alled on line 12-13, and the order of exe
ution may di�er from one
ompiler to the

other.

The program was written in su
h a way that the fun
tions have no arguments. The

reason for this
hoi
e is that the referen
es to the entities whi
h are needed to
al
ulate

a fun
tion appear inside the fun
tion, and not outside of the fun
tion. Therefore, the

ode is simpler to understand for a programmer who never read this parti
ular
ode, and

it
an be easily represented as a produ
tion tree (�gure 3, above). This tree exhibits the

relation {needs/needed by} between the entities of interest: the entity V_lj needs the entities

sigma_over_r and epsilon_lj to be produ
ed, and sigma_over_r needs sigma_lj and

interatomi
_distan
e.

In the imperative version of the
ode (�gure 1), the produ
tion tree has to be known by the

programmer so he
an pla
e the instru
tions in the proper order. For simple programs it is

not a problem, but for large
odes the produ
tion tree
an be so large that the programmer is

likely to make wrong assumptions in the dependen
ies between the entities. This
omplexi�es

the stru
ture of the
ode by the introdu
tion of many di�erent methods to
ompute the same

quantity, and the performan
e of the
ode
an be redu
ed due to the
omputation of entities

whi
h are not needed.

In the fun
tional version (�gure 2), the produ
tion tree does not need to be known by the

programmer. It exists impli
itely through the fun
tion
alls, and the evaluation of the main

fun
tion is realized by exploring the tree with a depth-�rst algorithm. A large advantage

of the fun
tional style is that there
an only be one way to
al
ulate the value of an entity:

3

 1 program potential_with_functional_style
 2 double precision :: V_lj
 3 print * , V_lj()
 4 end program
 5
 6 double precision function V_lj()
 7 double precision :: sigma_lj
 8 double precision :: epsilon_lj
 9 double precision :: interatomic_distance
 10 double precision :: sigma_over_r
 11 V_lj = 4.d0 * epsilon_lj() * &
 12 (sigma_over_r() ** 12 − sigma_over_r() ** 6)
 13 end function
 14
 15 double precision function epsilon_lj()
 16 print * , 'Epsilon?'
 17 read (* , *) epsilon_lj
 18 end function
 19
 20 double precision function sigma_lj ()
 21 print * , 'Sigma?'
 22 read (* , *) sigma_lj
 23 end function
 24
 25 double precision function sigma_over_r()
 26 double precision :: sigma_lj
 27 double precision :: interatomic_distance
 28 sigma_over_r = sigma_lj() / interatomic_distance()
 29 end function
 30
 31 double precision function interatomic_distance()
 32 print * , 'Interatomic Distance?'
 33 read (* , *) interatomic_distance
 34 end function

FIG. 2: Fun
tional implementation of the Lennard-Jones potential.

epsilon lj

ljV

sigma ljsigma lj

sigma_over_r sigma_over_r

interatomic_distanceinteratomic_distance

sigma_over_r

interatomic_distancesigma lj

epsilon lj

ljV

FIG. 3: The produ
tion tree of V_lj. Above, the tree produ
ed by the program of �gure 2. Below,

the tree obtained if only one
all to sigma_over_r is made.

4

 1 double precision function sigma_over_r()
 2 double precision :: sigma_lj
 3 double precision :: interatomic_distance
 4 double precision , save :: last_result
 5 integer , save :: first_time_here
 6 if (first_time_here .eq. 0) then
 7 last_result = sigma_lj() / interatomic_distance()
 8 first_time_here = 1
 9 endif
 10 sigma_over_r = last_result
 11 end function

FIG. 4: Memoized sigma_over_r fun
tion

alling the
orresponding fun
tion. Therefore, the readability of the
ode is improved for a

programmer who is not familiar with the program. Moreover, as soon as an entity is needed,

it is
al
ulated and valid. Writing programs in this way redu
es
onsiderably the risk to use

un-initialized variables, or variables that are supposed to have a given value but whi
h have

been modi�ed by a side-e�e
t.

With the fun
tional example, every time a quantity is needed it is
omputed, even if

it has already been built before. If the fun
tions are pure (with no side-e�e
ts), one
an

implement memoization[5, 6℄ to redu
e the
omputational
ost: the last value of the fun
tion

is saved, and if the fun
tion is
alled again with the same arguments the last result is returned

instead of
omputing it again. In the present example we
hose to write fun
tions with no

arguments, so memoization is trivial to implement (�gure 4). If we
onsider that the leaves

of the produ
tion tree are
onstant, memoization
an be applied to all the fun
tions. The

produ
tion tree of V_lj
an now be simpli�ed, as shown in �gure 3, below.

B. Presentation of the IRPF90 statements

IRPF90 is a Fortran pre-pro
essor: it generates Fortran
ode from sour
e �les whi
h

ontain keywords spe
i�
 to the IRPF90 program. The keywords understood by IRPF90

pre-pro
essor are brie�y presented. They will be exampli�ed in the next subse
tions for the

mole
ular dynami
s example.

BEGIN_PROVIDER ... END_PROVIDER

Delimitates the de�nition of a provider (se
tions II C and IID).

BEGIN_DOC ... END_DOC

Delimitates the do
umentation of the
urrent provider (se
tion IIC).

BEGIN_SHELL ... END_SHELL

Delimitates an embedded s
ript (se
tion II E).

ASSERT

Expresses an assertion (se
tion IIC).

TOUCH

Expresses the modi�
ation of the value of an entity by a side-e�e
t (se
tion II F).

FREE

Invalidates an entity and free the asso
iated memory. (se
tion ??).

IRP_READ / IRP_WRITE

Reads/Writes the
ontent of the produ
tion tree to/from disk (se
tion IIG).

5

 1 program lennard_jones_dynamics
 2 print * , V_lj
 3 end program
 4
 5 BEGIN_PROVIDER [double precision , V_lj]
 6 implicit none
 7 BEGIN_DOC
 8 ! Lennard Jones potential energy.
 9 END_DOC
 10 double precision :: sigma_over_r
 11 sigma_over_r = sigma_lj / interatomic_distance
 12 V_lj = 4.d0 * epsilon_lj * (sigma_over_r ** 12 &
 13 − sigma_over_r ** 6)
 14 END_PROVIDER
 15
 16 BEGIN_PROVIDER [double precision , epsilon_lj]
 17 &BEGIN_PROVIDER [double precision , sigma_lj]
 18 BEGIN_DOC
 19 ! Parameters of the Lennard−Jones potential
 20 END_DOC
 21 print * , 'Epsilon?'
 22 read (* , *) epsilon_lj
 23 ASSERT (epsilon_lj > 0.)
 24 print * , 'Sigma?'
 25 read (* , *) sigma_lj
 26 ASSERT (sigma_lj > 0.)
 27 END_PROVIDER
 28
 29 BEGIN_PROVIDER[double precision ,interatomic_distance]
 30 BEGIN_DOC
 31 ! Distance between the atoms
 32 END_DOC
 33 print * , 'Inter−atomic distance?'
 34 read (* , *) interatomic_distance
 35 ASSERT (interatomic_distance >= 0.)
 36 END_PROVIDER

FIG. 5: IRPF90 implementation of the Lennard-Jones potential.

IRP_IF ... IRP_ELSE ... IRP_ENDIF

Delimitates blo
ks for
onditional
ompilation (se
tion IIG).

PROVIDE

Expli
it
all to the provider of an entity (se
tion IIG).

C. Implementation of the potential using IRPF90

In the IRPF90 environment, the entities of interest are the result of memoized fun
tions

with no arguments. This representation of the data allows its organization in a produ
tion

tree, whi
h is built and handled by the IRPF90 pre-pro
essor. The previous program may

be written again using the IRPF90 environment, as shown in �gure 5.

The program shown in �gure 5 is very similar to the fun
tional program of �gure 2. The

di�eren
e is that the entities of interest are not fun
tions anymore, but variables. The vari-

able
orresponding to an entity is provided by
alling a providing pro
edure (or provider),

de�ned between the keywords BEGIN_PROVIDER ... END_PROVIDER. In the IRPF90 en-

vironment, a provider
an provide several entities (as shown with the parameters of the

potential), although it is preferable to have providers that provide only one entity.

6

When an entity has been built, it is tagged as built. Hen
e, the next
all to the provider

will return the last
omputed value, and will not build the value again. This explains why

in the IRPF90 environment the parameters of the for
e �eld are asked only on
e to the user.

The ASSERT keyword was introdu
ed to allow the user to pla
e assertions[9℄ in the
ode.

An assertion spe
i�es
ertain general properties of a value. It is expressed as a logi
al

expression whi
h is supposed to be always true. If it is not, the program is wrong. Assertions

in the
ode provide run-time
he
ks whi
h
an dramati
ally redu
e the time spent �nding

bugs: if an assertion is not veri�ed, the program stops with a message telling the user whi
h

assertion
aused the program to fail.

The BEGIN_DOC ... END_DOC blo
ks
ontain the do
umentation of the provided entities.

The des
riptions are en
apsulated inside these blo
ks in order to fa
ilitate the generation

of te
hni
al do
umentation. For ea
h entity a �man page� is
reated, whi
h
ontains the

{needs/needed by} dependen
ies of the entity and the des
ription given in the BEGIN_DOC

... END_DOC blo
k. This do
umentation
an be a

essed by using the irpman
ommand

followed by the name of the entity.

The IRPF90 environment was
reated to simplify the work of the s
ienti�
 programmer. A

lot of time is spent
reating Make�les, whi
h des
ribe the dependen
ies between the sour
e

�les for the
ompilation. As the IRPF90 tool �knows� the produ
tion tree, it
an build

automati
ally the Make�les of programs, without any intera
tion with the user. When the

user starts a proje
t, he runs the
ommand irpf90 �init in an empty dire
tory. A standard

Make�le is
reated, with the gfortran
ompiler[10℄ as a default. Then, the user starts to

write IRPF90 �les whi
h
ontain providers, subroutines, fun
tions and main programs in

�les
hara
terized by the .irp.f su�x. Running make
alls irpf90, and a
orre
t Make�le

is automati
ally produ
ed and used to
ompile the
ode.

D. Providing arrays

Now the basi
s of IRPF90 are known to the reader, we
an show how simple it is to write

a mole
ular dynami
s program. As we will
ompute the intera
tion of several atoms, we

will
hange the previous program su
h that we produ
e an array of potential energies per

atom. We �rst need to introdu
e the quantity Natoms whi
h
ontains the number of atoms.

Figure 6 shows the
ode whi
h de�nes the geometri
al parameters of the system. Figure 7

shows the providers
orresponding to the potential energy V per atom i, where it is
hosen

equal to the Lennard-Jones potential energy:

Vi = V
LJ
i =

Natoms
∑

j 6=i

4ǫ

[

(

σ

||rij||

)12

−

(

σ

||rij||

)6
]

(2)

Figure 8 shows the providers
orresponding to the kineti
 energy T per atom i:

Ti =
1

2
mi||vi||

2
(3)

where mi is the mass and vi is the velo
ity ve
tor of atom i. The velo
ity ve
tor is
hosen

to be initialized zero.

The dimensions of arrays are given in the de�nition of the provider. If an entity, de�nes

the dimension of an array, the provider of the dimensioning entity will be
alled before

allo
ating the array. This guarantees that the array will always be allo
ated with the proper

7

 1 BEGIN_PROVIDER [integer , Natoms]
 2 BEGIN_DOC
 3 ! Number of atoms
 4 END_DOC
 5 print * , 'Number of atoms?'
 6 read (* , *) Natoms
 7 ASSERT (Natoms > 0)
 8 END_PROVIDER
 9
 10 BEGIN_PROVIDER [double precision , coord, (3,Natoms)]
 11 &BEGIN_PROVIDER [double precision , mass , (Natoms)]
 12 implicit none
 13 BEGIN_DOC
 14 ! Atomic data, input in atomic units.
 15 END_DOC
 16 integer :: i,j
 17 print * , 'For each atom: x, y, z, mass?'
 18 do i =1,Natoms
 19 read (* , *) (coord(j,i), j =1, 3), mass(i)
 20 ASSERT (mass(i) > 0.)
 21 enddo
 22 END_PROVIDER
 23
 24 BEGIN_PROVIDER[double precision ,distance,(Natoms,Natoms)]
 25 implicit none
 26 BEGIN_DOC
 27 ! distance : Distance matrix of the atoms
 28 END_DOC
 29 integer :: i,j,k
 30 do i =1,Natoms
 31 do j =1,Natoms
 32 distance(j,i) = 0.
 33 do k =1, 3
 34 distance(j,i) = distance(j,i) + &
 35 (coord(k,i) −coord(k,j)) ** 2
 36 enddo
 37 distance(j,i) = sqrt (distance(j,i))
 38 enddo
 39 enddo
 40 END_PROVIDER

FIG. 6: Code de�ning the geometri
al parameters of the system

size. In IRPF90, the memory allo
ation of an array entity is not written by the user, but

by the pre-pro
essor.

Memory
an be expli
itely freed using the keyword FREE. For example, de-allo
ating the

array velo
ity would be done using FREE velo
ity. If the memory of an entity is freed,

the entity is tagged as �not built�, and it will be allo
ated and built again the next time it

is needed.

E. Embedding s
ripts

The IRPF90 environment allows the programmer to write s
ripts inside his
ode. The

s
ripting language that will interpret the s
ript is given in bra
kets. The result of the shell

s
ript will be inserted in the �le, and then will be interpreted by the Fortran pre-pro
essor.

Su
h s
ripts
an be used to write templates, or to write in the
ode some information that

has to be retrieved at
ompilation. For example, the date when the
ode was
ompiled
an

8

 1 BEGIN_PROVIDER [double precision , V, (Natoms)]
 2 BEGIN_DOC
 3 ! Potential energy.
 4 END_DOC
 5 integer :: i
 6 do i =1,Natoms
 7 V(i) = V_lj(i)
 8 enddo
 9 END_PROVIDER
 10
 11 BEGIN_PROVIDER [double precision , V_lj, (Natoms)]
 12 implicit none
 13 BEGIN_DOC
 14 ! Lennard Jones potential energy.
 15 END_DOC
 16 integer :: i,j
 17 double precision :: sigma_over_r
 18 do i =1,Natoms
 19 V_lj(i) = 0.
 20 do j =1,Natoms
 21 if (i /= j) then
 22 ASSERT (distance(j,i) > 0.)
 23 sigma_over_r = sigma_lj / distance(j,i)
 24 V_lj(i) = V_lj(i) + sigma_over_r ** 12 &
 25 − sigma_over_r ** 6
 26 endif
 27 enddo
 28 V_lj(i) = 4.d0 * epsilon_lj * V_lj(i)
 29 enddo
 30 END_PROVIDER
 31
 32 BEGIN_PROVIDER [double precision , epsilon_lj]
 33 &BEGIN_PROVIDER [double precision , sigma_lj]
 34 BEGIN_DOC
 35 ! Parameters of the Lennard−Jones potential
 36 END_DOC
 37 print * , 'Epsilon?'
 38 read (* , *) epsilon_lj
 39 ASSERT (epsilon_lj > 0.)
 40 print * , 'Sigma?'
 41 read (* , *) sigma_lj
 42 ASSERT (sigma_lj > 0.)
 43 END_PROVIDER

FIG. 7: De�nition of the potential.

be inserted in the sour
e
ode using the example given in �gure 9.

In our mole
ular dynami
s program, the total kineti
 energy E_kin is the sum over all

the elements of the kineti
 energy ve
tor T:

Ekin =
Natoms
∑

i=1

Ti (4)

Similarly, the potential energy E_pot is the sum of all the potential energies per atom.

Epot =
Natoms
∑

i=1

Vi (5)

The
ode to build E_kin and E_pot is very
lose: only the names of the variables
hange, and

it is
onvenient to write the
ode using a unique template for both quantities, as shown in

9

 1 BEGIN_PROVIDER [double precision , T, (Natoms)]
 2 BEGIN_DOC
 3 ! Kinetic energy per atom
 4 END_DOC
 5 integer :: i
 6 do i =1,Natoms
 7 T(i) = 0.5d0 * mass(i) * velocity2(i)
 8 enddo
 9 END_PROVIDER
 10
 11 BEGIN_PROVIDER[double precision ,velocity2,(Natoms)]
 12 BEGIN_DOC
 13 ! Square of the norm of the velocity per atom
 14 END_DOC
 15 integer :: i, k
 16 do i =1,Natoms
 17 velocity2(i) = 0.d0
 18 do k =1, 3
 19 velocity2(i) = velocity2(i) + velocity(k,i) ** 2
 20 enddo
 21 enddo
 22 END_PROVIDER
 23
 24 BEGIN_PROVIDER[double precision ,velocity,(3,Natoms)]
 25 BEGIN_DOC
 26 ! Velocity vector per atom
 27 END_DOC
 28 integer :: i, k
 29 do i =1,Natoms
 30 do k =1, 3
 31 velocity(k,i) = 0.d0
 32 enddo
 33 enddo
 34 END_PROVIDER

FIG. 8: De�nition of the kineti
 energy.

 1 program print_the_date
 2 BEGIN_SHELL [/ bin / sh]
 3 echo print * , \ 'Compiled by $USER on `date`\'
 4 END_SHELL
 5 end program

FIG. 9: Embedded shell s
ript whi
h gets the date of
ompilation.

�gure 10. In this way, adding a new property whi
h is the sum over all the atomi
 properties

an done be done in only one line of
ode: adding the triplet (Property, Do
umentation,

Atomi
 Property) to the list of entities at line 15.

F. Changing the value of an entity by a
ontrolled side-e�e
t

Many
omputer simulation programs
ontain iterative pro
esses. In an iterative pro
ess,

the same fun
tion has to be
al
ulated at ea
h step, but with di�erent arguments. In our

IRPF90 environment, at every iteration the produ
tion tree is the same, but the values of

some entities
hange. To keep the program
orre
t, if the value of one entity is
hanged it

has to be tagged as �built� with its new value, and all the entities whi
h depend on this

10

 1 BEGIN_SHELL [/usr/bin/python]
 2 template = """
 3 BEGIN_PROVIDER [double precision, %(entity)s]
 4 BEGIN_DOC
 5 ! %(doc)s
 6 END_DOC
 7 integer :: i
 8 %(entity)s = 0.
 9 do i=1,Natoms
 10 %(entity)s = %(entity)s+%(e_array)s(i)
 11 enddo
 12 END_PROVIDER
 13 """
 14 entities = [(" E_pot ", " Potential Energy ", " V"),
 15 (" E_kin ", " Kinetic Energy ", " T")]
 16 for e in entities:
 17 dictionary = { " entity ": e[0],
 18 " doc ": e[1],
 19 " e_array ": e[2]}
 20 print template%dictionary
 21 END_SHELL

FIG. 10: Providers of the Lennard-Jones potential energy and the kineti
 energy using a template.

entity (dire
tly or indire
tly) need to be tagged as �not built�. These last entities will need

to be re-
omputed during the new iteration. This me
hanism is a
hieved automati
ally by

the IRPF90 pre-pro
essor using the keyword TOUCH. The side-e�e
t modifying the value of

the entity is
ontrolled, and the program will stay
onsistent with the
hange everywhere in

the rest of the
ode.

In our program, we are now able to
ompute the kineti
 and potential energy of the

system. The next step is now to implement the dynami
s. We
hoose to use the velo
ity

Verlet algorithm[11℄:

r
n+1 = r

n + v
n∆t + a

n ∆t
2

2
(6)

v
n+1 = v

n +
1

2
(an + a

n+1)∆t (7)

where r
n and v

n are respe
tively the position and velo
ity ve
tors at step n, ∆t is the time

step and the a

eleration ve
tor a is de�ned as

a =
Natoms
∑

i=1

−
1

mi

∇iEpot (8)

The velo
ity Verlet algorithm is written in a subroutine verlet, and the gradient of the

potential energy ∇Epot
an be
omputed by �nite di�eren
e (�gure 11).

Computing a
omponent i of the numeri
al gradient of Epot
an be de
omposed in six

steps:

1. Change the
omponent i of the
oordinate ri −→ (ri + δ)

2. Compute the value of Epot

3. Change the
oordinate (ri + δ) −→ (ri − δ)

11

 1 BEGIN_PROVIDER [double precision , dstep]
 2 BEGIN_DOC
 3 ! Finite difference step
 4 END_DOC
 5 dstep = 1.d−4
 6 END_PROVIDER
 7
 8 BEGIN_PROVIDER[double precision ,V_grad_numeric,(3,Natoms)]
 9 implicit none
 10 BEGIN_DOC
 11 ! Numerical gradient of the potential
 12 END_DOC
 13 integer :: i, k
 14 do i =1,Natoms
 15 do k =1, 3
 16 coord(k,i) = coord(k,i) + dstep
 17 TOUCH coord
 18 V_grad_numeric(k,i) = E_pot
 19 coord(k,i) = coord(k,i) − 2.d0 * dstep
 20 TOUCH coord
 21 V_grad_numeric(k,i) = &
 22 (V_grad_numeric(k,i) −E_pot) / (2.d0 * dstep)
 23 coord(k,i) = coord(k,i) + dstep
 24 enddo
 25 enddo
 26 TOUCH coord
 27 END_PROVIDER
 28
 29 BEGIN_PROVIDER [double precision , V_grad, (3,Natoms)]
 30 BEGIN_DOC
 31 ! Gradient of the potential
 32 END_DOC
 33 integer :: i,k
 34 do i =1,Natoms
 35 do k =1, 3
 36 V_grad(k,i) = V_grad_numeric(k,i)
 37 enddo
 38 enddo
 39 END_PROVIDER

FIG. 11: Provider of the gradient of the potential.

4. Compute the value of Epot

5. Compute the
omponent of the gradient using the two last values of Epot

6. Re-set (ri − δ) −→ ri

The provider of V_grad_numeri
 follows these steps: in the internal loop, the array
oord

is
hanged (line 16). Tou
hing it (line 17) invalidates automati
ally E_pot, sin
e it depends

indire
tly on
oord. As the value of E_pot is needed in line 18 and not valid, it is re-
omputed

between line 17 and line 18. The value of E_pot whi
h is a�e
ted to V_grad_numeri
(k,i)

is the value of the potential energy,
onsistent with the
urrent set of atomi

oordinates.

Then, the
oordinates are
hanged again (line 19), and the program is informed of this

hange at line 20. When the value of E_pot is used again at line 22, it is
onsistent with

the last
hange of
oordinates. At line 23 the
oordinates are
hanged again, but no tou
h

statement follows. The reason for this
hoi
e is e�
ien
y, sin
e two
ases are possible for

the next instru
tion: if we are at the last iteration of the loop, we exit the main loop and

12

line 26 is exe
uted. Otherwise, the next instru
tion will be line 16. Tou
hing
oord is not

ne
essary between line 23 and line 16 sin
e no other entity is used.

The important point is that the programmer doesn't have to know how E_pot depends

on
oord. He only has to apply a simple rule whi
h states that when the value of an entity

A is modi�ed, it has to be tou
hed before any other entity B is used. If B depends on A, it

will be re-
omputed, otherwise it will not, and the
ode will always be
orre
t. Using this

method to
ompute a numeri
al gradient allows a programmer who is not familiar with the

ode to
ompute the gradient of any entity A with respe
t to any other quantity B, without

even knowing if A depends on B. If A does not depend on B, the gradient will automati
ally

be zero. In the programs dealing with optimization problems, it is a real advantage: a short

s
ript
an be written to build automati
ally all the possible numeri
al derivatives, involving

all the entities of the program, as given in �gure 12.

The velo
ity Verlet algorithm
an be implemented (�gure 13) as follows:

1. Compute the new value of the
oordinates

2. Compute the
omponent of the velo
ities whi
h depends on the old set of
oordinates

3. Tou
h the
oordinates and the velo
ities

4. In
rement the velo
ities by their
omponent whi
h depends on the new set of
oordi-

nates

5. Tou
h the velo
ities

G. Other Features

As IRPF90 is designed for HPC,
onditional
ompilation is an essential require-

ment. Indeed, it is often used for a
tivating and dea
tivating blo
ks of
ode de�ning

the behavior of the program under a parallel environment. This is a
hieved by the

IRP_IF...IRP_ELSE...IRP_ENDIF
onstru
ts. In �gure 14, the
he
kpointing blo
k is a
ti-

vated by running irpf90 -DCHECKPOINT. If the -D option is not present, the other blo
k is

a
tivated.

The
urrent state of the produ
tion tree
an written to disk using the
ommand

IRP_WRITE as in �gure 14. For ea
h entity in the subtrees of E_pot and E_kin, a �le is

reated with the name of the entity whi
h
ontains the value of the entity. The subtree
an

be loaded again later using the IRP_READ statement. This fun
tionality is parti
ularly useful

for adding qui
kly a
he
kpointing feature to an existing program.

The PROVIDE keyword was added to assign imperatively a needs/needed by relation be-

tween two entities. This keyword
an be used to asso
iate the value of an entity to an

iteration number in an iterative pro
ess, or to help the prepro
essor to produ
e more e�-

ient
ode.

A last
onvenient feature was added: the de
larations of the lo
al variables do not need

anymore to be lo
ated before the �rst exe
utable statement. The lo
al variables
an now

be de
lared anywhere inside the providers, subroutines and fun
tions. The IRPF90 pre-

pro
essor will put them at the beginning of the subroutines or fun
tions for the programmer.

It allows the user to de
lare the variables where the reader needs to know to what they

orrespond.

13

 1 BEGIN_SHELL [/usr/bin/python]
 2 # Read the names of the entities and their dimensions
 3 dims = {}
 4 import os
 5 for filename in os.listdir(' . '):
 6 if filename.endswith(' .irp.f '):
 7 file = open(filename,' r ')
 8 for line in file:
 9 if " %" not in line:
 10 if line.strip().lower().startswith(' begin_provider '):
 11 buffer = line.split(' , ',2)
 12 name = buffer[1].split('] ')[0].strip()
 13 if len(buffer) == 2:
 14 dims[name] = []
 15 else :
 16 dims[name] = buffer[2]
 17 for c in " ()] \n ":
 18 dims[name] = dims[name].replace(c,"")
 19 dims[name] = dims[name].split(" , ")
 20 file.close()
 21 # The template to use for the code generation
 22 template = """
 23 BEGIN_PROVIDER[double precision, grad_%(var1)s_%(var2)s %(dims2)s]
 24 BEGIN_DOC
 25 ! Gradient of %(var1)s with respect to %(var2)s
 26 END_DOC
 27 integer :: %(all_i)s
 28 double precision :: two_dstep
 29 two_dstep = dstep + dstep
 30 %(do)s
 31 %(var2)s %(indice)s = %(var2)s %(indice)s + dstep
 32 TOUCH %(var2)s
 33 grad_%(var1)s_%(var2)s %(indice)s = %(var1)s
 34 %(var2)s %(indice)s = %(var2)s %(indice)s − two_dstep
 35 TOUCH %(var2)s
 36 grad_%(var1)s_%(var2)s %(indice)s = &
 37 (grad_%(var1)s_%(var2)s %(indice)s − %(var1)s)/two_dstep
 38 %(var2)s %(indice)s = %(var2)s %(indice)s + dstep
 39 %(enddo)s
 40 TOUCH %(var2)s
 41 END_PROVIDER
 42 """
 43 # Generate all possibilities of d(v1)/d(v2), with v1 scalar
 44 for v1 in dims.keys():
 45 if dims[v1] == []:
 46 for v2 in dims.keys():
 47 if v2 != v1:
 48 do = ""
 49 enddo = ""
 50 if dims[v2] == []:
 51 dims2 = ""
 52 all_i = " i "
 53 indice = ""
 54 else :
 55 dims2 = ' , ('+' , '.join(dims[v2])+') '
 56 all_i = ' , '.join([" i "+str(k) for k in range(len(dims[v2]))])
 57 indice = " ("
 58 for k,d in enumerate(dims[v2]):
 59 i = " i "+str(k)
 60 do = " do "+i+" = 1, "+d+" \n "+do
 61 enddo += " enddo \n "
 62 indice += i+" , "
 63 indice = indice[:−1]+") "
 64 dictionary = {" var1 " : v1,
 65 " var2 " : v2, " dims2 " : dims2,
 66 " all_i " : all_i, " do" : do,
 67 " indice ": indice, " enddo " : enddo}
 68 print template%dictionary
 69 END_SHELL

FIG. 12: Automati
 generation of all possible gradients of s
alar entities with respe
t to all other

entities.

14

 1 BEGIN_PROVIDER [integer , Nsteps]
 2 BEGIN_DOC
 3 ! Number of steps for the dynamics
 4 END_DOC
 5 print * , 'Nsteps?'
 6 read (* , *) Nsteps
 7 ASSERT (Nsteps > 0)
 8 END_PROVIDER
 9
 10 BEGIN_PROVIDER [double precision , tstep]
 11 &BEGIN_PROVIDER [double precision , tstep2]
 12 BEGIN_DOC
 13 ! Time step for the dynamics
 14 END_DOC
 15 print * , 'Time step?'
 16 read (* , *) tstep
 17 ASSERT (tstep > 0.)
 18 tstep2 = tstep * tstep
 19 END_PROVIDER
 20
 21 BEGIN_PROVIDER[double precision ,acceleration,(3,Natoms)]
 22 implicit none
 23 BEGIN_DOC
 24 ! Acceleration = − grad(V)/m
 25 END_DOC
 26 integer :: i, k
 27 do i =1,Natoms
 28 do k =1, 3
 29 acceleration(k,i) = − V_grad(k,i) / mass(i)
 30 enddo
 31 enddo
 32 END_PROVIDER
 33
 34 subroutine verlet
 35 implicit none
 36 integer :: is, i, k
 37 do is =1,Nsteps
 38 do i =1,Natoms
 39 do k =1, 3
 40 coord(k,i) = coord(k,i) + tstep * velocity(k,i) + &
 41 0.5 * tstep2 * acceleration(k,i)
 42 velocity(k,i) = velocity(k,i) + 0.5 * tstep * &
 43 acceleration(k,i)
 44 enddo
 45 enddo
 46 TOUCH coord velocity
 47 do i =1,Natoms
 48 do k =1, 3
 49 velocity(k,i) = velocity(k,i) + 0.5 * tstep * &
 50 acceleration(k,i)
 51 enddo
 52 enddo
 53 TOUCH velocity
 54 call print_data(is)
 55 enddo
 56 end subroutine

FIG. 13: The velo
ity Verlet algorithm.

15

 1 program dynamics
 2
 3 call verlet
 4
 5 IRP_IF CHECKPOINT
 6
 7 print * , 'Checkpoint'
 8 IRP_WRITE E_pot
 9 IRP_WRITE E_kin
 10
 11 IRP_ELSE
 12
 13 print * , 'No checkpoint'
 14
 15 IRP_ENDIF
 16
 17 end

FIG. 14: The main program.

III. EFFICIENCY OF THE GENERATED CODE

In the laboratory, we are
urrently re-writing a quantum Monte Carlo (QMC) program,

named QMC=Chem, with the IRPF90 tool. The same
omputation was realized with the

old
ode (usual Fortran
ode), and the new
ode (IRPF90
ode). Both
odes were
ompiled

with the Intel Fortran
ompiler version 11.1 using the same options. A ben
hmark was

realized on an Intel Xeon 5140 pro
essor.

The IRPF90
ode is faster than the old
ode by a fa
tor of 1.60: the CPU time of the

IRPF90 exe
utable is 62% of the CPU time of the old
ode. This time redu
tion is mainly

due to the avoidan
e of
omputing quantities that are already
omputed. The total number

of pro
essor instru
tions is therefore redu
ed.

The average number of instru
tions per pro
essor
y
le is 1.47 for the old
ode, and 1.81

for the IRPF90
ode. This appli
ation shows that even if the un-ne
essary
omputations were

removed from the old
ode, the
ode produ
ed by IRPF90 would still be more e�
ient. The

reason is that in IRPF90, the programmer is guided to write e�
ient
ode: the providers

are small subroutines that manipulate a very limited number of memory lo
ations. This

oding style improves the temporal lo
ality of the
ode[12℄ and thus minimizes the number

of
a
he misses.

The
on
lusion of this real-size appli
ation is that the overhead due to the management

of the produ
tion tree is negligible
ompared to the e�
ien
y gained by avoiding to
ompute

many times the same quantity, and by helping the Fortran
ompiler to produ
e optimized

ode.

IV. SUMMARY

The IRPF90 environment is proposed for writing programs with redu
ed
omplexity.

This te
hnique for writing programs,
alled �Impli
it Referen
e to Parameters� (IRP),[7℄ is

onform to the re
ommendations of the �Open Stru
ture Interfa
eable Programming Envi-

ronment� (OSIPE)[8℄:

• Open: Unambiguous identi�
ation and a

ess to any entity anywhere in the program

16

• Interfa
eable: Easy addition of any new feature to an existing
ode

• Stru
tured: The additions will have no e�e
t on the program logi

The programming paradigm uses some ideas of fun
tional programming and thus
lari�es

the
orrespondan
e between the mathemati
al formulas and the
ode. Therefore, s
ientists

do not need to be experts in programming to write
lear, reusable and e�
ient
ode, as

shown with the simple mole
ular dynami
s
ode presented in this paper.

The
onsequen
es of the lo
ality of the
ode are multiple:

• the
ode is e�
ient sin
e the temporal lo
ality is in
reased,

• the overlap of pie
es of
ode written simultaneously by multiple developers is redu
ed.

• regression testing[13℄
an be a
hieved by writing, for ea
h entity, a program whi
h

tests that the entity is built
orre
tly.

Finally, let us mention that the IRPF90 pre-pro
essor generates Fortran 90 whi
h is fully

ompatible with standard subroutines and fun
tions. Therefore the produ
ed Fortran
ode

an be
ompiled on any ar
hite
ture, and the usual HPC libraries (BLAS[14℄, LAPACK[15℄,

MPI[16℄,. . .)
an be used.

The IRPF90 program
an be downloaded on http://irpf90.sour
eforge.net

A
knowledgments

The author would like to a
knowledge F. Colonna (CNRS, Paris) for tea
hing him the IRP

method, and long dis
ussions around this subje
t. The author also would like to thank P.

Reinhardt (Université Pierre et Marie Curie, Paris) for testing and enjoying the IRPF90 tool,

and F. Spiegelman (Université Paul Sabatier, Toulouse) for dis
ussions about the mole
ular

dynami
s
ode.

[1℄ Stroustrup B. The C++ Programming Language Ed: Addison-Wesley Pub Co; 3rd edition

(2000).

[2℄ Hudak P. ACM Comput. Surv. 21(3), 359 (1989).

[3℄ http://www.python.org/

[4℄ Lennard-Jones J. E., Pro
eedings of the Physi
al So
iety 43, 461 (1931).

[5℄ Mi
hie D. Nature 218 19 (1968).

[6℄ Hughes R.J.M. �Lazy memo fun
tions� in: G. Goos and J. Hartmanis, eds., Pro
. Conf:

on Fun
tional Programming and Computer Ar
hite
ture, Nan
y, Fran
e, September 1985,

Springer Le
ture Note Series, Vol. 201 (Springer, Berlin, 1985).

[7℄ http://galileo.l
t.jussieu.fr/ frames/mediawiki/index.php/IRP_Programming_Presentation

[8℄ Colonna F., Jolly L.-H., Poirier R. A., Ángyán J. G., and Jansen G. Comp. Phys. Comm.

81(3), 293 (1994).

[9℄ Hoare C.A.R., Commun. ACM, 12(10), 576 (1969).

[10℄ http://g

.gnu.org/fortran/

[11℄ Swope W. C., Andersen H. C., Berens P. H., and Wilson K. R. J. Chem. Phys. 76, 637 (1982).

17

[12℄ Denning P. J. Commun. ACM 48(7), 19 (2005).

[13℄ Agrawal H., Horgan J. R., Krauser, E.W., London, S., In
remental regression testing. in:

Pro
eedings of the IEEE Conferen
e on Software Maintenan
e, 348 (1993).

[14℄ L. S. Bla
kford, J. Demmel, J. Dongarra, I. Du�, S. Hammarling, G. Henry, M. Heroux, L.

Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, ACM Trans.

Math. Soft. 28(2), 135 (2002).

[15℄ Anderson E., Bai Z., Bis
hof C., Bla
kford S., Demmel J., Dongarra J., Du Croz J., Greenbaum

A., Hammarling S., M
Kenney A. and Sorensen D. LAPACK Users' Guide, Ed: So
iety for

Industrial and Applied Mathemati
s, Philadelphia, PA, (1999).

[16℄ Gropp W., Lusk E., Doss N. and A. Skjellum, Parallel Computing 22(6), 789 (1996).

18

	talk
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	N2 molecule
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Variational Monte Carlo (VMC)
	Metropolis algorithm
	Metropolis algorithm
	Metropolis algorithm
	Metropolis algorithm
	Metropolis algorithm
	Summary about VMC
	Slater-Jastrow trial wavefunction
	Other trial wavefunctions
	Fixed-Node Diffusion Monte Carlo (DMC)
	Population of walkers in DMC
	Fixed-Node Diffusion Monte Carlo (DMC)
	Fixed-Node Diffusion Monte Carlo (DMC)
	Fixed-Node Diffusion Monte Carlo (DMC)
	QMC is fully parallelizable
	Benchmarks
	QMC simulations for Amyloid $�eta $
	Petascale QMC simulations
	Practical aspects: Convergence of energy
	Practical aspects: Convergence of energy
	Practical aspects: Convergence of energy
	Practical aspects: Convergence of energy
	Practical aspects: Convergence of energy
	Other practical aspects
	Other practical aspects

	parallel
	Parallelization of VMC
	Fault-tolerance
	Parallelization of DMC
	Why a database?
	Initial conditions
	Termination
	Parallel speed-up

	irpf90
	Introduction
	Usual programming
	Alternative way with functions
	Single-line with functions
	Same example with IRPF90
	Definition of the nodes of the tree
	Fortran code generation
	Generated code example
	Using subroutines/functions
	Providing arrays
	Modifying a variable outside of its provider
	Templates
	Metaprogramming
	IRPF90 for HPC
	More about IRPF90

	single_core
	Hardware considerations
	Example : squared distance matrix
	Vector operations
	Automatic vectorization
	Intel specific Compiler directives
	Example : squared distance matrix
	Hot spots of QMC algorithms
	Calculation of the Slater matrices
	Dense Matrix x Sparse Vector Product
	Inverse Slater matrices

	TP_QmcChem_Cecam
	Running a VMC calculation
	Single core run
	Multi-core run

	Running DMC calculations
	Adding a new property
	Adding the property to the sources
	Restoring the VMC configuration
	Running the code with the new property to sample

	qmc_review
	jcompchem
	paper_irpf90

